

Lecture Notes in Computer Science 4596
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lars Arge Christian Cachin
Tomasz Jurdziński Andrzej Tarlecki (Eds.)

Automata, Languages
and Programming

34th International Colloquium, ICALP 2007
Wrocław, Poland, July 9-13, 2007
Proceedings

13

Volume Editors

Lars Arge
University of Aarhus, Department of Computer Science
IT-Parken, Aabogade 34, 8200 Aarhus N, Denmark
E-mail: large@daimi.au.dk

Christian Cachin
IBM Research, Zurich Research Laboratory
Säumerstrasse 4, 8803 Rüschlikon, Switzerland
E-mail: cca@zurich.ibm.com

Tomasz Jurdziński
University of Wrocław, Institute of Computer Science
ul. Joliot-Curie 15, 50-383 Wrocław, Poland
E-mail: tju@ii.uni.wroc.pl

Andrzej Tarlecki
University of Warsaw, Institute of Informatics
ul. Banacha 2, 02-097 Warsaw, Poland
E-mail: tarlecki@mimuw.edu.pl

Library of Congress Control Number: 2007929786

CR Subject Classification (1998): F, D, C.2-3, G.1-2, I.3, E.1-2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73419-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73419-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12085491 06/3180 5 4 3 2 1 0

Preface

The 34th International Colloquium on Automata, Languages and Programming
(ICALP 2007) was held in Wroc�law, Poland, on July 9–13, 2007. This volume
contains all papers selected for presentation at ICALP 2007. The conference
program also included excellent invited lectures by Bernard Chazelle (Princeton),
Ivan Damg̊ard (Aarhus), Fedor Fomin (Bergen), Gordon Plotkin (Edinburgh),
Michael O. Rabin (Harvard), and Fred Schneider (Cornell); some of these were
accompanied by papers that are included in this volume as well. In addition, a
paper by Michael O. Rabin, who gave a joint LICS/ICALP invited lecture, is
included in the proceedings of LICS 2007.

ICALP constitutes a series of annual conferences of the European Association
for Theoretical Computer Science (EATCS), the first one of which took place
in 1972. This year, the ICALP program consisted of three tracks, following the
model established with ICALP 2005: Track A focusing on algorithms, automata,
complexity and games; Track B focusing on logic, semantics and theory of pro-
gramming; and Track C focusing on security and cryptography foundations.

In response to the call for papers, the Program Committee received 242 sub-
missions, of which 149 for Track A, 59 for Track B and 34 for Track C. The
Program Committee selected 76 papers for inclusion in the scientific program,
in particular, 41 papers for Track A, 24 papers for Track B, and 11 papers for
Track C. The selection was made by the Program Committee based on original-
ity, quality, and relevance to theoretical computer science.

Even though the total number of submissions was somewhat lower than in
the previous years, the overall quality of the submissions was very good indeed.
During the highly competitive selection process — as tough as it is expected to
be at ICALP — many good submissions had to be rejected and the outcome
resulted in a very interesting overall program.

ICALP 2007 was held in conjunction with the 22nd Annual IEEE Sympo-
sium on Logic in Computer Science (LICS 2007), the 9th ACM-SIGPLAN In-
ternational Symposium on Principles and Practice of Declarative Programming
(PPDP 2007), and Logic Colloquium 2007. The following workshops were held
as satellite events of ICALP 2007 and LICS 2007:

– DCM 2007: 3rd International Workshop on Development of Computational
Models;

– FCS-ARSPA 2007: Joint Workshop on Foundations of Computer Security
and Automated Reasoning for Security Protocol Analysis;

– GOCP 2007: International Workshop on Group-Oriented Cryptographic
Protocols;

– LCC 2007: 9th International Workshop on Logic and Computational
Complexity;

– PAuL 2007: International Workshop on Probabilistic Automata and Logics;

VI Preface

– Reasoning about and with Games 2007;
– SOS 2007: 4th Workshop on Structural Operational Semantics;
– TRSH 2007: Theory of Randomized Search Heuristic;
– TMCNAA 2007: Workshop on Traced Monoidal Categories, Network Alge-

bras, and Applications; and
– WCAN 2007: 3rd Workshop on Cryptography for Ad-hoc Networks.

Moreover, the 3rd International Workshop on Algorithmic Aspects of Wireless
Sensor Networks (ALGOSENSORS 2007) was held in Wroc�law at the same time.

We wish to thank all authors who submitted extended abstracts for consider-
ation, the Program Committee for their hard work, and the referees who assisted
the Program Committee in the evaluation process.

We are grateful to the University of Wroc�law for hosting ICALP 2007 and to
the Organizing Committee at the Institute of Computer Science, chaired by Jerzy
Marcinkowski, for mastering the logistics of ICALP 2007 and the concurrent
events. We also thank the University of Wroc�law and the City of Wroc�law for
their financial support.

We gratefully acknowledge the use of the following two conference manage-
ment systems: EasyChair (Tracks A and B) by Andrei Voronkov and the Web
Submission and Review Software by Shai Halevi (Track C).

April 2007 Lars Arge
Christian Cachin

Tomasz Jurdziński
Andrzej Tarlecki

Conference Organization

Program Committee

Track A

Susanne Albers, Universität Freiburg, Germany
Lars Arge, University of Aarhus, Denmark (Chair)
James Aspnes, Yale University, USA
Yossi Azar, Microsoft Research, USA and Tel-Aviv University, Israel
Joan Boyar, University of Southern Denmark, Denmark
Richard Cole, New York University, USA
Camil Demetrescu, University of Rome La Sapienza, Italy
Xiaotie Deng, City University of Hong Kong, Hong Kong
Thomas Erlebach, University of Leicester, UK
Ricard Gavaldà, Universitat Politècnica de Catalunya, Spain
Loukas Georgiadis, HP, USA
Sariel Har-Peled, University of Illinois at Urbana-Champaign, USA
Markus Holzer, Technische Universität München, Germany
Piotr Indyk, Massachusetts Institute of Technology, USA
Ming-Yang Kao, Northwestern University, USA
Marc van Kreveld, Utrecht University, The Netherlands
Ulrich Meyer, MPI-INF Saarbrücken, Germany
Michael Mitzenmacher, Harvard University, USA
Branislav Rovan, Comenius University, Slovakia
Jan Arne Telle, University of Bergen, Norway
Jacobo Torán, Universität Ulm, Germany
Norbert Zeh, Dalhousie University, Canada

Track B

Roland Backhouse, University of Nottingham, UK
Pierpaolo Degano, Università di Pisa, Italy
Bengt Jonsson, Uppsala University, Sweden
Christoph Koch, Universität des Saarlandes, Saarbrücken, Germany
Marta Kwiatkowska, University of Birmingham, UK
Martin Lange, University of Aarhus, Denmark
Pierre Lescanne, ENS Lyon, France
Madhusvadan Parthasarathy, University of Illinois, Urbana-Champaign, USA
Eugenio Moggi, Università di Genova, Italy
Lawrence Moss, Indiana University, Bloomington, USA
Andrzej Murawski, Oxford University, UK

VIII Organization

Fernando Orejas, UPC, Barcelona, Spain
Doron Peled, University of Warwick, UK
Davide Sangiorgi, Università di Bologna, Italy
Thomas Schwentick, Universität Dortmund, Germany
Wolfgang Thomas, RWTH Aachen, Germany
Lidia Tendera, Opole University, Poland
Andrzej Tarlecki, Warsaw University, Poland (Chair)
Frits Vaandrager, Radboud University Nijmegen, The Netherlands
Rob van Glabbeek, NICTA, Sydney, Australia

Track C

Michael Backes, Saarland University, Germany
David Basin, ETH Zürich, Switzerland
Michele Boreale, Università di Firenze, Italy
Christian Cachin, IBM Research, Switzerland (Chair)
Ran Canetti, IBM Research, USA
Véronique Cortier, LORIA, CNRS, France
Stefan Dziembowski, Warsaw University, Poland

and University of Rome La Sapienza, Italy
Cédric Fournet, Microsoft Research, UK
Jonathan Katz, University of Maryland, USA
Eike Kiltz, CWI, The Netherlands
Eyal Kushilevitz, Technion, Israel
Anna Lysyanskaya, Brown University, USA
Jesper Nielsen, University of Aarhus, Denmark
Rafael Pass, Cornell University, USA
Giuseppe Persiano, University of Salerno, Italy
Krzysztof Pietrzak, ENS, France
Leonid Reyzin, Boston University, USA
Mark Ryan, University of Birmingham, UK
David Sands, Chalmers University of Technology, Sweden
Abhi Shelat, IBM Research, Switzerland

Local Organizing Committee

Jerzy Marcinkowski (Conference Chair)
Marcin Bieńkowski (Workshop Chair)
Artur Jeż
Tomasz Jurdziński
Emanuel Kieroński
Krzysztof Loryś
Aleksander M ↪adry

Organization IX

Sponsoring Institutions

The University of Wroc�law
The City of Wroc�law

External Reviewers

Pavan Aduri, Deepak Ajwani, Natasha Alechina, Jesus Almendros, Ernst Al-
thaus, Andris Ambainis, Elliot Anshelevich, Pablo Arrighi, Vikraman Arvind,
Roland Axelsson, David Bader, Patrick Baillot, Elisa Baniassad, Nikhil Bansal,
Massimo Bartoletti, Surender Baswana, Mark de Berg, Henrik Bjorklund,
Manuel Bodirsky, Hans Bodlaender, Beate Bollig, Filippo Bonchi, Maria Luisa
Bonet, Henning Bordihn, Magdalene G. Borgelt, Xavier Boyen, Claus Brabrand,
Felix Brandt, Gerth Brodal, Joachim Buhmann, Tian-Ming Bu, Nadia Busi,
Jin-Yi Cai, Arnaud Carayol, Josep Carmona, Anton Cerny, Timothy Chan,
Kevin Chang, Witold Charatonik, Shuchi Chawla, Chandra Chekuri, Hubie
Chen, Jianer Chen, Jing Chen, Xi Chen, Jacek Chrz ↪aszcz, Jacek Cichoń, David
Cock, Tom Coleman, Giovanni Conforti, Ricardo Corin, Andrea Corradini, Anne
Cregan, Artur Czumaj, Ivan Damg̊ard, Pous Damien, Nenad Dedić, Stefan
Dobrev, Sebastian Dörn, Petros Drineas, Pavol Duris, Jana Dvorakova, Faith
Ellen, Amir Epstein, Leah Epstein, Kousha Etessami, Rolf Fagerberg, Regan
Fargetton, Lene Favroldt, Uriel Feige, Michael Fellows, Jose Fernandez, Hen-
ning Fernau, Gian Luigi Ferrari, Felix Fischer, Marc Fischlin, Lisa Fleischer,
Fedor Fomin, Lance Fortnow, Dimitris Fotakis, Paolo Franciosa, Stefan Funke,
J. Gabarro, Clemente Galdi, Iftah Gamzu, Naveen Garg, Dmitry Gavinsky,
Cyril Gavoille, Assefaw Gebremedhin, Blaise Genest, Leszek G ↪asieniec, Paul
Goldberg, Alexander Golynski, Fred Green, Martin Green, Hermann Gruber,
Dimitar Guelev, Jiong Guo, Mohammadtaghi Hajiaghayi, Jason Hartline, Her-
man Haverkort, Karmit Hazai, Sun He, Rogardt Heldal, Pavol Hell, Danny
Hendler, Peter Hertling, Yoram Hirshfeld, Tomas Holan, Peter Høyer, Chun-
Yuan Hsiao, Li-Sha Huang, Nicole Immorlica, Kazuo Iwama, Shahid Jabbar,
Kamal Jain, Jesper Jansson, Peter Jeavons, Jan Johannsen, Marcin Jurdziński,
Matthieu Kaczmarek, �Lukasz Kaiser, Bhavana Kanukurthi, Ming-Yang Kao,
George Karakostas, Juhani Karhumaki, Wong Karianto, Branislav Katreniak,
Irit Katriel, Emanuel Kieroński, Hartmut Klauck, Philip Klein, Bartek Klin,
Jochen Könemann, Chiu-Yuen Koo, Sven Kosub, Michal Koucký, Annamaria
Kovacs, Rastislav Královič, Richard Královič, Dieter Kratsch, Hugo Krawczyk,
Steve Kremer, Michal Kunc, Orna Kupferman, Martin Kutrib, Pascal Lafour-
cade, Mark Lanthier, Sophie Laplante, S�lawomir Lasota, Stefano Leonardi,
Jerome Leroux, Pierre Lescanne, Martin Leucker, Minming Li, Yehuda Lindell,
Haowen Liu, Christof Loeding, Maarten Löffler, Francisco Lopez-Fraguas, Alex
Lopez-Ortiz, Michele Loreti, Hsueh-I Lu, Jun Luo, Yuh-Dauh Lyuu, Edita Maca-
jova, Damiano Macedonio, Ian Mackie, Meena Mahajan, Mohammad Mahdian,
Anil Maheshwari, Yishay Mansour, Jerzy Marcinkowski, Wim Martens, Narciso
Marti-Oliet, Dániel Marx, Claire Mathieu, Neel Mathur, Marios Mavronikolas,

X Organization

Andrew McGregor, Annabelle McIver, Pierre McKenzie, Klaus Meer, Daniel
Meister, Dieter van Melkebeek, Maria-Chiara Meo, Xavier Messeguer, Jochen
Messner, Julian Mestre, Paolo Milazzo, Vahab Mirrokni, Michael Mislove, Taku-
nari Miyazaki, Arjan Mooij, Shlomo Moran, Carroll Morgan, Larry Moss, Herve
Moulin, Fabian Mueller, Aybek Mukhamedov, Ian Munro, Dejan Nickovic,
Rolf Niedermeier, Gethin Norman, Marc Noy, Jan Obdrzalek, Kazuhiro Ogata,
Alexander Okhotin, Shien-Jin Ong, Vitaly Osipov, Martin Pal, Adriana Palacio,
Matthew Parker, Joachim Parrow, Wies�law Paw�lowski, Doron Peled, Gerardo
Pelosi, Mathew Penrose, Ion Petre, Jean-Eric Pin, Tomas Plachetka, Chung Ke-
ung Poon, Giuseppe Prencipe, Andrzej Proskurowski, Qi Qi, Yuri Rabinovich,
Balaji Raghavachari, Daniel Raible, Rajeev Raman, Oded Regev, Klaus Rein-
hardt, Günter Rote, Terry G. Rudolph, Scott Russell, Daniil Ryabko, Ondrej
Rypacek, Kunihiko Sadakane, Konstantinos Sagonas, Peter Sanders, Miklos San-
tha, Srinivasa Rao Satti, Ulrike Sattler, Saket Saurabh, Andrea Schalk, Chris-
tian Schallhart, Siu-Wing Scheng, Georg Schnitger, Uwe Schoening, Tom Schri-
jvers, Detlef Seese, Maria J. Serna, Asaf Shapira, Vitaly Shmatikov, Rodrigo
Silveira, Riccardo Silvestri, Michiel Smid, Roberto Solis-Oba, Bettina Speck-
mann, Paola Spoletini, Christoph Sprenger, Jeremy Sproston, Jiri Srba, Lud-
wig Staiger, Martin Stanek, Daniel Stefankovic, Angelika Steger, Bernhard von
Stengel, Marielle Stoelinga, Arne Storjohann, Wei Sun, Xiaoming Sun, Xiaosun
Sun, Wing Kin Sung, Frédéric Sur, Chaitanya Swamy, Claude Tardif, Michael
Tautschnig, Kavitha Telikepalli, Pascal Tesson, Thomas Thierauf, Wolfgang
Thomas, Stravros Tripakis, Franco Turini, Dominique Unruh, Frits Vaandrager,
Leslie Valiant, Daniele Varacca, Moshe Vardi, Stephen Vasavis, Muthuramakr-
ishnan Venkitasubramaniam, Elad Verbin, Kumar Neeraj Verma, Björn Victor,
German Vidal, Danny Vilenchik, Ivan Visconti, Mahesh Viswanathan, Herib-
ert Vollmer, Imrich Vrt’o, Feng Wang, Lusheng Wang, Bogdan Warinschi, Os-
amu Watanabe, Brent Waters, John Watrous, Volker Weber, Benjamin Werner,
Gordon Wilfong, Tony Wirth, Pierre Wolper, David Wood, David Woodruff,
James Worrell, Fatos Xhafa, Guomin Yang, Wang Yi, Yitong Yin, Stanislav Zak,
Michael Zakharyaschev, Wenan Zang, Gianluigi Zavattaro, Konrad Zdanowski,
Guochuan Zhang, Jun Zhang, Yunlei Zhao, Uri Zwick

Table of Contents

Invited Lectures

Ushering in a New Era of Algorithm Design . 1
Bernard Chazelle

A “Proof-Reading” of Some Issues in Cryptography 2
Ivan Damg̊ard

Credentials-Based Authorization: Evaluation and Implementation 12
Fred B. Schneider

Subexponential Parameterized Algorithms . 15
Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos

Session A1

Competitive Algorithms for Due Date Scheduling . 28
Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs

Mechanism Design for Fractional Scheduling on Unrelated Machines 40
George Christodoulou, Elias Koutsoupias, and Annamária Kovács

Session A2

Estimating Sum by Weighted Sampling . 53
Rajeev Motwani, Rina Panigrahy, and Ying Xu

Sampling Methods for Shortest Vectors, Closest Vectors and Successive
Minima . 65

Johannes Blömer and Stefanie Naewe

Session A3

Low Distortion Spanners . 78
Seth Pettie

Minimum Weight 2-Edge-Connected Spanning Subgraphs in Planar
Graphs . 90

André Berger and Michelangelo Grigni

Labeling Schemes for Vertex Connectivity . 102
Amos Korman

XII Table of Contents

Session A4

Unbounded-Error One-Way Classical and Quantum Communication
Complexity . 110

Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and
Shigeru Yamashita

A Lower Bound on Entanglement-Assisted Quantum Communication
Complexity . 122

Ashley Montanaro and Andreas Winter

Separating Deterministic from Nondeterministic NOF Multiparty
Communication Complexity . 134

Paul Beame, Matei David, Toniann Pitassi, and Philipp Woelfel

Session A5

An Optimal Decomposition Algorithm for Tree Edit Distance 146
Erik D. Demaine, Shay Mozes, Benjamin Rossman, and
Oren Weimann

On Commutativity Based Edge Lean Search . 158
Dragan Bošnački, Edith Elkind, Blaise Genest, and Doron Peled

Commitment Under Uncertainty: Two-Stage Stochastic Matching
Problems . 171

Irit Katriel, Claire Kenyon-Mathieu, and Eli Upfal

Session A6

On the Complexity of Hard-Core Set Constructions 183
Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu

Approximation by DNF: Examples and Counterexamples 195
Ryan O’Donnell and Karl Wimmer

Exotic Quantifiers, Complexity Classes, and Complete Problems 207
Peter Bürgisser and Felipe Cucker

Session A7

Online Conflict-Free Colorings for Hypergraphs . 219
Amotz Bar-Noy, Panagiotis Cheilaris, Svetlana Olonetsky, and
Shakhar Smorodinsky

Distributed Computing with Advice: Information Sensitivity of Graph
Coloring . 231

Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas, and Andrzej Pelc

Table of Contents XIII

Session C1

Private Multiparty Sampling and Approximation of Vector
Combinations . 243

Yuval Ishai, Tal Malkin, Martin J. Strauss, and Rebecca N. Wright

Constant-Round Private Database Queries . 255
Nenad Dedic and Payman Mohassel

Session A8

Universal Algebra and Hardness Results for Constraint Satisfaction
Problems . 267

Benôıt Larose and Pascal Tesson

On the Power of k-Consistency . 279
Albert Atserias, Andrei Bulatov, and Victor Dalmau

Complexity of Propositional Proofs Under a Promise 291
Nachum Dershowitz and Iddo Tzameret

Session C2

Deterministic History-Independent Strategies for Storing Information
on Write-Once Memories . 303

Tal Moran, Moni Naor, and Gil Segev

Trading Static for Adaptive Security in Universally Composable
Zero-Knowledge . 316

Aggelos Kiayias and Hong-Sheng Zhou

A Characterization of Non-interactive Instance-Dependent
Commitment-Schemes (NIC) . 328

Bruce Kapron, Lior Malka, and Venkatesh Srinivasan

Session A9

Sharp Tractability Borderlines for Finding Connected Motifs in
Vertex-Colored Graphs . 340

Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and
Stéphane Vialette

Parameterized Algorithms for Directed Maximum Leaf Problems 352
Noga Alon, Fedor V. Fomin, Gregory Gutin,
Michael Krivelevich, and Saket Saurabh

Parameterized Approximability of the Disjoint Cycle Problem 363
Martin Grohe and Magdalena Grüber

Linear Problem Kernels for NP-Hard Problems on Planar Graphs 375
Jiong Guo and Rolf Niedermeier

XIV Table of Contents

Session C3

Private Locally Decodable Codes . 387
Rafail Ostrovsky, Omkant Pandey, and Amit Sahai

Hash Functions in the Dedicated-Key Setting: Design Choices and
MPP Transforms . 399

Mihir Bellare and Thomas Ristenpart

Unrestricted Aggregate Signatures . 411
Mihir Bellare, Chanathip Namprempre, and Gregory Neven

Ring Signatures of Sub-linear Size Without Random Oracles 423
Nishanth Chandran, Jens Groth, and Amit Sahai

Session A10

Balanced Families of Perfect Hash Functions and Their Applications . . . 435
Noga Alon and Shai Gutner

An Exponential Improvement on the MST Heuristic for Minimum
Energy Broadcastingin Ad Hoc Wireless Networks 447

Ioannis Caragiannis, Michele Flammini, and Luca Moscardelli

Session B1

Modular Algorithms for Heterogeneous Modal Logics 459
Lutz Schröder and Dirk Pattinson

Co-Logic Programming: Extending Logic Programming with
Coinduction . 472

Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta

Session C4

Offline/Online Mixing . 484
Ben Adida and Douglas Wikström

Fully Collusion Resistant Black-Box Traitor Revocable Broadcast
Encryption with Short Private Keys . 496

Jun Furukawa and Nuttapong Attrapadung

Session A11

Succinct Ordinal Trees Based on Tree Covering . 509
Meng He, J. Ian Munro, and S. Srinivasa Rao

A Framework for Dynamizing Succinct Data Structures 521
Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

In-Place Suffix Sorting . 533
Gianni Franceschini and S. Muthukrishnan

Table of Contents XV

Session B2

Maximal Infinite-Valued Constraint Languages . 546
Manuel Bodirsky, Hubie Chen, Jan Kára, and Timo von Oertzen

Affine Systems of Equations and Counting Infinitary Logic 558
Albert Atserias, Andrei Bulatov, and Anuj Dawar

Boundedness of Monadic FO over Acyclic Structures 571
Stephan Kreutzer, Martin Otto, and Nicole Schweikardt

Session A12

Strong Price of Anarchy for Machine Load Balancing 583
Amos Fiat, Haim Kaplan, Meital Levy, and Svetlana Olonetsky

Efficient Algorithms for Constant Well Supported Approximate
Equilibria in Bimatrix Games . 595

Spyros C. Kontogiannis and Paul G. Spirakis

Session B3

Equational Systems and Free Constructions . 607
Marcelo Fiore and Chung-Kil Hur

Categorical Views on Computations on Trees . 619
Ichiro Hasuo, Bart Jacobs, and Tarmo Uustalu

Session A13

Holographic Algorithms: The Power of Dimensionality Resolved 631
Jin-Yi Cai and Pinyan Lu

Reconciling Data Compression and Kolmogorov Complexity 643
Laurent Bienvenu and Wolfgang Merkle

Size Competitive Meshing Without Large Angles . 655
Gary L. Miller, Todd Phillips, and Donald Sheehy

Session B4

A Fully Abstract Trace Semantics for General References 667
James Laird

Aliased Register Allocation for Straight-Line Programs Is
NP-Complete . 680

Jonathan K. Lee, Jens Palsberg, and
Fernando Magno Quintão Pereira

XVI Table of Contents

Conservative Ambiguity Detectionin Context-Free Grammars 692
Sylvain Schmitz

Session A14

Lower Bounds for Quantile Estimation in Random-Order and
Multi-pass Streaming . 704

Sudipto Guha and Andrew McGregor

Streaming and Fully Dynamic Centralized Algorithms for Constructing
and Maintaining Sparse Spanners . 716

Michael Elkin

Checking and Spot-Checking the Correctness of Priority Queues 728
Matthew Chu, Sampath Kannan, and Andrew McGregor

Session B5

Undecidability of 2-Label BPP Equivalences and Behavioral Type
Systems for the π-Calculus . 740

Naoki Kobayashi and Takashi Suto

Ready Simulation for Concurrency: It’s Logical! . 752
Gerald Lüttgen and Walter Vogler

Continuous Capacities on Continuous State Spaces 764
Jean Goubault-Larrecq

Session A15

On the Chromatic Number of Random Graphs . 777
Amin Coja-Oghlan, Konstantinos Panagiotou, and Angelika Steger

Quasi-randomness and Algorithmic Regularity for Graphs with General
Degree Distributions . 789

Noga Alon, Amin Coja-Oghlan, Hiê. p Hàn, Mihyun Kang,
Vojtěch Rödl, and Mathias Schacht

Complexity of the Cover Polynomial . 801
Markus Bläser and Holger Dell

Session B6

A Generalization of Cobham’s Theorem to Automata over Real
Numbers . 813

Bernard Boigelot and Julien Brusten

Table of Contents XVII

Minimum-Time Reachability in Timed Games . 825
Thomas Brihaye, Thomas A. Henzinger, Vinayak S. Prabhu, and
Jean-François Raskin

Reachability-Time Games on Timed Automata . 838
Marcin Jurdziński and Ashutosh Trivedi

Perfect Information Stochastic Priority Games . 850
Hugo Gimbert and Wies�law Zielonka

Session B7

Bounded Depth Data Trees . 862
Henrik Björklund and Miko�laj Bojańczyk

Unranked Tree Automata with Sibling Equalities and Disequalities 875
Wong Karianto and Christof Löding

Regular Languages of Nested Words: Fixed Points, Automata, and
Synchronization . 888

Marcelo Arenas, Pablo Barceló, and Leonid Libkin

A Combinatorial Theorem for Trees . 901
Thomas Colcombet

Session B8

Model Theory Makes Formulas Large . 913
Anuj Dawar, Martin Grohe, Stephan Kreutzer, and
Nicole Schweikardt

Decision Problems for Lower/Upper Bound Parametric Timed
Automata . 925

Laura Bozzelli and Salvatore La Torre

On the Complexity of Ltl Model-Checking of Recursive State
Machines . 937

Salvatore La Torre and Gennaro Parlato

Paper Retraction

Paper Retraction: On the Hardness of Embeddings Between Two Finite
Metrics . 949

Matthew Cary, Atri Rudra, and Ashish Sabharwal

Author Index . 951

Ushering in a New Era of Algorithm Design

Bernard Chazelle

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA

Abstract. Advances in data acquisition technology, together with the imminent
demise of Moore’s Law, are prompting a rethink of basic algorithm design princi-
ples. Computing with massive data sets, data streaming, coping with uncertainty,
priced computation, property testing, and sublinear algorithms are all parts of the
story. So is the growing trend toward using algorithms as modeling tools for nat-
ural phenomena. I will discuss some of these developments; in particular, dimen-
sion reduction, sublinear algorithms, online reconstruction, and self-improving
algorithms.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A “proof-reading” of Some Issues in

Cryptography

Ivan Damg̊ard

Department of Computer Science, BRICS, University of Aarhus

Abstract. In this paper, we identify some issues in the interplay be-
tween practice and theory in cryptography, issues that have repeatedly
appeared in different incarnations over the years. These issues are related
to fundamental concepts in the field, e.g., to what extent we can prove
that a system is secure and what theoretic results on security mean for
practical applications. We argue that several such issues are often over-
looked or misunderstood, and that it may be very productive if both
theoreticians and practitioners think more consciously about these is-
sues and act accordingly.

1 Introduction

Design of systems using cryptography is a delicate, error-prone and difficult
task. Despite the fact that cryptography is probably the part of general IT
security that we understand best, people frequently get it wrong. There are
many examples of this, for instance the design of the encryption for the GSM
mobile phone system, where parity bits for error correction were added before
the encryption, making cryptanalysis much easier [4]. Or a previous version of
the PKCS#1 standard for RSA encryption where it was overlooked that error
messages produced by the decryption algorithm could reveal information that
an adversary could exploit [2].

There are several reasons for this state of affairs. Of course, simple lack of
expertise is one reason, but more fundamentally, what appears to be ”common
sense” and ”reasonable” to the designer may only be reasonable with respect
to the attacks that the designer can imagine, whereas of course an attacker in
real life may well do things that are completely unexpected. Second, a system
may be reasonable in the application scenario that the designer has in mind,
whereas systems in reality are often applied in contexts that the designer never
anticipated.

As a concrete illustration, let us assume we design a protocol for exchanging
confidential data based on RSA encryption. The hope is that to break the pro-
tocol, one has to invert the RSA encryption function, i.e., given public key n, e
and ciphertext xe mod n, find x. But as experience shows, there is a risk that
we have overlooked shortcuts that the adversary can exploit to break the system
easily, without having to invert the RSA function.

A well-known and very useful way to tackle these problems is to provide a
rigorous proof that if an attacker could break the cryptosystem or protocol in

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 2–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A “proof-reading” of Some Issues in Cryptography 3

question, then he could efficiently solve a computational problem that we can
reasonably assume is hard (the RSA problem in our example). In this way we
have assurance that no shortcuts have been overlooked in our system. This ap-
proach, which originates in the work of Goldwasser and Micali [8], is in our
opinion one of the most productive and valuable contributions theoretical cryp-
tography has to offer. Nevertheless, the actual substance of this contribution is
surprisingly often misunderstood, over- or underestimated, to the extent that
the author of this paper has felt it has become necessary to clarify a few issues
in this context.

2 What Does “Provable Security” Mean?

The way to argue about security we have sketched above is often called “provable
security”, but this terminology is somewhat misleading, for two reasons:

First, a proof of the form just sketched does not actually prove security. It only
proves that an efficient algorithm for successfully attacking the system would
imply an efficient algorithm for solving the underlying computational problem.
Granted, this contradicts the assumption that the underlying problem is hard
- but unfortunately, we do not know how to prove that any concrete problem
really is hard to solve in the sense that would be required here. In the following,
we will therefore use the term security reduction, since the essential part of the
proofs we consider is a reduction that takes an algorithm for attacking a system
and builds from it an algorithm for solving a computational problem.

A second reason is that one may get may get the incorrect impression that
once we have “proved security”, we are home free. In reality, the situation is
more complex: what a security reduction proves more precisely is that if we can
break the system in time T , then we can solve the underlying problem in time
f(T), for some function f . Ideally, we want the reduction to be tight, that is,
f(T) is approximately equal to T . This allows us to draw the strongest possible
conclusion: if our assumption on the underlying problem says that it cannot be
solved in time less than some bound B, then f(T) and hence T must larger than
B. In our RSA example, if we choose a large enough modulus so that the best
known algorithms for breaking RSA would take time corresponding to, say 280

elementary operations on a computer, then with a tight reduction we can say
that an adversary will also take time 280 to break our system - or he will have
to find a completely new factoring algorithm. Some security reductions are not
that good, we may only know that, e.g., f(T) = T 2. This means that we need
to have larger key sizes before the reduction allows us to conclude that T is
sufficiently large 1. Another issue is the exact nature of the underlying problem:
if the assumption that the problem is hard is to be credible, the problem needs
to be as simple, natural and well studied as possible. If we are not careful when
making assumptions, we risk making useless statements that are not much better
that saying “the system is secure under the assumption that it is secure”.
1 A non-tight security reduction does not, however, mean that a larger key size is

necessary. Maybe a tight reduction exists that we just haven’t found yet.

4 I. Damg̊ard

A final issue is that security is always proved in a specific model, where we
make assumptions on what the adversary can do and what information is avail-
able to him. For instance, we may try to prove that our RSA based protocol
is secure under chosen message attacks, where the adversary can submit any
input he likes to the decryption algorithm and see what output is produced. The
goal is then to decrypt some target ciphertext that was not decrypted“for free”.
This model assumes, for instance, that the adversary has no information on the
internal state of the decryption algorithm. In some cases, such information may
be (partially) available, for instance if the adversary can measure radiation from
the decryption equipment. This can be modeled too, using the notion of phys-
ically observable cryptography [10], for instance. But one has to be aware that
some model must be chosen in order to give a proof, and a protocol may well be
secure in one model and not in another.

To summarize, we have pointed out that:

– A ”proof of security” never proves security in an absolute sense, it relates
security to an unproven assumption that some computational problem is
hard.

– The quality of a security reduction should not be ignored – it matters how
tight it is, and how strong the underlying assumption is.

– A security reduction only proves something in a particular model specifying
what the adversary has access to and can do.

These observations are not new at all. They have been made many times, e.g.,
by Bellare [1], and also in a recent paper by Koblitz and Menezes (K&M)[9]. The
interesting question is, however, what conclusions we should draw? how should
cryptographers and practitioners act, having understood these facts? Some re-
searchers, including K&M, take a very critical stand on “provable security”.
Provoked, perhaps, by the limitations we pointed out above, they find that the
whole approach is of questionable value, and in particular researchers who let
their work be guided by the goal of showing security reductions for their systems
are, in fact, misguided. The argument seems to be that people build unneces-
sarily complicated and contrived systems only to be able to provide a security
reduction for them, and also that people wrongly accept even very inefficent
security reductions as an argument for believing in the security of a system.

In our opinion, such a critique misses several important points. A first high-
level comment is that, while the security reduction technique does not allow us to
draw simple conclusions such as “it is secure”, this does not mean that security
reductions are not useful. What it does mean is that reality is more complex than
we would perhaps have liked it to be, but this is not something we can blame on
our scientific methods. In the following subsections, we comment in more detail
on why we believe security reductions are useful despite their limitations.

2.1 Even Inefficient Security Reductions Are Useful

Consider again our running example, an RSA-based protocol for exchanging con-
fidential data. Such a protocol, namely an older version of the PKCS#1 standard,

A “proof-reading” of Some Issues in Cryptography 5

was broken under a chosen ciphertext attack by Bleichenbacher [2], as mentioned
above. However, his attack did not break RSA at all, in fact the whole point of the
attack was to sidestep the RSA problem and instead exploit a design failure in the
protocol. Hence, Bleichenbacher’s attack is of no help at all towards inverting the
RSA function. Now, if there had been a security reduction for PKCS#1, relating
its security on the RSA function, this would have meant that ANY polynomial
time attack would also be a polynomial time algorithm for inverting RSA, even if
the reduction had not been tight. Hence any such reduction would have excluded
attacks such as Bleichenbacher’s. The conclusion is that if a system has a non-tight
security reduction to a well studied and standard problem, this does not help us
towards choosing key sizes for the system, but it does imply that the design has
no short-cuts allowing attacks that side-step the problem we were trying to base
the system on. This is a very useful piece of information, also in practice: from
experience, design errors usually materialize exactly as attacks that circumvent
the hard problem we were trying to use.

2.2 Security Reductions Should Be a Design Goal

It has become standard in most cryptographic research to give security reduc-
tions for any construction that is proposed. Consequently, researchers are usually
not satisfied with a construction where they cannot make a reduction go through,
and will try to modify their ideas until the proof works, and often this concern
influences already the early phases of a research project.

As mentioned, some researchers object to this way of working because they
find that it leads to unnatural and unnecessarily complicated systems. So is it
be better to first build a “natural” system and then try to prove something
about it? A first comment is that being “natural” is very subjective notion and
hardly one that can be used a guideline for designing cryptographic construc-
tions. Futhermore, even if one accepts that being “natural” is a possible design
goal, there is no compelling reason why this would exclude the existence of a
security reduction.

Granted, sometimes there seems to be a cost involved in having a security
reduction – some extra ingredient that the designers add, apparently only to
make the reduction go through. But on the other hand, this might just as well
be exactly the ingredient that prevents a devastating attack – an attack that
even the designers were not aware of! As long as no one has proved that such
an attack does not exist, we simply don’t know whether the extra ingredient is
superfluous or essential to security.

We believe that the only reasonable approach is to construct cryptographic
systems with the objective of being able to give security reductions for them.
Of course, we should not be happy about any reduction, we should strive for
reductions that are efficient, and reduce to as weak assumptions as possible.
And of course, we want as simple and efficient systems as possible. But on the
other hand, we should not settle for protocols just because we think they “look
natural” and “seem to be secure”. We return to this issue in more detail after
we have looked at an example in the next section.

6 I. Damg̊ard

3 An Example: The Adaptive Adversary

To further illustrate the issues discussed above, we explain an example problem
in more detail, and draw some conclusions for practice and theory that hopefully
apply also beyond the example itself.

Consider an adversary who monitors the traffic on a network. This traffic is
encrypted using public-key cryptography, we assume that each machine on the
net has a private/public key pair set up, so every message is encrypted under the
public key of the receiver. At the end of the day, based on what the adversary has
seen, he decides to break into one of the computers on the net2. We will assume
that this gives him access to the private information on that machine, including
the private key, so he can now decrypt all messages intended for this machine.
Based on what he now knows, he may decide on another machine to break into,
etc. His resources do not, however, allow him to break into all machines. An
attack as we have sketched here is called adaptive because the adversary decides
where to break in adaptively during his attack, instead of making all decisions
initially.

We will assume that the public-key cryptosystem used is secure (we discuss
below what exactly this should mean) and that keys for different machines have
been independently generated. If A is a subset of the machines, MA will denote
the set of all message sent to machines in A. The question now is: what can the
adversary learn from such an attack? Clearly, from observing the traffic itself,
he will be able to identify the sender and receiver of each message, and learn
its length. But what about the information contained in the messages? If the
adversary has broken into a subset A of machines, can we conclude that the
adversary has learned ONLY MA?

It is very tempting to conclude that the answer is clearly yes: since keys are
independent, seeing private keys of machines in A tells you nothing about the
other private keys, and any reasonable notion of security for the cryptosystem
should mean that if you do not know the private key, seeing the ciphertext tells
you nothing about the plaintext.

A moment’s reflection will show, however, that the question may not be quite
so straightforward. If the above intuition is good, then this should mean that
there is some well-defined notion of security, such that if the cryptosystem satis-
fies it, then the adversary can learn no extra information. But existing definitions
of security of public-key encryption talk about only a single public/private key
pair, where the private key is (of course) never revealed to the adversary. In our
case, we have a set of many keys, where a priori every private key may poten-
tially be revealed. Although only a subset is revealed in every concrete instance
of the game, even the adversary may not know in advance which subset it will
be (since this depends on information he will see later). Maybe this is of no real
consequence, but it does demonstrate that we need a proof to be sure about our

2 We assume for simplicity that first, all messages are sent and then the adversary
starts breaking into machines. One may of course consider more general models, but
this makes no essential difference to our discussion.

A “proof-reading” of Some Issues in Cryptography 7

conclusion – at least if we want to base ourselves on a simple assumption that
we can understand and have confidence in.

One way to approach the problem is to note that ideally, we want that the
adversary learns only the plaintexts he can trivially decrypt. In other words,
it should be as if he has access to an oracle O telling him those plaintexts.
More precisely, we define O such that on input the name of a machine n in the
network, it will return M{n}. If we can show that in a real attack, the adversary
learns nothing more than he could learn from sending the names of corrupted
machines to O, this will certainly be sufficient. This can be done by building a
simulator S, which on one side talks to O and on the other side to the adversary.
Whenever the adversary wants to break into a machine, we allow S to send
the name of this machine to O and get its messages. Towards the adversary, S
must simulate everything the adversary would see in a real attack, including all
the ciphertexts, in such a way the adversary cannot distinguish this from a real
attack. If this is the case, we have certainly demonstrated that the adversary
learns no extra information: everything he sees, in particular the ciphertexts,
can be convincingly simulated based only on the information he was supposed
to learn.

Unfortunately, an attempt to build such a simulator immediately runs into
a problem: S must initially simulate the ciphertexts that A expects to see. At
this point, S does not know any plaintexts: it is not allowed to access O before
the adversary breaks into a machine. It therefore seems it can do nothing but
create some ciphertext on its own. Let one of these ciphertexts be ci = Epki(m),
where we assume it is intended for machine number i, with public key pki. S
has created ci as an encryption of message m. If the adversary later breaks into
machine i, S will learn from O a message m0, the message that was ”really”
sent. But now it is too late! When the adversary decrypts ci, he will get m as
result and not m0. This simulation strategy therefore does not work: what the
adversary sees is clearly different from the real view. No simple way to fix the
problem is known. For instance, it is completely unreasonable to hope that S
can guess all plaintexts correctly ahead of time.

There is a solution, however, which was found by observing that the problem
comes from the fact that with standard public key encryption, S effectively
commits to a decryption result by giving a ciphertext to the adversary. The idea
is therefore to build a so-called non-committing encryption scheme. Here, we
design the encryption process such that S can create a ”fake” ciphertext ci that
looks like a real one, but does not contain any particular plaintext. When later
S is given the right message m0, it can create secret information related to ci,
so it looks as if m0 was in fact the encrypted plaintext. This exactly solves the
problem and allows the simulation to go through.

The known implementations of non-committing encryption require interac-
tion between sender and receiver and generation of new key material for every
message sent. They are therefore much less efficient than standard encryption
schemes. It can even be shown that the interaction is unavoidable: no non-
interactive, non-committing encryption scheme exists [11].

8 I. Damg̊ard

So are the extra complications involved in using non-committing encryption
really necessary? There are two possibilities:

– The initial intuition about the system is correct, and the adversary really
cannot learn extra information, even if standard public-key cryptography is
used. This may be the case - the fact that the first attempt at a simulation
did not work only shows that this particular proof technique fails, not that
the result is false. Maybe there is a different simulation strategy, or a proof
that is not based on simulation at all?

– The initial intuition is wrong, and there is in fact an attack which can only be
prevented if we use non-committing encryption. This too is entirely possible:
knowing the history of the field, one would have to be very naive to believe
that because we cannot think of an attack, no attack exists.

What should theoreticians do in such a situation? Skeptics of provable security
may tend to think that non-committing encryption is just an unnecessary com-
plication and that standard encryption is of course good enough. On the other
hand, some theoreticians may conclude that “the book is now closed” because
non-committing encryption solves the problem. In our opinion, both attitudes
are wrong: there is still an open problem left! Namely, show that non-committing
encryption is necessary or that standard encryption suffices. This is all the more
fascinating as a basic research problem because the intuition we have not been
able to prove seems so compelling.

What about the practical side? Many practitioners would probably tend to
trust the intuition and harvest the efficiency advantage in using standard public-
key encryption. Indeed, this is what is happening in practice. It is very important
to emphasize that there is nothing “wrong” or “illegal” about this, even from
a theoretical point of view. Not as long as you understand the extra risk that
is being taken, namely that the second possibility above turns out to be the
truth. After all, any practical application takes risks, for instance the risk that
the underlying computational assumption is false. However hard it may be, one
always has to estimate the risk taken and balance it against the practical advan-
tages offered by the design. And it is important that theoreticians help as much
as possible to identify and estimate the risks, even if it means making guesses
beyond what we know for sure.

3.1 Do Random Oracles Help?

There is a somewhat surprising connection between the example just discussed
and the random oracle model. This also deserves a discussion here, since the
random oracle model has been the subject of much debate and is very central in
the interplay between theory and practice.

In this model one assumes that all players have oracle access to a random
function R. This means that any player can submit an input x to the oracle
and will get R(x) back. Moreover, the only way to get an output is to explicitly
access the oracle and no one has any information about the value R(x) until
after someone has sent x to the oracle.

A “proof-reading” of Some Issues in Cryptography 9

This model was introduced by Bellare and Rogaway [3] in order to formalize
the intuition behind various applications of hash functions. When we use a hash
function H , for instance as proposed by Fiat and Shamir [7] to build a signature
scheme from an interactive protocol, there seems to be no way that an adversary
could exploit the internal structure of H to attack the system. More concretely,
if H is sufficiently complex, it seems that the attacker would have to treat H as
if it was a random oracle. If this really is the case, we may as well assume that
the system is actually run in the random oracle model, i.e., we may replace H
by R.

In the random oracle model, one can prove that the Fiat-Shamir construction
and many other constructions are secure. Unfortunately, this does not imply
that these systems are secure in the real world. At most, it guarantees security
from a certain class of attacks that treat the hash function as a black-box. But
you do not get security in general because a concrete hash function is of course
not a random oracle: as soon as you have specified the function, all outputs are
fixed and predictable.

It is known that a security reduction in the random oracle model is not always
useful. Several results have demonstrated that there exist systems which are
secure in the random oracle model, but become insecure as soon as we replace R
by a concrete function, no matter which function we use – see, e.g., [6,5]. On the
other hand, these example have been specifically engineered to demonstrate the
difficulty of instantiating the random oracle by a specific function: the system
tries to detect whether it is in the random oracle model or in the real world (by
interacting with R or H) and “on purpose” does something that is insecure if it
finds it is in the real world.

These results therefore do not show that the Fiat-Shamir construction is inse-
cure, for instance. Indeed one might still claim that if we use our hash function in
a “sensible” way that is not designed to break down in the real world, everything
should be fine, and we should be happy about a security proof in the random
oracle model.

However, an observation by Jesper Buus Nielsen [11] shows that there is good
reason to be skeptical about this point of view. He shows an extremely simple
way to build a non-committing encryption scheme based on a random oracle:
Suppose we have a public/secret key pair (pk, sk) for a cryptosystem that is
secure in the standard sense. Then, to encrypt message m, we choose a random
value r and the ciphertext is the pair (Epk(r), R(r) ⊕m). To decrypt using sk,
one decrypts the first part to get r, calls the oracle to get R(r) and xor’s with
the last part to get m.

In the random oracle model, this is a non-committing encryption scheme in
the sense described above: in the simulation proof from the previous section,
whenever the simulator S needs to show a ciphertext to the adversary, it can do
the following: choose values r, s at random and let the “ciphertext” be (Epk(r), s).
Note that S has no particular message in mind at this point, but nevertheless
what is produced looks exactly like a valid ciphertext. When later S wants

10 I. Damg̊ard

to claim that some particular message m0 was encrypted, it uses the fact that
because r was random and has been encrypted under a secure encryption scheme,
the adversary does not know r. And so with overwhelming probability, no one
has yet called the oracle with input r. Therefore, R(r) is undefined at this point,
so S is free to define that R(r) = m0 ⊕ s. This is indeed a random value, and
exactly makes it seem as if m0 was the encrypted message.

But note that this scheme is non-interactive! And as mentioned above, no non-
interactive, non-committing encryption scheme exists in the real world, where
random random oracles are not available. This immediately implies that no
matter which concrete function we use in place of R, the resulting scheme does
not work anymore. Therefore, this construction is only secure in the random
oracle model, there is no way we can use it in a real application.

What does this tell us? One can hardly claim that the scheme we have just
seen was designed to make the random oracle model look bad. In fact it looks
quite natural, at least at first sight. The lesson to learn is that deciding whether
a scheme in the random oracle model has a chance of being secure in real life is
not a trivial problem. It also emphasizes that, while having a security reduction
in the random oracle model is better than nothing and can be useful as a sanity
check, having one in the real world is highly preferable. It is therefore a well
justified research goal to build constructions that work without random oracles,
but are as efficient as those that need them.

4 Conclusion

Many cryptographic constructions that are used in practice have a theoreti-
cal justification that leaves something to be desired. Perhaps there is no secu-
rity reduction, or the one we have is not tight, or it only works in the ran-
dom oracle model. Any such application takes a risk, beyond the obvious one,
that the basic cryptography may not be secure. Theoreticians should not dis-
miss such applications as “bad practice”, but should instead make an effort
to try to help estimate or reduce the risk that is being taken. This can be
done by improving the constructions and/or the security reductions, but also
by coming up with completely new solutions. Even if a theoretically nice but
impractical solutions exists, this is not a good reason to stop working on the
problem.

On the other hand, it is equally important that practitioners begin to un-
derstand that the theory of cryptography cannot always deliver simple answers
such as “it is secure” or ‘it isn’t”. And that hence using cryptography as a
black box, with no knowledge at all about what is inside, may be convenient
but also potentially harmful to the security of your system. And finally, that
our knowledge about the security of even well known schemes is not static, but
develops over time, and this may require changes to practice that may not be
convenient, but nevertheless necessary to decrease the security risks you are
taking.

A “proof-reading” of Some Issues in Cryptography 11

References

1. Bellare, M.: Practice-oriented provable-security. In: Proceedings of First Interna-
tional Workshop on Information Security (ISW 97), pp. 221–231. Springer, Heidel-
berg (1997)

2. Bleichenbacher, D.: Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Barkan, E., Biham, E., Keller, N.: Instant Ciphertext-Only Cryptanalysis of GSM
Encrypted Communication. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 600–616. Springer, Heidelberg (2003)

5. Bellare, M., Boldyreva, A., Palacio, A.: An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

6. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Model Revisited. In:
Proceedings of STOC (1998)

7. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

8. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

9. Koblitz, N., Menezes, A.: Another look at “Provable Security”. J.Cryptology 20(1),
3–37 (2007)

10. Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract).
In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

11. Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

Credentials-Based Authorization:

Evaluation and Implementation

Abstract of Plenary Lecture

Fred B. Schneider�

Department of Computer Science
Cornell University

Ithaca, New York 14558
U.S.A

fbs@cs.cornell.edu

Nexus is a new operating system that runs on computers equipped with tamper-
proof secure co-processors; it is designed to support the construction of trust-
worthy applications—applications where actions can be attributed with some
measure of confidence and where trust assumptions are explicit. To realize these
goals, Nexus implements

– a novel architecture, which enables the trusted computing base to be rela-
tively small,

– an expressive and flexible framework for making and using attestations about
current and future states of a computation, and

– a high-performance cryptographically-implemented memory-isolation
abstraction.

This talk focuses on how authorization policies are specified and implemented
in Nexus.

We posit a guard for each resource, as has become standard. That guard
receives client requests for access to the resource; it either grants or denies each
request. Nexus innovates in how guards make authorization decisions and in what
information is used. Our approach builds on logics having “says” and “speaks
for” operators, and some surprising technical issues arise (some of which present
opportunities for future research).

In Nexus, authorization decisions can involve a set of credentials that either
accompany the request or that the guard obtains from elsewhere. Each credential
is a statement whose validity can be checked by any principal. An authorization
policy defines a set of requirements satisfied by suitable credentials. Given, for
example, the policy that some file is accessible only to students, a guard would
authorize a read request from Alice only if that guard obtains credentials attest-
ing to Alice being a student: an attribute certificate about Alice’s student status
this semester, signed by a key purporting to speak for a dean; a delegation cer-
tificate asserting that the dean’s key speaks for the dean; a delegation certificate

� Supported in part by AFOSR grant F9550-06-0019, National Science Foundation
Grants 0430161 and CCF-0424422 (TRUST), and a gift from Microsoft Corporation.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 12–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Credentials-Based Authorization: Evaluation and Implementation 13

signed by the university president’s key asserting that the dean is indeed the
holder of that office; and so on.

The advantage of such credentials-based authorization is that it can decentral-
ize authorization decisions in a way that mirrors an actual authority structure.
Different principals are trusted on different aspects of the over-all authoriza-
tion decision, according to their expertise or access to appropriate information.
Moreover, the existence of suitable credentials at a guard documents the role par-
ticipating principals played in determining each authorization decision outcome
and, therefore, provides an auditable justification for that decision.

In Nexus, as in prior work, every authorization policy is encoded as a formula,
herein called the authorization goal formula, in a logic. Credentials are checked
for validity, and the (sub)set of valid credentials are treated as axioms of a logic.
In the prior work, however, access requests are allowed if and only if the guard
can establish that the authorization goal formula for that request is valid in
all models satisfying the axioms (viz, associated credentials). The guard thus
must implement a theorem prover, a decision procedure, or—if requests must be
accompanied by a proof of the authorization goal formula—a proof checker.

By requiring that an authorization goal formula be valid, guards in the prior
work are limited to implementing monotonic authorization policies. This is a
significant restriction. It rules out many authorization policies that depend on
the system state (which is always changing and might over time change in ways
that invalidate a conjunct). Authorization policies that limit the number of times
a particular resource may be read are an important class of authorization policies
that depend on state. Also, policies that admit revocation become difficult to
specify, hence enforce.

Authorization policies in Nexus need not be monotonic and may depend on
the state. Implementation realities do force us to prohibit certain non-monotonic
authorization polices—in particular, those that include conjuncts asserting the
absence of credentials. First, it is difficult to ascertain whether such a conjunct is
true; a denial of service attack might block the guard from receiving a credential
even though that credential exists. Second, it is difficult to ensure that such a
conjunct remains true short of freezing activity elsewhere in the system.

Nexus guards can support non-monotonic policies because the guard merely
determines whether an authorization goal formula is satisfied.1 That is, guards
are evaluators and not validity checkers. Theorem proving is still necessary for
determining the truth-value of certain clauses, because some conjuncts (e.g.,
“A speaks for B”) cannot always be evaluated directly by inspecting a single
credential or the system state. Nexus guards thus do have access to a proof
checker and, when necessary, expect requests to be accompanied by proofs.

The implementation of guards in Nexus involves:

– a means to check whether formulas in the logic are satisfied, which leads to
a (new) operational interpretation of “says” and “speaks for” operators,

1 This raises some interesting but not insurmountable issues in connection with the
usual Kripke interpretations of “says” and “speaks for” logics.

14 F.B. Schneider et al.

– trusted ways to make system state available to guards, including a kernel-
supported introspection service that provides a window not only into each
process’s memory but also into various other aspects (e.g., the presence of
channels and the identities of their endpoints) of executing processes,

– ways of representing credentials and conjuncts of authorization goal formulas
as executables rather than only as static certificates, and

– various protocols to freeze aspects of system operation so that an authoriza-
tion goal formula that is found to be true can be forced to remain true as
long as needed by the semantics of the operation whose authorization was
being regulated.

These innovations, supported by examples, form the core of the talk.

Acknowledgment. Nexus is a collaboration involving Cornell Ph.D. students
Oliver Kennedy, Alan Shieh, Kevin Walsh, and Dan Williams; postdoctoral as-
sociate Patrick Reynolds; and faculty E. Gün Sirer and Fred B. Schneider. The
work on credentials-based authorization reported herein is being done jointly
with Kevin Walsh and E. Gün Sirer.

Subexponential Parameterized Algorithms

Frederic Dorn1,�, Fedor V. Fomin1,�, and Dimitrios M. Thilikos2,��

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{frederic.dorn,fedor.fomin}@ii.uib.no

2 Department of Mathematics, National & Capodistrian University of Athens,
Panepistimioupolis, GR-15784, Athens, Greece

sedthilk@math.uoa.gr

Abstract. We present a series of techniques for the design of subexpo-
nential parameterized algorithms for graph problems. The design of such
algorithms usually consists of two main steps: first find a branch- (or
tree-) decomposition of the input graph whose width is bounded by a
sublinear function of the parameter and, second, use this decomposition
to solve the problem in time that is single exponential to this bound.
The main tool for the first step is Bidimensionality Theory. Here we
present the potential, but also the boundaries, of this theory. For the
second step, we describe recent techniques, associating the analysis of
sub-exponential algorithms to combinatorial bounds related to Catalan

numbers. As a result, we have 2O(
√

k) · nO(1) time algorithms for a wide
variety of parameterized problems on graphs, where n is the size of the
graph and k is the parameter.

1 Introduction

The theory of fixed-parameter algorithms and parameterized complexity has
been thoroughly developed during the last two decades; see e.g. the books
[23,27,35]. Usually, parameterizing a problem on graphs is to consider its input
as a pair consisting of the graph G itself and a parameter k. Typical examples
of such parameters are the size of a vertex cover, the length of a path or the
size of a dominating set. Roughly speaking, a parameterized problem in graphs
with parameter k is fixed parameter tractable if there is an algorithm solving
the problem in f(k) · nO(1) steps for some function f that depends only on the
parameter.

While there is strong evidence that most of fixed-parameter algorithms cannot
have running times 2o(k) · nO(1) (see [33,7,27]), for planar graphs it is possible
to design subexponential parameterized algorithms with running times of the
type 2O(

√
k) · nO(1) (see [9,7] for further lower bounds on planar graphs). For

example, Planar k-Vertex Cover can be solved in O(23.57
√
k) +O(n) steps,

� Supported by the Norwegian Research Council.
�� Supported by the Project “Capodistrias” (AΠ 736/24.3.2006) of the National and

Capodistrian University of Athens (project code: 70/4/8757).

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 15–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 F. Dorn, F.V. Fomin, and D.M. Thilikos

Planar k-Dominating Set can be solved in O(211.98·
√
k) + O(n3) steps, and

Planar k-Longest Path can be solved in O(210.52·
√
k ·n)+O(n3) steps. Similar

algorithms are now known for a wide class of parameterized problems, not only
for planar graphs, but also for several other sparse graph classes.

Since the first paper in this area appeared [2], the study of fast subexponential
algorithms attracted a lot of attention. In fact, it not only offered a good ground
for the development of parameterized algorithms, but it also prompted combi-
natorial results, of independent interest, on the structure of several parameters
in sparse graph classes such as planar graphs [1,3,5,8,11,26,29,32,34] bounded
genus graphs [12,28], graphs excluding some single-crossing graph as a minor
[17], apex-minor-free graphs [10] and H-minor-free graphs [12,13,14].

We here present general approaches for obtaining subexponential parameter-
ized algorithms (Section 2) and we reveal their relation with combinatorial results
related to the Graph Minors project of Robertson and Seymour. All these algo-
rithms exploit the structure of graph classes that exclude some graph as a minor.
This was used to develop techniques such as Bidimensionality Theory (Section 3)
and the use of Catalan numbers for better bounding the steps of dynamic pro-
gramming when applied to minor closed graph classes (Sections 4 and 5).

2 Preliminaries

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y and
remove all loops and replace all multiple edges by simple edges. A graph H
obtained by a sequence of edge-contractions is said to be a contraction of G. H
is a minor of G if H is a subgraph of a contraction of G. We use the notation
H � G (resp. H �c G) when H is a minor (a contraction) of G. It is well known
that H � G or H �c G implies bw(H) ≤ bw(G). We say that a graph G is
H-minor-free when it does not contain H as a minor. We also say that a graph
class G is H-minor-free (or, excludes H as a minor) when all its members are
H-minor-free. E.g., the class of planar graphs is a K5-minor-free graph class.

Let G be a graph on n vertices. A branch decomposition (T, μ) of a graph G
consists of an unrooted ternary tree T (i.e. all internal vertices of degree three)
and a bijection μ : L→ E(G) from the set L of leaves of T to the edge set of G.
We define for every edge e of T the middle set mid(e) ⊆ V (G) as follows: Let T1

and T2 be the two connected components of T \ {e}. Then let Gi be the graph
induced by the edge set {μ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle set is
the intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1)∩ V (G2).
The width bw of (T, μ) is the maximum order of the middle sets over all edges
of T , i.e., bw(T, μ) := max{|mid(e)| : e ∈ T }. An optimal branch decomposition
of G is defined by the tree T and the bijection μ which give the minimum width,
the branchwidth, denoted by bw(G).

A parameter P is any function mapping graphs to nonnegative integers. The
parameterized problem associated with P asks, for some fixed k, whether P (G) =
k for a given graph G. We say that a parameter P is closed under taking of

Subexponential Parameterized Algorithms 17

minors/contractions (or, briefly, minor/contraction closed) if for every graph H ,
H � G / H �c G implies that P (H) ≤ P (G).

Many subexponential parameterized graph algorithms [1,17,28,29,32,34] are
associated with parameters P on graph classes G satisfying the following two
conditions for some constants α and β:

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

(B) For every graph G ∈ G and given a branch decomposition (T, μ) of G, the
value of P (G) can be computed in 2β·bw(T,μ)nO(1) steps.

Conditions (A) and (B) are essential due to the following generic result.

Theorem 1. Let P be a parameter and let G be a class of graphs such that (A)
and (B) hold for some constants α and β respectively. Then, given a branch
decomposition (T, μ) where bw(T, μ) ≤ λ · bw(G) for a constant λ, the parame-
terized problem associated with P can be solved in 2O(

√
k)nO(1) steps.

Proof. Given a branch decomposition (T, μ) as above, one can solve the param-
eterized problem associated with P as follows. If bw(T, μ) > λ · α ·

√
k, then

the answer to the associated parameterized problem with parameter k is ”NO”
if it is a minimization and ”YES” if it is a maximization problem. Else, by (B),
P (G) can be computed in 2λ·α·β·

√
knO(1) steps.

To apply Theorem 1, we need an algorithm that computes, in time t(n), a branch
decomposition (T, μ) of any n-vertex graph G ∈ G such that bw(T, μ) ≤ λ ·
bw(G) + O(1). Because of [38], t(n) = nO(1) and λ = 1 for planar graphs. For
H-minor-free graphs (and thus, for all graph classes considered here), t(n) =
f(|H |) · nO(1) and λ ≤ f(|H |) for some function f depending only on the size of
H (see [16,21,24]).

In this survey we discuss how

– to obtain a general scheme of proving bounds required by (A) and to extend
parameterized algorithms to more general classes of graphs like graphs of
bounded genus and graphs excluding a minor (Section 3);

– to improve the running times of such algorithms (Section 4), and
– to prove that the running time of many dynamic programming algorithms

on planar graphs (and more general classes as well) satisfies (B) (Section 5).

The following three sample problems capture the most important properties
of the investigated parameterized problems.

k-Vertex Cover. A vertex cover C of a graph is a set of vertices such that
every edge of G has at least one endpoint in C. The k-Vertex Cover problem
is to decide, given a graph G and a positive integer k, whether G has a vertex
cover of size k. Let us note that vertex cover is closed under taking minors, i.e.
if a graph G has a vertex cover of size k, then each of its minors has a vertex
cover of size at most k.

18 F. Dorn, F.V. Fomin, and D.M. Thilikos

k-Dominating set. A dominating set D of a graph G is a set of vertices such
that every vertex outside D is adjacent to a vertex of D. The k-Dominating

Set problem is to decide, given a graph G and a positive integer k, whether G
has a dominating set of size k. Let us note that the dominating set is not closed
under taking minors. However, it is closed under contraction of edges.

Given a branch decomposition of G of width ≤ � both problems k-Vertex

Cover and k-Dominating Set can be solved in time 2O(�)nO(1). For the next
problem, no such an algorithm is known.
k-Longest path. The k-Longest Path problem is to decide, given a graph G
and a positive integer k, whether G contains a path of length k. This problem is
closed under the operation of taking minor but the best known algorithm solving
this problem on a graph of branchwidth ≤ � runs in time 2O(� log �)nO(1).

3 Property (A) and Bidimensionality

In this section we show how to obtain subexponential parameterized algorithms
in the case when condition (B) holds for general graphs. The main tool for
this is Bidimensionality Theory developed in [10,12,13,15,18]. For a survey on
Bidimensionality Theory see [14].

Planar graphs. While the results of this subsection can be extended to wider
graph classes, we start from planar graphs where the general ideas are easier to
explain. The following theorem is the main ingredient for proving condition (A).

Theorem 2 ([37]). Let � ≥ 1 be an integer. Every planar graph of branchwidth
≥ � contains an (�/4× �/4)-grid as a minor.

We start with Planar k-Vertex Cover as an example. Let G be a planar
graph of branchwidth ≥ �. Observe that given a (r × r)-grid H , the size of a
vertex cover in H is at least �r/2� · r (because of the existence of a matching of
size �r/2� · r in H). By Theorem 2, we have that G contains an (�/4× �/4)-grid
as a minor. The size of any vertex cover of this grid is at least �2/32. As such a
grid is a minor of G, property (A) holds for α = 4

√
2.

For the Planar k-Dominating Set problem, the arguments used above to
prove (A) for Planar k-Vertex Cover do not work. Since the problem is not
minor-closed, we cannot use Theorem 2 as above. However, since the parameter
is closed under edge contractions, we can use a partially triangulated (r× r)-grid
which is any planar graph obtained from the (r× r)-grid by adding some edges.
For every partially triangulated (r × r)-grid H , the size of a dominating set in
H is at least (r−2)2

9 (every “inner” vertex of H has a closed neighborhood of at
most 9 vertices). Theorem 2 implies that a planar graph G of branchwidth ≥ �
can be contracted to a partially triangulated (�/4× �/4)-grid which yields that
Planar k-Dominating Set also satisfies (A) for α = 12.

These two examples induce the following idea: if the graph parameter is closed
under taking minors or contractions, the only thing needed for the proof of (A)
is to understand how this parameter behaves on a (partially triangulated) grid.
This brings us to the following definition.

Subexponential Parameterized Algorithms 19

Definition 1 ([12]). A parameter P is minor bidimensional with density δ if

1. P is closed under taking of minors, and
2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).

A parameter P is called contraction bidimensional with density δ if

1. P is closed under contractions,
2. for any partially triangulated (r×r)-grid R, P (R) = (δRr)2 +o((δRr)2), and
3. δ is the smallest δR among all paritally triangulated (r × r)-grids.

In either case, P is called bidimensional. The density δ of P is the minimum of
the two possible densities (when both definitions are applicable), 0 < δ ≤ 1.

Intuitively, a parameter is bidimensional if its value depends on the area of a
grid and not on its width or height. By Theorem 2, we have the following.

Lemma 1. If P is a bidimensional parameter with density δ then P satisfies
property (A) for α = 4/δ, on planar graphs.

Many parameters are bidimensional. Some of them, like the number of vertices
or the number of edges, are not so much interesting from an algorithmic point
of view. Of course the already mentioned parameter vertex cover (dominating
set) is minor (contraction) bidimensional (with densities 1/

√
2 for vertex cover

and 1/9 for dominating set). Other examples of bidimensional parameters are
feedback vertex set with density δ ∈ [1/2, 1/

√
2], minimum maximal matching

with density δ ∈ [1/
√

8, 1/
√

2] and longest path with density 1.
By Lemma 1, Theorem 1 holds for every bidimensional parameter satisfying

(B). Also, Theorem 1 can be applied not only to bidimensional parameters but
to parameters that are bounded by bidimensional parameters. For example, the
clique-transversal number of a graph G is the minimum number of vertices in-
tersecting every maximal clique of G. This parameter is not contraction-closed
because an edge contraction may create a new maximal clique and cause the
clique-transversal number to increase. On the other hand, it is easy to see that
this graph parameter always exceeds the size of a minimum dominating set which
yields (A) for this parameter.

Non-planar extensions and limitations. One of the natural approaches of
extending Lemma 1 from planar graphs to more general classes of graphs is via
extending of Theorem 2. To do this we have to treat separately minor closed and
contraction closed parameters.

The following extension of Theorem 2 holds for bounded genus graphs:

Theorem 3 ([12]). If G is a graph of Euler genus at most γ with branchwidth
more than r, then G contains a (r/4(γ + 1)× r/4(γ + 1))-grid as a minor.

Working analogously to the planar case, Theorem 3 implies the following.

Lemma 2. Let P be a minor bidimensional parameter with density δ. Then for
any graph G of Euler genus at most γ, property (A) holds for α = 4(γ + 1)/δ.

20 F. Dorn, F.V. Fomin, and D.M. Thilikos

Next step is to consider graphs excluding a fixed graph H as a minor. The proof
extends Theorem 3 by making (nontrivial) use of the structural characterization
of H-minor-free graphs by Robertson and Seymour in [36].

Theorem 4 ([13]). If G is an H-minor-free graph with branchwidth more than
r, then G has the (Ω(r)×Ω(r))-grid as a minor (the hidden constants in the Ω
notation depend only on the size of H).

As before, Theorem 3 implies property (A) for all minor bidimensional parame-
ters for some α depending only on the excluded minor H .

For contraction-closed parameters, the landscape is different. In fact, each
possible extension of Lemma 2, requires a stronger version of bidimensionality.
For this, we can use the notion of a (r, q)-gridoid that is obtained from a partially
triangulated (r×r)-grid by adding at most q edges. (Note that every (r, q)-gridoid
has genus ≤ q.) The following extends Theorem 2 for graphs of bounded genus.

Theorem 5 ([12]). If a graph G of Euler genus at most γ excludes all (k −
12γ, γ)-gridoids as contractions, for some k ≥ 12γ, then G has branchwidth at
most 4k(γ + 1).

A parameter is genus-contraction bidimensional if a) it is contraction closed and
b) its value on every (r,O(1))-gridoid is Ω(r2) (here the hidden constants in the
big-O and the big-Ω notations depend only on the Euler genus). Then Theorem 5
implies property (A) for all genus-contraction bidimensional parameters for some
constant that depends only on the Euler genus.

An apex graph is a graph obtained from a planar graph G by adding a vertex
and making it adjacent to some vertices of G. A graph class is apex-minor-free
if it does not contain a graph with some fixed apex graph as a minor. An (r, s)-
augmented grid is an (r × r)-grid with some additional edges such that each
vertex is attached to at most s vertices that in the original grid had degree 4.
We say that a contraction closed parameter P is apex-contraction bidimensional
if a) it is closed under taking of contractions and b) its value on every (r,O(1))-
augmented grid is Ω(r2) (here the hidden constants in the big-O and the big-Ω
notations depend only on the excluded apex graph). According to [10] and [13],
every apex-contraction bidimensional parameter satisfies property (A) for some
constant that depends only on the excluded apex graph.

A natural question appears: until what point property (A) can be satisfied
for contraction-closed parameters (assuming a suitable concept of bidimension-
ality)? As it was observed in [10], for some contraction-closed parameters, like
dominating set, the branchwidth of an apex graph cannot be bounded by any
function of their values. Consequently, apex-free graph classes draw a natural
combinatorial limit on the the above framework of obtaining subexponential pa-
rameterized algorithms for contraction-closed parameters. (On the other side,
this is not the case for minor-closed parameters as indicated by Theorem 4.)
However, it is still possible to cross the frontier of apex-minor-free graphs for
the dominating set problem and some of its variants where subexponential pa-
rameterized algorithms exist, even for H-minor-free graphs, as shown in [12].

Subexponential Parameterized Algorithms 21

These algorithms are based on a combination of dynamic programming and the
the structural characterization of H-minor-free graphs from [36].

4 Further Optimizations

In this section, we present several techniques for accelerating the algorithms
emerging by the framework of Theorem 1.

Making algorithms faster. While proving properties (A) and (B), it is nat-
ural to ask for the best possible constants α and β, as this directly implies an
exponential speed-up of the corresponding algorithms. While, Bidimensionality
Theory provides some general estimation of α, in some cases, deep understand-
ing of the parameter behavior can lead to much better constants in (A). For
example, it holds that for Planar k-Vertex Cover, α ≤ 3 (see [30]) and for
Planar k-Dominating Set, α ≤ 6.364 (see [29]). (Both bounds are based on
the fact that planar graphs with n vertices have branchwidth at most

√
4.5
√
n,

see [30].) Similar results hold also for bounded genus graphs [28].
On the other hand, there are several ways to obtain faster dynamic program-

ming algorithms and to obtain better bounds for β in (B). A typical approach
to compute a solution of size k works as follows:

– Root the branch decomposition (T, μ) of graph G picking any of the vertices
of its tree and apply dynamic programming on the middle sets, bottom up, from
the leaves towards the root.
– Each middle set mid(e) of (T, μ) represents the subgraph Ge of G induced by
the leaves below. Recall that the vertices of mid(e) are separators of G.
– In each step of the dynamic programming, all optimal solutions for a subprob-
lem in Ge are computed, subject to all possibilities of how mid(e) contributes to
an overall solution for G. E.g., for Vertex Cover, there are up to 2bw(T,μ) sub-
sets of mid(e) that may constitute a vertex cover of G. Each subset is associated
with an optimal solution in Ge with respect to this subset.
– The partial solutions of a middle set are computed using those of the already
processed middle sets of the children and stored in an appropriate data structure.
– An optimal solution is computed at the root of T .

Encoding the middle sets in a refined way, may speed up the processing time
significantly. Though, the same time is needed to scan all solutions assigned to
a mid(e) after introducing vertex states, there are some methods to accelerate
the update of the solutions of two middle sets to a parent middle set:

Using the right data structure: storing the solutions in a sorted list compensates
the time consuming search for compatible solutions and allows a fast computing
of the new solution. E.g., for k-Vertex Cover, the time to process two middle
sets is reduced from O(23·bw(T,μ)) (for each subset of the parent middle set, all
pairs of solutions of the two children are computed) to O(21.5·bw(T,μ)). In [19]
matrices are used as a data structure for dynamic programming that allows an
updating even in time O(2

ω
2 bw(T,μ)) for k-Vertex Cover (where ω is the fast

matrix multiplication constant, actually ω < 2.376).

22 F. Dorn, F.V. Fomin, and D.M. Thilikos

A compact encoding: assign as few as possible vertex states to the vertices and
reduce the number of processed solutions. Alber et al. [1], using the so-called
“monotonicity technique”, show that 3 vertex states are sufficient in order to
encode a solution of k-Dominating Set. A similar approach was used in [29]
to obtain, for the same problem, a O(31.5·bw(T,μ))-step updating process, that
has been improved by [19] to O(22·bw(T,μ)).

Employing graph structures: as we will see in the Section 5, one can improve the
runtime further for dynamic programming on branch decompositions whose mid-
dle sets inherit some structure of the graph. Using such techniques, the update
process for Planar k-Dominating Set is done in time O(3

ω
2 bw(T,μ)) [19].

The above techniques can be used to prove the following result.

Theorem 6 ([19]). Planar k-Vertex Cover can be solved in O(23.56
√
k) ·

nO(1) runtime and Planar k-Dominating Set in O(211.98
√
k) ·nO(1) runtime.

Kernels. Many of the parameterized algorithms discussed in this section can be
further accelerated to time O(nθ) + 2O(

√
k) for θ being a small integer (usually

ranging from 1 to 3). This can be done using the technique of kernelization that
is a prolynomial step preprocessing of the initial input of the problem towards
creating an equivalent one, whose size depends exclusively on the parameter. Ex-
amples of such problems are Planar k-Dominating Set [4,8,28], k-Feedback

Vertex Set [6], k-Vertex Cover and others [25]. See the books of [23,27,35]
for a further reference.

5 Property (B) and Catalan Structures

All results of the previous sections provide subexponential parameterized algo-
rithms when property (B) holds. However, there are many bidimensional param-
eters for which there is no known algorithm providing property (B) in general.
The typical running times of dynamic programming algorithms for these prob-
lems are O(bw(G)!) · nO(1), O(bw(G)bw(G)) · nO(1), or even O(2bw(G)2) · nO(1).
Examples of such problems are parameterized versions of k-Longest Path,
k-Feedback Vertex Set, k-Connected Dominating Set, and k-Graph

TSP. Usually, these are problems in NP whose certificate verifications involves
some connectivity question. In this section, we show that for such problems one
can prove that (B) actually holds for the graph class that we are interested in.
To do this, one has to make further use of the structural properties of the class
(again from the Graph Minors Theory) that can vary from planar graphs to
H-minor-free graphs. In other words, we use the structure of the graph class not
only for proving (A) but also for proving (B).

Planar graphs. The following type of decomposition for planar graphs follows
from a proof by Seymour and Thomas in [38] and is extremely useful for making
dynamic programming on graphs of bounded branchwidth faster (see [22,19]).

Let G be a planar graph embedded in a sphere S. An O-arc is a subset of
S homeomorphic to a circle. An O-arc in S is called a noose of the embedding

Subexponential Parameterized Algorithms 23

of G if it meets G only in vertices. The length of a noose O is the number of
vertices of G it meets. Every noose O bounds two open discs Δ1, Δ2 in S, i.e.,
Δ1 ∩Δ2 = ∅ and Δ1 ∪Δ2 ∪O = S.

We define a sphere cut decomposition or sc-decomposition (T, μ, π) as a branch
decomposition with the following property: for every edge e of T , there exists a
noose Oe meeting every face at most once and bounding the two open discs Δ1

and Δ2 such that Gi ⊆ Δi ∪ Oe, 1 ≤ i ≤ 2. Thus Oe meets G only in mid(e)
and its length is |mid(e)|. A clockwise traversal of Oe in the embedding of G
defines the cyclic ordering π of mid(e). We always assume that the vertices of
every middle set mid(e) = V (G1) ∩ V (G2) are enumerated according to π.

Theorem 7. Let G be a planar graph of branchwidth at most � without vertices
of degree one embedded on a sphere. Then there exists an sc-decomposition of G
of width at most � that can be constructed in time O(n3).

In what follows, we sketch the main idea of a 2O(bw(T,μ,π))nO(1) algorithm for
the k-Planar Longest Path. One may use k-Longest path as an exemplar
for other problems of the same nature.

Let G be a graph and let E ⊆ E(G) and S ⊆ V (G). To count the number of
states at each step of the dynamic programming, we should estimate the number
of collections of internally vertex disjoint paths using edges from E and having
their (different) endpoints in S. We use the notation P to denote such a path col-
lection and we define pathsG(E,S) as the set of all such path collections. Define
equivalence relation ∼ on pathsG(E,S): for P1,P2 ∈ pathsG(E,S), P1 ∼ P2

if there is a bijection between P1 and P2 such that bijected paths in P1 and P2

have the same endpoints. Denote by q-pathsG(E,S) = |pathsG(E,S)/ ∼ | the
cardinality of the quotient set of pathsG(E,S) by ∼.

Recall that we define q-pathsG(E,S) because, while applying dynamic pro-
gramming on some middle set mid(e) of the branch decomposition (T, μ), the
number of states for e ∈ E(T) is bounded by O(q-pathsGi

(E(Gi),mid(e))).
Given a graph G and a branch decomposition (T, μ) of G, we say that (T, μ)

has Catalan structure if for every edge e ∈ E(T) and any i ∈ {1, 2},

q-pathsGi
(E(Gi),mid(e)) = 2O(bw(T,μ)) (1)

Now, (B) holds for planar graphs because of the following combinatorial result.

Theorem 8 ([22]). Every planar graph has an optimal branch decomposition
with the Catalan structure that can be constructed in polynomial time.

The proof of Theorem 8 uses an sc-decomposition (T, μ, π) (constructed using
the polynomial algorithm in [38]). Let Oe be a noose meeting some middle set
mid(e) of (T, μ, π). Let us count in how many ways this noose can cut paths
of G. Observe that each path is cut into at most bw(T, μ, π) parts. Each such
part is itself a path whose endpoints are pairs of vertices in Oe. Notice also
that, because of planarity, no two such pairs can cross. Therefore, counting the
ways Oe can intersect paths of G is equivalent to counting non-crossing pairs of

24 F. Dorn, F.V. Fomin, and D.M. Thilikos

vertices in a cycle (the noose) of length bw(T, μ, π) which, in turn, is bounded
by the Catalan number of bw(T, μ, π) that is 2O(bw(T,μ,π)).

We just concluded that the application of dynamic programming on an sc-
decomposition (T, μ, π) is the 2O(bw(T,μ,π))nO(1) algorithm for proving prop-
erty (B) for planar graphs. By further improving the way the members of
q-pathsGi

(E(Gi),mid(e)) are encoded during this procedure, one can bound
the hidden constants in the big-O notation on the exponent of this algorithm
(see [22]). For example, for Planar k-Longest Path β ≤ 2.63. With anal-
ogous structures and arguments it follows that for Planar k-Graph TSP

β ≤ 3.84, for Planar k-Connected Dominating Set β ≤ 3.82, for Pla-

nar k-Feedback Vertex Set β ≤ 3.56 [19].
In [20], all above results were generalized for graphs with bounded genus

(now constants for each problem depend also on the genus). This generalization
requires a suitable “bounded genus”-extension of Theorem 8 and its analogues
for other problems.

Excluding a minor. The final step is to prove property (B) for H-minor-free
graphs. For the proof of this, we need the following analogue of Theorem 8.

Theorem 9 ([21]). Let G be a graph class excluding some fixed graph H as a
minor. Then every graph G ∈ G with bw(G) ≤ � has an branch decomposition
of width O(�) with the Catalan structure (here the hidden constants in the big-O
notations in O(�) and the upper bound certifying the Catalan structure in Equa-
tion (1) depend only on H). Moreover, such a decomposition can be constructed
in f(|H |) · nO(1) steps, where f is a function depending only on H.

The proof of Theorem 9 is based on an algorithm constructing the claimed branch
decomposition using a structural characterization of H-minor-free graphs, given
in [36]. Briefly, any H-minor-free graph can be seen as the result of gluing to-
gether (identifying constant size cliques and, possibly, removing some of their
edges) graphs that, after the removal of some constant number of vertices (called
apices) can be “almost” embedded in a surface of constant genus. Here, by “al-
most” we mean that we permit a constant number of non-embedded parts (called
vortices) that are “attached” around empty disks of the embedded part and have
a path-like structure of constant width. The algorithm of Theorem 9, as well as
the proof of its correctness, has several phases, each dealing with some level of
this characterisation, where an analogue of sc-decomposition for planar graphs
is used. The core of the proof is based on the fact that the structure of the
embeddible parts of this characterisation (along with vortices) is “close enough”
to be plane, so to roughly maintain the Catalan structure property.

Theorem 9 implies (B) for k-Longest Path on H-minor-free graphs. Similar
results can be obtained for all problems examined in this section on H-minor-free
graphs. Since property (A) holds for minor/apex-contraction bidimensional pa-
rameters on H-minor-free/apex-minor-free graphs, we have that one can design
2O(

√
k) · nO(1) step parameterized algorithms for all problems examined in this

section for H-minor-free/ apex-minor-free graphs (here the hidden constant in
the big-O notation in the exponent depend on the size on the excluded minor).

Subexponential Parameterized Algorithms 25

6 Conclusion

In Section 3, we have seen that bidimensionality can serve as a general combina-
torial criterion implying property (A). Moreover, no such a characterization is
known, so far, for proving property (B). In Section 5, we have presented several
problems where an analogue of Theorem 9 can be proven, indicating the exis-
tence of Catalan structures in H-minor-free graphs. It would be challenging to
find a classification criterion (logical or combinatorial) for the problems that are
amenable to this approach.

Acknowledgements. We take the opportunity to warmly thank Hans Bodlaen-
der, Erik Demaine, MohammadTaghi Hajiaghayi, Naomi Nishimura, Prabhakar
Ragde and Eelko Penninkx for collaborating with us on this project.

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs.
Algorithmica 33, 461–493 (2002)

2. Alber, J., Bodlaender, H.L., Fernau, H., Niedermeier, R.: Fixed parameter algo-
rithms for planar dominating set and related problems. In: Halldórsson, M.M. (ed.)
SWAT 2000. LNCS, vol. 1851, pp. 97–110. Springer, Heidelberg (2000)

3. Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosamond, F.A.,
Stege, U.: Refined search tree technique for dominating set on planar graphs. In:
Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 111–122.
Springer, Heidelberg (2001)

4. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. Journal of the ACM 51, 363–384 (2004)

5. Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential
speed-up for planar graph problems. J. Algorithms 52, 26–56 (2004)

6. Bodlaender, H.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P.
(eds.) STACS 2007. LNCS, vol. 4393, Springer, Heidelberg (2007) (to appear)

7. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
J. Comput. System Sci. 67, 789–807 (2003)

8. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size. In: Ganter, B., Godin, R. (eds.)
ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–280. Springer, Heidelberg (2005)

9. [ERROR while converting LaTeX/Unicode], V.G., Klinz, B., Woeginger, G.J.: Ex-
act algorithms for the Hamiltonian cycle problem in planar graphs. Oper. Res.
Lett. 34, 269–274 (2006)

10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimensional pa-
rameters and local treewidth. SIAM J. Discrete Math. 18, 501–511 (2004)

11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algo-
rithms for (k,r)-center in planar graphs and map graphs. ACM Trans. Algorithms 1,
33–47 (2005)

12. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on graphs of bounded genus and H-minor-free graphs. Jour-
nal of the ACM 52, 866–893 (2005)

26 F. Dorn, F.V. Fomin, and D.M. Thilikos

13. Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with appli-
cations through bidimensionality. Combinatorica (to appear)

14. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic
applications. Computer Journal (to appear)

15. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: SODA’05, pp. 590–601. ACM-SIAM, New York (2005)

16. Demaine, E.D., Hajiaghayi, M.T., Nishimura, N., Ragde, P., Thilikos, D.M.: Ap-
proximation algorithms for classes of graphs excluding single-crossing graphs as
minors. J. Comput. System Sci. 69, 166–195 (2004)

17. Demaine, E.D., Hajiaghayi, M.T., Thilikos, D.M.: Exponential speedup of fixed-
parameter algorithms for classes of graphs excluding single-crossing graphs as mi-
nors. Algorithmica 41, 245–267 (2005)

18. Demaine, E.D., Hajiaghayi, M.T., Thilikos, D.M.: The bidimensional theory of
bounded-genus graphs. SIAM J. Discrete Math. 20, 357–371 (2006)

19. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg
(2006)

20. Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast subexponential algorithm for non-local
problems on graphs of bounded genus. In: Arge, L., Freivalds, R. (eds.) SWAT 2006.
LNCS, vol. 4059, pp. 172–183. Springer, Heidelberg (2006)

21. Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic program-
ming on H-minor-free graphs, manuscript (2007)

22. Dorn, F., Penninkx, E., Bodlaender, H., Fomin, F.V.: Efficient exact algorithms
on planar graphs: Exploiting sphere cut branch decompositions. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg
(2005)

23. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York
(1999)

24. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for
minimum-weight vertex separators. In: STOC’05, pp. 563–572. ACM Press, New
York (2005)

25. Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT.
In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidel-
berg (2003)

26. Fernau, H., Juedes, D.W.: A geometric approach to parameterized algorithms for
domination problems on planar graphs. In: Fiala, J., Koubek, V., Kratochv́ıl, J.
(eds.) MFCS 2004. LNCS, vol. 3153, pp. 488–499. Springer, Heidelberg (2004)

27. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
28. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces:

Linear kernel and exponential speed-up. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidel-
berg (2004)

29. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and
exponential speed-up. SIAM J. Comput. 36, 281–309 (2006)

30. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar
graphs. Journal of Graph Theory 51, 53–81 (2006)

31. Grohe, M.: Local tree-width, excluded minors, and approximation algorithms.
Combinatorica 23, 613–632 (2003)

32. Gutin, G., Kloks, T., Lee, C.M., Yeo, A.: Kernels in planar digraphs. J. Comput.
System Sci. 71, 174–184 (2005)

Subexponential Parameterized Algorithms 27

33. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity. Journal of Computer and System Sciences 63, 512–530 (2001)

34. Kanj, I., Perković, L.: Improved parameterized algorithms for planar dominating
set. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 399–410.
Springer, Heidelberg (2002)

35. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press,
Oxford (2006)

36. Robertson, N.: Graph minors. XVI. Excluding a non-planar graph. J. Combin.
Theory Ser. B 89, 43–76 (2003)

37. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.
Combin. Theory Ser. B 62, 323–348 (1994)

38. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14,
217–241 (1994)

Competitive Algorithms for

Due Date Scheduling

Nikhil Bansal1, Ho-Leung Chan2, and Kirk Pruhs2,�

1 IBM T.J. Watson Research, P.O. Box 218, Yorktown Heights, NY
nikhil@us.ibm.com

2 Computer Science Department, University of Pittsburgh
{hlchan,kirk}@cs.pitt.edu

“As a strategic weapon, time is the equivalent of money, productivity,
quality, even innovation.”

George Stalk, Boston Consulting Group

Abstract. We consider several online scheduling problems that arise
when customers request make-to-order products from a company. At the
time of the order, the company must quote a due date to the customer.
To satisfy the customer, the company must produce the good by the
due date. The company must have an online algorithm with two compo-
nents: The first component sets the due dates, and the second component
schedules the resulting jobs with the goal of meeting the due dates.

The most basic quality of service measure for a job is the quoted lead
time, which is the difference between the due date and the release time.
We first consider the basic problem of minimizing the average quoted
lead time. We show that there is a (1 + ε)-speed O(log k

ε
)-competitive

algorithm for this problem (here k is the ratio of the maximum work of a
job to the minimum work of a job), and that this algorithm is essentially
optimally competitive. This result extends to the case that each job has
a weight and the objective is weighted quoted lead time.

We then introduce the following general setting: there is a non-
increasing profit function pi(t) associated with each job Ji. If the cus-
tomer for job Ji is quoted a due date of di, then the profit obtained from
completing this job by its due date is pi(di). We consider the objective
of maximizing profits. We show that if the company must finish each job
by its due date, then there is no O(1)-speed poly-log-competitive algo-
rithm. However, if the company can miss the due date of a job, at the
cost of forgoing the profits from that job, then we show that there is a
(1 + ε)-speed O(1 + 1/ε)-competitive algorithm, and that this algorithm
is essentially optimally competitive.

1 Introduction

We consider several online scheduling problems that arise when customers re-
quest make-to-order products from a time-based competitive company. As an
� Supported in part by NSF grants CNS-0325353, CCF-0448196, CCF-0514058 and

IIS-0534531.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 28–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Competitive Algorithms for Due Date Scheduling 29

example, consider the Atlas Door company, whose product was industrial doors
that come in an wide variety of widths, heights, and materials. Traditional com-
panies manufactured doors in batches, and stored the resulting doors in large
warehouses. Atlas built just-in-time flexible factories, investing extra money to
buy tooling to reduce change-over times. Traditionally when customers order a
door from the manufacturer, the customers usually had to wait a week for a
response as to when their order could be filled (This wait would be even longer
if the door was not in stock or scheduled for production.) Atlas invested in an
efficient front-end that automated the order entry, pricing and scheduling pro-
cess. Atlas could price and schedule almost all of its orders immediately. Atlas
was able to charge a premium for rush orders since Atlas knew these orders
could not be met by its competitors. As a result, in ten short years Atlas went
from start-up company to supplying 80% of the distributors in the U.S [9]. Sim-
ilar success stories for other time-based competitors, such National Bicycle and
Lutron electronics, can be found in [3].

In this paper, we formulate some basic online due-date scheduling problems,
and study them using worst-case competitive analysis. All of the problems that
we consider share the following basic framework. Jobs arrive to the system online
over time. Job Ji arrives at its release time ri. Job Ji has a work requirement
wi, which is the time it would take to complete the job on a unit speed machine.
At the time ri, the system must quote a due date di for job Ji to the customer
submitting the job. We assume that the scheduler may preempt jobs (and later
restart them from the point of preemption). It is easy to see that preemption is
necessary to avoid worst case scenarios where many short jobs arrive just after
a long job has been started.

An online algorithm has to have two components: a component that sets the
due date, and a component that schedules the jobs. Intuitively, setting the due
dates presents a dilemma to the online algorithm. Earlier due dates, if not missed,
will make the customer happier, and presumably increase profit for the company.
On the other hand, setting due dates to be too early restricts the scheduler from
setting earlier due dates on later arriving jobs. The main goal of this paper
is to gain some understanding about when and how an online algorithm can
reasonably cope with this dilemma.

The standard quality of service measure for a job Ji is the quoted lead time
(QLT), which is defined to be di − ri [5,7]. Probably the most natural related
objective is to minimize the average, or equivalently total, quoted lead times of
the jobs under the constraint that all jobs must be finished by their due date.
That is, the objective is

∑
(di− ri). In section 2, we show that there is a (1 + ε)-

speed O(log k
ε)-competitive algorithm, which we call BIT, and we show that BIT

is essentially optimally competitive. More generally, we show that this result
extends to the case that each job has a weight and the objective is weighted
quoted lead time. The parameter k is the ratio of the maximum density of any
job to the minimum density of any job, where the density of a job is its weight
divided by its size. The BIT algorithm is a composition of three well known

30 N. Bansal, H.-L. Chan, and K. Pruhs

scheduling algorithms: Highest Density First (or equivalently Shortest Job First
in the unweighted setting), Round Robin, and First-Come-First-Served.

It is instructive to consider the case that the online scheduler can delay the
setting of due dates. In particular, consider the most extreme case where the
online scheduler can set the due date to be the completion time of a job. The
quoted lead time problem then becomes the standard flow time problem, for
which the online Shortest Remaining Processing Time algorithm is optimal.
The weighted quoted lead time problem becomes the problem of minimizing
the weighted flow time, for which the online algorithm Highest Density First is
(1 + ε)-speed O(1 + 1/ε)-competitive. Thus, the introduction of due dates makes
the resulting online problems much more difficult.

Minimizing total quoted lead times is a reasonable objective function if a
company wishes to promise generally fast response to a collection of essentially
equivalent customers/jobs. But in some situations, say if the company charges
a premium for rush orders, the company may explicitly know how much profit
it can obtain from a particular due date. For example, companies such as Atlas
Door charge additional shipping and handling for rush orders. In these cases,
this known profit should be incorporated into the objective function. We intro-
duce the following general setting: there is a non-increasing profit function pi(t)
associated with each job Ji. If the customer for job Ji is quoted a due date of di,
then the profit obtained from completing this job by its due date is pi(di). We
consider the objective of maximizing profits, that is the objective is

∑
pi(di).

Note that the online scheduler in this problem has the power to reject jobs since
setting the due date to +∞ is essentially equivalent to rejecting the job.

Consider the following dilemma for the online scheduler: after scheduling a
low-value long job, several emergency jobs arrive that will yield high profit if
early due dates are set. However, setting early due dates for these emergency
jobs would make it infeasible to finish both the emergency jobs and the low-value
job by their due dates. The company would like to be able to drop the low-
value job to make greater profit from the emergency jobs. We get two different
models depending on whether this dropping is allowed. In the reliable model, the
scheduler must complete every job by its due date. In this model, the company
could not get profit from these emergency jobs in our example instance. In the
unreliable model, the company merely does not earn any profit from those jobs
that it does not complete by their due dates. Many companies offer no recourse
to a customer that is not provided a service by/at the time promised other than
that they are not charged. If you have had a flight canceled by Ryan Air, or a
package not delivered in time by Federal Express, you probably have had first
hand experience with this.

Our results on profit maximization are given in section 3. We show that in
the reliable model there is no O(1)-speed poly-log-competitive algorithm. In
the unreliable model, we show that there is a (1 + ε)-speed O(1)-competitive
algorithm, and we show that this algorithm is essentially optimally competitive.
These results match the intuition that the ability to break promises is crucial
to a company that wants to maximize profit. Once again it is instructive to

Competitive Algorithms for Due Date Scheduling 31

consider relaxing the problem so that the online algorithm can delay the setting
of the due dates until the completion time of job. In this relaxation, there is
no difference between the reliable and unreliable models. A special case of this
relaxed problem that has previously been studied in the literature is if the profit
functions are constant until some time/deadline, and then zero thereafter. For
this special case of the relaxed problem, it is known the best result that is
achievable is O(1+ε)-speed O(1)-competitiveness [4]. Thus O(1+ε)-speed O(1)-
competitiveness is the best possible result that we could have hoped for in our due
date profit maximization problem. So for profit maximization, the introduction
of due dates makes the resulting online problem significantly harder only in the
reliable case.

Within the world of supply chain management there is an extensive literature
on due date scheduling problems. Surveys of due date scheduling problems, with
hundreds of references, can be found [5] and [7]. As always with scheduling
problems, there is a vast number of reasonable formulations that have been
studied. The majority of the literature uses experimentation as the method of
algorithm evaluation. There is also a fair amount of literature that uses queuing-
theory analysis to evaluate online algorithms.

There is to our knowledge only one previous paper, namely [6], in the literature
on online due-date scheduling problems that uses worst-case analysis. In this
special case, all jobs have the same work, say w. If the due date of a job is set to
be as early as feasible, namely at ri+w, then the profit obtained from this job is
a fixed constant �. For every unit of time that the due date is delayed, one unit
of profit is lost. It is easy to see that the online algorithm, that accepts a job if
it can gain positive profit, has a competitive ratio of Ω(�); This algorithm may
accept many jobs with low profit, and thus not be able to reap profit from later
arriving jobs. [6] shows that the reliable online algorithm that rejects jobs on
which it won’t earn at least 61.8% of the maximum profit �, is 1.618-competitive.
Note that this result relies heavily on both the fact that the profit function has
a very special structure, and on the fact that all jobs are identical except release
times. The paper [6] considers other special cases and variations, for example,
if there are two different kinds of jobs instead of one and if quotations can be
delayed.

Recall that an online scheduling algorithm A is s-speed c-competitive for
an objective function f if for all input instances f(As(I)) ≤ c · f(OPT1(I)),
where As(I) is the output of algorithm A with an s speed processor on input
I, and OPT1(I) is the optimal unit speed schedule for input I [4]. Instances
that generally arise in practice for many scheduling problems have the following
threshold property: The performance of the system, with an optimal scheduling
algorithm, is reasonable when the load is bounded away from some threshold,
but the performance is horrible when the load is above the threshold. Intuitively,
a (1 + ε)-speed c-competitive algorithm should perform reasonably well on such
common instances since it would then have the same threshold as the optimal
algorithm. For more information, see the survey [8].

32 N. Bansal, H.-L. Chan, and K. Pruhs

2 Minimizing Weighted Quoted Lead Time

This section considers the problem of minimizing weighted quoted lead time.
Recall that each job Ji has release time ri, amount of work wi and weight ci. An
online algorithm needs to set a due date di when Ji is released and the quoted
lead time (or simply lead time) of Ji is �i = (di−ri). The objective is to minimize∑
ci�i, i.e., the total weighted lead time. We define the density of a job Ji to be

ci/wi. Let k be the ratio of the maximum to minimum density of the jobs. We
give a simple algorithm BIT that is (1 + ε)-speed O((log k)/ε)-competitive and
we show that BIT already achieves a nearly optimal competitive ratio.

2.1 The Algorithm BIT and Its Analysis

Let us first give some motivation for BIT. For any job sequence I, let L be the
minimum possible total weighted lead time and let F be the minimum possible
total weighted flow time. We note that L = F , because the total weighted lead
time is at least the total weighted flow time and they can be equal when the due
date of each job is set to its completion time.

Consider the algorithm Highest Density First (HDF), that at any time works
on the highest density job. It is known that for any ε > 0, HDF is (1 + ε

2)-speed
(1 + 2

ε)-competitive for minimizing weighted flow time [2]. Suppose, BIT runs a
copy of HDF; furthermore, whenever a job Ji is released, the due date di is set to
at most α times the completion time of Ji in HDF, assuming that no more jobs
will be released. If it turned out that all jobs were satisfied by their deadlines, it
would imply that BIT is α(1 + 2

ε)-competitive for total weighted lead time. Of
course, the problem is that HDF may not complete Ji by di since many higher
density jobs might arrive during [ri, di]. Interestingly, it turns out that by giving
BIT slightly extra speed, and by choosing α large enough, we can guarantee that
each job will be completed by its due date. We define BIT formally as follows.

We may assume without loss of generality that the minimum density of a job
is 1. Increasing the weight of jobs by a factor of at most 2, we assume that all
jobs have densities 2j for j = 1, 2, . . . , log k. BIT divides the jobs into classes
C1, C2, . . . , Clog k where all jobs in Cj have density 2j. BIT operates as follows.

Setting due dates. When a job Ji of class Cj is released at time ri, let w(Cj)
be the amount of remaining work for jobs in class Cj at time ri. BIT sets the
due date di to ri + (w(Cj) +wi) · 2 log k

ε . Note that if no more jobs are released,
a processor of speed ε

2 log k can complete Ji and all the jobs in Cj by di.

Processing jobs. BIT divides its processing power into two parts by time-
sharing. Thus, we may assume that BIT is using a processor P1 of speed (1 + ε

2)
and also another processor P2 of speed ε

2 .

– P1 runs HDF, i.e., always process the highest density unfinished job.
– P2 is evenly time-shared among all the log k classes. For each class Cj , it

processes the job in Cj with the earliest release time using speed ε
2 log k .

Competitive Algorithms for Due Date Scheduling 33

Observation 1. BIT completes each job Ji by its due date di.

Proof. Since jobs in Ci are dedicated a processor of speed ε
2 log k , the job Ji will

be completed by di irrespective of the jobs that arrive after ri.

We are now ready to bound the lead time �i of each job Ji in BIT. For any s ≥ 1,
set HDF(s) denotes a stand-alone copy of HDF using a s-speed processor. Let
fi be the flow time of a job Ji in the schedule of HDF(1 + ε

2). The flow time of
a job is its completion time minus its release date.

Lemma 1. For any job Ji, �i ≤ 2 log k
ε · (1 + ε

2) · fi.

Proof. Let Ji be a job of class Cj and let wh(Cj) be the amount of unfinished
work under HDF(1+ ε

2) for jobs in class Cj at time ri. Since BIT is also running
a copy of HDF(1 + ε

2), it must be that w(Cj), the unfinished work for class Cj
jobs under BIT is at most wh(Cj). Note that fi is at least (wh(Cj)+wi)/(1+ ε

2).
Hence, �i = (w(Cj) + wi) · 2 log k

ε ≤ (wh(Cj) + wi) · 2 log k
ε ≤ 2 log k

ε · (1 + ε
2) · fi.

Theorem 1. For any ε > 0, BIT is (1+ε)-speed 4 log k
ε (1+ ε

2)(1+ 2
ε)-competitive.

The competitive ratio can improved to 16 log k
ε for ε ≥ 2.

Proof. Let Opt be the adversary that minimizes the total weighted lead time.
By Lemma 1, we have that

∑
wi�i ≤

2 log k
ε

(1 +
ε

2
)
∑

wifi

≤ 2 log k
ε

(1 +
ε

2
)(1 +

2
ε

)× total weighted flow time of Opt

=
2 log k
ε

(1 +
ε

2
)(1 +

2
ε

)× total weighted lead time of Opt,

which completes the first part of the proof. For ε ≥ 2, we note that HDF(1 + ε
2)

is 4
1+ε/2 -competitive on weighted flow time (because HDF(1 + ε

2) has weighted
flow time at most 2

1+ε/2 times that of HDF(2), and HDF(2) is 2-competitive on
weighted flow time). Similar as above, we conclude that for ε ≥ 2, the competitive
ratio of BIT is 2 log k

ε (1 + ε
2)(4

1+ε/2) = 8 log k
ε . Since the weights increased at most

twice to ensure that job densities are powers of 2, the result follows.

2.2 Lower Bounds

Theorem 2. Let c > 1 be any integer. Any deterministic c-speed algorithm is
Ω(log k

c)-competitive.

Proof. Consider any c-speed algorithm A. Let x ≥ 2 be any integer. We will
release a sequence of at most (c log x+1) batches of jobs. All jobs have weight 1.
Batch Bi has 2i−1 jobs and each job has size 1/2i−1. First, batch B1 is released
at time 0. For i = 2, . . . , c log x+ 1, if at least half of the jobs in Bi−1 have due
date at most log x

2 , then batch Bi is released immediately at time 0; otherwise,

34 N. Bansal, H.-L. Chan, and K. Pruhs

the job sequence terminates. Note that if batch Bc log x+1 is released, there must
be at least c log x

2 units of work with due date at most log x
2 . A has a c-speed

processor and needs to meet the due date of the jobs, so A needs to set the due
date of all jobs in batch Bc log x+1 to be greater than log x

2 .
Let Br be the last batch of jobs released. Note that A sets the due date

of at least 2r−1

2 jobs to be at least log x
2 . The total weighted lead time of A is

Ω(2r−1 log x). The adversary can schedule the jobs in reverse order of arrival,
giving an objective of at most

∑r
i=1 2i−1(r + 1 − i) = O(2r−1). Thus, A is

Ω(log x)-competitive. The theorem follows as k = 2c log x and log x = log k
c .

We remark that any deterministic algorithm using a unit-speed processor can
be shown to be Ω(

√
k)-competitive.

3 Profit Maximization

We assume in this section that each job Ji has an associated non-increasing
profit function pi(t) specifying the profit obtained if the due date is set to time
t, and our objective is the total profit obtained from the jobs finished by their
due date. Our main result, which we give in section 3.1, is a (1 + 2δ)-speed
(6 + 12

δ + 8
δ2)-competitive algorithm in the unreliable model where the scheduler

is not obligated to finish all jobs by their due date. It is easily seen (see Section
3.2) that resource augmentation is necessary. In section 3.2 we also show that
every deterministic c-speed algorithm is at least (1 + 1

c·2c)-competitive, even
when the job size and profit are bounded. In section 3.3, we consider the reliable
version of the problem where all jobs must be completed by their due date. We
show that every deterministic c-speed algorithm is Ω(k1/c)-competitive, and give
a simple algorithm that matches this bound.

3.1 The Algorithm for the Unreliable Model

We call the algorithm INT, which stands for “intervals”. It maintains a pool
P of jobs and only processes jobs in P . Whenever a job Ji is released, INT
assigns a due date di to Ji (using the procedure below), and Ji is put into P if
pi(di) > 0. A job Ji remains in P until it is completed or becomes non-viable
(i.e., the remaining work is more than (1 + 2δ) times the duration between the
current time and its due date). Note that once the due date of Ji is fixed, we
can unambiguously define pi = pi(di) as the profit and ui = pi/wi as the density
of Ji.

Intuitively, INT runs the highest density job available. And intuitively INT
sets the due date to be the earliest time t so that if no more jobs arrive, and
always the highest density job is run, then even a slightly slower processor could
finish the job by t. Unfortunately, it requires some complications to make the
idea precise and to get the technical details to work out.

Let c > 1 + 1
δ be a constant (that we set later to 1 + 2

δ). Throughout, we
assume that INT runs at speed 1 + 2δ and the optimum offline algorithm runs

Competitive Algorithms for Due Date Scheduling 35

at speed 1. We now formally specify how the due dates are set, and which job is
executed at each time t.

Setting Due Dates. INT maintains an invariant that each job admitted in P is
associated with a collection of time intervals I(Ji) = {[t1, t′1], [t2, t′2], . . . [th, t′h]},
where ri ≤ t1 < t′1 < t2 < . . . < th < t′h = di. This collection I(Ji) is specified
(and fixed) as soon as Ji is released. The total length of the intervals in I(Ji) is
1+δ
1+2δwi. Roughly speaking, Ji is expected to be run during I(Ji). Note that the
total length is (1 + δ) times more than the time required to run Ji.

When a new job Ji is released at ri, INT tests whether a time t′ > ri is a good
choice for due date as follows: Assuming t′ is the due date, then the profit of Ji is
pi(t′) and density ui = pi(t′)/wi. Let X(ui

c) be the set of jobs in P with density
at least ui

c . Consider the time interval [ri, t′] and the associated intervals of jobs
in X(ui

c). Let A = {[a1, a
′
1], [a2, a

′
2], . . . , [ah, a′h]} be the maximal subintervals of

[ri, t′] that do not overlap with the associated intervals of any job in X(ui

c). We
say that t′ is a feasible due date if the total length of intervals in A is at least
1+δ
1+2δwi. Note that a feasible due date always exists by choosing t′ large enough.
INT sets the due date of Ji to be the earliest time t′ such that t′ is a feasible due
date. If pi(t′) > 0, then Ji is put into P and I(Ji) is set to the corresponding A.

Executing jobs. At any time t, let S be the set of jobs Ji in P that are allowed
to run at t (i.e. all Ji such that I(Ji) contains some interval [tj , t′j] and t ∈ [tj , t′j]).
INT processes the job in S with highest density.

We first state two observations about INT before presenting the analysis.

Observation 2. At any time t, let J1 and J2 be two jobs in P such that some
intervals of I(J1) and I(J2) are overlapping. Then, either u1 > c·u2 or u2 > c·u1.

Proof. Follows directly from the procedure for defining I(J1) and I(J2).

Consider the overall execution of INT in hindsight for the sequence of jobs. For
any time t, let S be the set of jobs Ji ever put into P such that I(Ji) contained
some interval [tj , t′j] and t ∈ [tj , t′j]. The density of t is defined as the density of
the highest density job in S.

Observation 3. Consider any job Ji and a time t ≥ ri + wi. Suppose INT
sets the due date of Ji to be strictly greater than t. Let ui = pi(t)/wi and let L
be the amount of time during [ri, t] such that the density is at least ui

c . Then,
L ≥ δ

1+2δ (t− ri).

Proof. If L is less than δ
1+2δ (t− ri), then t is a feasible due date for Ji and INT

would have set the due date of Ji to be at most t, which yields a contradiction.

We now turn our attention towards analyzing this algorithm. Let C be the set
of jobs completed by INT, and R be the set of jobs that have ever been put into
P . For any set X of jobs, let ||X || be the total profit of jobs in X according to
the due dates set by INT. We first lower bound the profit obtained by INT.

36 N. Bansal, H.-L. Chan, and K. Pruhs

Lemma 2. For C and R as defined above, ||C|| ≥ (1 − 1
δ(c−1))||R||, or equiva-

lently, ||R|| ≤ δ(c−1)
δ(c−1)−1 ||C||.

Proof. We use a charging scheme to prove the lemma. For each job Ji in C, we
give pi units of credit to Ji initially. The remaining jobs in R−C are given 0 units
of credit initially. We will describe a method to transfer the credits such that at
the end, each job Ji ∈ R has credit at least (1 − 1

δ(c−1))pi, which completes the
proof.

The method to transfer credit is as follows. At any time t, let S be the set of
jobs that have an associated interval containing t. Let Ji be the highest density
job in S. Then, for each other job Jj in S, Ji transfers credit to Jj at a rate of
(1+2δ

δ)uj.
We first show that every job Jj in R receives credit at least pj either initially

or transferred from other jobs. This clearly holds for jobs in C. For any job Jj in
R− C, as Jj could not be completed during I(Jj), it must have received credit
for at least δ

1+2δ · wj units of time. Thus, the total credit obtained is at least
(δ
1+2δ)wj · (1+2δ

δ)uj = wjuj = pj .
We now show that the credit transferred out of each job Ji is at most 1

δ(c−1)pi.
When a job Ji is the highest density job in S, by observation 2 the remaining
jobs in S have geometrically decreasing densities and hence their total density
is at most 1

c−1ui. Therefore, the rate of credit transferring out of Ji is at most
(ui

c−1)(1+2δ
δ). Since Ji is the highest density job for at most wi

1+2δ units of time,
the total credit transferred out is at most of Ji is at most (ui

c−1)(1+2δ
δ) · (wi

1+2δ) =
1

δ(c−1)pi.

Next, we upper bound the profit obtained by the adversary. Let A be the set of
jobs completed by the adversary. For any set of jobs X , let ||X ||∗ be the total
profit of jobs in X according to the due dates set by the adversary. We may
assume that the adversary only completes jobs with non-zero profit. Let A1 be
the set of jobs in A such that the due date set by INT is no later than that by the
adversary. Let A2 = A \A1. Then, the total profit obtained by the adversary is
||A||∗ = ||A1||∗+ ||A2||∗ ≤ ||A1||+ ||A2||∗ ≤ ||R||+ ||A2|| . Note that ||A1|| ≤ ||R||
because each job in A1 must lie in R since INT set a due date for it. We now
bound the profit of jobs in A2.

For any u > 0, let T (u) be the total length of time that the adversary is
running jobs in A2 with density at least u (where the density is determined
according to the due dates set by the adversary). For the schedule of INT, let
L(uc) be the total length of time such that the density is at least u

c . (Recall
that the density of a time t is the density of the highest density job that has an
associated interval containing t.)

Lemma 3. For every u > 0, T (u) ≤ 2(1+2δ)
δ L(uc).

Proof. For any job Ji ∈ A2, let the span of Ji be the time interval [ri, d∗i], where
d∗i is the due date set by the adversary. For any u > 0, let A2(u) be the set of

Competitive Algorithms for Due Date Scheduling 37

jobs in A2 with density at least u. Consider the union of spans of all jobs in
A2(u). It may consist of a number of disjoint time intervals, and let � be its total
length. Clearly, T (u) ≤ �.

Let M ⊆ A2 be the minimum cardinality subset of A2 such that the union of
spans of jobs in M equals that of A2. Note that the minimality property implies
no three jobs in M have their spans overlapping at a common time. This implies
that we can further partition M into M1 and M2 such that within M1 (resp.
M2), any two jobs have disjoint spans. Now, either M1 or M2 has total span
of length at least half of that of M . Without loss of generality, suppose that it
is M1. Note that each interval in M1 corresponds to a span of some job in A2.
Applying Observation 3 to each such interval, it follows that the density of INT
is at least u

c for at least δ
1+2δ fraction of time during the intervals of M1. Thus,

L(uc) ≥ δ
2(1+2δ) · T (u), which completes the proof.

Let {φ1, φ2, . . . , φm} be the set of densities of jobs in A2 (determined by the
adversary’s due dates), where φi > φi+1 for i = 1, . . . ,m − 1. For simplicity,
let φ0 = ∞ and φm+1 = 0. For i = 1, . . . ,m, let �i be the length of time that
the adversary is running jobs of density φi. Similarly, for i = 1, . . . ,m, let αi be
the length of time that INT has density in the range [φi/c, φi−1/c). Then, the
following holds.

Lemma 4. Let K be a constant. If T (u) ≤ K · L(uc) for every u ≥ 0, then∑m
i=1 �iφi ≤ K ·

∑m
i=1 αiφi.

Proof. Rephrasing T (i) ≤ K ·L(ic) in terms of �i and αi, we obtain the following
inequalities for each i = 1, . . . ,m

�1 + . . .+ �i ≤ K(α1 + . . .+ αi).

Multiplying the ith inequality by (φi − φi+1) (which is strictly positive for all i)
and adding them, we obtain the desired result that

∑m
i=1 �iφi ≤ K ·(

∑m
i=1 αiφi).

Lemma 5. ||A||∗ ≤ (1 + 2(1+δ)c
δ)||R||.

Proof. As ||A1|| ≤ ||R||, it follows that ||A||∗ ≤ ||A1||∗ + ||A2||∗ ≤ ||R||+ ||A2||∗.
By Lemma 3 and 4,

||A2||∗ ≤
m∑

i=1

�iφi ≤
2(1 + 2δ)

δ

m∑

i=1

αiφi. (1)

Let qi be the total profit for jobs whose density in INT is in the range of
[φi/c, φi−1/c). For any job Jj , as the total length of the associated intervals
is 1+δ

1+2δwj , it follows that αi φi

c ≤
1+δ
1+2δ · qi. Combining with (1), we obtain that

||A2||∗ ≤
2(1 + 2δ)

δ

m∑

i=1

αiφi ≤
2(1 + δ)c

δ

m∑

i=1

qi ≤
2(1 + δ)c

δ
||R||

which implies the desired result.

38 N. Bansal, H.-L. Chan, and K. Pruhs

Theorem 3. for any δ > 0, the algorithm described above is (1 + 2δ)-speed,
O(1)-competitive for profit maximization in the unreliable model. In particular
||A||∗ ≤ (6 + 12

δ + 8
δ2)||C||.

Proof. The result follows by Lemmas 2 and 5, and setting c = 1 + 2
δ .

3.2 Lower Bounds in the Unreliable Model

It is easily seen that resource augmentation is necessary to obtain O(1) com-
petitive algorithms in the unreliable model. In fact, by the results of Baruah et
al. [1] it follows that every deterministic algorithm is Ω(k) competitive even if
all the profit functions are of the type pi(t) = pi during [0, di] and 0 thereafter.
Here k is the ratio of the maximum to minimum job density. We can show (proof
deferred to the journal version for lack of space) that 1-competitiveness is not
possible for any online algorithm, even when it is given faster processors and the
job size and profit are bounded.

Theorem 4. Let c ≥ 1 be any integer. Consider the profit maximization problem
in the unreliable model. Any deterministic c-speed algorithm is at least (1+ 1

c·2c)-
competitive, even when all jobs are of size 1 and the profit is either 0 or in the
range [0.5, 1].

3.3 The Reliable Model

We show substantially stronger lower bounds for the profit maximization prob-
lem in the reliable model where jobs must be completed by their due dates. Let
Δ be the ratio of the maximum to minimum job size. Let p∗i = pi(wi) be the
maximum possible profit achievable by a job Ji, and set u∗i = p∗i /wi. Let k denote
the maximum to minimum ratio of u∗i . The following lower bound states that
O(1)-competitive algorithm is possible only when both k and Δ are constant.

Theorem 5. Any deterministic online algorithm is at least Ω(k ·Δ)-competitive
in the reliable model of the profit maximization problem.

The proof of Theorem 5 is deferred to the journal version for lack of space.
Next we show that constant competitive ratio is not possible even if we use an
arbitrarily large constant speed-up.

Theorem 6. Let c ≥ 1 be an integer. Any deterministic c-speed algorithm is
Ω(k1/c)-competitive in the reliable model of the profit maximization problem.

Proof. For any c-speed algorithm A, we release a sequence of at most c+ 1 jobs
defined as follows. Let x ≥ 2 be an integer. A job J1 is released with r1 = 0,
w1 = 1, and p1(t) = x for t ∈ [0, 1] and p1(t) = 0 otherwise. For i = 2, 3, . . . , c+1,
Ji is released if A sets di−1 to be at most 1; in that case, Ji is a job with ri = 0,
wi = 1, and pi(t) = xi for t ∈ [0, 1] and pi(t) = 0 otherwise. Note that if Jc+1

is released, it means that A sets di be at most 1 for i = 1, . . . , c. To meet these
due dates, A must set dc+1 to get greater than 1.

Competitive Algorithms for Due Date Scheduling 39

Let Jr be the last job released. Note that A sets dr to be greater than 1.
The total profit of A is at most (xr−1 + xr−1 + . . . + x) ≤ xr

x−1 . The adversary
can set the due date of Jr to be 1 and obtain a profit of xr. Thus, A is at least
(x−1)-competitive. Note that the density ratio k is at most xc, that is, x ≥ k1/c.

We also note that a matching c-speed O(k1/c)-competitive algorithm is achiev-
able using standard techniques. We partition the processor into c unit speed
processors where each part runs jobs of similar density (i.e. within k1/c of each
other). A job is assigned a due date greedily to maximize its profit while main-
taining feasibility. The algorithm maintains an online estimate of k, and merges
some classes if k changes substantially.

4 Conclusions

It would be interesting to investigate other due date scheduling problems, from
say the surveys [5] and [7], using worst-case analysis to get a better understanding
of the effect of the introduction of due dates.

Acknowledgments. We would like to thank Steef van de Velde for helpful
discussions.

References

1. Baruah, S., Koren, G., Mishra, B., Raghunathan, A., Rosier, L., Shasha, D.: On-line
scheduling in the presence of overload. In: Symposium on Foundations of Computer
Science, pp. 100–110. IEEE Computer Society Press, Los Alamitos (1991)

2. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted
flow time and deadline scheduling. Journal of Discrete Algorithms 4(3), 339–352
(2006)

3. Fisher, M.: What is the right supply chain for your product. In: Harvard Business
Review, pp. 105–116 (1997)

4. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. JACM 47,
214–221 (2000)

5. Kaminsky, P., Hochbaum, D.: Due date quotation models and algorithms. In: Le-
ung, J.Y-T. (ed.) Handbook of Scheduling: Algorithms, Models, and Performance
Analysis (chapter 20) CRC Press, Inc. (2004)

6. Keskinocak, P., Ravi, R., Tayur, S.: Scheduling and reliable lead-time quotation
for orders with availability intervals and lead-time sensitive revenues. Management
Science 47(2), 264–279 (2001)

7. Keskinocak, P., Tayur, S.: Due date mangement policies. In: Simchi-Levi, D., Wu,
S.D., Shen, Z.-J(M.) (eds.) Handbook of Quantitative Supply Chain Analysis: Mod-
eling in the E-Business Era, pp. 485–554. Springer, Heidelberg (2004)

8. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Joseph, Y-T. (ed.) Handbook
of Scheduling: Algorithms, Models, and Performance Analysis, CRC Press (2004)

9. Stalk, G.: Time — the next source of competitive advantage. In: Harvard Business
Review, pp. 41–51 (1988)

Mechanism Design for Fractional Scheduling on

Unrelated Machines

George Christodoulou1, Elias Koutsoupias2, and Annamária Kovács1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{gchristo,panni}@mpi-inf.mpg.de

2 Department of Informatics, University of Athens
elias@di.uoa.gr

Abstract. In this paper, we consider the mechanism design version of
the fractional variant of the scheduling problem on unrelated machines.
We give a lower bound of 2− 1/n for any fractional truthful mechanism,
while we propose a truthful mechanism that achieves approximation of
1 + (n− 1)/2, for n machines. We also focus on an interesting family of
allocation algorithms, the task-independent algorithms. We give a lower
bound of 1 + (n − 1)/2, that holds for every (not only monotone) al-
location algorithm of this class. Under this consideration, our truthful
independent mechanism is the best that we can hope from this family of
algorithms.

1 Introduction

Mechanism design is an important branch of Microeconomics and in particular
of Game Theory. The objective of a mechanism designer is to implement a goal,
e.g., to sell an object to a set of potential buyers. The problem derives from the
fact that the designer may not be informed about some parameters of the input.
These values are controlled by selfish agents that may have incentive to misinform
the designer, if this can serve their atomic interests. The mechanism design
approach concerns the construction of a game, so that the outcome (equilibrium)
of the game is the goal of the designer.

Task scheduling is one of the most important and well-studied problems in
Computer Science, as it often arises, in numerous forms, as a subproblem in
almost every subfield of Computer Science. One of its most classical and general
variants is the scheduling on unrelated machines. In this setting, there are n
machines1 and m tasks, and the processing time needed by machine i to perform
task j is determined by the tij entry of an n×m matrix t. A common objective
is to assign the tasks to the machines in such a way, that the maximum load of
the machines (i.e., the makespan) is minimized.

1 In Game-theoretic settings n is used to denote the number of the players, while in
scheduling literature, usually m is used to denote the cardinality of the machines set.
In our case, the aforementioned sets coincide. We prefer to use the former notation,
in order to be compatible with the original paper [20] by Nisan and Ronen.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 40–52, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Mechanism Design for Fractional Scheduling on Unrelated Machines 41

Nisan and Ronen [20] initiated the study of the mechanism design version of
scheduling on unrelated machines. In this form of the problem, the processing
times that a machine i needs in order to execute the tasks (vector ti), are private
values, known only to the corresponding machine. The machines are controlled
by selfish agents that aim at satisfying their own interests, and in the particular
case they are unwilling to perform any task. In order to motivate them to reveal
their actual values, the classical approach adopted by mechanism design, is to
introduce side payments, i.e., to hire the machines. A mechanism for this problem
consists of an allocation algorithm and a payment scheme. We are interested in
bounding the approximation ratio of the mechanism’s allocation algorithm.

In the classical version of the problem, each task must be assigned to ex-
actly one machine. The LP-relaxation of the problem, also known as fractional
scheduling, concerns the version where instead of being assigned to a single ma-
chine, each task can be splitted among the machines. Fractional variations of
combinatorial problems have been studied extensively in network optimization,
e.g., routing splittable traffic or flow problems.

The fractional scheduling problem can be formulated as a linear program
and hence it can be solved in polynomial time. LP-relaxation turns out to be
a useful tool in the design of approximation algorithms (both deterministic and
randomized)2. Furthermore, it turned out to be a powerful technique to pro-
vide randomized truthful mechanisms (see e.g. [16,3]). It is natural to ask how
powerful LP-relaxation is in the mechanism design framework.

In this paper we consider the mechanism design version of the fractional
scheduling on unrelated machines. An interesting fact is that while the offline
problem is polynomially solvable, it turns out that in the mechanism design ver-
sion of the problem it cannot be approximated within a constant factor, even
by non-polynomial mechanisms (see Sec. 3). This means, that the additional
properties that the allocation of a mechanism needs to satisfy in contrast to a
simple algorithm (cf. Sec. 2), do not allow us to achieve an exact solution, even in
non-polynomial time. Lower bounding fractional mechanisms is a nice approach
to lower bound randomized (and deterministic) mechanisms of the integral case,
as splitting a job is clearly a more radical solution than randomly assigning it.

We are particularly interested in a family of mechanisms that we call task-
independent. A task-independent algorithm is any algorithm that in order to
allocate task j, only considers the processing times tij , that concern the partic-
ular task. Such a consideration is motivated by the fact that (to the best of our
knowledge) all the known positive results for this problem (e.g., see the mecha-
nisms in [18,20]), and in addition the mechanism that we propose in this paper,
belong to this family of mechanisms. The question that we address here is: how
far can we go with task-independent algorithms?

1.1 Related Work

Scheduling on unrelated machines is a classical NP-hard problem. Lenstra et
al. [17] gave a 2-approximation polynomial time algorithm, while they also proved
2 In fact, it has been used in order to obtain the 2-approximation algorithm in [17].

42 G. Christodoulou, E. Koutsoupias, and A. Kovács

that the problem cannot be approximated (in polynomial time) within a factor
less than 3/2. The mechanism design version of the problem originates in the
seminal work of Nisan and Ronen [20]. They gave a n-approximation truthful
mechanism and a lower bound of 2, while they conjectured the actual bound to
be n. Christodoulou et al. [9] improved the lower bound to 1+

√
2. Narrowing the

gap between the lower and the upper bound still remains a big open question.
Randomization usually reduces the approximation ratio and that is also the

case for this problem. Nisan and Ronen [20] proposed a randomized mech-
anism for 2 machines with approximation ratio 7/4. Recently, Mu’alem and
Schapira [18] generalized this mechanism for n machines and achieved a 7n/8
randomized truthful mechanism. In the same work, they also gave a lower bound
of 2−1/n for randomized mechanisms. Notice that all the known lower bounds for
this problem (both deterministic and randomized) follow due to the infrastruc-
ture of truthful mechanisms, and do not reside in any computational assumption;
consequently they hold even for non polynomial time mechanisms.

Scheduling on related machines, from the mechanism design point of view,
was first studied by Archer and Tardos [4]. In this variant of the problem, the
private parameter for each machine, is a single value (its speed). Archer and Tar-
dos [4] characterized the class of truthful mechanisms for this setting, in terms
of a monotonicity condition of the mechanism’s allocation algorithm. A simi-
lar characterization for one-parameter mechanism design problems (single item
auction) can also be found in Myerson [19]. For this problem, it turns out that
the optimal allocation algorithm can be modified to be a truthful mechanism.
Archer and Tardos [4] gave a randomized truthful 3-approximation algorithm,
which was later improved to a 2-approximation by Archer [2]. Andelman et al. [1]
gave the first deterministic polynomial mechanism for the problem, with an ap-
proximation ratio of 5. Kovács [13] improved this by giving a 3-approximation
deterministic truthful mechanism, while finally the ratio was reduced to 2.8 [14].

In the field of Combinatorial Auctions, a wide variety of combinatorial opti-
mization problems has been considered from the mechanism design point of view
(see for example [3,6,8,10,5,11] and references within). In this context, Saks and
Yu [21] characterized the class of truthful mechanisms for combinatorial auctions
with convex valuations, generalizing results of [7,12,15].

1.2 Our Results

In this paper, we consider the mechanism design version of fractional scheduling
on unrelated machines. We give a 2−1/n lower bound on the approximation ra-
tio, that can be achieved by any truthful mechanism. This result shows that even
in the case of such a problem, for which the offline version can be exactly solved
in polynomial time, its mechanism design analog may turn out to be impossi-
ble to approximate, even by non-polynomial mechanisms. Notice that giving a
lower bound for fractional mechanisms is another way to obtain lower bounds
for randomized mechanisms for the integral case. Consequently, our 2 − 1/n
lower bound extends the lower bounds in [18] to the class of fractional mecha-
nisms. Note that a fractional mechanism is more powerful than a randomized

Mechanism Design for Fractional Scheduling on Unrelated Machines 43

mechanism for the integral case, since it has the flexibility to split a task into
many machines, while a randomized mechanism, finally, has to assign the whole
task to a machine, and this affects its approximation ratio.

In the positive direction, we give a truthful mechanism with approximation
ratio 3/2 for 2 machines, which matches our lower bound. This is the first new
tight bound that we have for any variant of the problem, after the tight bound
of 2 in the integral case, obtained for 2 machines in [20]. The generalization of
our mechanism for n machines gives us an approximation ratio of 1 + (n− 1)/2.

Next we turn our attention to a family of mechanisms that we call task-
independent. This family consists of mechanisms, where the decision for the
assignment of a task, depends only on the processing times that concern the
particular task (time column w.r.t. the task). Considering task-independence is
motivated by the fact that all known ’reasonable’ deterministic and randomized
mechanisms for this problem are task-independent. Furthermore, this sort of in-
dependence has attractive properties: easy to design by applying methods for
one-parameter auctions, fits well with on-line settings, where tasks may appear
one-by-one. It is natural to ask if there is room for improvement on the approx-
imation ratio by use of such mechanisms. We extend this question for the class
of task-independent algorithms that need not satisfy the additional properties
imposed by truthfulness. We give a lower bound of 1 + (n− 1)/2 on the approx-
imation ratio of any algorithm that belongs to this class. Our mechanism is also
task-independent, and hence is optimal over this family of algorithms.

2 Problem Definition

In this section, we fix the notation that we will use throughout this paper,
furthermore we give some preliminary definitions and cite relevant results.

There are n machines and m tasks. Each machine i ∈ [n] needs tij units of
time to perform task j ∈ [m]. We denote by ti the row vector corresponding
to machine i, and by tj the column vector of the running times of task j. We
assume that each machine i ∈ [n] is controlled by a selfish agent that is unwilling
to perform any operation, and vector ti is private information known only to her.
The vector ti is also called the type of agent i.

Any mechanism defines for each player i a set Ai of available strategies, the
player (agent) can choose from. We will consider direct revelation mechanisms,
i.e., Ai = Ti for all i, meaning that the players strategies are to simply report
their types to the mechanism. In general, Ti consists of all possible vectors bi ∈
Rm

+ , that is, a player may report a false vector bi �= ti, if this serves his interests.
A mechanism M = (x, p) consists of two parts:

An allocation algorithm: The allocation algorithm x, depends on the players’
bids b = (b1, . . . , bn), with 0 ≤ xij ≤ 1 denoting the fraction of task j that is
assigned to the machine i. In the unsplittable case, these variables take only
integral values xij = {0, 1}. Every task must be completely assigned to the
machines’ set, so

∑
i∈[n] xij = 1, ∀j ∈ [m].

44 G. Christodoulou, E. Koutsoupias, and A. Kovács

A payment scheme: The payment scheme p = (p1, . . . , pn), also depends on
the bid values b. The functions p1, . . . , pn stand for the payments that the
mechanism hands to each agent.

The utility ui of a player i is the payment that he gets minus the actual
time that he needs in order to execute the set of tasks assigned to her, ui(b) =
pi(b)−

∑
j∈[m] tijxij(b). We are interested in truthful mechanisms. A mechanism

is truthful, if for every player, reporting his true type is a dominant strategy.
Formally,

ui(ti, b−i) ≥ ui(t′i, b−i), ∀i ∈ [n], t′i ∈ Ti, b−i ∈ T−i ,

where T−i denotes the possible types of all players disregarding i.
We remark here, that once we adopt the solution concept of dominant strate-

gies, focusing on direct revelation and in particular on truthful mechanisms is
not at all restrictive, due to the Revelation Principle. Roughly, the Revelation
Principle states that any problem that can be implemented by a mechanism with
dominant strategies, can also be implemented by a truthful mechanism (cf. [20]).

The objective function that we consider, in order to evaluate the perfor-
mance of a mechanism’s allocation algorithm x, is the maximum load of a
machine (makespan), with respect to the real time matrix t. When we re-
fer to the makespan of a mechanism, we mean the makespan of its alloca-
tion algorithm with respect to the input t, and we denote it by Mech(t) =
maxi∈[n]

∑
j∈[m] tijxij . Since we aim at minimizing the makespan, the optimum

is Opt(t) = minx maxi∈[n]

∑
j∈[m] tijxij . We are interested in the approximation

ratio of the mechanism’s allocation algorithm. A mechanismM is c-approximate,
if c ≥Mech(t)/Opt(t) ∀t ∈ T .

Although our mechanism is polynomially computable, we do not aim at min-
imizing the running time of the algorithm; we are looking for mechanisms with
low approximation ratio. Our lower bounds also don’t make use of any compu-
tational assumptions.

A useful characterization of truthful mechanisms in terms of the following
monotonicity condition, helps us to get rid of the payments and focus on the
properties of the allocation algorithm.

Definition 1. An allocation algorithm is called monotone3 if it satisfies the
following property: for every two sets of tasks t and t′ which differ only on
machine i (i.e., on the i-th row) the associated allocations x and x′ satisfy
(xi − x′i) · (ti − t′i) ≤ 0, where · denotes the dot product of the vectors, that
is,

∑
j∈[m](xij − x′ij)(tij − t′ij) ≤ 0.

The following theorem states that every truthful mechanism has to satisfy the
monotonicity condition. It was used by Nisan and Ronen [20] in order to obtain
their lower bounds.

Theorem 1. Every truthful mechanism is monotone.
3 Also known as weakly monotone.

Mechanism Design for Fractional Scheduling on Unrelated Machines 45

Saks and Yu [21] proved that monotonicity is also a sufficient condition, for the
combinatorial auctions setting with convex valuations (i.e. there exist payments
that can make a monotone algorithm into a truthful mechanism).

For the one-parameter case, i.e., when every agent has a single value to declare
(e.g., the speed of her machine), Myerson [19] (for auction setting) and Archer
and Tardos [4] (for scheduling setting), showed that the monotonicity of the
(allocation) algorithm is a necessary and sufficient condition for the existence of
a truthful payment scheme. In this case they also provide an explicit formula for
the payments. In their theorem cited below, the notion of a decreasing output
function, corresponds to a monotone algorithm in the one-parameter setting.

Theorem 2. [19,4] The output function admits a truthful payment scheme if
and only if it is decreasing. In this case the mechanism is truthful if and only if
the payments pi(bi, b−i) are of the form

hi(b−i) + bixi(bi, b−i)−
∫ bi

0

xi(u, b−i) du

where the hi are arbitrary functions.

3 Lower Bound for Truthful Mechanisms

Here we will give a lower bound on the approximation ratio of any fractional
truthful mechanism.

Theorem 3. There is no deterministic truthful mechanism that can achieve an
approximation ratio better than 2− 1

n , where n is the number of the machines.

Proof. Let t be the actual time matrix of the players as below

tij =

⎧
⎨

⎩

0, j = i
1, j = n+ 1
A, otherwise

and x = x(t) be the corresponding allocation that a truthful mechanism M =
(x, p) gives with respect to t. For significantly large values of A, player i gets
substantially the whole portion of task i, otherwise the approximation ratio is
high, e.g., for A = 2

δ , every player i should get a portion greater than 1−(n−1)δ,
otherwise the approximation ratio is at least 2.

Clearly, there is a player k ∈ [n], with xkn+1 ≥ 1
n . Now let’s consider how the

allocation algorithm of the mechanism behaves if the following time matrix is
given as input

t′ij =

⎧
⎨

⎩

1
n−1 , i = k, j = i

1− ε, i = k, j = n+ 1
tij , otherwise

The following claim states that due to monotonicity, the mechanism cannot
assign to player k a substantially smaller portion of the n+ 1st task than 1

n .

46 G. Christodoulou, E. Koutsoupias, and A. Kovács

Claim. If xkn+1 ≥ 1
n , then for the allocation x′ = x(t′) on input t′ it holds that

x′kn+1 ≥ 1
n − ε.

Proof. Due to Theorem 1 we have that for every player i ∈ [n], it holds that
∑

j∈[m]

(tij − t′ij)(xij − x′ij) ≤ 0

and by applying this to the k-th player we get

(
0− 1

n− 1

)
(xkk − x′kk) + (1− 1 + ε)(xkn+1 − x′kn+1) ≤ 0,

from which we get

x′kn+1 ≥ xkn+1 +
x′kk − xkk
ε(n− 1)

≥ xkn+1 −
δ

ε
≥ 1
n
− δ

ε

and for δ = ε2 we finally obtain

x′kn+1 ≥
1
n
− ε

��On the other hand, an optimal allocation x∗ for t′ is

x∗ij =

⎧
⎪⎪⎨

⎪⎪⎩

1, j = i
0, i = k, j = n+ 1

1
n−1 , i �= k, j = n+ 1

0, otherwise

with makespan 1/(n− 1), while the mechanism gives player k a total load of at
least

(1− (n− 1)δ)
1

n− 1
+
(

1
n
− ε

)
(1− ε) > 1

n− 1
+

1
n
− δ − ε

(
n+ 1
n

)
.

For arbitrary small ε, this finally gives an approximation ratio of at least 2− 1
n . ��

4 The Truthful Mechanism

We describe a truthful mechanism, called Square, for the fractional scheduling
problem, with approximation ratio 1+ n−1

2 . On two machines this ratio becomes
3/2, so in this case Square has the best possible worst case ratio w.r.t. truthful
mechanisms. Furthermore, in Section 5 we will show that for arbitrary number
of machines, our mechanism is optimal among the so called task-independent
algorithms.

Next, we define the mechanism Square= (xSq, pSq)4. Recall that bij is the
reported value for tij , the actual execution time of task j on machine i.
4 In most of the section we will omit the superscripts Sq.

Mechanism Design for Fractional Scheduling on Unrelated Machines 47

Definition 2 (The mechanism Square= (xSq, pSq))

Allocation algorithm: Let bj = (b1j , b2j , . . . , bnj)T be the jth column-vector
of the input matrix. If bj has at least one zero coordinate, then Square dis-
tributes the jth task among machines having zero execution time arbitrarily.
If bij �= 0 (i ∈ [n]), then the fraction of the jth task allocated to machine i is

xSqij (b) = xij(b) =

∏
k �=i b

2
kj∑n

l=1

∏
k �=l b

2
kj

. (1)

Payment scheme: Let the constants cij be defined as

cij =

∏
k �=i bkj√∑

l �=i
∏
k �=l,i b

2
kj

,

then the payments pSq = (p1, . . . , pn) to the agents are

pi(b) =
m∑

j=1

(

bij ·
c2ij

b2ij + c2ij
+ cij ·

π

2
− cij arctan

bij
cij

)

.

The algorithm xSQ of Square allocates the tasks individually (indepen-
dently), and so that the assigned fractions of a task are inversely proportional
to the squares of (declared) execution times w.r.t. each machine. For instance,
for two machines (1) boils down to

x1j =
b22j

b21j + b22j
; x2j =

b21j
b21j + b22j

.

For arbitrary n it is obvious that 0 ≤ xij ≤ 1, and
∑n

i=1 xij = 1. It is easy to see
that Square is monotone: Let the input matrix b be changed only on the ith row,
that is, for any fixed task j, just the entry bij may change. Assume first that in
the column-vector bj all execution times are nonzero. Observe that the variable
bij appears only in the denominator of the expression (1), namely as b2ij , having a
positive coefficient. Thus, xij does not increase when bij increases, and vice versa.
It is easy to see that the same holds if in bj there are zero entries other than bij ,
and similarly, if bij was, or just became the only zero entry. Thus, we obtained
that for every single one-parameter problem bj , the assignment is monotone, and
this, in turn, implies weak monotonicity (see Definition 1) for xSq.

Now consider pSq. For two machines, the constant cij is simply the bid of the
other machine for this job, that is, c1j = b2j and c2j = b1j . For more machines,
cij would be the ’bid’ of a single other machine, if we replaced the machines
[n]\{i} with one machine. The payment pi(b) is simply defined to be the sum
of the payments that agent i would get for performing each (fractional) task
independently, as determined for truthful mechanisms for one-parameter agents
by Theorem 2:

pi(bi, b−i) = hi(b−i) + bixi(bi, b−i)−
∫ bi

0

xi(u, b−i) du .

48 G. Christodoulou, E. Koutsoupias, and A. Kovács

Here the hi(b−i) are arbitrary constants. If we want that the so called voluntary
participation [4] of the players is ensured (i.e., it is worth taking part in the
game), then hi can be chosen to be hi =

∫∞
0 xi(u, b−i) du, so that finally we get

pi(bi, b−i) = bixi(bi, b−i) +
∫ ∞

bi

xi(u, b−i) du ,

for the one-parameter case. Applying this formula for each task, we obtain the
above definition of the payments.

Theorem 4. The mechanism Square is truthful.

Proof. To put it short, the theorem follows from the fact that Square is the sum
of m truthful mechanisms for the one-parameter problem (note that the total
execution time (load), the total payment, thus also the total utility is the sum of
the respective amounts for the single tasks). For each j, the mechanism (xj , pj) is
truthful, since xj is a monotone algorithm, and we defined pj = (p1j , . . . , pnj)T

according to Theorem 2. We do not include an elementary proof here. ��

Approximation Ratio. Let Squ(t) be the makespan of the schedule produced
by Square on input t, and Opt(t) denote the optimum makespan. In what
follows, we show that Squ(t)/Opt(t) ≤ 1 + n−1

2 for any matrix t. The next
lemma will largely simplify the upper-bound proof. The proof of the lemma is
omitted.

Lemma 1. If there exists an input instance t, such that Squ(t)/Opt(t) = α,
then there also exists an instance t∗, for which Squ(t∗)/Opt(t∗) = α, moreover
there is an optimal allocation of t∗ that does not split any job.

Theorem 5. For the approximation ratio of Square, Squ(t)
Opt(t) ≤ 1 + n−1

2 holds,
where n denotes the number of machines, and t is an arbitrary set of input tasks.

Proof. Consider the input t. Due to Lemma 1, we can assume that the (indices
of) tasks are partitioned into the sets J1, J2, . . . , Jn, so that there is an optimal
allocation Opt where job tj is allocated completely to machine i, if and only if
j ∈ Ji. We can also assume that tij > 0 for all i and j. Otherwise we would have
a job that adds zero execution time to the makespan in both the allocation of
Square, and of Opt, and removing this job from the input would not affect the
approximation ratio. For the optimum makespan it holds that

Opt(t) = max
i∈[n]

∑

j∈Ji

tij . (2)

For the running time of an arbitrary machine i in Square, we have

Squi(t) =
n∑

r=1

∑

j∈Jr

xij(t)tij ,

Mechanism Design for Fractional Scheduling on Unrelated Machines 49

where the xij(t) are defined by (1). We decompose the above expression as
follows:

Squi(t) =
∑

j∈Ji

xijtij +
∑

r �=i

∑

j∈Jr

xijtij .

We can upper bound the first sum using (2), and the fact that xij ≤ 1 :
∑

j∈Ji

xijtij ≤
∑

j∈Ji

1 · tij ≤ Opt(t) .

Next we upper bound every sum of the form
∑

j∈Jr
xijtij (r �= i), by 1

2 ·Opt(t).
Since there are n− 1 such sums, this will prove that

Squi(t) ≤ Opt(t) + (n− 1) · 1
2
·Opt(t) = (1 +

n− 1
2

) ·Opt(t) .

Since i was an arbitrary machine, eventually this implies

Squ(t) = max
i∈[n]

Squi(t) ≤ (1 +
n− 1

2
) ·Opt(t) .

The bound
∑

j∈Jr
xijtij ≤ 1

2 ·Opt(t) can be shown as follows:

∑

j∈Jr

xijtij =
∑

j∈Jr

∏
k �=i t

2
kj∑n

l=1

∏
k �=l t

2
kj

· tij =
∑

j∈Jr

tijtrj
∏
k �=i,r t

2
kj∑n

l=1

∏
k �=l t

2
kj

· trj =

=
∑

j∈Jr

tijtrj
t2ij + t2rj +

∑
l �=i,r t

2
ijt

2
rj/t

2
lj

trj ≤
∑

j∈Jr

tijtrj
t2ij + t2rj

trj ≤
∑

j∈Jr

1
2
trj ≤

1
2
Opt(t),

where the inequality tij trj

t2ij+t
2
rj
≤ 1

2 holds for any two nonzero real numbers; the

last inequality is implied by (2). ��

Corollary 1. For two machines the truthful mechanism Square has approx-
imation ratio 3/2, which is the best worst case ratio we can expect from any
truthful mechanism for the fractional scheduling problem.

5 Lower Bound for Independent Algorithms

In this section we prove a lower bound of 1 + n−1
2 for the worst case ratio of

independent fractional algorithms. An algorithm is independent, if it allocates
the tasks independently of each-other, or formally:

Definition 3. An allocation algorithm x is called task-independent, or simply
independent, if the following holds: If t and t′ are two n × m input matrices,
such that for the jth task tij = t′ij (∀i ∈ [n]), then for this task it also holds that
xij = x′ij (∀i ∈ [n]).

50 G. Christodoulou, E. Koutsoupias, and A. Kovács

It is remarkable, that the currently known best mechanisms (in fact, any ’rea-
sonable’ mechanism we know of) are all independent, in the integral, the ran-
domized, and the fractional case. It is not difficult to come up with independent
(suboptimal) algorithms, which are also weakly monotone. However it seems to
be an intriguing question, whether there exist non-inependent, and still mono-
tone algorithms having better approximation ratio than the best independent
ones. We note that in the integral case it is easy to construct an instance with
n machines and n2 tasks, that proves a lower bound of n (i.e., tight bound) for
independent algorithms.

Theorem 6. If x is an independent fractional allocation algorithm for the un-
related machines problem, then it has approximation ratio of at least 1 + n−1

2 ,
where n denotes the number of machines.

Proof. In order to obtain the lower bound, consider the following input matrix
with n ≥ 2 machines and m = 1+

(
n
2

)
tasks. The first task is numbered by j = 0;

furthermore, for all
(
n
2

)
possible pairs of machines g < h there is a task jgh :

tij =

⎧
⎨

⎩

0, j = 0
1, j = jgh, i ∈ {g, h}
A, otherwise

Obviously, by setting A large enough, we can make it sure – like in the proof
of Theorem 3 – that the corresponding share of a player of a certain task is
arbitrarily small, otherwise the approximation ratio gets too large. That is, we
can assume that the bulk of any job is allocated to the machines having execution
time 1 for this job.

Let us consider an arbitrary independent algorithm x. Observe that no matter
how x allocates the above tasks, the total running time of all the jobs cannot be
less than

(
n
2

)
. Thus, there exists a machine, say machine k, with running time

at least
(
n
2

)
/n = n−1

2 . Now we modify the instance t to t′ : we keep the original
execution times of tasks that had running time 1 on machine k, and zero out all
other tij ; furthermore, task 0 will now have execution time 1 on machine k, and
A on other machines.

t′ij =

⎧
⎪⎪⎨

⎪⎪⎩

1, j = 0, i = k
A, j = 0, i �= k,
tij , j = jgh and g = k or h = k

0, otherwise

As noted above, on instance t at least n−1
2 − ε running time on machine k was

due to jobs that have execution time 1 on this machine. Since x is independent,
on instance t′ the machine gets the same allocation over these jobs, and also gets
a (1− ε) fraction of job 0, achieving a running time of at least 1 + (n−1)/2−2ε,
for any ε > 0. On the other hand, it is clear that the optimal allocation has
makespan 1. ��

Corollary 2. The mechanism Square has optimal approximation ratio among
all independent mechanisms.

Mechanism Design for Fractional Scheduling on Unrelated Machines 51

One can show that among all allocations where the distribution of task j is
inversely proportional to (tα1j , t

α
2j , . . . , t

α
nj) for some α > 0, the above optimal

approximation ratio is obtained if and only if α = 2.

References

1. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for
scheduling selfish related machines. In: Diekert, V., Durand, B. (eds.) STACS 2005.
LNCS, vol. 3404, pp. 69–82. Springer, Heidelberg (2005)

2. Archer, A.: Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University (January 2004)

3. Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, É.: An approximate truthful
mechanism for combinatorial auctions with single parameter agents. In: SODA,
pp. 205–214 (2003)

4. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: FOCS,
pp. 482–491 (2001)

5. Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In:
AAAI, pp. 241–247 (2005)

6. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial
auctions. In: TARK, pp. 72–87 (2003)

7. Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., Sen, A.:
Weak monotonicity characterizes deterministic dominant strategy implementation.
Econometrica 74(4), 1109–1132 (2006)

8. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mech-
anism design. In: STOC, pp. 39–48 (2005)

9. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mech-
anisms. In: SODA, pp. 1163–1170 (2007)

10. Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial
auctions with complement-free bidders. In: STOC, pp. 610–618 (2005)

11. Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for com-
binatorial auctions. In: STOC, pp. 644–652 (2006)

12. Gui, H., Müller, R., Vohra, R.V.: Dominant strategy mechanisms with multidi-
mensional types. In: Computing and Markets (2005)

13. Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–
627. Springer, Heidelberg (2005)

14. Kovács, A.: Fast Algorithms for Two Scheduling Problems. PhD thesis, Universität
des Saarlandes (2007)

15. Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combina-
torial auctions. In: FOCS, pp. 574–583 (2003)

16. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear pro-
gramming. In: FOCS, pp. 595–604 (2005)

17. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 46(1), 259–271 (1990)

18. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: SODA, pp.
1143–1152 (2007)

52 G. Christodoulou, E. Koutsoupias, and A. Kovács

19. Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6(1),
58–73 (1981)

20. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-
havior 35, 166–196 (2001)

21. Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains.
In: EC, pp. 286–293 (2005)

Estimating Sum by Weighted Sampling

Rajeev Motwani1, Rina Panigrahy2, and Ying Xu1,�

1 Dept of Computer Science, Stanford University, USA
2 Microsoft Research, Mountain View, CA, USA

{rajeev,xuying}@cs.stanford.edu, rina@microsoft.com

Abstract. We study the classic problem of estimating the sum of n
variables. The traditional uniform sampling approach requires a linear
number of samples to provide any non-trivial guarantees on the esti-
mated sum. In this paper we consider various sampling methods besides
uniform sampling, in particular sampling a variable with probability pro-
portional to its value, referred to as linear weighted sampling. If only
linear weighted sampling is allowed, we show an algorithm for estimat-
ing sum with Õ(

√
n) samples, and it is almost optimal in the sense that

Ω(
√

n) samples are necessary for any reasonable sum estimator. If both
uniform sampling and linear weighted sampling are allowed, we show
a sum estimator with Õ(3

√
n) samples. More generally, we may allow

general weighted sampling where the probability of sampling a variable
is proportional to any function of its value. We prove a lower bound of
Ω(3
√

n) samples for any reasonable sum estimator using general weighted
sampling, which implies that our algorithm combining uniform and linear
weighted sampling is an almost optimal sum estimator.

1 Introduction

We consider the classic problem of estimating the sum (or equivalently, the
average) of n non-negative variables. This problem has numerous important
applications in various areas of computer science, statistics and engineering.
Measuring the exact value of each variable incurs some cost, so people want to
get a reasonable estimator of the sum while measure as few variables as possible.

In the traditional setting, only uniform sampling is used, i.e. each time we can
sample one variable uniformly at random and ask its value. Under this setting
it is easy to see that any reasonable estimator requires a linear sample size if
the underlying distribution is arbitrary. Consider the following two instances of
inputs: in the first input all variables are 0, while in the second input all are 0 ex-
cept one variable x1 is a large number. Any sampling scheme cannot distinguish
the two inputs until it sees x1, and with uniform sampling it takes linear samples

� Rajeev Motwani is supported in part by NSF Grants EIA-0137761 and ITR-0331640,
and grants from Media-X and SNRC. Rina Panigrahy’s work was done when he was
at Stanford, and he was supported by Stanford Graduate Fellowship. Ying Xu is
supported in part by a Stanford Graduate Fellowship and NSF Grants EIA-0137761
and ITR-0331640.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 53–64, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

54 R. Motwani, R. Panigrahy, and Y. Xu

to hit x1. We defer the formal definition of “reasonable estimator” to Section 2,
but intuitively we cannot get a good estimator if we cannot distinguish the two
inputs.

In this paper, we study the problem of estimating sum using other sampling
methods besides uniform sampling. For example, suppose we now allow sam-
pling a variable with probability proportional to its value, which we refer to as
linear weighted sampling; in Section 1.1 we will discuss applications where such
sampling is feasible. Using linear weighted sampling one sample is sufficient to
distinguish the above two inputs, and it seems plausible that generally we can get
good sum estimators with less samples using such sampling method. In this paper
we show an algorithm for sum estimation with Õ(

√
n) samples using only linear

weighted sampling, and it is almost optimal in the sense that Ω(
√
n) samples

are necessary for any reasonable estimator using only linear weighted sampling.
Our algorithm assumes no prior knowledge about the input distribution.

Next, if we use both uniform sampling and linear weighted sampling, we can
further reduce the number of samples needed. We present a sum estimator with
Õ(3
√
n) samples using a combination of the two sampling methods, and prove a

lower bound of Ω(3
√
n) samples.

More generally, we may allow sampling where the probability of sampling a
variable can be proportional to any function of its value (the function does not
depend on n), referred as to (general) weighted sampling. While we are not sure
whether general sampling is feasible in real applications, we show a negative
result that such extra power does not provide a better estimator: we prove a
lower bound of Ω(3

√
n) samples for any reasonable sum estimator, using any

combination of general weighted sampling methods. This implies that combining
uniform and linear weighted sampling gives an almost optimal sum estimator (up
to a poly-log factor), hence there is no need to pursue fancier sampling methods
in this family for the purpose of estimating sum.

1.1 Applications

The problem of estimating sum is a classic problem with wide applications in
various areas, and linear weighted sampling is a natural sampling method feasi-
ble in many applications. In particular, if we want to estimate the total number
of some objects in a system and those objects fall into disjoint classes, then the
problem becomes estimating the sum of variables with each variable indicating
the number of objects in one class; if uniform sampling of the objects is possi-
ble, then linear weighted sampling can be implemented by sampling an object
uniformly at random and returning the class of the sampled object.

One such application is estimating search engine index sizes or the web size,
which has aroused interests in both academic and industrial world in recent years
(see for example [12,13,10,6,4]). One method used in those papers is to partition
the search index (web) into domains (web servers), and estimate the sum of
those domain (server) sizes. It is relatively easy to get the total domain (web
server) number n (either by uniformly sampling IP space or people publish this
number periodically). For example in 1999 Lawrence and Giles estimated the

Estimating Sum by Weighted Sampling 55

number of web servers to be 2.8 million by randomly testing IP addresses; then
they exhaustively crawled 2500 web servers and found that the mean number of
pages per server was 289, leading to an estimate of the web size of 800 million
[13]. Lawrence and Giles essentially used uniform sampling to estimate the sum,
however, the domain size distribution is known to be highly skewed and uniform
sampling has high variance for such inputs. We can also do linear weighted
sampling: uniformly sample a page from the web or a search engine index (the
technique of uniform sampling a page from the web/index has been studied in
for example [11,3]) and take the domain of the page, then the probability of
sampling a domain is proportional to its size. Then we can apply the techniques
in this paper, which shall provide a more accurate estimate than using only
uniform sampling.

1.2 Related Work

Estimating the sum of n variables is a classical statistical problem. For the
case where all the variables are between [0, 1], an additive approximation of the
mean can be easily computed by taking a random sample of size O(1

ε2 lg 1
δ) and

computing the mean of samples; [7] proves a tight lower bound on the sample
size. However, uniform sampling works poorly on heavily tailed inputs when the
variables are from a large range, and little is known beyond uniform sampling.

Weighted sampling is also known as “importance sampling”. General meth-
ods of estimating a quantity using importance sampling have been studied in
statistics (see for example [14]), but the methods are either not applicable here
or less optimal. To estimate a quantity hπ =

∑
π(i)h(i), importance sampling

generates independent samples i1, i2, . . . , iN from a distribution p. One estima-
tor for hπ is μ̂ = 1

N

∑
h(ik)π(ik)/p(ik). For the sake of estimating sum, π(i) = 1

and h(i) is the value of ith variable xi. In linear weighted sampling, p(i) = xi/S,
where S is exactly the sum we are trying to estimate, therefore we are not able
to compute this estimator μ̂ for sum. Another estimator is

μ̃ =
∑
h(ik)π(ik)/p̃(ik)
∑
π(ik)/p̃(ik)

,

where p̃ is identical to p up to normalization and thus computable. However, the
variance of μ̃ is even larger than the variance using uniform sampling.

A related topic is priority sampling and threshold sampling for estimating
subset sums proposed and analyzed in [9,1,17]. But their cost model and ap-
plication are quite different: they aim at building a sketch so that the sum of
any subset can be computed (approximately) by only looking at the sketch; in
particular their cost is defined as the size of the sketch and they can read all
variables for free, so computing the total sum is trivial in their setting.

There is extensive work in estimating other frequency moments Fk =
∑
xki

(sum is the first moment F1), in the random sampling model as well as in the
streaming model (see for example [2,8,5]). The connection between the two mod-
els is discussed in [5]. Note that their sampling primitive is different from ours,
and they assume F1 is known.

56 R. Motwani, R. Panigrahy, and Y. Xu

2 Definitions and Summary of Results

Let x1, x2, . . . , xn be n variables. We consider the problem of estimating the
sum S =

∑
i xi, given n. We also refer to variables as buckets and the value of a

variable as its bucket size.
In (general) weighted sampling we can sample a bucket xi with probability

proportional to a function of its size f(xi), where f is an arbitrary function of xi
(f independent on n). Two special cases are uniform sampling where each bucket
is sampled uniformly at random (f(x) = 1), and linear weighted sampling where
the probability of sampling a bucket is proportional to its size (f(x) = x). We
assume sampling with replacement.

We say an algorithm is an (ε, δ)-estimator (0 < ε, δ < 1), if it outputs an
estimated sum S′ such that with probability at least 1 − δ, |S′ − S| ≤ εS. The
algorithm can take random samples of the buckets using some sampling method
and learn the sizes as well as the labels of the sampled buckets. We measure
the complexity of the algorithm by the total number of samples it takes. The
algorithm has no prior knowledge of the bucket size distribution.

The power of the sum estimator is constrained by the sampling methods
it is allowed to use. This paper studies the upper and lower bounds of the
complexities of (ε, δ)-estimators under various sampling methods. As pointed
out in Section 1, using only uniform sampling there is no (ε, δ)-estimator with
sub-linear samples.

First we show an (ε, δ)-estimator using linear weighted sampling with Õ(
√
n)

samples. While linear weighted sampling is a natural sampling method, to derive
the sum from such samples does not seem straightforward. Our scheme first
converts the general problem to a special case where all buckets are either empty
or of a fixed size; now the problem becomes estimating the number of non-empty
buckets and we make use of birthday paradox by examining how many samples
are needed to find a repeat. Each step involves some non-trivial construction
and the detailed proof is presented in Section 3.

In Section 4 we consider sum estimators where both uniform and linear
weighted sampling are allowed. Section 4.1 proposes an algorithm with Õ(3

√
n)

samples which builds upon the linear weighted sampling algorithm in Section
3. Section 4.2 gives a different algorithm with Õ(

√
n) samples: although it is

asymptotically worse than the former algorithm in terms of n, it has better de-
pendency on ε and a much smaller hidden constant; also this algorithm is much
neater and easier to implement.

Finally we present lower bounds in Section 5. We prove that the algorithms in
Section 3 and 4.1 are almost optimal in terms of n up to a poly-log factor. More
formally, we prove a lower bound of Ω(

√
n) samples using only linear weighted

sampling (more generally, using any combination of general weighted sampling
methods with the constraint f(0) = 0); a lower bound of Ω(3

√
n) samples using

any combination of general weighted sampling methods.
All algorithms and bounds can be extended to the case where the number of

buckets n is only approximately known (with relative error less than ε). We omit
the details for lack of space.

Estimating Sum by Weighted Sampling 57

3 An Õ(
√

n) Estimator Using Linear Weighted Sampling

Linear weighted sampling is a natural sampling method, but to efficiently derive
the sum from such samples does not seem straightforward. Our algorithm first
converts the general problem to a special case where all buckets are either empty
or of a fixed size, and then tackle the special case making use of the birthday
paradox, which states that given a group of

√
365 randomly chosen people, there

is a good chance that at least two of them have the same birthday.
Let us first consider the special case where all non-zero buckets are of equal

sizes. Now linear weighted sampling is equivalent to uniform sampling among
non-empty buckets, and our goal becomes estimating the number of non-empty
buckets, denoted by B (B ≤ n). We focus on a quantity we call “birthday
period”, which is the number of buckets sampled until we see a repeated bucket.
We denote by r(B) the birthday period of B buckets; its expected value E[r(B)]
is Θ(

√
B) according to the birthday paradox. We will estimate the expected

birthday period using linear weighted sampling, and then use it to infer the
value of B. Most runs of birthday period take O(

√
B) = O(

√
n) samples, and we

can cut off runs which take too long; lg 1
δ runs are needed to boost confidence,

thus in total we need O(
√
n) samples to estimate B.

Now back to the general problem. We first guess the sum is an and fix a
uniform bucket size εa. For each bucket in the original problem, we round its
size down to kεa (k being an integer) and break it into k buckets. If our guess of
sum is (approximately) right, then the number of new bucketsB is approximately
n/ε; otherwise B is either too small or too large. We can estimate B by examining
the birthday period as above using O(

√
n/ε) samples, and check whether our

guess is correct. Finally, since we allow a multiplicative error of ε, a logarithmic
number of guesses suffice.

Before present the algorithm, we first establish some basic properties of birth-
day period r(B). The following lemma bounds the expectation and variance of
r(B); property (3) shows that birthday period is “gap preserving” so that if the
number of buckets is off by an ε factor, we will notice a difference of cε in the
birthday period. We can write out the exact formula for E[r(B)] and var(r(B)),
and the rest of the proof is merely algebraic manipulation. The detailed proof
can be found in the full version of the paper [16].

Lemma 1. (1) E[r(B)] monotonically increases with B;
(2) E[r(B)] = Θ(

√
B);

(3) E[r((1 + ε)B)] > (1 + cε)E[r(B)], where c is a constant.
(4) var(r(B)) = O(B);

Lemma 2 tackles the special case, stating that with
√
b samples we can tell

whether the total number of buckets is at most b or at least b(1 + ε). The idea
is to measure the birthday period and compare with the expected period in the
two cases. We use the standard “median of the mean” trick: first get a constant
correct probability using Chebyshev inequality, then boost the probability using
Chernoff bound. See details in the algorithm BucketNumber. Here c is the
constant in Lemma 1(3); c1 and c2 are constants.

58 R. Motwani, R. Panigrahy, and Y. Xu

BucketNumber(b, ε, δ)
1. Compute r = E[r(b)];
2. for i = 1 to k1 = c1 lg 1

δ

3. for j = 1 to k2 = c2/ε2

4. sample until see a repeated bucket; let rj be the number of samples

5. if
∑k2

j=1 rj/k2 ≤ (1 + cε/2)r then si = true, else si = false

6. if more than half of si are true then output “≤ b buckets”
else output “≥ b(1 + ε) buckets”

Lemma 2. If each sample returns one of B buckets uniformly at random, then
the algorithm BucketNumber tells whether B ≤ b or B ≥ b(1 + ε) correctly with
probability at least 1− δ; it uses Θ(

√
b lg 1

δ /ε
2) samples.

Proof. We say the algorithm does k1 runs, each run consisting of k2 iterations.
We first analyze the complexity of the algorithm. We need one small trick to
avoid long runs: notice that we can cut off a run and set si = false if we have
already taken (1 + cε/2)rk2 samples in this run. Therefore the total number of
samples is at most

(1 + cε/2)rk2k1 = (1 + cε/2)E[r(b)]
c2
ε2
c1 lg

1
δ

= Θ(

√
b lg 1

δ

ε2
).

The last equation uses Property (2) of Lemma 1.
Below we prove the correctness of the algorithm. Consider one of the k1 runs.

Let r′ be the average of the k2 measured birthday periods rj . Because each
measured period has mean E[r(B)] and variance var(r(B)), we have E[r′] =
E[r(B)] and var(r′) = var(r(B))/k2 .

If B ≤ b, then E[r′] = E[r(B)] ≤ r. By Chebyshev inequality [15],

Pr[r′>(1+
cε

2
)r]≤Pr[r′>E[r(B)]+

rcε

2
]≤var(r(B))/k2

(rcε/2)2
≤ O(b)ε2/c2

(Θ(
√
b)cε/2)2

=
O(1)
c2

If B ≥ b(1 + ε), then E[r′] ≥ E[r(b(1 + ε))] ≥ (1 + cε)r by Lemma 1.

Pr[r′ < (1 +
cε

2
)r] ≤ Pr[r′ < (1 − cε

4
)E[r′]] ≤ var(r(B))/k2

(E[r(B)]cε/4)2
=
O(1)
c2

We choose the constant c2 large enough such that both probabilities are no
more than 1/3. Now when B ≤ b, since Pr[r′ > (1+ cε/2)r] ≤ 1/3, each run sets
si = false with probability at most 1/3. Our algorithm makes wrong judgement
only if more than half of the k1 runs set si = false, and by Chernoff bound
[15], this probability is at most e−c

′k1 . Choose appropriate c1 so that the error
probability is at most δ. Similarly, when B ≥ (1 + ε)b, each run sets si = true
with probability at most 1/3, and the error probability of the algorithm is at
most δ. �

Algorithm LWSE (stands for Linear Weighted Sampling Estimator) shows how
to estimate sum for the general case. The labelling in step 3 is equivalent to
the following process: for each original bucket, round its size down to a multiple

Estimating Sum by Weighted Sampling 59

of ε1a and split into several “standard” buckets each of size ε1a; each time
sampling returns a standard bucket uniformly at random. The two processes
are equivalent because they have the same number of distinct labels (standard
buckets) and each sampling returns a label uniformly at random. Therefore by
calling BucketNumber(n(1 + ε1)/ε1, ε1, δ1) with such samples, we can check
whether the number of standard buckets B ≤ n(1 + ε1)/ε1 or B ≥ n(1 + ε1)2/ε1,
allowing an error probability of δ1.

LWSE(n, ε, δ)
1. get a lower bound L of the sum: sample one bucket using linear weighted sam-

pling and let L be the size of the sampled bucket;
2. for a = L/n, L(1 + ε1)/n, . . . , L(1 + ε1)

k/n, . . . (let ε1 = ε/3)
3. for each sample returned by linear weighted sampling, create a label as

follows: suppose a bucket xi of size s = mε1a+r is sampled (m is an integer
and r < ε1a); discard the sample with probability r/s; with the remaining
probability generate a number l from 1..m uniformly at random and label
the sample as il;

4. call BucketNumber(n(1+ε1)/ε1, ε1, δ1), using the above samples in step 4 of
BucketNumber. If BucketNumber outputs “≤ n(1 + ε1)/ε1”, then output
S′ = an as the estimated sum and terminate.

Theorem 1. LWSE is an (ε, δ)-estimator with O(
√
n(1

ε)
7
2 logn(log 1

δ + log 1
ε +

log logn)) samples, where n is the number of buckets.

Proof. We first show that the algorithm terminates with probability at least
1 − δ1. S must fall in [a0n, a0n(1 + ε1)] for some a0, and we claim that the
algorithm will terminate at this a0, if not before: since S ≤ a0n(1 + ε1), the sum
after rounding down is at most a0n(1 + ε1) and hence the number of standard
buckets B ≤ n(1 + ε1)/ε1; by Lemma 2 it will pass the check with probability at
least 1− δ1 and terminate the algorithm.

Next we show that given that LWSE terminates by a0, the estimated sum
is within (1 ± ε)S with probability 1 − δ1. Since the algorithm has terminated
by a0, the estimated sum cannot be larger than S, so the only error case is
S′ = an < (1− ε)S. The sum loses at most naε1 after rounding down, so

B ≥ S − anε1
aε1

≥
an
1−ε − anε1

aε1
=

n

(1 − ε)ε1
− n ≥ n 1− ε1

(1 − ε)ε1
≥ n (1 + ε1)2

ε1

The probability that it can pass the check for a fixed a < a0 is at most δ1;
by union bound, the probability that it passes the check for any a < a0 is at
most δ1 log1+ε

S
L . Combining the two errors, the total error probability is at most

δ1(log1+ε
S
L + 1). Choose δ1 = δ/(log1+ε

S
L + 1), then with probability at least

1− δ the estimator outputs an estimated sum within (1± ε)S.
Now we analyze the complexity of LWSE. Ignore the discarded samples for

now and count the number of valid samples. By Lemma 2, for each a we need

N1 = O(
log 1

δ1
∗
√

n(1+ε1)
ε1

ε21
) = O(

√
n(

1
ε

)
5
2 (log

1
δ

+ log
1
ε

+ log log
S

L
))

60 R. Motwani, R. Panigrahy, and Y. Xu

samples, and there are log1+ε
S
L = O(log S

L/ε) as. As for the discarded samples,
the total discarded size is at most anε1, and we always have S ≥ an if the
algorithm is running correctly, therefore the expected probability of discarded
samples is at most ε1 = ε/3 ≤ 1/3. By Chernoff bound, with high probability
the observed probability of discarded samples is at most half, i.e. the discarded
samples at most add a constant factor to the total sample number.

Finally, the complexity of the estimator has the term log S
L . Had we simply

started guessing from L = 1, the cost would depend on logS. The algorithm
chooses L to be the size of a sampled bucket using linear weighted sampling.
We claim that with high probability L ≥ S/n2: otherwise L < S/n2, then the
probability that linear weighted sampling returns any bucket of size no more
than L is at most n ∗ L/S < 1/n.

Summing up, the total sample number used in LWSE is

N1∗O(
log n2

ε
) = O(

√
n(

1
ε

)
7
2 logn(log

1
δ

+log
1
ε

+log logn)). �

4 Combining Uniform and Linear Weighted Sampling

In this section we design sum estimators using both uniform sampling and linear
weighted sampling. We present two algorithms. The first algorithm uses LWSE
in Section 3 as a building block and only needs Õ(3

√
n) samples. The second

algorithm is self-contained and easier to implement; its complexity is worse than
the first algorithm in terms of n but has better dependency on ε and a much
smaller hidden constant.

4.1 An Estimator with Õ(3
√

n) Samples

In this algorithm, we split the buckets into two types: Θ(3
√
n2) large buckets and

the remaining small buckets. We estimate the partial sum of the large buckets
using linear weighted sampling as in Section 3; we stratify the small buckets into
different size ranges and estimate the number of buckets in each range using
uniform sampling.

Theorem 2. CombEst is an (ε, δ)-estimator with O(n1/3(1
ε)

9
2 logn(log 1

δ+log 1
ε

+ log logn)) samples, where n is the number of buckets.

Proof. We analyze the error of the estimator. Denote by Slarge(Ssmall) the actual
total size of large (small) buckets; by ni the actual bucket number in level i.

In Step 2, since we are using linear weighted sampling, the expected fraction
of large buckets in the samples equals to Slarge/S. If Slarge/S > ε1, then by
Chernoff bound the observed fraction of large buckets in the sample is larger
than ε1/2 with high probability, and we will get S′

large within (1± ε1)Slarge with
probability at least 1 − δ/2 according to Theorem 1; otherwise we lose at most
Slarge = ε1S by estimating S′

large = 0. Thus, with probability at least 1 − δ/2,
the error introduced in Step 2 is at most ε1S.

Estimating Sum by Weighted Sampling 61

CombEst(n, ε, δ)
1. find t such that the number of buckets whose sizes are larger than t is Nt =

Θ(n2/3) (we leave the detail of this step later); call a bucket large if its size is
above t, and small otherwise

2. use linear weighted sampling to estimate the total size of large buckets S′
large:

if the fraction of large buckets in the sample is less than ε1/2, let S′
large = 0;

otherwise ignore small buckets in the samples and estimate S′
large using

LWSE(Nt, ε1, δ/2), where ε1 = ε/4
3. use uniform sampling to estimate the total size of small buckets S′

small:
divide the small bucket sizes into levels [1, 1 + ε1), . . . , [(1 + ε1)

i, (1 +
ε1)

i+1), . . . , [(1 + ε1)
i0 , t); we say a bucket in level i (0 ≤ i ≤ i0) if its size

∈ [(1 + ε1)
i, (1 + ε1)

i+1)
make k = Θ(n1/3 log n/ε41) samples using uniform sampling; let ki be the
number of sampled buckets in level i. Estimate the total number of buckets
in level i to be n′

i = kin/k and S′
small =

∑
i n′

i(1 + ε1)
i

4. output S′
small + S′

large as the estimated sum

In Step 3, it is easy to see that n′i is an unbiased estimator of ni. For a fixed
i, if ni ≥ ε21n

2/3 then by Chernoff bound the probability that n′i deviates from
ni by more than an ε1 fraction is

Pr[|n′i − ni| ≥ ε1ni] ≤ exp(−ckε21ni/n) ≤ exp(−c′n
1/3 logn
ε41

ε21
ε21n

2/3

n
) = n−c

′

This means that for all ni ≥ ε1n2/3, with high probability we estimate ni almost
correctly, introducing a relative error of at most ε1.

We round all bucket sizes of small buckets down to the closest power of 1+ ε1;
this rounding introduces a relative error of at most ε1.

For all levels with ni < ε21n
2/3, the total bucket size in those levels is at most

∑

0≤i≤i0

ni(1 + ε1)i+1<ε21n
2/3

∑

i

(1+ε1)i+1 < ε21n
2/3 t

ε1
=ε1tn2/3 < ε1Slarge < ε1S

The errors introduced by those levels add up to at most ε1.
Summing up, there are four types of errors in our estimated sum, with prob-

ability at least 1 − δ each contributing at most ε1S = εS/4, so S′ has an error
of at most εS.

Now we count the total number of samples in CombEst. According to Theo-
rem 1, Step 2 needs O(

√
n2/3(1

ε)
7
2 logn2/3(log 1

δ + log 1
ε + log logn2/3)) samples

of large buckets, and by our algorithm the fraction of large buckets is at least
ε1/2. Step 3 needs Θ(n1/3 logn/ε41) samples, which is dominated by the sample
number of Step 2. Therefore the total sample number is

O(n1/3(
1
ε

)
9
2 logn(log

1
δ

+log
1
ε

+log logn)). �

There remains to be addressed the implementation of Step 1. We make n1/3 logn
samples using uniform sampling and let t be the size of the 2 logn-th largest
bucket in the samples. If all sampled buckets have different sizes, then we can

62 R. Motwani, R. Panigrahy, and Y. Xu

show that with high probability n2/3 ≤ Nt ≤ 4n2/3. Details and handling of ties
in the full version [16]. Finally we only know the approximate number of large
buckets, denoted by N ′

t, and have to pass N ′
t instead of Nt when call LWSE.

Fortunately an approximate count of n suffices for LWSE, and a constant factor
error in n only adds a constant factor in the complexity.

4.2 An Estimator with Õ(
√

n) Samples

Next we present a sum estimator using uniform and weighted sampling with
Õ(
√
n) samples. Recall that uniform sampling works poorly for skewed distri-

butions, especially when there are a few large buckets that we cannot afford to
miss. The idea of this algorithm is to use weighted sampling to deal with such
heavy tails: if a bucket is large enough it will keep appearing in weighted sam-
pling; after enough samples we can get a fairly accurate estimate of its frequency
of being sampled, and then infer the total size by only looking at the size and
sampling frequency of this bucket. On the other hand, if no such large bucket
exists, the variance cannot be too large and uniform sampling performs well.

CombEstSimple(n, ε, δ)
1. Make k = c1

√
n log 1

δ
/ε2 samples using linear weighted sampling. Suppose the

most frequently sampled bucket has size t and is sampled k1 times (breaking ties
arbitrarily). If k1 ≥ k/2

√
n, output S′ = tk/k1 as estimated sum and terminate.

2. Make l =
√

n/δε2 samples using uniform sampling and let a be the average of
sampled bucket sizes. Output S′ = an as estimated sum.

Theorem 3. CombEstSimple is an (ε, δ)-estimator with O(
√
n/ε2δ) samples.

We present the sketch of the proof for lack of space. The detailed proof can be
found in the full version [16].

Proof sketch. Obviously CombEstSimple uses k+l = O(
√
n/ε2δ) samples. Below

we analyze the accuracy of the estimator.
We first prove that if Step 1 outputs an estimated sum S′, then S′ is within

(1±ε)S with probability 1−δ/2. Consider any bucket with size t whose frequency
of being sampled f ′ = k1/k is more than 1/2

√
n. Its expected frequency of being

sampled is f = t/S, so we can bound the error |f ′ − f | using Chernoff bound:
Pr[|f − f ′| > εf] ≤ δΘ(c1). Choose c1 large enough to make Pr[|f − f ′| > εf]
less than δ/2, then with probability 1− δ/2, f ′ = k1/k is within (1± ε)t/S, and
it follows that the estimated sum tk/k1 is within (1± ε)S.

If Step 1 does not output an estimated sum, then again using Chernoff bound
we can show that the maximum bucket size is no more than S/

√
n with proba-

bility at most δ/2. In this case, the statistical variance of xi is

var(x) ≤ E[x2] =
∑

i x
2
i

n
≤

(S√
n

)2
√
n

n
=

S2

n
√
n

a is an unbiased estimator of the mean bucket size, and its variance is var(x)/l.
Using Chebyshev inequality, the probability that a deviates from the actual mean
S/n by more than an ε fraction is at most var(a)/(εS/n)2 =

√
n/lε2 = δ. �

Estimating Sum by Weighted Sampling 63

5 Lower Bounds

Finally we prove lower bounds on the sample number of sum estimators. Those
lower bound results use a special type of input instances where all bucket sizes
are either 0 or 1. The results still hold if all bucket sizes are strictly positive,
using similar counterexamples with bucket sizes either 1 or a large constant b.

Theorem 4. There exists no (ε, δ)-estimator with o(
√
n) samples using only

linear weighted sampling, for any 0 < ε, δ < 1.

Proof. Consider two instances of inputs: in one input all buckets have size 1; in
the other, (1 − ε)n/(1 + ε) buckets have size 1 and the remaining are empty. If
we cannot distinguish the two inputs, then the estimated sum deviates from the
actual sum by more than an ε fraction. For those two instances, linear weighted
sampling is equivalent to uniform sampling among non-empty buckets. If we
sample k = o(

√
n) buckets, then the probability that we see a repeated bucket is

less than 1− exp(−k(k− 1)/((1− ε)n/(1 + ε))) = o(1) (see the proof of Lemma
1). Thus in both cases with high probability we see all distinct buckets of the
same sizes, so cannot distinguish the two inputs in o(

√
n) samples. �

More generally, there is no estimator with o(
√
n) samples using any combination

of general weighted sampling methods with the constraint f(0) = 0. Recall
that weighted sampling with function f samples a bucket xi with probability
proportional to a function of its size f(xi). When f(0) = 0, it samples any empty
bucket with probability 0 and any bucket of size 1 with the same probability,
thus is equivalent to linear weighted sampling for the above counterexample.

Theorem 5. There exists no (ε, δ)-estimator with o(3
√
n) samples using any

combination of general weighted sampling (the sampling function f independent
on n), for any 0 < ε, δ < 1.

Proof. Consider two instances of inputs: in one input n2/3 buckets have size 1
and the remaining buckets are empty; in the other, 3n2/3 buckets have size 1
and the remaining are empty. If we cannot distinguish the two inputs, then the
estimated sum deviates from the actual sum by more than 1

2 . We can adjust the
constant to prove for any constant ε.

We divide weighted sampling into two types:

(1) f(0) = 0. It samples any empty bucket with probability 0 and any bucket
of size 1 with the same probability, thus it is equivalent to uniform sampling
among non-empty buckets. There are at least n2/3 non-empty buckets and we
only make o(n1/3) samples, with high probability we see o(n1/3) distinct buckets
of size 1 for both inputs.

(2) f(0) > 0. The probability that we sample any non-empty buckets is

f(1)cn2/3

f(1)cn2/3 + f(0)(n− cn2/3)
= Θ(n−1/3),

64 R. Motwani, R. Panigrahy, and Y. Xu

so in o(n1/3) samples with high probability we only see empty buckets for both
inputs, and all these buckets are distinct.

Therefore whatever f we choose, we see the same sampling results for both
inputs in the first o(n1/3) samples, i.e. we cannot distinguish the two inputs with
o(n1/3) samples using any combination of weighted sampling methods. �

Acknowledgement

The authors would like to thank the anonymous reviewers for their valuable
comments, especially for pointing out an implicit assumption in the proof.

References

1. Alon, N., Duffield, N.G., Lund, C., Thorup, M.: Estimating arbitrary subset sums
with few probes. In: PODS 2005

2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. JCSC 58, 137–147 (1999)

3. Bar-Yossef, Z., Gurevich, M. (eds.): Random sampling from a search engine’s index.
In: WWW 2006

4. Bar-Yossef, Z., Gurevich, M.: Efficient search engine measurements. In: WWW
2007

5. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Sampling algorithms: lower bounds and
applications. In: STOC 2001

6. Broder, A., Fontura, M., Josifovski, V., Kumar, R., Motwani, R., Nabar, S., Pan-
igrahy, R., Tomkins, A., Xu, Y.: Estimating corpus size via queries. In: CIKM
2006

7. Canetti, R., Even, G., Goldreich, O.: Lower Bounds for Sampling Algorithms for
Estimating the Average. Information Processing Letters 53, 17–25 (1995)

8. Charikar, M., Chaudhuri, S., Motwani, R., Narasayya, V.: Towards estimation error
guarantees for distinct values. In: PODS 2000

9. Duffield, N.G., Lund, C., Thorup, M.: Learn more, sample less: control of volume
and variance in network measurements. IEEE Trans. on Information Theory 51,
1756–1775 (2005)

10. Gulli, A., Signorini, A.: The indexable Web is more than 11.5 billion pages. In:
WWW 2005

11. Henzinger, M.R., Heydon, A., Mitzenmacher, M., Najork, M.: On near-uniform
URL sampling. In: WWW 2000

12. Lawrence, S., Giles, C.: Searching the World Wide Web. Science 280, 98–100 (1998)
13. Lawrence, S., Giles, C.: Accessibility of information on the web. Nature 400, 107–

109 (1999)
14. Liu, J.: Metropolized independent sampling with comparisons to rejection sampling

and importance sampling. Statist. Comput. 6, 113–119 (1996)
15. Motwani, R., Raghavan, P.: Randomized Algorithm (1995)
16. Motwani, R., Raghavan, P., Xu, Y.: Estimating Sum by Weighted Sampling. Tech-

nical Report (2007)
17. Szegedy, M.: The DLT priority sampling is essentially optimal. In: STOC 2006

Sampling Methods for Shortest Vectors, Closest

Vectors and Successive Minima

Johannes Blömer� and Stefanie Naewe��

Department of Computer Science, University of Paderborn
{bloemer,naestef}@uni-paderborn.de

Abstract. In this paper we introduce a new lattice problem, the sub-
space avoiding problem (Sap). We describe a probabilistic single expo-
nential time algorithm for Sap for arbitrary �p norms. We also describe
polynomial time reductions for four classical problems from the geom-
etry of numbers, the shortest vector problem (Svp), the closest vector
problem (Cvp), the successive minima problem (Smp), and the short-
est independent vectors problem (Sivp) to Sap, establishing probabilistic
single exponential time algorithms for them. The result generalize and
extend previous results of Ajtai, Kumar and Sivakumar. The results on
Smp and Sivp are new for all norms. The results on Svp and Cvp gen-
eralize previous results of Ajtai et al. for the �2 norm to arbitrary �p

norms.

1 Introduction

In this paper we study four problems from the geometry of numbers, the shortest
vector problem (Svp), the closest vector problem (Cvp), the successive minima
problem (Smp) and the shortest linearly independent vectors problem (Sivp).

In the shortest vector problem, we are given a lattice L and are asked to find a
(almost) shortest non-zero vector v in the lattice L. In the closest vector problem,
we are given a lattice L and some vector t in the �-vector space span(L) spanned
by the vectors in L. We are asked to find a vector u ∈ L, whose distance to t is
as small as possible. The problems Smp and Sivp extend Svp and deal with the
successive minima λk(L) of a lattice. Let k be an integer less than or equal to the
dimension of span(L) (called the rank of L). The k-th successive minimum λk(L)
of L is the smallest real number r such that L contains k linearly independent
vectors of length at most r. In the successive minima problem Smp we are given
a lattice L with rank n. We are asked to find n linearly independent vectors
v1, . . . , vn such that the length of vk, k = 1, . . . , n, is at most λk(L). In Sivp we
are asked to find n linearly independent vectors v1, . . . , vn such that the length
of vk is at most λn(L). Clearly, Sivp is polynomial time reducible to Smp. Since

� This research was supported by Deutsche Forschungsgemeinschaft, grant BL 314/5.
�� This research was partially supported by German Science Foundation (DFG), grant

BL 314/5, and Research Training Group GK-693 of the Paderborn Institute for
Scientific Computation (PaSCo).

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 65–77, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

66 J. Blömer and S. Naewe

they can be defined for any norm on �n, we stated these problems without
referring to a specific norm.

Algorithms for lattice problems. In the last 25 years the complexity of the lattice
problems Svp,Cvp,Smp, and Sivp has been studied intensively. For the history
of this problems we refer to [MG02]. It is known that all problems are NP-
hard and even hard to approximate (see for example [Ajt98], [Mic00], [Kho05],
[DKRS03], [BS99]). Let us briefly review the best algorithms for lattice prob-
lems that predate the results by Ajtai et al. The best algorithm to solve Svp

optimally was due to Kannan [Kan87b]. Kannan’s algorithm has a running time
of nn/2bO(1), where n is the rank of the lattice L and b is its representation size,
i.e., the number of bits used to describe the basis defining L. For Cvp the best
algorithm that optimally solves the problem was due to [Blö00]. It has a running
time of n!bO(1). Finally, the best deterministic algorithms for Smp and Sivp were
also due to [Blö00]. Their running time is 3bn!bO(1).

Of course, the best deterministic polynomial time algorithms for approxi-
mating all four lattice problems are based on the LLL-algorithm (see [LLL82])
and achieve single exponential approximation factors (see for example [Sch94],
[Bab86], [Sch87] and [Kan87a]).

The AKS results for Svp and Cvp. In a breakthrough paper [AKS01] Ajtai, Ku-
mar, and Sivakumar describe a probabilistic algorithm that solves Svp optimally
with probability exponentially close to 1. More precisely, the running time of
their algorithm is

(
2nb

)O(1), i.e., single exponential only in the rank of the lattice.
The AKS-algorithm is based on a novel sampling technique that generates short
vectors from the input lattice L. Later, Ajtai, Kumar, and Sivakumar [AKS02]
extended their sampling technique to solve Cvp with approximation factor (1+ε)
for any ε > 0. The running time of their algorithm is

(
2(1+1/ε)nb

)O(1).

Our contributions. In this paper, we consider a variant of the AKS-sampling
procedure (according to [AKS01] proposed by M. Sudan, described in lecture
notes by O. Regev [Reg04]).

– We describe a general sampling procedure to compute short lattice vectors
outside some given subspace. We call this the subspace avoiding problem
(Sap).

– We show polynomial time reductions from exact and approximate versions
of Sap to exact and approximate versions of Svp, Cvp, Smp and Sivp.

– In consequence, we obtain single exponential time (1 + ε) approximation
algorithms for Svp, Cvp, Smp and Sivp for all �p norms. The running time
is ((2 + 1/ε)nb)O(1).

– By slightly modifying the sampling procedure and its analysis we are able to
solve Sap provided there do not exist too many short lattice vectors outside
the given subspace. As a consequence, we obtain single exponential time
algorithms for Svp and for restricted versions of Cvp and Sivp.

Sampling Methods for Shortest Vectors, Closest Vectors 67

Organization. The paper is organized as follows. In Section 2 we state the most
important facts used in this paper. In Section 3 we formally define the lattice
problem Sap and prove polynomial time reductions from Svp,Cvp,Smp, and
Sivp to Sap. In Section 4, we show that the problem Sap can be approximated
with factor 1 + ε, ε > 0 arbitrary, by a sampling procedure. Finally, the modified
sampling procedure solving restricted versions of Sap optimally is presented in
Section 5.

2 Basic Definitions and Facts

For m > 0 is �m a m-dimensional vector space over �. The �p norm of a
vector x ∈ �m is defined by ||x||p = (

∑m
i=1 x

p
i)1/p for 1 ≤ p < ∞ and ||x||∞ =

max{|xi|, i = 1, . . . ,m} for p =∞. In the sequel we consider the �p norm for an
arbitrary p with 1 ≤ p ≤ ∞. We set B(p)(x, r) := {y ∈ �m| ||y − x||p < r}. The
volume vol(B(p)(x, r)) satisfies:

For all c > 0 vol(B(p)(x, c · r)) = cm · vol(B(p)(x, r)). (1)

A lattice L is a discrete additive subgroup of �m. Each lattice L has a basis,
i. e. a sequence b1, . . . , bn of n elements of L that generate L as an abelian
group. We denote this by L = L(b1, . . . , bn). We call n the rank of L. If m = n,
the lattice is full dimensional. In the rest of the paper we only consider full
dimensional lattices. However, our results can easily be generalized to arbitrary
lattices. For a basis B = {b1, . . . , bn} we define the half open parallelepiped
P(B) := {

∑n
j=1 αjbj |0 ≤ αj < 1, j = 1, . . . , n}. For every vector v ∈ �n there is

a unique representation v = u + w with u ∈ L and w ∈ P(B). We write v ≡ w
mod L.

We always assume that L ⊆ �n. The representation size b of a lattice L ⊆ �n

with respect to the basis {b1, . . . , bn} is the maximum of n and the binary lengths
of the numerators and denominators of the coordinates of the basis vectors bj .
The representation size of a subspace M and the representation size of a vector
u =

∑n
i=1 uibi with ui ∈ � with respect to {b1, . . . , bn} are defined in the

same way. In the sequel, if we speak of the representation size of a lattice L, a
subspace M or of a vector u ∈ span(L) without referring to some specific basis,
we implicitly assume that some basis is given.

3 The Subspace Avoiding Problem Sap, Main Result,
and Reductions for Svp, Smp, Sivp and Cvp

Definition 1. Given a lattice L and some subspace M ⊂ span(L), we call the
problem to compute a vector v ∈ L\M , that is as short as possible, the subspace
avoiding problem (Sap). We set

λ
(p)
M (L) := min{r ∈ �|∃v ∈ L\M, ||v||p ≤ r}.

It is not hard to show that for an LLL-reduced basis {b1, . . . , bn} we have
||bk||2 ≤ 2n−1λ

(2)
M (L), where k = min{1 ≤ j ≤ n|bj ∈ L\M}. Therefore, we get

68 J. Blömer and S. Naewe

Theorem 1. The LLL-algorithm can be used to approximate in polynomial time
Sap for the �2 norm with factor 2n−1.

In Section 4 we will show that in single exponential time we can approximate
Sap with any factor 1 + ε, 0 < ε ≤ 2. More precisely

Theorem 2. For all �p norms, 1 ≤ p ≤ ∞, there exists a randomized algorithm,
that approximates Sap with probability exponentially close to 1. The approxima-
tion factor is 1 + ε for any 0 < ε ≤ 2 and the running time of the algorithm is
((2 + 1/ε)n · b)O(1), where b is the size of the lattice and the subspace.

In the remainder of this section we show that there are polynomial time reduc-
tions from Svp, Cvp, Smp and Sivp to Sap. Together with Theorem 2 this
implies single exponential time approximation algorithms for Svp, Cvp, Smp

and Sivp. The core of the reductions is a suitable definition of the subspace.
For the reduction of Svp to Sap we choose M := {0} ⊆ span(L). If we

compute a (almost) shortest non-zero lattice vector u ∈ L\M , we compute a
(almost) shortest non-zero lattice vector u ∈ L.

Theorem 3. For all �p norms, 1 ≤ p ≤ ∞, Svp with approximation factor
1 + ε, ε ≥ 0, is polynomial time reducible to Sap with approximation factor 1 + ε.

Theorem 4. For all �p norms, 1 ≤ p ≤ ∞, Smp and Sivp with approximation
factor 1 + ε, ε ≥ 0, are polynomial time reducible to Sap with approximation
factor 1 + ε.

Proof. We are given access to an oracle A, that solves Sap with an approxima-
tion factor 1 + ε for some arbitrary ε ≥ 0. Using this oracle we get a (1 + ε)-
approximation of the first successive minimum as in Theorem 3. For i > 1
define M := span(v1, . . . , vi−1) with v1, . . . , vi−1 ∈ L linearly independent. Since
dim(M) < i, there exists a vector w ∈ L with ||w||p ≤ λ

(p)
i (L) and w �∈ M .

Therefore, λ(p)
M (L) ≤ λ(p)

i (L) and using the oracle A with input L and M we get
a (1 + ε)-approximation for the i-th successive minimum.

The reduction of Cvp to Sap relies on a lifting technique introduced by Kannan
[Kan87b] and refined by Goldwasser and Micciancio [MG02] and Ajtai, Kumar
and Sivakumar [AKS02]. A proof for it will be contained in the full version of
this paper.

Theorem 5. For all �p norms, 1 ≤ p ≤ ∞, the exact version of Cvp is
polynomial time reducible to the exact version of Sap. Also, for all �p norms,
1 ≤ p ≤ ∞, Cvp with approximation factor (1 + ε)(1 + α) for 0 < ε ≤ 1/2 and
α ≥ 0 is reducible to Sap with approximation factor 1 + ε/6. The reduction is
polynomial time in the input size of the Cvp instance and in 1/α.

Combining this result with the inapproximability results for Cvp due to Dinur
et al. [DKRS03] we get the following inapproximability result for Sap.

Theorem 6. For all �p norms, 1 ≤ p <∞, there is some constant c > 0, such
that Sap is NP-hard to approximate to within factor nc/ log logn, where n is the
dimension of the input lattice.

Sampling Methods for Shortest Vectors, Closest Vectors 69

4 The Sieving Procedure and the Sampling Procedure

In this section we present a sampling procedure, that solves the subspace avoiding
problem with approximation factor 1 + ε, 0 < ε ≤ 2. We closely follow Regev’s
lecture notes on the AKS single exponential algorithm for Svp [Reg04]. First,
we show that we can restrict ourselves to instances of Sap with 2 ≤ λ(p)

M (L) < 3.
A proof for it will be contained in the full version of this paper.

Lemma 1. For all �p norms, if there is an algorithm A that for all lattices L
for which 2 ≤ λ(p)

M (L) < 3 and all subspaces M solves Sap with approximation
factor 1 + ε and in time T = T (n, b, ε), then there is an algorithm A′ that solves
Sap for all lattices and subspaces M with approximation factor 1+ ε and in time
O(nT + n4b). Here n is the rank of L and b is the representation size of L,M .

4.1 The Sieving Procedure

The main part of the sampling procedure is a sieving procedure (see Algorithm
2). Its main properties are described in the following lemma. The parameter a
is rational and a > 1.

Algorithm 2 The sieving procedure
Input: x1, . . . , xN ∈ B(p)(0, R)

J ← ∅
For j = 1, . . . , N do

If there exists i ∈ J with ||xi − xj ||p ≤ R/a, then η(i) ← j.
Else J ← J ∪ {i} and η(i)← i.

Lemma 2. Let R ∈ �, R > 0, a ∈ � with a > 1. For any set of points
x1, . . . , xN ∈ B(p)(0, R) the sieving procedure 2 finds a subset J ⊆ {1, 2, . . . , N}
of size at most (2a + 1)n and a mapping η : {1, 2, . . . , N} → J such that for
any i ∈ {1, . . . , N} , ||xi − xη(i)||p ≤ R/a. The running time of the procedure is
O(N2 · poly(m)), if x1, . . . , xN are rationals of representation size m.

Proof. Obviously, for all i ∈ {1, . . . , N}, ||xi − xη(i)||p ≤ R/a. The distance
between any two points in J is larger than R/a. If we take balls of radius R/(2a)
around each point xi, i ∈ J , then these balls are disjoint and their union is
contained in B(p)(0, (1 + 1/(2a))R). Therefore, the number of balls, and hence
|J |, is bounded by vol

(
B(p)

(
0, (1 + 1

2a)R
))
/ vol

(
B(p)

(
0, 1

2aR
))

= (2a + 1)n

(Equation (1)).

4.2 The Sampling Procedure

Now we present a sampling procedure (see Algorithm 3) that for all �p norms
approximates Sap with the factor 1 + ε, 0 ≤ ε ≤ 2 arbitrary. The algorithm
chooses N points uniformly at random in a ball B(p)(0, r) with radius r. Using
the general algorithm of Dyer, Frieze and Kannan (see [DFK91]) we are able to

70 J. Blömer and S. Naewe

sample the N points in B(p)(0, r) with the required accuracy. For the sake of
simplicity, we will neglect this aspect in the following. The parameter N will be
defined later. For each point xi with i ∈ {1, . . . , N} we compute the point yi ∈
P(B) such that yi−xi is a lattice point. Using the mapping η : {1, . . . , N} −→ J ,
for each vector yi we get a representative yη(i) with ||yi − yη(i)||p < R/a. We
replace yi with yi − (yη(i) − xη(i)). This procedure is repeated until the distance
between the lattice vectors and their representatives is small enough. We use
parameters δ, r and a satisfying 0 < δ ≤ 1/2, r ≥ 1/2 and a = 1 + 2/δ.

Algorithm 3 The sampling procedure
Input: A lattice L = L(B), B = {b1, . . . , bn}, and a subspace M ⊆ span(B).
1. (a) R0 ← n ·maxi ||bi||p

(b) Choose N points x1, . . . , xN uniformly in B(p)(0, r).
(c) Compute yi ∈ P(B) with yi ≡ xi mod L(B) for i = 1, . . . , N .
(d) Set Z ← {(x1, y1), . . . , (xN , yN)} and R ← R0.

2. While R > (1 + δ)r do
(a) Apply the sieving procedure to {yi|(xi, yi) ∈ Z} with the parameters a and

R. The result is a set J and a mapping η.
(b) Remove from Z all pairs (xi, yi) with i ∈ J.
(c) Replace each remaining pair (xi, yi) ∈ Z with (xi, yi − (yη(i) − xη(i))).
(d) R ← R/a + r

Output: A shortest vector v ∈ {yi − xi|(xi, yi) ∈ Z} with v �∈ M , if such a vector
exists.

Lemma 3. Let δ and r be chosen as above. Given a lattice L = L(B), if the
sampling procedure 3 returns the vector v, then v ∈ L ∩B(p)(0, (2 + δ)r).

The proof follows from the fact that during the sampling procedure the following
two properties are satisfied: 1) For all (xi, yi) ∈ Z we have yi − xi ∈ L(B) and
2) for all i ∈ {1, . . . , N} the length of yi is bounded by the parameter R. For
details see [Reg04].

The number of iterations of the while-loop dominates the running time of the
sampling procedure.

Lemma 4. If the sampling procedure 3 is executed with the parameters δ, a and
r chosen as above, then the number of iterations of the while-loop is at most
2 log2(1 + 2/δ) · (log2R0 + log2(1 + 2/δ)).

Proof. After i iterations the parameter R is R0/a
i + r

∑i−1
j=0 a

−j. The loop
terminates if R < (1 + δ)r. Using the geometric series the loop terminates if
R0/a

i + r · a/(a − 1) ≤ (1 + δ)r. Since a = 1 + 2/δ and r ≥ 1/2, the lemma
follows.

Using this bound for the number of iterations we can analyze the running time
of the sampling procedure.

Sampling Methods for Shortest Vectors, Closest Vectors 71

Lemma 5. Given a lattice basis B and a subspace M ⊂ span(L(B)), with the
parameters r, a and δ chosen as above, the running time of the sampling proce-
dure 3 is bounded by ((1 + 2/δ) · b ·N)O(1). Here b is the size of L(B) and M .
Furthermore, N is the number of points chosen in the sampling procedure.

Proof. The number of iterations in the while-loop is at most 2 log2(1 + 2/δ) ·
(log2(1 + 2/δ) + log2R0) ≤ (1 + 2/δ)bO(1). In each iteration we apply the sieving
procedure. Since the input size is at most b the running time of the sampling
procedure is at most (1 + 2/δ)N2bO(1) = ((1 + 2/δ) · b ·N)O(1).

Summarizing the previous results about the sampling procedure 3, we get

Theorem 7. For every 0 < ε ≤ 2 there exists a δ > 0 such that the follow-
ing holds: Given a lattice L = L(B), a subspace M , and r satisfying 1/2 ≤
r ≤ (1/2) · (1 + δ)2λ(p)

M (L), the sampling procedure 3 computes a set of vectors
from L ∩B(p)(0, (1 + ε)λ(p)

M (L)). The running time of the sampling procedure is
((2 + 1/ε)n · b)O(1), where b is the size of L and M .

The proof is obviously if we choose δ = (1/4)ε and combine this with the results
of Lemma 3 and Lemma 5.

Also, using Lemma 2 and Lemma 4 we get

Lemma 6. If we apply the sampling procedure 3 with the parameters δ, a and
r chosen as above, we remove at most

z(R0, δ) := (log2R0 + log2(1 + 2/δ))(2(1 + 2/δ) + 1)n+1 (2)
pairs from the set Z.

4.3 Modification of the Sampling Procedure

We need to show that the sampling procedure 3 computes vectors in L\M . For
this we use the randomization in the algorithm. We change our point of view and
consider a modified sampling procedure that behaves exactly like the sampling
procedure 3. We are able to show that the modified sampling procedure computes
with probability exponentially close to 1 a vector v ∈ L\M . Hence, the same is
true for the sampling procedure 3.

Let u ∈ L\M a lattice vector with ||u||p = λ
(p)
M (L). Define

C1 := B(p)(0, r) ∩B(p)(u, r) and C2 := B(p)(0, r) ∩B(p)(−u, r).
If the parameter r satisfies

1
2

(1 + δ)λ(p)
M (L) ≤ r ≤ 1

2
(1 + δ)2λ(p)

M (L) (3)

for a δ > 0, the sets C1 and C2 are non-empty and disjoint. We define a bijective
mapping τu : B(p)(0, r)→ B(p)(0, r) depending on the lattice vector u.

τu(x) =

⎧
⎨

⎩

x+ u , x ∈ C2

x− u , x ∈ C1

x , otherwise

72 J. Blömer and S. Naewe

Using the mapping τu we define the modified sampling procedure (see Algorithm
4). Since the modified sampling procedure is only used for the analysis, we do
not worry about its running time and the fact that it uses the unknown u. The
sampling procedure 3 and the modified sampling procedure 4 return vectors
in L ∩B(p)(0, (1 + ε)λ(p)

M (L)) distributed according to certain distributions. We
call these the output distributions generated by the sampling procedure and the
modified sampling procedure, respectively. Next, we show

Algorithm 4 The modified sampling procedure
Input: A lattice L = L(B), B = {b1, . . . , bn}, and a subspace M ⊆ span(B)

1. (a) R0 ← n ·maxi ||bi||p.
(b) Choose N points x1, . . . , xN uniformly in B(p)(0, r).
(c) Compute yi ∈ P(B) with yi ≡ xi mod L(B) for i = 1, . . . , N .
(d) Set Z ← {(x1, y1), . . . , (xN , yN)} and R ← R0.

2. While R > (1 + δ)r do
(a) Apply the sieving procedure 2 to {yi|(xi, yi) ∈ Z} with the parameters a

and R. The result is a set J and a mapping η.
(b) Remove from Z all pairs (xi, yi) with i ∈ J.
(c) For each pair (xi, yi), i ∈ J, replace xi with τu(xi) with probability 1/2.
(d) Replace each remaining pair (xi, yi) ∈ Z with (xi, yi − (yη(i) − xη(i))).
(e) R ← R

a
+ r

3. For each pair (xi, yi) ∈ Z replace xi with τu(xi) with probability 1/2.

Output: A shortest vector v ∈ {yi − xi|(xi, yi) ∈ Z} with v �∈ M , if such a vector
exists.

Theorem 8. The sampling procedure 3 and the modified sampling procedure 4
generate the same output distribution.

Proof. We consider a series of modifications to the sampling procedure 3 leading
to the modified sampling procedure 4. In the first modification, after choosing
in step 1b the points xi we decide for each xi uniformly at random whether to
keep xi or to replace it with τu(xi). Since τu is bijective, this does not change
the distribution on the points xi. Hence, this modification does not change the
output distribution of the sampling procedure. Next, observe that u ∈ L implies
yi ≡ xi ≡ τu(xi) mod L, i = 1, . . . , N. Hence, if we decide for each xi whether
to replace it with τu(xi) at the end of step 1 rather than in step 1b, then this
does not change the output distribution.

But if, without changing the output distribution, we can choose for each xi
whether to keep it or to replace it with τu(xi) at the end of step 1, then making
that decision for each xi prior to the first time it is used in step 2 will also not
change the output distribution. Furthermore, for each point xi not used at all in
step 2 we can choose whether to keep it or replace it with τu(xi) at the end of
step 2. But this is exactly the modification leading from the sampling procedure
3 to the modified sampling procedure 4.

Sampling Methods for Shortest Vectors, Closest Vectors 73

For the further analysis only pairs (xi, yi) with xi ∈ C1 ∪ C2 are of interest
because only for them the mapping τu is not the identity. In the following, three
lemmata we will show that with high probability at the end of the sampling
procedure 3 or the modified sampling procedure 4 the set Z contains at least
2n pairs with this property. All lemmata are stated without proof. First, we
need the probability, that a point x, which is chosen uniformly in B(p)(0, r), is
contained in C1 ∪C2.

Lemma 7. Let u ∈ �n be a vector with ||u||p = ρ and ζ > 0. Define C =
B(p) (0, (1/2)(1 + ζ)ρ) ∩B(p) (u, (1/2)(1 + ζ)ρ). Then

vol(C)
vol

(
B(p)

(
0, 1

2 (1 + ζ)ρ
)) ≥ 2−n

(
ζ

1 + ζ

)n
.

Next, we are interested in the number of points xi, which are contained in
C1 ∪ C2, if we choose N points uniformly at random in B(p)(0, r).

Lemma 8. Let N ∈ �. By q denote the probability that a random point in
B(p)(0, r) is contained in C1 ∪C2. If N points x1, . . . , xN are chosen uniformly
at random in B(p)(0, r), then with probability larger than 1− 4/(N · q), there are
at least (q ·N)/2 points xi ∈ {x1, . . . , xN} with the property xi ∈ C1 ∪ C2.

From the Lemmata 7 and 8 combined with Lemma 6 we obtain

Lemma 9. Let L be a lattice and M ⊂ span(L) be a subspace. Furthermore, as-
sume that in the first step of the sampling procedure 3 or of the modified sampling
procedure 4 the number of points chosen is N = ((1+δ)/δ)n2n+1 (2n + z(R0, δ)),
where z(R0, δ) is defined as in (2). Then at the end of step 2 of the sampling pro-
cedure 3 or the modified sampling procedure 4 the set Z contains with probability
exponentially close to 1 at least 2n pairs (x, y) with the property x ∈ C1 ∪ C2.

Theorem 9. For every 0 < ε ≤ 2 there exists a δ > 0 such that the following
holds: Given a lattice L = L(B), a subspace M of span(L), for which 2 ≤ λ(p)

M (L)
and r satisfying (3), the modified sampling procedure 4 computes with probability
exponentially close to 1 a vector v ∈ L\M .

Proof. We apply the modified sampling procedure with the same parameter as in
Theorem 7, i. e. δ = (1/4)ε. Since 2 ≤ λ(p)

M (L), we have r ≥ 1/2. By assumption
u ∈ L\M . If y−x ∈M , then y−τu(x) = y−x±u ∈ L\M . The modified sampling
procedure returns a vector v ∈ L\M , if at the end of step 2 there exists a pair
(x, y) ∈ Z with x ∈ C1∪C2 and one of the following conditions holds: y−x ∈M
and in step 3 we replace x with τu(x) or y − x ∈ L\M and in step 3 we do not
replace x with τu(x). In step 3 of the modified sampling procedure we decide for
each pair (x, y) ∈ Z uniformly if we replace it or not. Using Lemma 9 the set
Z contains with probability exponentially close to 1 at least 2n pairs (x, y) with
the property x ∈ C1 ∪C2. Therefore the probability, that the modified sampling
procedure does not return a vector v ∈ L\M , is bounded by 2−2n

.

74 J. Blömer and S. Naewe

By Theorem 8 the sampling procedure and the modified sampling procedure
generate the same output distribution. Also, we have shown that we can restrict
ourselves to instances of Sap with 2 ≤ λ(p)

M (L) < 3 (Lemma 1). Hence, we get

Theorem 10. There exists a randomized algorithm that for all �p norms, 1 ≤
p ≤ ∞, solves Sap with approximation factor 1 + ε, 0 < ε ≤ 2 arbitrary,
with probability exponentially close to 1. The running time of the algorithm is
((2 + 1/ε)n · b)O(1), where b is the size of the input lattice and the subspace.

Proof. Let δ = (1/4)ε. Using Lemma 1 we can assume: 2/3 < 2/λ(p)
M (L) ≤ 1. Let

κ0 = log1+δ(2/3) and κ1 = 0. Set l := �log1+δ 2/λ(p)
M (L)�, then κ0 ≤ l ≤ κ1 and

r := (1+δ)2−l satisfies the Equation (3), i.e., (1/2)(1+δ)λ(p)
M (L) ≤ r ≤ (1/2)(1+

δ)2λ(p)
M (L). We apply the sampling procedure for each value r = (1 + δ)2−l

′
with

κ0 ≤ l′ ≤ κ1. Let vl′ ∈ L\M be the lattice point discovered by the sampling
procedure started with r = (1 + δ)2−l

′
, if any lattice point is discovered. The

output will be the smallest vl′ ∈ L\M . As we have seen, for the unique l′ = l
such that r = (1 + δ)2−l

′
satisfies the Equation (3) the sampling procedure will

find a (1 + ε)-approximation for Sap with probability exponentially close to 1.
We apply the sampling procedure

∣
∣log1+δ(2/3)

∣
∣ times. By our choose of δ =

(1/4)ε the running time is
∣
∣log1+ε 2/3

∣
∣ ((2 + 1/ε) · b)O(1) = ((2 + 1/ε)n · b)O(1).

Combining this with the results from Section 3 we obtain:

Theorem 11. There exist randomized algorithms that for all �p norms, 1 ≤ p ≤
∞, approximate Svp, Smp, Sivp, and Cvp with probability exponentially close
to 1. In case of Svp, Smp, and Sivp the approximation factor is 1 + ε for any
0 < ε ≤ 2. For Cvp the approximation factor is 1 + ε for any 0 < ε < 1/2. The
running time of the algorithms is ((2 + 1/ε)n · b)O(1), where b is the size of the
input lattice and the subspace.

5 Using the Sampling Procedure for Optimal Solutions

Theorem 12. Let L = L(B) be a lattice and M be a subspace of span(L), both
of size b. Assume that there exist absolute constants c, ε such that the number of
v ∈ L\M satisfying ||v||p ≤ (1+ε)λ(p)

M (L) is bounded by 2cn. Then there exists an
algorithm that solves Sap with probability exponentially close to 1. The running
time is (2n · b)O(1).

Proof. To turn the (1 + ε)-sampling procedure into an exact algorithm, we use
the sampling procedure 3 with the parameters δ = (1/4)ε and N = ((1 +
δ)/δ)n2n+1

(
5 · 2(c+1)n + z(R0, δ)

)
, where z(R0, δ) is defined in (2). We only

modify the output: We consider the two sets

O1 := {(yi−xi)−(yj−xj)|(xi, yi), (xj , yj) ∈ Z} and O2 := {yi−xi|(xi, yi) ∈ Z}.

The output is a shortest lattice vector v ∈ O1∪O2 with v ∈ L\M . The analysis
and the running time of this sampling procedure are the same as in Section 4.

Sampling Methods for Shortest Vectors, Closest Vectors 75

Obviously, we can modify the sampling procedure in the same way as in Theorem
8 by using the mapping τu with respect to a shortest vector u ∈ L\M . We obtain
a modified sampling procedure similar to procedure 4 which generates the same
output distribution as the original sampling procedure. Hence, we only need to
analyze the success probability of the modified sampling procedure. We show
that the modified sampling procedure computes with probability exponentially
close to 1 the lattice vector u. In the following, consider the set Z after step 2 and
before step 3 of the modified sampling procedure. We define the multiset F :=
{(xi, yi) ∈ Z|xi ∈ C1} ⊆ Z and for v ∈ L we set Fv := {(xi, yi) ∈ F |yi−xi = v}.
As in Lemma 9, we can show, that F contains with probability exponentially
close to 1 at least 5 · 2(c+1)n pairs. Next, we consider two cases: 1) There exists
an v ∈ L with |Fv| ≥ 2n and 2) |Fv| < 2n for all v ∈ L.

In the first case, in step 3 we decide for each pair (x, y) ∈ Fv uniformly
whether we replace x with τu(x) or not. If there exist (xi, yi), (xj , yj) ∈ Fv such
that in step 3 the mapping τ is applied to xi but not to xj then u ∈ O1. This
event happens with probability 1− 2 · 2−2n

.
In the second case, we show that with probability exponentially close to 1

the vector u is contained in the set O2. We do this by showing that after step
3 of the modified sampling procedure all vectors v ∈ L\M satisfying ||v||p ≤
(1 + ε)λ(p)

M (L) are contained in O2. In the following, we consider F := {v ∈
L|∃(x, y) ∈ F with v = y − x}. Since |F | > 5 · 2(c+1)n and |Fv| < 2n for all
v ∈ L, we obtain |F| ≥ 5 · 2cn. Let F1 := F ∩M . By assumption |F\F1| ≤ 2cn

and therefore |F1| = |F| − |F\F1| ≥ 2cn+2. For all v = y − x ∈ F1 we have
y − τu(x) ∈ L\M . Analogously to Lemma 8, we can show that with probability
exponentially close to 1, for at least 2cn elements v = y − x in F1 we replace in
step 3 the element x by τu(x). Hence, with probability exponentially close to 1
we get 2cn elements y − x − u ∈ L\M . All these elements have length at most
(1 + ε)λ(p)

M (L). Combining this with |(L\M) ∩ B(p)(0, (1 + ε)λ(p)
M (L))| < 2cn we

see that in this case the set O2 contains all vectors v ∈ L\M of length at most
(1 + ε)λ(p)

M (L).

To use the exact sampling procedure to solve Svp,Cvp,Smp and Sivp we need
the following lemma, whose proof is almost identical to the proof of Lemma 2.

Lemma 10. Let L be a lattice and R > 0. Then

|B(p)(0, R) ∩ L| <
((

2R+ λ
(p)
1 (L)

)
/λ

(p)
1 (L)

)n
.

In case of Svp we use Lemma 10 with R = (1 + ε)λ(p)
1 (L) and get |B(p)(0, (1 +

ε)λ(p)
1 (L)) ∩ L| ≤ (3 + 2ε)n = 2cn for a c ∈ �. Therefore, the assumptions of

Theorem 12 are satisfied in case of Svp and we obtain the following.

Theorem 13. Let L ⊂ �n be a lattice of size b. A shortest non-zero vector in
L can be computed with probability exponentially close to 1. The running time is
(2n · b)O(1).

76 J. Blömer and S. Naewe

Using Lemma 10, for Smp and Cvp we can only show that the number of almost
optimal solutions to Smp or Cvp is single exponential in the rank of L if the
n-th successive minimum λ

(p)
n (L) or the distance Dt of target vector t to lattice

L are bounded by cλ(p)
1 (L) for some constant c. Hence, we get

Theorem 14. Let L ⊂ �n be a lattice of size b. Assume that the n-th successive
minimum λ

(p)
n is bounded by cλ(p)

1 for some constant c ∈ �. Then the successive
minima of L can be computed with probability exponentially close to 1. The
running time is (2n · b)O(1).

Theorem 15. Let c > 0 be some constant. Assume lattice L ∈ �n and target
vector t ∈ span(L) are of size b. Assume furthermore, that Dt ≤ cλ

(p)
1 (L).

Then a vector v ∈ L satisfying ||t − v||p = Dt can be computed with probability
exponentially close to 1. The running time is (2n · b)O(1).

Acknowledgment. We thank O. Regev for several stimulating discussions that
greatly benefited the paper. Moreover, his lecture notes on the Ajtai, Kumar,
Sivakumar algorithm for Svp [Reg04] were the starting point for our research.

References

[Ajt98] Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized
reductions. In: Proceedings of the 30th ACM Symposium on Theory of
Computing, pp. 10–19. ACM Press, New York (1998)

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: Proceedings of the 33th ACM Symposium on
Theory of Computing, pp. 601–610. ACM Press, New York (2001)

[AKS02] Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and
the closest lattice vector problem. In: Proceedings of the 17th IEEE An-
nual Conference on Computational Complexity - CCC, pp. 53–57. IEEE
Computer Society Press, Los Alamitos (2002)

[Bab86] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point prob-
lem. Combinatorica 6(1), 1–13 (1986)

[Blö00] Blömer, J.: Closest vectors, successive minima, and dual HKZ-bases of
lattices. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 248–259. Springer, Heidelberg (2000)

[BS99] Blömer, J., Seifert, J.-P.: The complexity of computing short linearly in-
dependent vectors and sort bases in a lattice. In: Proceedings of the 21th
Symposium on Theory of Computing, pp. 711–720 (1999)

[DFK91] Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm
for approximating the volume of convex bodies. Journal of the ACM 38(1),
1–17 (1991)

[DKRS03] Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to within
almost-polynomial factors in NP-hard. Combinatorica 23(2), 205–243
(2003)

[Kan87a] Kannan, R.: Algorithmic geometry of numbers. Annual Reviews in Com-
puter Science 2, 231–267 (1987)

Sampling Methods for Shortest Vectors, Closest Vectors 77

[Kan87b] Kannan, R.: Minkowski’s convex body theorem and integer programming.
Mathematics of Operations Research 12(3), 415–440 (1987)

[Kho05] Khot, S.: Hardness of approximating the shortest vector problem in lat-
tices. Journal of the ACM (JACM) 52(5), 789–808 (2005)

[LLL82] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with ra-
tional coefficients. Mathematische Annalen 261, 515–534 (1982)

[MG02] Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems - A Cryp-
tographic Perspective. Kluwer Academic Publishers, Dordrecht (2002)

[Mic00] Micciancio, D.: The shortest vector in a lattice is hard to approximate
to within some constant. SIAM Journal on Computing 30(6), 2008–2035
(2000)

[Reg04] Regev, O.: Lecture note on lattices in computer science, lecture 8: 2O(n)-
time algorithm for SVP (2004)

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction al-
gorithms. Theoretical Computer Science 53, 201–224 (1987)

[Sch94] Schnorr, C.-P.: Block reduced lattice bases and successive minima. Com-
binatorics, Probability & Computing 3, 507–522 (1994)

Low Distortion Spanners

Seth Pettie

The University of Michigan

Abstract. A spanner of an undirected unweighted graph is a subgraph
that approximates the distance metric of the original graph with some
specified accuracy. Specifically, we say H ⊆ G is an f -spanner of G if
any two vertices u, v at distance d in G are at distance at most f(d)
in H . There is clearly some tradeoff between the sparsity of H and the
distortion function f , though the nature of this tradeoff is still poorly
understood.

In this paper we present a simple, modular framework for construct-
ing sparse spanners that is based on interchangable components called
connection schemes. By assembling connection schemes in different ways
we can recreate the additive 2- and 6-spanners of Aingworth et al. and
Baswana et al. and improve on the (1+ε, β)-spanners of Elkin and Peleg,
the sublinear additive spanners of Thorup and Zwick, and the (non con-
stant) additive spanners of Baswana et al. Our constructions rival the
simplicity of all comparable algorithms and provide substantially better
spanners, in some cases reducing the density doubly exponentially.

1 Introduction

An f -spanner of an undirected, unweighted graph G is a subgraph H such that

δH(u, v) ≤ f(δG(u, v))

holds for every pair of vertices u, v, where δH is the distance metric w.r.t. H .
The premier open problem in this area is to understand the necessary tradeoffs
between the sparsity of H and the distortion function f . The problem of finding
a sparse spanner is one in the wider area of metric embeddings, where distortion
is almost universally defined to be multiplicative, of the form f(d) = t · d for
some t ≥ 1. Spanners, however, can possess substantially stronger properties.
The recent work of Elkin and Peleg [11] and Thorup and Zwick [22] shows
that the multiplicative distortion f(d)/d can tend toward 1 as d increases; in
this situation the nature of the tradeoff is between the sparsity of the spanner
and the rate of convergence. It is unknown whether this type of tradeoff is the
best possible or whether there exist arbitrarily sparse additive spanners, where
f(d) = d+O(1) and the tradeoff is between sparsity and the constant hidden in
the O(1) term.

Applications. The original application of spanners was in the efficient simulation
of synchronized protocols in unsynchronized networks [3,17]. Thereafter spanners

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 78–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Low Distortion Spanners 79

were used in the design of low-stretch routing schemes using small routing ta-
bles (see [9,19,21] and the references therein), computing almost shortest paths in
distributed networks [12], and in approximation algorithms for geometric spaces
[15]. A recent application of spanners is in the design of approximate distance
oracles and labeling schemes for arbitrary metrics; see [23,4] for further refer-
ences. Tree spanners have found a number of uses in recent years, such as solving
diagonally dominant linear systems [20] and various approximation algorithms
[13]. (Tree spanners cannot have any non-trivial distortion in the worst case so
weaker notions are used, such as average distortion and expected distortion over
a distribution of spanning trees.) In all the applications cited above the quality
of the solution is directly related to the quality of the underlying spanners.

Sparseness-Distortion Tradeoffs. It was observed early on [16,2] that a spanner
has multiplicative distortion t if and only if f(1) = t, that is, if the distance
between adjacent vertices in G is at most t in the spanner H . Althöfer et al. [2]
proved that the sparsest multiplicative t-spanner has precisely mt+2(n) edges,
where mg(n) is the maximum number of edges in a graph with n vertices and
girth at least g.1 The upper bound follows from a trivial greedy algorithm (similar
to Kruskal’s minimum spanning tree algorithm) and the lower bound is also
simple. In any graph with girth t + 2, removing any edge shifts the distance of
its endpoints from 1 to at least t+1. Thus, the only multiplicative t-spanner is
the graph itself. It is easy to show that m2k+1(n) and m2k+2(n) are O(n1+1/k)
and it has been conjectured by Erdős and others (see [24,23]) that this bound
is asymptotically tight. However, it has only been proved for k = 1, 2, 3, and 5;
see [24,23] for a longer discussion on the girth conjecture. The tradeoff between
sparseness and f(1) is fully understood inasmuch as it amounts to proving the
girth conjecture. The only other situation that is understood to a similar degree
is the threshold D beyond which f is isometric, i.e., where f(d) = d, for all
d ≥ D. Bollobas et al. [6] showed that these so called distance preservers have
Θ(n2/D) edges. The only known lower bound for an intermediate distance was
given recently by Woodruff [25], who showed that f(k) < 3k holds only if the
spanner has Ω(k−1n1+1/k) edges.2 For this size spanner the best upper bound
on f(k) is klog 3, which we show in Section 3.

It is perfectly consistent with the girth conjecture and Woodruff’s lower bound
[25] that there are spanners with size O(n1+1/k) and constant additive distortion
f(d) = d+ 2k−2, though little progress has been made in proving or disproving
their existence. Aingworth et al. [1] (see also [10,11,22]) showed that there are
additive 2-spanners with size O(n3/2), which is optimal, and Baswana et al. [5]
gave an additive 6-spanner with size O(n4/3). Below the O(n4/3) threshold the
best known tradeoff is quite weak; it is shown in [5] that there is anO(n1+ε)-sized
spanner with f(d) = d+O(n1−3ε), for any ε ∈ (0, 1/3).

One nice property of additive spanners is that f(d)/d quickly tends toward
1 as d increases. Elkin and Peleg [11] and Thorup and Zwick [22] have shown

1 Girth is the length of the shortest cycle.
2 Woodruff expressed this result as a lower bound on the additive distortion.

80 S. Pettie

that this property can be achieved without directly addressing the problem of
guaranteeing a constant additive distortion. Elkin and Peleg [11] define an (α, β)-
spanner to be one with distortion f(d) = αd + β. They show the existence of
(1 + ε, β)-spanners with size O(βn1+1/k), where β is roughly (ε−1 log k)log k.
Thorup and Zwick [22] gave a remarkably simple spanner construction with
similar but incomparable properties. They showed that there is a O(kn1+1/k)-size
(1+ε, O(

⌈
1 + 2

ε

⌉k−2))-spanner, which holds for all ε simultaneously. When ε−1 is
chosen to be Θ(d1/(k−1)) the distortion function is f(d) = d+O(d1−1/(k−1) +2k).
Notice that the β of the Thorup-Zwick spanner is exponentially larger than that
of Elkin and Peleg.

Our Results. In this paper we present a simple, modular framework for con-
structing low distortion spanners that generalizes much of the recent work on
additive and (α, β)-spanners. In our framework a spanner is expressed as a list
of connection schemes, which are essentially interchangeable components that
can be combined in various ways. This framework simplifies the construction of
spanners and greatly simplifies their analysis. Once the list of connection schemes
is fixed the size and distortion of the spanner follow from some straightforward
linear recurrences. In our framework it is possible to succinctly express the ad-
ditive 2-spanners of [1,11,22] and the additive 2- and 6-spanners of [5], as well
as the additive 4-spanner suggested in [7]. By properly combining connection
schemes we can simultaneously improve the sparseness and distortion of both
the Elkin-Peleg and Thorup-Zwick spanners.

One nice feature of our framework is that it is possible to obtain linear size
spanners with relatively good distortion. Previous to this work the only lin-
ear size spanners [2,14] had O(log n) multiplicative distortion. (The Elkin-Peleg
spanners always have Ω(n(ε−1 log logn)log logn) edges. The size of the Thorup-
Zwick spanners is Ω(n log n), though at this sparsity the guaranteed distortion
is quite weak.) We can construct an O(n)-size (5 + ε, β)-spanner, where ε > 0
is constant and β = polylog(n), as well as an additive Õ(n9/16)-spanner. Under
relatively mild assumptions we can actually push the density and multiplicative
distortion arbitrarily close to 1. For graphs with quadratic expansion there are
(1 + ε, β)-spanners with (1 + ε)n edges, for any ε > 0. By quadratic expansion
we mean that the number of vertices within distance d of any vertex is Ω(d2).

2 Notation and Overview

Throughout the paper G = (V,E) denotes the input graph. We denote by
δH(u, v) and PH(u, v) the distance from u to v in H and the associated short-
est path, respectively. In general there are many shortest paths between two
vertices. We insist that if x, y ∈ PH(u, v) then PH(x, y) ⊆ PH(u, v). When-
ever H is omitted it is assumed to be G. Our spanner constructions all refer
to vertex sets V0, V1, . . . , Vo, where V0 = V and Vi is derived by sampling Vi−1

with probability qi/qi−1, where 1 = q0 > q1 > · · · > qo. Thus, the expected
size of Vi is nqi. Let pi(v) be the closest vertex in Vi to v, breaking ties arbi-
trarily, and let radi(v) = δ(v, pi(v)). If i = o + 1 then po+1(v) is non-existent

Low Distortion Spanners 81

Connection
Scheme Connected Pairs Distortion Expected Size

A Vi × B̄i(·) exact nqi/qi+1

Vi × B̄−i (·) d+ 2(log d+ 1) n
√
qi/qi+1

B Vi × B̄1/2
i (·) ∩ Vi d+ 2 n

√
qi/qi+1

Vo × Vo d+ 2 n
√
nqo

Vi × B̄1/3
i (·) ∩ Vi exact n+ nq2i /q

3/2
i+1

C
Vo × Vo exact n+ n5/2q2o

D(r) Vi × B̄i(·) ∩ Ball(·, r) ∩ Vi exact nrq2i /qi+1

x Vi × pi+1(·) exact n

Fig. 1. The connection schemes. Here 0 ≤ i ≤ o. Schemes B and C have slightly
stronger guarantees at i = o. The notation Vi × B̄i(·) is short for {(u, v) : u ∈ Vi, v ∈
B̄i(u)}.

and rado+1(v) = ∞ by definition. Let Ball(v, r) = {u : δ(v, u) < r}. We define
Bεi (v) = Ball(v, ε ·radi+1(v)) and B−i (v) = Ball(v, radi+1(v)−1), where ε is taken
to be 1 if omitted. Let B̄xi (v) = Bxi (v) ∪ {pi+1(v)}, where x is ‘−’ or some ε.

In Section 4 we describe five connection schemes called A,B,C,D, and x.
In our framework a spanner can be expressed by choosing an order o and a list
of the connection schemes employed at each level. For instance, in our compact
notation the spanner ABB employs scheme A at level zero and scheme B at
levels 1 and 2, where in this case o = 2. When a connection scheme is employed
at level i it returns a subgraph that connects each v ∈ Vi to some subset of
the vertices in B̄i(v); the particulars depend on the scheme used. The overall
properties of the spanner are determined by the sequence of connection schemes
and, in general, a larger order o leads to a sparser spanner with higher distortion.
Figure 1 lists the specifications for the different schemes and Figure 2 lists some
of the interesting spanners that can be generated from {A,B,C,D,x}∗.

The connection schemes A,B,C,D and x all produce subgraphs that connect
certain pairs of vertices by shortest or almost shortest paths. The three features
of a connection scheme we care about are the pairs of vertices to be connected,
the guaranteed distortion, and the expected size of the subgraph as a function
of the sampling probabilities. The properties of each of the connection schemes
are given in Figure 1. (Notice that some of the connection schemes have slightly
stronger properties when used at the highest level o.) Let us decipher a few of
the lines in Figure 1. When A is used at level i it returns a subgraph Hi such
that for v ∈ Vi and u ∈ B̄i(v), δHi(v, u) = δ(v, u), and furthermore, the expected
size of Hi is on the order of nqi/qi+1. (The notation Vi × B̄i(·) is short for the
set of pairs {(v, u) : v ∈ Vi, u ∈ B̄i(v)}.) Like A, schemes C and D have no
distortion but connect fewer pairs of vertices. For v ∈ Vi, scheme C only connects
the pair (v, u) if u is in both Vi and B̄1/3

i (v). Scheme D(r) requires u to be in Vi,

82 S. Pettie

Encoding Distortion f(d) Size Notes
A2 or B d+ 2 O(n3/2) [1,10,11,5,22]
AC d+ 4 O(n3/2), Ω(n4/3) [7]
AB d+ 6 O(n4/3) [5]
Ao+1 d+O(d1−1/o + 3o) O(on1+1/o) [22]
not appl. d+O(d1−1/o + 2o) O(on1+1/o) [22]
AB2 d+O(

√
d) O(n6/5) new

AB2C d+O(d2/3) O(n25/22) new

AB2Co−2 d+O(od1−1/o) O(on1+ (3/4)o−2

7−2(3/4)o−2) new, d > oo

Very Sparse Spanners
not appl. O(d log n) O(n) [2,14]
ADlog logn (5 + ε)d O(n) new, d > ε− log logn

xCC d+ Õ(n9/16) O(n) new
xDlog logn (1 + ε)d+ β′′ (1 + ε)n new, see below
not appl. (1 + ε)d+ β O(nβ) [11]
ACO(log log ε−1)

·Dlog logn (1 + ε)d+ β′ O(n log log ε−1) new, ε < 1/ log logn

ACO(log logn) d+ Õ(d1− 1
O(log log n)) O(n log logn) new, d > polylog(n)

Fig. 2. Some of the spanners generated by {A,B,C,D(·),x}∗. Here β, β′, and β′′ are
all O(ε−1 log log n)log log n.

B̄i(v), and Ball(v, r), where r is a given parameter that influences the size of the
subgraph. Scheme B guarantees two grades of distortion. If u is in both B̄1/2

i (v)
and Vi the additive distortion is 2 and if u is in B̄−i (v) the additive distortion is
2(log d + 1), where d = δ(v, u). Scheme x simply connects every v ∈ Vi to the
nearest vertex pi+1(v) ∈ Vi+1.

In Section 3 we show how connection schemes can be composed in various ways
to yield spanners with different sparseness-distortion tradeoffs. The construction
and analysis of these spanners is inspired by the distance emulators of Thorup
and Zwick [22]. In Section 4 we present the algorithms behind schemes A and
C. See [18] for a description of the other schemes.

3 Modular Spanner Construction

In our framework a spanner is expressed as a finite sequence of connection
schemes. For instance, the spanner ABB consists of the edge sets H0, H1, and
H2, where H0 is the subgraph returned by the connection scheme A applied to
the zeroth level, and H1 and H2 are the subgraphs returned by applying B to
levels 1 and 2. The size of the spanner depends solely on the sampling probabil-
ities and there is typically one optimal choice of probabilities. For instance, for

Low Distortion Spanners 83

the spanner ABB the expected size is asymptotically n/q1 +n
√
q1/q2 +n

√
nq2,

which is optimized at q1 = n−1/5, q2 = n−3/5. The distortion of the spanner
is analyzed by solving some linear recurrences. The derivation of these recur-
rences is sketched below and formally proved in Lemma 1. Lemma 2 solves
these recurrences for the class of spanners that use schemes A,B, and C. These
three schemes are sufficient to prove our strongest sparseness-distortion trade-
offs (Theorem 1) but they are ultimately incapable of generating spanners with
o(n log logn) edges. See the full version [18] for constructions of sparser spanners.

Suppose we have a spanner H defined by a finite string τ ∈ {A,B,C}o+1.
Let τ(j) be the jth character of τ , for some 0 ≤ j ≤ o, and let Hj ⊆ H be the
subgraph returned by the connection scheme τ(j) at level j. Let v and v′ be two
vertices at distance at most Δj in the original graph, where Δ ≥ 2 is an integer.
To get from v to v′ in H we divide up P (v, v′) into segments of length Δj−1; see
Figure 3. Let v� be the first vertex in the �th segment. Using only the subgraph
H0∪· · ·∪Hj−1 we try to take short hops from v = v0 to v1, from v1 to v2, and so
on. A short hop is one whose length is at most Sj−1

Δ
. If a short hop exists we call

the associated segment successful. We will see shortly that Sj−1
Δ is usually Δj−1 +

O(jΔj−2), which means that Sj−1
Δ
/Δj−1 tends to 1 as Δ (and δ(v, v′)) increasees.

Not all segments will be successful. If we encounter a failed segment v� . . . v�+1 we
require that δH(v�, pj(v�)) = δ(v�, pj(v�)) ≤ Fj−1

Δ , where Fj−1
Δ is usually O(Δj−1).

Suppose at least one segment fails and let z and z′ be, respectively, the first
vertex of the first failed segment and the last vertex of the last failed segment.
Let s and s′ be the number of segments between v and z, and between v′ and z′,
respectively. By the definition of failure δ(z, pj(z)) and δ(z′, pj(z′)) are at most
Fj−1

Δ and by the triangle inequality δ(pj(z), pj(z′)) ≤ 2Fj−1
Δ + (Δ− s− s′)Δj−1.

If we could get from pj(z) to pj(z′) by a shortest (or almost shortest) path
in Hj then we would declare the whole path v . . . v′ a success. Whether this is
possible depends on whether pj(z′) lies within Bj(pj(z)). If τ(j) = B we actually
require that pj(z′) be within B1/2

j (pj(z)) and if τ(j) = C we would require that

pj(z′) ∈ B1/3
j (pj(z)). In any case, if there is not a short path from pj(z) to pj(z′)

we have an upper bound on radi+1(pj(z)) = O(δ(pj(z), pj(z′))), and, therefore,
an upper bound on radi+1(v) as well. In this way we can bound Sj

Δ
and Fj

Δ
in

terms of Sj−1
Δ , Fj−1

Δ , and τ(j). Formally, we define S and F with respect to some
spanner as follows.

Definition 1. Let H be a spanner defined by some finite string τ ∈ {A,B,C}∗.
We define Sj

Δ
and Fj

Δ
to be minimal such that for any two vertices v, v′ at distance

at most Δj , where 0 ≤ j ≤ o, at least one of the following inequalities holds:

δH(v, v′) ≤ Sj

Δ or δH(v, Vj+1) ≤ Fj

Δ

Notice that, despite the terminology, a path may both succeed and fail. Any two
vertices at distance at most Δo must be connected in H by a path of length at
most So

Δ, that is, every such path must be a success. Such a path cannot fail
because Vo+1 does not exist, and, therefore δH(v, Vo+1) is undefined. This simply
reflects the fact that in our connection schemes, all vertices in Vo are connected
by (nearly) shortest paths H .

84 S. Pettie

v v′

z z′

s segments s′ segments

pj(z) pj(z′)

pj+1(pj(z))

Δj−1Δj−1

Sj−1

ΔSj−1

Δ Sj−1

ΔSj−1

Δ Sj−1

ΔSj−1

ΔSj−1

ΔSj−1

Δ

Fj−1

ΔFj−1

Δ

(success)(failure)

Fig. 3. The vertices v and v′ are at distance at most Δj . The vertices z and z′ are,
respectively, the first on the first failed segment and last on the last failed segment.

Lemma 1 shows that S and F are bounded by some straightforward recur-
rences. It only considers spanners that employ scheme A at the zeroth level,
which is generally the wisest choice.

Lemma 1. Consider a spanner defined by τ = A ·{A,B,C}o. Then S0
Δ = F0

Δ =
1 holds for all Δ and:

Fj

Δ
≤

⎧
⎪⎪⎨

⎪⎪⎩

3Fj−1
Δ

+ Δj for τ(j) = A

5Fj−1
Δ

+ 2Δj for τ(j) = B

7Fj−1
Δ

+ 3Δj for τ(j) = C

Sj

Δ
≤ max of ΔSj−1

Δ
and

⎧
⎨

⎩
(Δ− 1)Sj−1

Δ + 4Fj−1
Δ + Δj−1 for τ(j) ∈ {A,C}

(Δ− 1)Sj−1
Δ + 4Fj−1

Δ + Δj−1 + 2 for τ(j) = B

Proof. For the base case, consider any adjacent v, v′ in G. If the edge (v, v′)
is in H0 (returned by A at level 0) then δ(v, v′) = 1 = S0

Δ. If not then, by the
definition of A, v′ �∈ B0(v) and δH0(v, p1(v)) = 1 = F0

Δ
. Let v, v′, z, z′, s, and s′ be

as in the above discussion; see Figure 3. If the spanner does not contain a short
path from pj(z) to pj(z′) (failure) then we can conclude that pj(z′) �∈ Bj(pj(z))
if τ(j) = A, that pj(z′) �∈ B1/2

j (pj(z)) if τ(j) = B, and that pj(z′) �∈ B1/3
j (pj(z))

if τ(j) = C. It follows that:

δ(pj(z), pj+1(pj(z))) ≤

⎧
⎨

⎩

2Fj−1
Δ + (Δ− s− s′)Δj−1 if τ(j) = A

2(2Fj−1
Δ

+ (Δ− s− s′)Δj−1) if τ(j) = B
3(2Fj−1

Δ
+ (Δ− s− s′)Δj−1) if τ(j) = C

The distance from v to Vj+1 is at most δ(v, pj+1(pj(z))), which we bound as:

Low Distortion Spanners 85

δ(v, pj+1(v)) ≤ δ(v, z) + δ(z, pj(z)) + δ(pj(z), pj+1(pj(z)))
≤ sΔj−1 + Fj−1

Δ
+ t(2Fj−1

Δ
+ (Δ− s− s′)Δj−1)

{t = 1, 2, 3 depending on τ(j)}
≤ (s+ t(Δ− s− s′))Δj−1 + (2t+ 1)Fj−1

Δ

≤ (2t+ 1)Fj−1
Δ + tΔj {worst case is s = s′ = 0}

We obtain the claimed bounds on Fj
Δ

by setting t = 1, 2, and 3 when τ(j) is,
respectively, A, B, and C. This covers the case when the path v . . . v′ is a failure.
One way for it to be a success is if each of the Δ segments is a success, that is, if
z and z′ do not exist. In general there will be some failed segments and we can
only declare the path successful if there is a short path from pj(z) to pj(z′). We
demand a shortest path if τ(j) ∈ {A,C} and tolerate an additive error of 2 if
τ(j) = B. We can now bound Sj

Δ
as follows:

δH(v, v′) ≤ max{ΔSj−1
Δ , δH(v, z) + δH(z, pj(z)) + δH(pj(z), pj(z′))

+ δH(pj(z′), z′) + δH(z′, v′)}
≤ max{ΔSj−1

Δ , (s+ s′)Sj−1
Δ + 4Fj−1

Δ + (Δ− s− s′)Δj−1 [+ 2]}
≤ max{ΔSj−1

Δ
, (Δ− 1)Sj−1

Δ
+ 4Fj−1

Δ
+Δj−1 [+ 2]}

where the “[+2]” is only present if τ(j) = B.

Lemma 2 solves these recurrences for spanners that use schemes A,B, & C.

Lemma 2. (ABC Spanners) Consider any spanner H defined by τ ∈ A ·
{A,B,C}o. If Δ ≥ 8 and c = 3Δ/(Δ− 7) then:

Fj

Δ
≤ cΔj Sj

Δ
≤

{
Δj + 4cjΔj−1 for j ≤ Δ
(4c+ 1)Δj for j ≥ Δ

Furthermore, Fo
Δ = 0, that is, if δ(u, v) ≤ Δo then δH(u, v) ≤ So

Δ.

Proof. Taking the worst cases from Lemma 1 we have Fj
Δ ≤ 7Fj−1

Δ + 3Δj and
Sj

Δ
≤ max{ΔSj−1

Δ
, (Δ − 1)Sj−1

Δ
+ 4Fj−1

Δ
+ Δj−1 + 2}. One can easily verify by

induction that Fj
Δ ≤ cΔj . To bound Sj

Δ assume inductively that it is at most
Δj + 4cjΔj−1 − 1, and for j ≥ Δ, that it is at most (4c + 1)Δj − 1; these
inequalities clearly hold for j = 1. First consider the case j ≤ Δ:

Sj

Δ ≤ max{ΔSj−1
Δ , (Δ− 1)Sj−1

Δ + 4Fj−1
Δ +Δj−1 + 2}

≤ max{Δj + 4c(j − 1)Δj−1 −Δ,
(Δ− 1)(Δj−1 + 4c(j − 1)Δj−2 − 1) + 4cΔj−1 +Δj−1 + 2}

≤ max{Δj + 4cjΔj−1 − 1,
Δj + 4c(j − 1)Δj−1 + 4cΔj−1 −

(
4c(j − 1)Δj−2 +Δ+ 1

)
}

≤ Δj + 4cjΔj−1 − 1

86 S. Pettie

Notice that for j = Δ this bound is precisely (4c+ 1)Δj − 1, which serves as our
base case for the bounds on Sj

Δ
for j > Δ:

Sj

Δ
≤ max

{
ΔSj−1

Δ
, (Δ− 1)Sj−1

Δ
+ 4Fj−1

Δ
+Δj−1 + 2

}

≤ max
{

(4c+ 1)Δj −Δ, (4c+ 1)(Δj −Δj−1) + 4cΔj−1 +Δj−1 −Δ+ 3
}

≤ (4c+ 1)Δj − 1

Lemma 2 states that in any spanner generated by some string in A·{A,B,C}o,
the distortion is given by the function f(d) = d+O(od1−1/o), provided that d is at
least 8o. As we will see in Theorem 1, o can be as large as log4/3 logn which means
that these spanners have weak guarantees for d < 8log4/3 logn < (logn)7.23. See the
full version [18] for spanners that better approximate polylogarithmic distances.

Theorem 1 illustrates some nice sparseness-distortion tradeoffs for spanners
composed of schemes A,B, and C. It only considers those generated by sequences
ABBCo−2, which turns out to optimize sparseness without significantly affect-
ing the distortion. (In other words, ABBBB would be denser than ABBCC
and could only improve lower order terms in the distortion.)

Theorem 1. The spanner generated by ABB has O(n6/5) edges and distortion
function f(d) = d+O(

√
d). The spanner generated by ABBCo−2 has O(on1+ν)

edges, where ν =
(

3
4

)o−2
/(7− 2

(
3
4

)o−2), and distortion d+O(od1−1/o + 8o).

Proof. Let H be the spanner defined by ABB. H has on the order of n/q1 +
n
√
q1/q2 + n

√
nq2 edges, which is O(n6/5) for q1 = n−1/5 and q2 = n−3/5. By

Lemma 2, if δ(v, v′) ≤ Δ2 then δH(v, v′) ≤ S2
Δ

= Δ2 + O(Δ). (Recall that
such a path cannot fail because every pair of vertices in V2 is connected by a
nearly shortest path.) In the general case let H be generated by AB2Co−2, for
some o ≥ 3. If v and v′ are at distance at most Δo ≥ 8o then by Lemma 2
δ(v, v′) ≤ min{Δo + O(oΔo−1), O(Δo)}. Thus, for any distance d (possibly
less than 8o) the distortion is f(d) = d + O(od1−1/o + 8o). We now choose the
sampling probabilities so as to optimize the size of H . They will be selected
so that each of the levels zero through o contributes about the same number of
edges, say n1+ν . Since the first three levels contribute n/q1+n

√
q1/q2+n

√
q2/q3

edges (scheme A at level 0, B at 1 and 2), it follows that q1 = n−ν , q2 = n−3ν ,
and q3 = n−5ν . Starting from the other end, level o (scheme C) contributes
n + n2.5q2o implying qo = n−3/4+ν/2. For 3 ≤ j < o, level j contributes on the
order of n+nq2j /q

3/2
j+1 edges, implying qj = q

3/4
j+1n

ν/2. Assuming inductively that

qj+1 = n
−(3

4)o−j
+ν

(
2− 3

2 (3
4)o−(j+1)

)

(which holds for the base case j + 1 = o), we
have, for 3 ≤ j < o:

qj = q
3/4
j+1n

ν/2 = n−(3
4)o−j+1

+ 3
4ν(2−

3
2 (3

4)o−(j+1)
)+ν/2 = n−(3

4)o−(j−1)
+ν(2− 3

2 (3
4)o−j

)

The only sampling probability under two constraints is q3, which means that ν
should be selected to satisfy n−5ν = n−(3

4)o−2
+ν(2− 3

2 (3
4)o−3

). This equality holds
for ν =

(
3
4

)o−2
/(7− 3

2

(
3
4

)o−3
). The size of H is, therefore, on the order of on1+ν .

Low Distortion Spanners 87

Let us briefly compare the size bounds obtained above to the spanners of
Thorup and Zwick [22]. For distortions d+O(

√
d), d+O(d2/3), and d+O(d3/4)

the spanners of Theorem 1 have sizes on the order of n6/5, n25/22, and n103/94

in contrast to n4/3, n5/4, and n6/5 obtained in [22]. The separation in density
becomes sharper as o increases. For o = log4/3 logn, the size and distortion of our
spanners is O(n log logn) and d+O(od1−1/o + oo), in contrast to [22], where the
size and distortion are O(on1+1/o) and d+O(d1−1/o+2o). In this case Theorem 1
gives a doubly exponential improvement in density. In some ways Theorem 1 is
our strongest result. However, when the order o is large (close to log4/3 logn)
and the distance being approximated very short, the spanners of Theorem 1
cannot guarantee good distortion. See the full version [18] for constructions that
address these shortcomings.

4 The Connection Schemes

We only analyze schemes A and C. See [18] for a description of B,D, and x.

Connection scheme A. The subgraph returned by A at level i is, by definition,⋃
v∈Vi,u∈B̄i(v)} P (v, u), that is, a breadth first search tree from every v ∈ Vi

containing pi+1(v) and all vertices u closer to v than pi+1(v). The expected size
of this subgraph is at most

∑
v∈V Pr[v ∈ Vi] · E[|B̄i(v)| − 1] ≤ nqi/qi+1.

Connection scheme C. To analyze scheme C we appeal to a lemma of Copper-
smith and Elkin [8]. Let Q be a set of shortest paths. We say that v is a branching
point for two paths P, P ′ ∈ Q if P and P ′ intersect and v is an endpoint on the
path P ∩ P ′. Notice that if P and P ′ have just one vertex in common it would
be the unique endpoint on the edgeless path P ∩P ′. Let br(v) be the number of
pairs P, P ′ ∈ Q for which v is a branching point , and let br(Q) =

∑
v∈V br(v).

Theorem 2. (Coppersmith and Elkin) Let Q be a set of shortest paths and
G(Q) =

⋃
P∈Q P . Then |G(Q)| ≤ n+O(

√
nbr(Q)).

Proof. Let deg(v) be the degree of v in G(Q). Notice that br(v) ≥
(
deg(v)/2�

2

)
.

There must be at least �deg(v)/2� paths in Q that intersect v, no two of which
use the same edges incident to v. Each pair of these paths contributes to br(v).
We can calculate |G(Q)| as: 1

2

∑
v deg(v) = n +

∑
v : deg(v)≥3O(

√
br(v)) = n +

O(
√
nbr(Q)). The last equality follows from the concavity of square root.

Theorem 3. Let Q = {P (v, u) : v ∈ Vi, u ∈ B̄1/3
i (v)}. Then E[|G(Q)|] = n+

O(nq2i /q
3/2
i+1). If Q′ = {P (v, u) : (v, u) ∈ Vo×Vo} then E[|G(Q′)|] = n+O(n2.5q2o).

Proof. Let v, w, v′, w′ ∈ Vi, where v′ ∈ B1/3
i (v) and w′ ∈ B1/3

i (w). We first
argue that if P (v, v′) and P (w,w′) intersect then w,w′ ∈ Bi(v). For any vertex
w, radi+1(w) ≤ δ(w, v) + radi+1(v). Thus, If w lies outside Bi(v) then B1/3

i

88 S. Pettie

(w) ∩ B1/3
i (v) must be empty. Let va be the ath farthest vertex from v = v1,

breaking ties arbitrarily.

E[br(Q)] ≤ 2
∑

v∈V,1<a<b<c
Pr[{v, va, vb, vc} ⊆ Vi ∧ {va, vb, vc} ⊆ Bi(v)]

≤
∑

v∈V,c≥4

Pr[|Bi(v)| ≥ c] · c2 · q4i ≤
∑

v,c

(1− qi+1)c · c2 · q4i = O(nq4i /q
3
i+1)

The second line follows since vc ∈ Bi(v) if and only if |Bi(v)| ≥ c, and once vc and
v = v1 are chosen there are

(
c−2
2

)
ways to choose va and vb. The last line follows

since (1 − qi+1)c is bounded by a constant for c < 1/qi+1 and geometrically
decaying thereafter. Thus, E[|G(Q)|] = n + O(

√
nbr(Q)) = n + O(nq2i /q

3/2
i+1).

Similarly, br(Q′) is sharply concentrated around its mean—at most (qi+1n)4—
and E[|G(Q′)|] = n+O(E[

√
nbr(Q′)]) = n+O(n2.5q2o).

5 Conclusion

In this paper we have shown that nearly all the recent work on additive and
low distortion spanners can be seen as merely instantiating a generic modular
algorithm. The contribution of this work is not only a simpler way to look at
spanners. On purely quantitative terms our constructions provide substantially
better distortion than [11,22] at any desired level of sparsity. Our constructions
can also produce spanners with a linear number of edges. The last construction
to achieve linearity was, quite surprisingly, Althöfer et al.’s [2] simple greedy
algorithm.

Although the specific tradeoffs of our spanners could certainly be improved,
the framework of this paper seems inherently incapable of generating arbitrarily
sparse purely additive spanners. It is unclear whether a fundamentally new tech-
nique is required to find additive spanners or whether the path-buying algorithm
of Baswana et al. [5] could be generalized for this purpose. In any case, proving
or disproving the existence of additive spanners remains the chief open problem
in this area.

Acknowledgment. Thanks to Michael Elkin, Mikkel Thorup, and Uri Zwick for
inspiring much of this work.

References

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths. SIAM J. Comput 28(4), 1167–1181 (1999)

2. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete and Computational Geometry 9, 81–100 (1993)

3. Awerbuch, B.: Complexity of network synchronization. J. ACM 32, 804–823 (1985)
4. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and

all-pairs small stretch paths. In: FOCS 2006, (2006)

Low Distortion Spanners 89

5. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α, β)-
spanners and purely additive spanners. In: SODA 2005, (2005)

6. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse subgraphs that preserve long
distances and additive spanners. SIAM J. Discr. Math. 9(4), 1029–1055 (2006)

7. Coppersmith, D., Elkin, M.: Sparse source-wise and pair-wise distance preservers.
In: SODA 2005 (2005)

8. Coppersmith, D., Elkin, M.: Sparse source-wise and pair-wise preservers. SIAM J.
Discrete Math (to appear)

9. Cowen, L.J., Wagner, C.G.: Compact roundtrip routing in directed networks. J. Al-
gor. 50(1), 79–95 (2004)

10. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Com-
put. 29(5), 1740–1759 (2000)

11. Elkin, M., Peleg, D.: (1 + ε, β)-spanner constructions for general graphs. SIAM
J. Comput. 33(3), 608–631 (2004)

12. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1 + ε, β)-spanners in
the distributed and streaming models. In: PODC 2004 (2004)

13. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

14. Halperin, S., Zwick, U.: Unpublished result 1996
15. Narasimhan, G., Smid, M.: Geometric Spanner Networks (2007)
16. Peleg, D., Schaffer, A.A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)
17. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Com-

put. 18, 740–747 (1989)
18. Pettie, S.: Low distortion spanners. See, http://www.eecs.umich.edu/∼pettie
19. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in

directed graphs. In: SODA 2002 (2002)
20. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning,

graph sparsification, and solving linear systems. In: STOC 2004 (2004)
21. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001 (2001)
22. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In:

SODA 2006 (2006)
23. Thorup, M., Zwick, U.: Approximate distance oracles. J.ACM 52, 1–24 (2005)
24. Wenger, R.: Extremal graphs with no C4’s, C6’s, or C10’s. J. Combin. Theory Ser.

B 52(1), 113–116 (1991)
25. Woodruff, D.: Lower bounds for additive spanners, emulators, and more. In: FOCS

2006 (2006)

http://www.eecs.umich.edu/~pettie

Minimum Weight 2-Edge-Connected Spanning

Subgraphs in Planar Graphs

André Berger1 and Michelangelo Grigni2

1 Department of Mathematics, Technical University Berlin, Axel-Springer-Str. 54A,
10623 Berlin, Germany

berger@math.tu-berlin.de
2 Department of Mathematics and Computer Science, Emory University,

Atlanta GA 30322, USA
mic@mathcs.emory.edu

Abstract. We present a linear time algorithm exactly solving the 2-edge
connected spanning subgraph (2-ECSS) problem in a graph of bounded
treewidth. Using this with Klein’s diameter reduction technique [15], we
find a linear time PTAS for the problem in unweighted planar graphs,
and the first PTAS for the problem in weighted planar graphs.

1 Introduction

A graph G = (V,E) is 2-edge-connected (2-EC) if G − e is connected for every
edge e ∈ E. Given G and a non-negative edge weights w ∈ �E

+, the 2-edge-
connected spanning subgraph (2-ECSS) problem is to find a 2-ECSS of G of
minimum weight. We consider PTAS (polytime approximation scheme) results.
For our purposes, a PTAS is an algorithm taking an instance (G,w) and ε > 0
as inputs, running in polynomial time for each fixed ε, and finding a solution
with weight at most 1 + ε times optimal.

Like metric TSP, the 2-ECSS problem is NP-hard, even when restricted to
unweighted planar graphs, and MAX-SNP-hard for bounded degree graphs [9].
In particular, 2-ECSS is NP-hard to approximate within 1573/1572 on graphs
of maximum degree 3 [7]. For unweighted graphs the best known polytime algo-
rithm has approximation ratio 5/4 [12], and for weighted graphs the best known
ratio is 2 [13, 14].

In Section 2 we present an algorithm solving the 2-ECSS problem exactly
in linear time for weighted graphs of bounded treewidth. Graphs of bounded
treewidth have particular algorithmic interest, since they adapt very well to
dynamic programming techniques. Moreover, graphs of small treewidth are also
related to fixed parameter algorithms and the bidimensionality theory [10].

A PTAS is known for 2-ECSS in complete geometric graphs of low dimen-
sion [9], and for unweighted planar graphs [8]. The latter PTAS runs in time
nO(1/ε). We would prefer an “efficient” PTAS (EPTAS); that is, running in time
f(ε) · nc, where c is independent of ε. Recent examples of improving a PTAS to
an EPTAS are the Euclidean TSP (nO(1/ε) [2] to O(ε−O(ε) + n logn) [18]) and

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 90–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Minimum Weight 2-Edge-Connected Spanning Subgraphs in Planar Graphs 91

the weighted planar graph TSP (nO(1/ε2) [1] to 2O(1/ε2) · n [15]). In the same
vein, we present a linear time EPTAS for the 2-ECSS problem in unweighted
planar graphs in Section 3. For this we use the diameter reduction approach,
which Klein [15] applied to the metric TSP in weighted planar graphs.

For the 2-ECSS problem in weighted planar graphs, the best previously known
polytime approximation ratio is 2, achieved by the algorithm for general weighted
graphs [13]. There is also an approximation scheme running in time
nO(logn·log(1/ε)/ε) [3], a quasi-polynomial. In Section 4 we present the first PTAS
for this problem. Again we use ideas developed for the metric TSP; however, our
situation is more complicated because it is insufficient to replace the input with
a spanner (a subgraph which approximates the original metric). Instead, at each
step of the dynamic program, we must consider using a small number of edges
which are inessential to the metric. The bounding of this number (Lemma 10)
is a key novelty in our approach.

2 An Exact Algorithm for Graphs of Bounded Treewidth

In this section we design an exact algorithm for the 2-ECSS problem in weighted
graphs of bounded treewidth. We first review basic notions for treewidth.

Definition 1. Let G = (V,E) be a graph. A tree decomposition of G is a pair
T D = ({Xi : i ∈ I}, T = (I, F)), where {Xi : i ∈ I} is a family of subsets of V
and T is a tree, satisfying:

(i)
⋃
i∈I Xi = V ,

(ii) for any edge uv ∈ E there exists an i ∈ I such that u, v ∈ Xi, and
(iii) for any v ∈ V , T [{i ∈ I : v ∈ Xi}] is a subtree of T .

The width of the tree decomposition is maxi |Xi| − 1. The treewidth tw(G) of G
is the minimum width of a tree decompositions of G.

Finding the treewidth of a graph is NP-hard. However, for a given integer k, one
can find a tree decomposition of a graph G of width at most k or decide that
tw(G) > k in time O(f(k) ·n) [5]. In [19] it was shown that f(k) = 2O(k3), which
makes the algorithm in [5] impractical for large values of k. For algorithmic
purposes a especially simple tree decomposition is very useful.

Definition 2. A tree decomposition ({Xi : i ∈ I}, T) of a graph G = (V,E)
rooted at some r ∈ I is called nice, if the following conditions are satisfied:

1. Every node of the tree T has at most two children.
2. If a node i ∈ I has two children j and k, then Xi = Xj = Xk (in this case i

is called a JOIN NODE).
3. If a node i has one child j , then either

(a) |Xi| = |Xj |+1 and Xj ⊆ Xi (in this case i is called an INSERT NODE),
or

(b) |Xi| = |Xj |−1 and Xi ⊆ Xj (in this case i is called a FORGET NODE).

92 A. Berger and M. Grigni

Lemma 1 ([17, Lemma 13.1.3]). Given a tree decomposition of a graph
G = (V,E) that has width k and O(n) nodes, where n = |V |, we can find a nice
tree decomposition of G that also has width k and O(n) nodes in time O(kn).

From now on we assume G = (V,E) is a weighted graph with weight vector
w ∈ �E

+, and we let n = |V |. Furthermore, let ({Xi : i ∈ I}, (I, F)) be a nice
tree decomposition of G of width k and order |I| = O(n), rooted at r ∈ I. For
any i ∈ I we define Vi to be the set of vertices contained in Xi and all Xj , for
which j is a descendant of i in T . Moreover, we let Gi = G[Vi]. Note that Vr = V
and Gr = G.

We now consider the problem of finding a minimum weight 2-ECSS of G
using this tree decomposition. For each i ∈ I we want to solve the following
subproblem. Given a set of edges S ⊆ E(Xi) and a graph H = (VH , EH) with
VH ∩ V = Xi, find a subgraph G(i, S,H) of Gi of minimum weight, such that
E(G(i, S,H))∩E(Xi) = ∅ and such that G(i, S,H)∪S ∪H is 2-edge-connected.
We let w(i, S,H) denote the weight of the graph G(i, S,H).

In particular, the graph G(r, S∗, H∅) ∪ S∗, where S∗ minimizes w(r, S,H∅) +
w(S∗) among all choices of S ⊆ E(Xr) (H∅ = (Xr, ∅)), is a minimum weight
2-ECSS of G. To determine w(r, S,H∅) for S ⊆ E(Xr) we will work up the tree
decomposition from the leaves to the root solving the aforementioned subprob-
lems. The graph H in a particular subproblem describes how the vertices in Xi

may be connected outside the graph Gi. We therefore refer to H as an external
type of Gi. We can think of H as a subgraph of G[(V \ Vi) ∪Xi], that is part of
a solution to the 2-ECSS problem on G, complementing the solution on Gi.

In general, there is an exponential number of subgraphs of G[(V \ Vi) ∪ Xi]
that can appear as an external type of the graph Gi. However, as we will show,
the number of external types H of the graph Gi, which must be considered for a
subproblem at the vertex i ∈ I of the tree decomposition, can be bounded only
in terms of |Xi|. Given a graph H = (VH , EH), and a subset X ⊆ VH , there
is an algorithm [8] returning a simplified graph ext(H,X), which has the same
2-edge-connected properties when used as an external type for another graph,
which shares only vertices in X with H . The detailed properties of ext(H,X)
are given in Lemma 2 and Corollary 1.

Lemma 2. Let H = (VH , EH) be a graph and X ⊆ VH . Moreover, let H ′ =
ext(H,X). Then, if H∗ is another graph with VH∗ ∩ VH = X, then H∗ ∪H is
2-EC if and only if H∗ ∪H ′ is 2-EC. Furthermore, |VH′ | ≤ 3|X | and ext(H,X)
can be found in time linear in |VH |+ |EH |.

Lemma 2 implies that G(i, S,H) = G(i, S, ext(H,Xi)), and that ext(H,Xi) does
not have too many vertices. To make the computation efficient, we need that the
number of possible external types that can appear during the algorithm is small.
We let Text(X) = {ext(H,X) : H = (VH , EH), X ⊆ VH} denote the set of all
possible graphs ext(H,X) for a fixed set of vertices X . The following corollary
gives us the bound on the number of possible external types.

Corollary 1. For any set X we have |Text(X)| = 2O(|X|·log |X|).

Minimum Weight 2-Edge-Connected Spanning Subgraphs in Planar Graphs 93

The algorithm for the 2-ECSS problem will compute the graphs G(i, S,H) and
the values w(i, S,H) for every possible choice of i ∈ I, S ⊆ E(Xi) and H ∈
Text(Xi), working up from the leaves of T to the root r. The following four
lemmata will help us prove the correctness of our algorithm.

Lemma 3. Let i ∈ I be a leaf in T . Moreover let S ⊆ E(Xi) and let H ∈
Text(Xi). Then G(i, S,H) = ∅ and w(i, S,H) = 0.

Proof. This is true by the definition of G(i, S,H). ��

Lemma 4. Let i ∈ I be a join node with children j1 and j2, S ⊆ E(Xi) and let
H ∈ Text(Xi). Then

w(i, S,H) = min
H1∈Text(Xj1)

[
w(j1, S,H1) + w(j2, S, ext(H ∪G(j1, S,H1), Xj2))

]
.

Proof. The idea of the proof is as follows. If i is a join node with children j1 and
j2, then the subgraph G(i, S,H) of Gi achieving the minimum weight w(i, S,H)
is a disjoint union of two subgraphs G1 and G2 of Gj1 and Gj2 , respectively.We
show that then G1 and G2 must be solutions to one of the previously computed
subproblems at the nodes j1 and j2, related by the formula in the lemma.

Let H1 ∈ Text(Xj1) be the graph that achieves the minimum value W on
the right hand side of the equality. Furthermore, let G1 = G(j1, S,H1) and
G2 = G(j2, S, ext(H ∪ G1, Xj2)). Now G2 ∪ S ∪ (H ∪ G1) is 2-EC and thus
G1 ∪G2 is a feasible solution to the subproblem (i, S,H). Note that G1 and G2

are edge-disjoint, since Xj1 = Xj2 and G1 and G2 both do not contain any edges
between vertices in Xj1 . Hence w(i, S,H) ≤ w(G1 ∪G2) = w(G1)+w(G2) = W .

To prove the reverse inequality, let Hopt be a subgraph of Gi with weight
w(Hopt) = w(i, S,H) such thatHopt∪S∪H is 2-EC. Let G1 = Hopt[Vj1\Xj1] and
G2 = Hopt[Vj2 \Xj2]. Also let H1 = ext(H ∪G2, Xj1). Since Hopt = G1 ∪G2, we
have that G1∪S∪H1 is 2-EC and thus w(j1, S,H1) ≤ w(G1). Next, we let G′

1 =
G(j1, S,H1), i.e. G′

1∪S∪(H∪G2) is 2-EC. Hence G2 is a feasible solution to the
subproblem (j2, S, ext(H ∪G′

1, Xj2)) and therefore w(j2, S, ext(H ∪G′
1, Xj2)) ≤

w(G2). We finally get W ≤ w(j1, S,H1) +w(j2, S, ext(H ∪G′
1, Xj2)) ≤ w(G1) +

w(G2) = w(Hopt) = w(i, S,H). ��

The proofs of the following two lemmas are similar to that of Lemma 4 and we
omit them in this abstract.

Lemma 5. Let i ∈ I be a insert node with child j, v ∈ V \ Xj such that
Xi = Xj ∪ {v}, S ⊆ E[Xi] and let H ∈ Text(Xi). Then

w(i, S,H) = w(j, S ∩ E(Xj), ext(H ∪ (S ∩ E(v,Xj)), Xj)).

Lemma 6. Let i ∈ I be a forget node with child j, v ∈ V such that Xi = Xj\{v},
S ⊆ E(Xi) and let H ∈ Text(Xi). Then

w(i, S,H) = min
S1⊆E(v,Xj)

[
w(j, S ∪ S1, H1 = (VH ∪ {v}, EH)) + w(S1)

]
.

94 A. Berger and M. Grigni

Using Lemmas 3-6, the values w(i, S,H) as well as the graphs G(i, S,H) can be
computed by using the previously computed values at the children of i in the
tree decomposition.

We now analyze the running time of the algorithm. The tree decomposi-
tion has O(n) vertices and for each i ∈ I we have 2k

2
kO(k) subproblems, since

there are at most k2 edges in E(Xi) and at most kO(k) external types for Xi

(Lemma 1). The most time consuming type of subproblem to solve is the one
described in Lemma 4, which takes 2O(k log k) time. Thus the total running time
of the algorithm is O(2O(k2) · n).

Theorem 1. The 2-ECSS problem in a weighted graph with n vertices and a
tree decomposition of width k can be solved exactly in O(2O(k2) · n) time.

The constant in the running time of the algorithm can be improved using the
following observation. Since G(i, S,H) is a graph with no edges in E(Xi), we have
that G(i, S,H) = G(i, S′, H) for all S′ that we can obtain from S by removing
chords. The detailed arguments for this claim are identical to those in the proof
of Lemma 2. Therefore, during the whole algorithm, we only have to consider
edge sets S ⊆ E(Xi) for a given subproblem (i, S,H), which have no chords. We
state the following lemma without proof.

Lemma 7. Let G = (V,E) be a graph with no chords. Then |E| ≤ 2|V | − 2.

For a given i ∈ I, therefore, we need to consider at most (k2)k = 2O(k·log k)

different subsets S ⊆ E(Xi) and we obtain the following improved running time.

Theorem 2. Let a 2-EC graph G = (V,E) be given with a tree decomposition
of width k, and let w ∈ �E

+ be a non-negative weight vector. Then, in time
O(2O(k log k) · n), one can find a 2-ECSS of G of minimum weight.

3 A Linear-Time PTAS for Unweighted Planar Graphs

We will now apply the methods from the previous section to obtain a linear time
PTAS for the 2-ECSS problem in unweighted planar graphs. (More generally,
the approach here would also work in weighted planar graphs whenever w(G) =
O(OPT).)

As in [8], we apply cycle contractions. Suppose G = (V,E) is a graph, C is
a simple cycle in G, and G/C is the result of contracting C to a vertex (we
remove any self-loops, but leave parallel edges). First observe that G is 2-EC iff
G/C is 2-EC. If H ′ is a 2-ECSS in G, then its image (H ′ ∪ C)/C is a 2-ECSS
in G/C. Conversely, if H is a 2-ECSS in G/C, we can lift it back to a 2-ECSS
H ′ = H ∪ C in G (so H ′/C = H). Thus if we can find a near-optimal 2-ECSS
H in G/C, then we also have a near-optimal 2-ECSS H ′ in G, with at most
w(C) more additive error. Furthermore, if the vertex v representing C in G/C
is a cut vertex, then the 2-ECSS problem in G/C decomposes into independent
subproblems, one per block around v.

Minimum Weight 2-Edge-Connected Spanning Subgraphs in Planar Graphs 95

The strategy to design the PTAS will be as follows. Given an unweighted
planar 2-EC graph G, let OPT denote the size of a minimum 2-ECSS of G. We
will first use methods from [4] and [15] to decompose the graph into parts of
small treewidth by contracting a set of low weight cycles and committing only a
small error to the solution. The 2-ECSS problems on the parts of small treewidth
will be solved exactly using the algorithm from Section 2. So, let G = (V,E) be
an embedded planar 2-EC graph. Our algorithm will make use of the following
lemma, which can be derived from methods in [15] and [4].

Lemma 8. Let G = (V,E) be an embedded planar graph, w ∈ �E
+, and k a

positive integer. Then one can find a set of simple, edge-disjoint cycles C, such
that w(E(C)) ≤ w(G)/k and such that the 2-ECSS problem on G/C can be
decomposed into independent 2-ECSS problems on k-outerplanar graphs.

Algorithm 1 gives a general overview of the PTAS for the unweighted planar
graph 2-ECSS problem. The subproblems considered in step 2 are 2-EC planar
graphs of outerplanarity k. Let H be such a graph. Since H is k-outerplanar,
it can be triangulated in such a way that the outerplanarity of H� is still k
and such that every vertex of H� has distance at most k to some vertex on
the infinite face. Let H� be the triangulated graph. By choosing an arbitrary
v0 on the infinite face and doing a breadth-first search on H�, we can obtain
a spanning tree T of H� of radius at most k. This spanning tree will help us
define a tree decomposition of H�. We let I be the set of triangles in H� and
two triangles i, j ∈ I form an edge ij ∈ F if and only if they share an edge in
E(H�) \E(T). Moreover, for a triangle i = {u, v, w}, we let Xi be the set of all
vertices on the three paths from u, v, and w, respectively, to the root v0 of T . It
is shown in [11], that T D = ({Xi : i ∈ I}, (I, F)) is indeed a tree decomposition
of H� of width at most 3k, and that it can be found time O(kn). Since H is a
subgraph of H�, T D is also a tree decomposition of H . We can now apply the
2-ECSS algorithm for graphs of bounded treewidth to H and T D and we obtain
the following theorem.

Theorem 3. Given an unweighted 2-EC planar graph G = (V,E) and ε > 0,
Algorithm 1 finds an (1 + ε)-approximate 2-ECSS of G in time 2O(1

ε ·log
1
ε) · n,

where n = |V |.
Proof. We first prove the approximation guarantee of the algorithm. In any
graph a 2-ECSS must use at least n edges, and therefore OPT ≥ n. Moreover,
since G is planar, |E| ≤ 3n − 6. The only error committed by the algorithm
is adding the edges in E(C), for which by Lemma 8 we have |E(C)| ≤ |E|/k ≤
(3n−6)/� 3ε� ≤ ε ·n ≤ ε ·OPT . The running time is dominated by the application
of the algorithm from Section 2, and is at most 2O(1

ε ·log
1
ε) ·n by Theorem 2. ��

Moreover, for planar graphs we can derive a better bound on the number of
external types that can occur during the dynamic program (cf. [8]). We conclude
this section with the following theorem.

Theorem 4. Given an unweighted 2-EC planar graph G = (V,E) and ε > 0,
one can find a (1+ε)-approximate 2-ECSS of G in time 2O(1/ε) ·n, where n = |V |.

96 A. Berger and M. Grigni

Input: An embedded planar 2-EC graph G = (V, E), ε > 0.
Output: A (1 + ε)-approximate 2-ECSS of G.
1: Apply Lemma 8 to G with k = �3/ε and obtain a set of cycles C.
2: for all 2-EC components H of G/C do
3: Find a tree decomposition T D of H of width at most 3k as described above.
4: Transform T D to a nice tree decomposition using Lemma 1.
5: Apply the algorithm from Section 2 to H and T D and obtain S∗

H .
6: end for
7: return the solutions S∗

H and E(C).

Algorithm 1. A PTAS for the 2-ECSS problem on unweighted planar graphs

4 A PTAS for Weighted Planar Graphs

In this section we will sketch the PTAS for the 2-ECSS problem in weighted
planar graphs. The main idea of the algorithm is similar to Algorithm 1, the
PTAS for unweighted planar graphs. If Algorithm 1 is applied to a weighted
graph G with weights w ∈ �E

+, then it will still run in linear time, however the
approximation ratio will be 1 +O(ε ·w(G)/OPT), which may be unbounded for
general weights.

To avoid this problem we first construct a spanning subgraph of the input
graph whose weight is at most constant times the optimal solution OPT . Sim-
ilarly to the algorithm for unweighted planar graphs, we would like to decom-
pose the spanner according to Lemma 8 into independent 2-ECSS problems of
bounded outerplanarity, and solve these using a dynamic program similar to
the algorithm from Section 2. However, we have to consider that certain edges
that were deleted during the construction of the spanner have to appear in any
(1 + ε)-approximate solution.

In the following we will concentrate on the construction of the desired span-
ning subgraph. For a weighted graph G = (V,E), a weight vector w ∈ �E

+ and
some s ≥ 1, an s-spanner of G is a spanning subgraph H of G, such that for
any two vertices u, v ∈ V we have distH ≤ s · distG(u, v), i.e. in H the distances
between any two vertices are approximately the same as the respective distance
in G.

Of course G itself is an s-spanner of G for any s ≥ 1, but in many applications
one seeks to find spanners with particular properties, such as few edges or small
weight, so that instead of solving the given problem on G one can instead solve
the problem on a much smaller graph. One example for this is the metric-TSP
PTAS for weighted planar graphs, which starts with replacing the input graph
by an s-spanner while effectively bounding w(G)/OPT for the remainder of the
algorithm.

Suppose now that G is a weighted embedded planar graph and H is a sub-
graph. A chord e of H is an edge of G not in H . Note that H and e inherit
embeddings from G. For each chord e we define wH(e) as the length of the
shortest walk connecting the endpoints of e along the boundary of the face of H
containing e. The spanner algorithm Augment(G,w,A, S) from [3] has as inputs

Minimum Weight 2-Edge-Connected Spanning Subgraphs in Planar Graphs 97

a weighted planar graph G = (V,E), weights w ∈ �E
+, a subgraph A of G and

some s ≥ 1. Its properties are as follows:

Lemma 9 ([3, Theorem 2]). Let H = Augment(G,w,A, s), where G, w, A
and s are as above. Then H is a s-spanner of G containing A. In particular,
wH(e) ≤ s · w(e) for any e ∈ E \ E(H). Moreover, if A is connected, then
w(H) ≤ (1 + 2/(s− 1)) · w(A).

Given a face f in H , the chords of f are the edges of G embedded inside f ,
according to G’s embedding. A face-edge e of f is an abstract edge connecting
two vertices of f ; unlike a chord, a face-edge is not necessarily an edge of G.
(If vertices appear more than once on f , we must specify which appearances we
want as the endpoints of e.) We say the face edge e crosses a chord c if c is a
chord of the same face f and their endpoints are distinct vertex appearances
on f , and they appear in cyclic “ecec” order around the boundary of f . Note
that we may embed e inside f so e intersects only the crossed chords. The
following lemma shows that the spanner has nice intersection properties with a
near-optimal solution to the 2-ECSS problem; it is key in bounding the size of
the dynamic program described later.

Lemma 10. Let G = (V,E) be a planar graph and w ∈ �E
+. Let A be a 2-

approximate 2-ECSS of G and H = Augment(G,w,A,
√

2). Furthermore, let S∗

be an optimal 2-ECSS of G and D a positive integer.
Then there exists a 2-ECSS S of G with the following properties:

1. w(S) ≤ (1 +
√

2/D) · w(S∗)
2. For any face f of H, and any face-edge e of f , the number of edges in S

crossing e is at most 2D.

Proof. Consider a face f of H and let C be the set of chords of f which are
also edges of S∗. Moreover, let Ef be the set of edges on the boundary of f .
There are potentially very many edges in S∗ crossing a particular face-edge of
f . We will remove some edges from S∗ and replace them by walks on Ef as to
maintain a 2-edge-connected subgraph S of G, while not increasing the weight
of S∗ by too much and ensuring the bound on the number of edges in S crossing
any face-edge of f .

Let S∗
f be the set of edges in S∗ embedded inside the face f , i.e. these are

edges which are not in H . The dual edges of all edges in S∗
f form a tree T ∗, and

we will orient each such dual edge in the following way. Any e = uv ∈ Sf divides
the boundary of f , i.e. Ef , into two walks P1 and P2, and we will orient the dual
edge e∗ towards that part of the boundary of f which has smaller total weight,
and we will call this walk Pe. Using the definition above this means wH(e) =
w(Pe). In particular we know by Lemma 9, w(Pe) ≤

√
2 · w(e). Moreover, any

vertex of T ∗ has indegree at most 1, since if a vertex had indegree at least two,
then two disjoint parts of Ef would both have total weight greater than w(Ef)/2,
which is a contradiction. Therefore there must exist a root vertex r of T ∗, such
that all edges in T ∗ are oriented away from r.

98 A. Berger and M. Grigni

We will now modify S∗ as follows. Let T ∗
D be the set of dual edges at distance

D from r in T ∗. For any e∗ ∈ T ∗
D, we will delete from S∗ all edges which are

dual to the edges descendant to e∗ in T ∗. Moreover, we add Pe to S∗. We call
the resulting graph S. Note that Pe ∩Pe = ∅ for any two edges e∗, e∗ ∈ T ∗

D. It is
clear that S remains a 2-ECSS of G. Further, the dual tree of edges in the newly
constructed S which are embedded in f has now depth at most D. This shows
that any face-edge of f is now crossed by at most 2D edges in S.

It remains to show that adding the walks Pe for all e∗ ∈ T ∗
D increases the

weight of S∗ by at most
√

2/D ·w(S∗
f). If e∗ ∈ T ∗

D and an edge ẽ∗ is on the path
from e∗ to r in T ∗, we say ẽ∗ ≤ e∗. For any fixed ẽ∗ ∈ E(T ∗) of distance at most
D from r we then have that

⋃
e∗∈T∗

D :ẽ∗≤e∗ Pe ⊆ Pẽ. Thus
∑

e∗∈T∗
D :ẽ∗≤e∗ w(Pe) ≤

w(Pẽ). In turn, for any fixed e∗ ∈ T ∗
D there are exactly D edges ẽ∗ with ẽ∗ ≤ e∗.

Now the total weight by which we increase the weight of the solution S∗ is∑

e∗∈T∗
D

w(Pe) ≤ 1/D ·
∑

e∗∈T∗
D

∑

ẽ∗≤e∗

w(Pe) ≤ 1/D ·
∑

ẽ∗∈T∗

∑

e∗∈T∗
D :ẽ∗≤e∗

w(Pe) ≤ 1/D ·
∑

ẽ∗∈T∗

w(Pẽ) ≤
√

2/D · w(S∗
f). When doing this procedure for all faces of H , we

obtain the desired 2-ECSS S of G. For each face f of H we added edges to S∗

of weight at most
√

2/D ·w(S∗
f), so the total weight added to S∗ for all faces of

H is at most
√

2/D · w(S∗). ��
Algorithm 2 gives a high-level description of the PTAS for the weighted 2-ECSS
problem in planar graphs. Algorithm 3 is a dynamic program based on the ideas
from Section 2 and is discussed more thoroughly below. In order for Algorithm 2

Input: A planar 2-EC graph G = (V, E), edge weights w ∈ �E
+, ε > 0.

Output: A (1 + ε)-approximate 2-ECSS of G.
1: Find a 2-approximate 2-ECSS A of G (e.g. using [13]).
2: H = Augment(G,

√
2, A)

3: Apply Lemma 8 to H with k = � 24
ε
 and obtain a set of cycles C.

4: for all 2-EC components F = (VF , EF) of H/C do
5: Apply Algorithm 3 to F with D = � 4

ε
 and obtain SF .

6: end for
7: return the union of the solutions SF and E(C).

Algorithm 2. A PTAS for the 2-ECSS problem on weighted planar graphs

to be a PTAS for the 2-ECSS problem on weighted planar graphs, we have to
make use of Lemma 10, which guarantees that there exists a 2-ECSS of G of
weight at most (1+

√
2/D)·OPT ≤ (1+ε/2)·OPT , which crosses each face edge

of the spannerH at most 2D times. Algorithm 3 finds a minimum weight 2-ECSS
of G which satisfies this condition for only a certain subset of all face-edges, and
therefore it also has weight at most (1 + ε/2) ·OPT .

Theorem 5. Given a planar 2-EC graph G = (V,E) and ε > 0, Algorithm 2
computes an (1 + ε)-approximate 2-ECSS of G in time nO(1/ε2), where n = |V |.

Minimum Weight 2-Edge-Connected Spanning Subgraphs in Planar Graphs 99

Proof. Let us first prove the approximation guarantee of the algorithm. By
Lemma 9 we have that w(H) ≤ (1 + 1/(

√
2− 1)) ·w(A) ≤ 12 ·OPT , since A is a

2-approximate 2-ECSS of G. Applying Lemma 8 in step 3 with k = � 24ε � yields
a collection of cycles of weight at most w(H)/k ≤ 12 · OPT/� 24ε � ≤

ε
2 · OPT .

Therefore, by committing the cycles in C to our solution, we add an error of at
most ε

2 ·OPT to the solution.
For each 2-EC component F of H/C, we find a (1+ε/2)-approximate 2-ECSS

of F as argued above, and all the 2-ECSS problems on those 2-EC components
are independent as described in Section 3. In step 7 we combine the solutions
and their total weight is at most (1+ε/2) ·OPT . Together with C they comprise
a 2-ECSS of the original input graph G, whose total cost is at most (1+ε)·OPT .

The overall running time is dominated by the application of Algorithm 3 in
steps 4-6 and is bounded by nO(kD) = nO(1/ε2). ��

We will now sketch the ideas for Algorithm 3. Let F = (VF , EF) be a 2-EC
component of H/C. We denote by CF the set of edges from the original input
graph G which were deleted during the construction of the spanner H and are
now “missing” from F . Note that F ∪ CF is still a planar graph.

We can triangulate each face of F (as described in Section 3), to obtain a
planar graph F� and a spanning tree T of F� of radius at most k. Moreover,
let E� = E(F�) \ EF . Some of the edges in T may be edges in EF and some
may be edges in E�, and we let T� = E(T)∩E�. We will make use of the same
tree decomposition of F� as used in the PTAS for unweighted planar graphs.
For a vertex u ∈ VF let Pu denote the path from u to the root vr of T , and for
a triangle i = �uvw, we denote by Pi = Pu ∪ Pv ∪ Pw the union of the three
paths from u, v and w to vr. Remember, we can obtain a tree decomposition
T D = ({Xi : i ∈ I}, TT D) of F� by letting I be the set of triangles in F� and
by letting Xi = V (Pi) for each i ∈ I. Two triangles i, j ∈ I are connected by an
edge in TT D if and only if they share an edge which is not in T . T D is a tree
decomposition of F� and therefore also of F of width at most 3k, and every
i ∈ I has degree at most 3 in TT D. We apply Lemma 1 to T D and change it
to a nice tree decomposition, then each Xi (i ∈ I) is still the vertex set of the
union of three paths Pu, Pv and Pw, but now u, v and w do not necessarily lie
on a triangle of F�.

We now define the subproblems that we want to solve in our dynamic program.
For an edge e ∈ T�, let Ce ⊆ CF be the set of edges in CF crossing e. Let now
i ∈ I be a node of the tree decomposition. The set of edges in CF crossing any
edge in Pi is denoted by Ci =

⋃

e∈Pi

Ce. Moreover, we let S ⊆ EF (Xi) be a set

of edges of F with both endpoints in Xi. Furthermore, let C ⊆ Ci be a set of
crossing edges, such that |C ∩ Ce| ≤ 2D for any e ∈ Pi ∩ T�. Finally, for any
subproblem we also have to define an external type on the vertices in Xi and
V (C), the endpoints of edges in C. Thus let also a Ĥ ∈ Text(Xi ∪ V (C)) be
given.

The subproblem (i, S, C, Ĥ) is now the following. Find a subgraph F ∗ =
F (i, S, C, Ĥ) of F [Vi]∪CF of minimum weight w(i, S, C, Ĥ), such that F ∗∪H is

100 A. Berger and M. Grigni

2-edge-connected, F ∗ ∩ EF (Xi) = S and such that F ∗ ∩ Ci = C. If we let
(S∗, C∗) = argmin{w(r, S, C, Ĥ∅) : S ⊆ EF (Xr), C ⊆ Ci : |C ∩ Ce| ≤ 2D for all
e ∈ Pr ∩ T�}, then F (r, S∗, C∗, Ĥ∅) is a minimum weight 2-ECSS of F ∪ CF
which crosses each edge in Pr ∩ T� at most 2D times. Therefore the weight of
that solution, i.e. w(r, S∗, C∗, Ĥ∅), is at most the weight of a minimum weight
2-ECSS of F ∩ CF which crosses all edges in T� at most 2D times. This is the
property we needed in the proof of Theorem 5.

Computing the values w(i, S, C, Ĥ) and the graphs F (i, S, C, Ĥ) can be done
using Lemmas similar to Lemmas 3-6. The running time is nO(kD); we omit its
analysis, except to remark it is dominated by considering all subsets C of O(kD)
crossing edges.

Input: A planar graph F , a set of edges CF and D (as described above).
Output: A 2-ECSS of F ∪ CF .
1: Triangulate F and obtain F � of radius ≤ k.
2: Find a spanning tree T of F � of radius ≤ k.
3: Find a tree decomposition T D of F � of width at most 3k using T .
4: Refine T D and obtain T D, a nice tree decomposition with root r.
5: Solve the dynamic program on T D as described above.
6: (S∗, C∗) = argmin{w(r, S, C, Ĥ∅) : S ⊆ EF (Xr), C ⊆ Ci : |C∩Ce| ≤ 2D for all e ∈
Pr ∩ T �}.

7: return F (r, S∗, C∗, Ĥ∅)

Algorithm 3. Generalized 2-ECSS for planar graphs

5 Future Work

The PTAS results of this paper are likely to carry over to the 2-VCSS prob-
lem (minimum weight 2-vertex-connected spanning subgraph), as happened be-
fore [8]. A question motivated by the TSP is whether we can find a PTAS for
the “Steiner” version of the 2-ECSS problem. That is, along with the graph G,
we are given a subset R of “required” vertices; we must find a 2-EC subgraph
spanning at least the vertices in R. For the subset version of planar metric TSP,
Klein’s subset spanner construction [16] yields an EPTAS. A similar subset span-
ner construction yields another EPTAS for the Steiner tree problem in planar
graphs [6]. We can apply Klein’s subset spanner construction to generalize our
Lemma 9; however, the generalization of Lemma 10 remains a roadblock.

References

1. Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A.: A polynomial-time
approximation scheme for weighted planar graph TSP. In: Proceedings of the Ninth
Annual ACM-SIAM SODA, pp. 33–41. ACM Press, New York (1998)

2. Arora, S.: Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. In: Proceedings of the Thirtyseventh Annual FOCS, pp. 2–11.
IEEE Computer Society Press, Los Alamitos (1996)

Minimum Weight 2-Edge-Connected Spanning Subgraphs in Planar Graphs 101

3. Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation Schemes for Min-
imum 2-Connected Spanning Subgraphs in Weighted Planar Graphs. In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 472–483. Springer, Hei-
delberg (2005)

4. Berger, A., Grigni, M., Zhao, H.: A well-connected separator for planar graphs.
Technical Report TR-2004-026-A, Emory University (2004)

5. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

6. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A Polynomial-Time Approxima-
tion Scheme for Steiner Tree in Planar Graphs. In: Proceedings of the Eighteenth
Annual ACM-SIAM SODA, ACM Press, New York (2007)

7. Csaba, B., Karpinski, M., Krysta, P.: Approximability of dense and sparse instances
of minimum 2-connectivity, TSP and path problems. In: Proceedings of the 13th
Annual ACM-SIAM Symposium On Discrete Mathematics (SODA), pp. 74–83.
ACM Press, New York (2002)

8. Czumaj, A., Grigni, M., Sissokho, P., Zhao, H.: Approximation schemes for mini-
mum 2-edge-connected and biconnected subgraphs in planar graphs. In: Proceed-
ings of the Fifteenth Annual ACM-SIAM SODA, pp. 489–498. ACM Press, New
York (2004)

9. Czumaj, A., Lingas, A.: On approximability of the minimumcost k-connected span-
ning subgraph problem. In: Proceedings of the Tenth Annual ACM-SIAM SODA,
pp. 281–290. ACM Press, New York (1999)

10. Demaine, E.D., Hajiaghayi, M.: Fast algorithms for hard graph problems: Bidimen-
sionality, minors, and local treewidth. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383,
pp. 517–533. Springer, Heidelberg (2005)

11. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Jour-
nal of Graph Algorithms and Applications 3(3), 1–27 (1999)

12. Jothi, R., Raghavachari, B., Varadarajan, S.: A 5/4-approximation algorithm for
minimum 2-edge-connectivity. In: Proceedings of the Fourteenth Annual ACM-
SIAM SODA, pp. 725–734. ACM Press, New York (2003)

13. Khuller, S.: Approximation algorithms for finding highly connected subgraphs. In:
Dorit, S. (ed.) Approximation Algorithms for NP-hard Problems, PWS Publishing,
Company (1996)

14. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. Jour-
nal of the ACM 41(2), 214–235 (1994)

15. Klein, P.N.: A linear-time approximation scheme for planar weighted TSP. In:
Proceedings of the 46th Annual IEEE FOCS, pp. 647–657. IEEE Computer Society
Press, Los Alamitos (2005)

16. Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP.
In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 749–756. ACM Press, New York (2006)

17. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Berlin (1994)
18. Rao, S.B., Smith, W.D.: Approximating geometrical graphs via “spanners” and

“banyans”. In: Proceedings of the Thirtieth annual ACM Symposium on Theory
of Computing (STOC 1998), pp. 540–550. ACM Press, New York (1998)

19. Röhrig, H.: Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-
Institut für Informatik in Saarbrücken (1998)

Labeling Schemes for Vertex Connectivity

Amos Korman�

Information Systems Group, Faculty of IE&M, The Technion, Haifa, 32000 Israel
pandit@tx.technion.ac.il

Abstract. This paper studies labeling schemes for the vertex connec-
tivity function on general graphs. We consider the problem of labeling
the nodes of any n-node graph is such a way that given the labels of two
nodes u and v, one can decide whether u and v are k-vertex connected
in G, i.e., whether there exist k vertex disjoint paths connecting u and
v. The paper establishes an upper bound of k2 log n on the number of
bits used in a label. The best previous upper bound for the label size of
such labeling scheme is 2k log n.

Key words: Graph algorithms, vertex-connectivity, labeling schemes.

1 Introduction

1.1 Problem and Motivation

Network representations have played an extensive and often crucial role in many
domains of computer science, ranging from data structures, graph algorithms to
distributed computing and communication networks. Traditional network rep-
resentations are usually global in nature; in order to derive useful information,
one must access a global data structure representing the entire network, even if
the sought information is local, pertaining to only a few nodes.

In contrast, the notion of labeling schemes (introduced in [6,7,16]) involves
using a more localized representation of the network. The idea is to associate
with each vertex a label, selected in a such way, that will allow us to infer
information about any two vertices directly from their labels, without using any
additional information sources. Hence in essence, this method bases the entire
representation on the set of labels alone.

Obviously, labels of unrestricted size can be used to encode any desired infor-
mation, including in particular the entire graph structure. Our focus is thus on
informative labeling schemes using relatively short labels (say, of length poly-
logarithmic in n). Labeling schemes of this type were recently developed for dif-
ferent graph families and for a variety information types, including vertex adja-
cency [6,7,16,5,26], distance [27,20,15,14,12,17,29,8,1,26], tree routing [10,11,30],
vertex-connectivity [21,5], flow [23,21], tree ancestry [3,4,19], nearest common
ancestor in trees [2] and various other tree functions, such as center and sepa-
ration level [28]. See [13] for a survey on static labeling schemes. The dynamic
version was studied in [25,24,9,22].
� Supported in part at the Technion by an Aly Kaufman fellowship.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 102–109, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Labeling Schemes for Vertex Connectivity 103

The current paper studies informative labeling schemes supporting the vertex
connectivity function of general graphs. This type of information may be useful
in the decision making process required for various reservation-based routing
and connection establishment mechanisms in communication networks, in which
it is desirable to have accurate information about the potential number of avail-
able routes between any two given endpoints. We establish a labeling scheme
supporting the k-vertex connectivity function of general n-node graphs using
k2 logn-bit labels. The best previous upper bound for the label size of such a
labeling scheme was shown in [21] to be 2k logn.

1.2 Labeling Schemes

Let f be a function on pairs of vertices. An f -labeling scheme π = 〈M,D〉 for
the graph family G is composed of the following components:

1. A marker algorithmM that given a graph in G, assigns labels to its vertices.
2. A polynomial time decoder algorithm D that given the labels L(u) and L(v)

of two vertices u and v in some graph in G, outputs f(u, v).

It is important to note that the decoder D, responsible of the f -computation,
is independent of G or of the number of vertices in it. Thus D can be viewed
as a method for computing f -values in a “distributed” fashion, given any set of
labels and knowing that the graph belongs to some specific family G. In contrast,
the labels contain some information that can be precomputed by considering the
whole graph structure. Therefore, in a sense, the area of labeling schemes can
be considered as intermediate between the sequential and distributed fields.

The most commonly complexity measure used to evaluate a labeling scheme
π = 〈M,D〉 is the Label Size, LM(G): the maximum number of bits in a label
assigned by the marker algorithm M to any vertex in any graph in G. Finally,
given a function f and a graph family G, let

L(f,G) = min{LM(G) | ∃D, 〈M,D〉 is an f labeling scheme for G}.

1.3 Vertex Connectivity

Let G = 〈V,E〉 be an unweighted undirected graph. A set of paths P connecting
the vertices u and w in G is vertex-disjoint if each vertex except u and w appears
in at most one path p ∈ P . The vertex-connectivity v-conn(u,w) of two vertices
u and w in G equals the cardinality of the largest set P of vertex-disjoint paths
connecting them. By Menger’s theorem (cf. [31]), for non-adjacent u and w,
v-conn(u,w) equals the minimum number of vertices in G\{u,w} whose removal
from G disconnects u from w. (When a vertex is removed, all its incident edges
are removed as well.)

1.4 Related Work and Our Contribution

Labeling schemes supporting the k-vertex connectivity function on general n-
node graphs were previously studied in [21]. The label sizes achieved therein are

104 A. Korman

logn for k = 1, 3 logn for k = 2, 5 logn for k = 3 and 2k logn for k > 3. Based
on a counting argument, the authors also present a lower bound of Ω(k log n

k3)
for the required label size of such a labeling scheme.

In [5] the authors establish an adjacency labeling scheme on n-node trees using
logn+O(log∗ n)-bit labels. Using this adjacency labeling scheme they show how
to reduce the upper bounds on the label size of k-vertex connectivity labeling
schemes to 2 logn+O(log∗ n) in the the case k = 2 and to 4 logn+O(log∗ n) in
the the case k = 3.

In this paper we establish a k-vertex connectivity labeling scheme on general
n-node graphs using k2 logn-bit labels.

2 Preliminaries

In an undirected graph G, two vertices u and v are called k-connected if there
exist at least k vertex-disjoint paths between them, i.e., if v-conn(u, v) ≥ k.
Given a graph G = 〈V,E〉 and two vertices u from v in V , a set S ⊆ V separates
u from v if u and v are not connected in the vertex induced subgraph G \ S.

Theorem 1. [Menger] (cf. [31]) In an undirected graph G, two non-adjacent
vertices u and v are k-connected iff no set S ⊂ G \ {u, v} of k − 1 vertices can
separate u from v in G.

The k-connectivity graph of G = 〈V,E〉 is Ck(G) = 〈V,E′〉, where (u, v) ∈ E′ iff
u and v are k-connected in G. A graph G is closed under k-connectivity if any
two k-connected vertices in G are also neighbors in G. Let C(k) be the family of
all graphs which are closed under k-connectivity. Two subgraphs H,F ∈ G are
vertex-disjoint subgraphs if they share no common vertex. For graphs G = 〈V,E〉
and Gi = 〈Vi, Ei〉, i > 1, we say that G can be decomposed into the Gi’s if⋃
i Vi = V and

⋃
i Ei = E.

Observation 2. 1. If G ∈ C(k) then each connected component of G belongs
to C(k).

2. If G = H ∪ F where H,F ∈ C(k) are vertex-disjoint subgraphs of G, then
G ∈ C(k).

The following two lemmas are taken from [21].

Lemma 1. For every graph G, if u and v are k-connected in Ck(G) then they
are neighbors in Ck(G), i.e., Ck(G) ∈ C(k).

Lemma 2. Let G′ = 〈V,E′〉 where E′ = E ∪ {(u, v)} for some pair of k-
connected vertices u and v. Then G and G′ have the same k-connectivity graph,
i.e., Ck(G) = Ck(G′).

A graph G is called k-orientable if there exists an orientation of the edges such
that the out-degree of each vertex is bounded from above by k. The class of
k-orientable graphs is denoted Jor(k).

Observation 3. If G = H ∪ F where H,F ∈ Jor(k) are vertex-disjoint sub-
graphs of G, then G ∈ Jor(k).

Labeling Schemes for Vertex Connectivity 105

3 Vertex-Connectivity Labeling Schemes for General
Graphs

Let Gn denote the family of all undirected graphs with at most n vertices. In this
section we present a k-vertex connectivity labeling scheme for the graph family
Gn using k2 logn-bit labels. Let Cn(k) = C(k)

⋂
Gn, i.e, Cn(k) is the family of all

graphs with at most n vertices, which are closed under k-connectivity.
As in [21], we rely on the basic observation that labeling k-connectivity for

some graph G is equivalent to labeling adjacency for Ck(G). By Lemma 1,
Ck(G) ∈ Cn(k) for every graph G ∈ Gn. Therefore, instead of presenting a
k-connectivity labeling scheme Gn, we present an adjacency labeling scheme for
the graph family Cn(k).

The general idea used in [21] for labeling adjacency for some G ∈ Cn(k), is
to decompose G into a ‘simple’ k-orientable graph in Gn and two other graphs
belonging to Cn(k−1). The labeling algorithm of [21] recursively labels subgraphs
of G that belong to Cn(t) for t < k. Since adjacency in a k-orientable graph in
Gn can be encoded using k logn-bit labels, the resulted labels in the recursive
labeling use at most 2k logn bits. Our main technical contribution in this paper
is to show that any graph G ∈ Cn(k) can be decomposed into a ‘simple’ k-
orientable graph and (only) one other graph belonging to Cn(k−1). Thus, using
a recursive labeling we obtain our k2 log n upper bound.

3.1 The Decomposition

Consider a graph G ∈ Cn(k), and let C1, ..., Cm be its connected components.
Fix i and let C = Ci be one of these connected components. By the first part in
Observation 2, C ∈ C(k).

Let T ≡ T (C) denote a BFS tree spanning C rooted at some vertex r. For a
vertex v ∈ C, let hight(v) denote its hight in T , i.e, its (hop) distance in T to
the root r. An uncle of a vertex v ∈ C is a neighbor of v (in the graph C) at
hight hight(v)− 1. For every vertex v ∈ C, let Degup(v) denote the number of
v’s uncles. For a vertex v ∈ C, let Deg∗up(v) = min(Degup(v), k).

We now define a k-orientable subgraph of C called K. For each vertex v ∈ C,
let U(v) be some set containing Deg∗up(v) uncles of v. The graph K is the graph
obtained by the set of edges {(v, u) | v ∈ C and u ∈ U(v)}. Clearly, K is a
k-orientable graph. Let H be the graph obtained from C by removing the edges
of K, i.e., H = C \K. Note that H may not be connected.

Lemma 3. If u and v are k − 1 connected in H then they are neighbors in C.

Proof. Let u and v be two vertices which are k− 1 connected in H . Assume, by
contradiction, that u and v are not neighbors in C. Since C ∈ C(k), then u and
v are also not k-connected in C. Therefore, by Menger’s theorem, since u and v
are non-adjacent in C, there exist a set S ⊂ C \ {u, v} of k − 1 vertices which
separates u from v in C. In particular, S separates u from v in H . Let s ∈ S
be a vertex of lowest hight among the vertices in S, and let S′ = S \ {s}. Note

106 A. Korman

that since u and v are k− 1 connected in H , there is no strict subset of S which
separates u from v in H . In particular, there exists a path P in H \ {S′} which
connects u with v. Note that s must belong to P .

We now show that in C, the set S does not separate u from the root r of C.
If s is not an ancestor of u in T then clearly, S does not separate u from r even
in T . Otherwise, if s is an ancestor of u in T , let w be the child of s in the path
P . Note that w is also an ancestor of u (possibly w is u itself). Since the edge
(w, s) belongs to H , it follows that w has at least k + 1 uncles in C. Therefore,
w has an uncle not in S. Moreover, since there is no vertex in S of smaller hight
than s, we obtain that there is a path connecting w and r in C \ {S}. Since
the subpath of P connecting u and w also belongs to C \ {S}, we obtain that
in C, the set S does not separate u from r. Similarly, v is connected to r in
C \ {S}. It therefore follows that in C, the set S does not separate u from v.
Contradiction.

Lemma 4. C can be decomposed into a graph in C(k−1) and a (k−1)-orientable
graph.

Proof. Transform the graph H into Ĥ = H ∪ Ck−1(H) by adding the edges
of Ck−1(H) to H , one by one. By induction on the steps of this process using
Lemma 2, we get Ck−1(Ĥ) = Ck−1(H) ⊆ Ĥ . Therefore, Ĥ ∈ C(k − 1). By
Lemma 3, Ĥ is a subgraph of C. It therefore follows that C can be decomposed
to the graph Ĥ ∈ C(k − 1) and the k-orientable graph K.

Using Observations 2 and 3, we obtain the following corollary.

Corollary 1. Each G ∈ Cn(k) can be decomposed into a graph in Cn(k− 1) and
a (k − 1)-orientable graph in Gn.

Using induction, we get the following corollary.

Corollary 2. Each G ∈ Cn(k) can be decomposed into a graph G1 ∈ Cn(1) and
k − 1 graphs G2, G3, · · · , Gk such that for each 2 ≤ i ≤ k, the graph Gi is an
(i− 1)-orientable graph in Gn.

3.2 The Labeling Scheme

We begin with the following simple observation.

Observation 4. Let Jn(k) = Jor(k)
⋂
Gn be the family of k-orientable graphs

with at most n vertices. Then L(adjacency,Jn(k)) ≤ (k + 1)�logn�.

Proof. Given a graph K ∈ Jn(k), we first assign a unique identifier id(u) in the
range {1, 2, · · · , n} to each node u ∈ K. We may assume that id(u) is encoded
using precisely �logn� bits. (If id(u) is encoded using less than �logn� bits,
simply pad enough zeros to the left of the encoding.) We now orient the edges of
the k-orientable graph K such that each node u ∈ K, points to at most k nodes.

Labeling Schemes for Vertex Connectivity 107

For each node u ∈ K, let N(u) denote the set of nodes pointed by u. We have
|N(u)| ≤ k.

The label Lor(u) assigned to each node u consists of |N(u)|+1 fields. Each field
contains exactly �logn� bits. The first field contains id(u), and the other fields
contain the identifiers of the nodes in N(u). Given the labels Lor(u) and Lor(v)
of two vertices u and v, the decoder outputs 1 iff either the first field in Lor(u)
appears as a field in Lor(v) or the first field in Lor(v) appears as a field in Lor(u).
Clearly, this is a correct adjacency labeling scheme for Jn(k) with label size at
most (k+1)�logn�.

Theorem 5. L(adjacency, Cn(k)) ≤ k2 logn.

Proof. We describe an adjacency labeling scheme π = 〈M,D〉 for Cn(k). Given
a graph G ∈ Cn(k), we decompose G according to Corollary 2. Note that since a
graph in Cn(1) is simply a collection of cliques, L(adjacency, Cn(1)) ≤ �logn�. In
other words, there exists an adjacency labeling scheme π1 = 〈M1,D1〉 for Cn(1)
of size �logn�. For a vertex u ∈ G1, let L1(u) denote the label given to u by π1.
By Observation 4, there exists an adjacency labeling scheme πi = 〈Mi,Di〉 for
Jn(i) with label size (i+ 1)�logn�. For each 2 ≤ i ≤ k and each vertex u ∈ Gi,
let Li(u) denote the label given to u by πi−1. As before, we may assume that for
each 1 ≤ i ≤ k and each vertex u ∈ G, the label Li(u) is encoded using precisely
i�logn� bits.

For every vertex u ∈ G, the label given by the marker algorithmM is L(u) =
〈L1(u), L2(u), · · · , Lk(u)〉. Given the labels L(u) and L(v) of two vertices u and
v in some G ∈ C(k), the decoder D outputs 1 iff there exists 1 ≤ i ≤ k such that
Di(Li(u), Li(v)) = 1.

The fact that the labeling scheme π is a correct adjacency labeling scheme for
Cn(k) follows from Corollary 2 and from the correctness of the adjacency labeling
schemes πi. The fact that the label size of π is at most k(k+1)

2 ·�logn� follows from
Observation 4. If k > 3, then k(k+1)

2 · �logn� ≤ k2 logn. Therefore, the theorem
follows by combining this inequality with the results of [21] for the cases k =
1, 2 and 3.

Corollary 3. L(k − v-conn,Gn) ≤ k2 logn.

References

1. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees.
In: Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York
(2003)

2. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest Common Ancestors: A
Survey and a new Distributed Algorithm. Theory of Computing Systems 37, 441–
456 (2004)

3. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries.
In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York
(2001)

108 A. Korman

4. Alstrup, S., Rauhe, T.: Improved Labeling Scheme for Ancestor Queries. In: Proc.
19th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2002)

5. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph
representations. In: Proc. 43’rd annual IEEE Symp. on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos (2002)

6. Breuer, M.A.: Coding the vertexes of a graph. IEEE Trans. on Information The-
ory IT-12, 148–153 (1966)

7. Breuer, M.A., Folkman, J.: An unexpected result on coding the vertices of a graph.
J. of Mathematical Analysis and Applications 20, 583–600 (1967)

8. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries
via 2-hop Labels. In: Proc. 13th ACM-SIAM Symp. on Discrete Algorithms, ACM
Press, New York (2002)

9. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. In: Proc. 21st ACM
Symp. on Principles of Database Systems (June 2002)

10. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg
(2001)

11. Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Proc.
19th Symp. on Theoretical Aspects of Computer Science (March 2002)

12. Gavoille, C., Paul, C.: Split decomposition and distance labelling: an optimal
scheme for distance hereditary graphs. In: Proc. European Conf. on Combinatorics,
Graph Theory and Applications (September 2001)

13. Gavoille, C., Peleg, D.: Compact and Localized Distributed Data Structures. J. of
Distributed Computing 16, 111–120 (2003)

14. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate Distance
Labeling Schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161,
pp. 476–488. Springer, Heidelberg (2001)

15. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In: Proc.
12th ACM-SIAM Symp. on Discrete Algorithms, pp. 210–219. ACM Press, New
York (2001)

16. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. on
Descrete Math 5, 596–603 (1992)

17. Kaplan, H., Milo, T.: Short and simple labels for small distances and other func-
tions. In: Workshop on Algorithms and Data Structures (August 2001)

18. Kaplan, H., Milo, T.: Parent and ancestor queries using a compact index. In: Proc.
20th ACM Symp. on Principles of Database Systems (May 2001)

19. Kaplan, H., Milo, T., Shabo, R.: A Comparison of Labeling Schemes for Ancestor
Queries. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, ACM Press,
New York (2002)

20. Katz, M., Katz, N.A., Peleg, D.: Distance labeling schemes for well-separated graph
classes. In: Proc. 17th Symp. on Theoretical Aspects of Computer Science, pp. 516–
528 (February 2000)

21. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and con-
nectivity. SIAM Journal on Computing 34, 23–40 (2004)

22. Korman, A.: General Compact Labeling Schemes for Dynamic Trees. In: Proc. 19th
International Symp. on Distributed Computing (September 2005)

23. Korman, A., Kutten, S.: Distributed Verification of Minimum Spanning Trees.
Proc. 25th Annual Symposium on Principles of Distributed Computing (July 2006)

24. Korman, A., Peleg, D.: Labeling Schemes for Weighted Dynamic Trees. In: Proc.
30th Int. Colloq. on Automata, Languages & Prog. Eindhoven, The Netherlands,
July 2003, SV LNCS (2003)

Labeling Schemes for Vertex Connectivity 109

25. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks.
Theory of Computing Systems 37, 49–75 (2004)

26. Korman, A., Peleg, D., Rodeh, Y.: Constructing Labeling Schemes through Uni-
versal Matrices. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, Springer, Hei-
delberg (2006)

27. Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Proc.
25th Int. Workshop on Graph-Theoretic Concepts in Computer Science, pp. 30–41
(1999)

28. Peleg, D.: Informative labeling schemes for graphs. In: Nielsen, M., Rovan, B. (eds.)
MFCS 2000. LNCS, vol. 1893, pp. 579–588. Springer, Heidelberg (2000)

29. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. of the ACM 51, 993–1024 (2004)

30. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on
Parallel Algorithms and Architecture, pp. 1–10, Hersonissos, Crete, Greece, July
(2001)

31. Even, S.: Graph Algorithms. Computer Science Press (1979)

Unbounded-Error One-Way Classical and

Quantum Communication Complexity

Kazuo Iwama1,�, Harumichi Nishimura2,��,
Rudy Raymond3, and Shigeru Yamashita4,���

1 School of Informatics, Kyoto University, Kyoto 606-8501, Sakyo-ku,
Yoshida-Honmachi, Japan
iwama@kuis.kyoto-u.ac.jp

2 School of Science, Osaka Prefecture University, Sakai 599-8531, Gakuen-cho, Japan
hnishimura@mi.s.osakafu-u.ac.jp

3 Tokyo Research Laboratory, IBM Japan, Yamato 242-8502,
Simotsuruma 1623-14, Japan

raymond@jp.ibm.com
4 Graduate School of Information Science, Nara Institute of Science and Technology

Nara 630-0192, Ikoma, Takayama-cho 8916-5, Japan
ger@is.naist.ac.jp

Abstract. This paper studies the gap between quantum one-way com-
munication complexity Q(f) and its classical counterpart C(f), under
the unbounded-error setting, i.e., it is enough that the success probabil-
ity is strictly greater than 1/2. It is proved that for any (total or partial)
Boolean function f , Q(f) = �C(f)/2, i.e., the former is always exactly
one half as large as the latter. The result has an application to obtaining
an exact bound for the existence of (m, n, p)-QRAC which is the n-qubit
random access coding that can recover any one of m original bits with
success probability ≥ p. We can prove that (m, n, > 1/2)-QRAC ex-
ists if and only if m ≤ 22n − 1. Previously, only the non-existence of
(22n, n, > 1/2)-QRAC was known.

1 Introduction

Communication complexity is probably the most popular model for studying
the performance gap between classical and quantum computations. Even if re-
stricted to the one-way private-coin setting (which means no shared randomness
or entanglement), several interesting developments have been reported in the
last couple of years. For promise problems, i.e., if we are allowed to use the fact
that inputs to Alice and Bob satisfy some special property, exponential gaps are
known: Bar-Yossef, Jayram and Kerenidis [5] constructed a relation to provide

� Supported in part by Scientific Research Grant, Ministry of Japan, 16092101.
�� Supported in part by Scientific Research Grant, Ministry of Japan, 19700011.

��� Supported in part by Scientific Research Grant, Ministry of Japan, 16092218 and
19700010.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 110–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Unbounded-Error One-Way Classical and Quantum 111

an exponential gap, Θ(log n) vs. Θ(
√
n), between one-way quantum and clas-

sical communication complexities. Recently, Gavinsky et al. [11] showed that a
similar exponential gap also exists for a partial Boolean function.

For total Boolean functions, i.e., if there is no available promise, there are
no known exponential or even non-linear gaps: As mentioned in [1], the equality
function is a total Boolean function for which the one-way quantum communica-
tion complexity is approximately one half, (1/2 + o(1)) logn vs. (1− o(1)) log n,
of the classical counterpart. This is the largest known gap so far. On the other
hand, there are total Boolean functions for which virtually no gap exists be-
tween quantum and classical communication complexities. For example, with p
denoting the success probability, those complexity gaps are only a smaller order
additive term, (1 − H(p))n vs. (1 − H(p))n + O(log n), for the index function
[4,20], and n−2 log 1

2p−1 [21] vs. n (with n−O(log 1
2p−1) as the lower bound)[18]

for the inner product function. Note that all the results so far mentioned are ob-
tained under the bounded-error assumption, i.e., p ≥ 1/2 + α for some constant
α which is independent of the size of Boolean functions.

Thus there seem to be a lot of varieties, depending on specific Boolean func-
tions, in the quantum/classical gap of one-way communication complexity. In
this paper it is shown that such varieties completely disappear if we use the
unbounded-error model where it is enough that the success probability is strictly
greater than 1/2.

1.1 Our Contribution

We show that one-way quantum communication complexity of any (total or
partial) Boolean function is always exactly (without a deviation of even ±1)
one half of the one-way classical communication complexity in the unbounded-
error setting. The study of unbounded-error (classical) communication complex-
ity was initiated by Paturi and Simon [23]. They characterized almost tightly
the unbounded-error one-way communication complexity of Boolean function f ,
denoted by C(f), in terms of a geometrical measure kf which is the minimum
dimension of the arrangement of points and hyperplanes. Namely, they proved
that �log kf � ≤ C(f) ≤ �log kf �+1. We show that such a characterization is also
applicable to the unbounded-error one-way quantum communication complexity
Q(f). To this end, we need to link accurately the one-way quantum communi-
cation protocol to the arrangement of points and hyperplanes, which turns out
to be possible using geometric facts on quantum states [14,17]. As a result we
show that Q(f) = �log(kf + 1)/2�. Moreover, we also remove the small gap in
[23], proving C(f) = �log(kf + 1)�. This enables us to provide the exact relation
between Q(f) and C(f), i.e., Q(f) = �C(f)/2�.

Our characterizations of Q(f) and C(f) have an application to quantum ran-
dom access coding (QRAC) and classical random access coding (RAC) intro-
duced by Ambainis et al. [4]. The (m,n, p)-QRAC (resp. (m,n, p)-RAC) is the
n-qubit (resp. n-bit) coding that can recover any one of m bits with success
probability ≥ p. The asymptotic relation among the three parameters m,n, p
was shown in [4] and [20]: If (m,n, p)-QRAC exists, then n ≥ (1 − H(p))m,

112 K. Iwama et al.

while there exists (m,n, p)-RAC if n ≤ (1 −H(p))m + O(logm). This relation
gives us a tight bound on n when p is relatively far from 1/2. Unfortunately
these inequalities give us little information under the unbounded-error setting
or when p is very close to 1/2, because the value of (1 − H(p))m become less
than one. Hayashi et al. [13] showed that (m,n, p)-QRAC with p > 1/2 does
not exist when m = 22n. Our characterization directly shows that this is tight,
that is, (m,n,> 1/2)-QRAC exists if and only if m ≤ 22n − 1, which solves
the remained open problem in [13]. A similar tight result on the existence of
(m,n,> 1/2)-RAC is also obtained from our characterization. Moreover, we
also give concrete constructions of such QRAC and RAC with an analysis of
their success probability.

1.2 Related Work

We mainly focus on the gap between classical and quantum communication
complexities.

Partial/Total Boolean Functions. For total functions, the one-way quantum
communication complexity is nicely characterized or bounded below in several
ways. Klauck [15] characterized the one-way communication complexity of total
Boolean functions by the number of different rows of the communication matrix
in the exact setting, i.e., the success probability is one, and showed that it equals
to the one-way deterministic communication complexity. Also, he gave a lower
bound of bounded-error one-way quantum communication complexity of total
Boolean functions by the VC dimension. Aaronson [1,2] presented lower bounds
of the one-way quantum communication complexity that are also applicable for
partial Boolean functions. His lower bounds are given in terms of the deter-
ministic or bounded-error classical communication complexity and the length of
Bob’s input, which are shown to be tight by using the partial Boolean function
of Gavinsky et al. [11].

One-way/Two-way/SMP Models. Two-way communication model is also
popular. It is known that the two-way communication complexity has a non-
linear quantum/classical gap for total functions in the bounded-error model.
The current largest gap is quadratic. Buhrman, Cleve and Wigderson [6] showed
that the almost quadratic gap, O(

√
n logn) vs. Ω(n), exists for the disjointness

function. This gap was improved to O(
√
n) vs. Ω(n) in [3], which turned out

to be optimal within a constant factor for the disjointness function [24]. On the
contrary, in the unbounded-error setting, two-way communication model can be
simulated by one-way model with only at most one bit additional communica-
tion [23]. In the simultaneous message passing (SMP) model where we have a
referee other than Alice and Bob, an exponential quantum/classical gap for total
functions was shown by Buhrman et al. [7].

Private-coin/Public-coin Models. The exponential quantum/classical sep-
arations in [5] and [11] still hold under the public-coin model where Alice and
Bob share random coins, since the one-way classical public-coin model can be

Unbounded-Error One-Way Classical and Quantum 113

simulated by the one-way classical private-coin model with additional O(log n)-
bit communication [19]. However, exponential quantum/classical separation for
total functions remains open for all of the bounded-error two-way, one-way and
SMP models. Note that the public-coin model is too powerful in the unbounded-
error model: we can easily see that the unbounded-error one-way (classical or
quantum) communication complexity of any function (or relation) is at most 1
with prior shared randomness.

Unbounded-error Models. Since the seminal paper [23], the unbounded-
error (classical) one-way communication complexity has been developed in the
literature [8,9,10]. Klauck [16] also studied a variant of the unbounded-error
quantum and classical communication complexity, called the weakly unbounded-
error communication complexity: the cost is communication (qu)bits plus log 1/ε
where 1/2 + ε is the success probability. He characterized the discrepancy, a use-
ful measure for bounded-error communication complexity [18], in terms of the
weakly unbounded-error communication complexity.

2 Preliminaries

For basic notations of quantum computing, see [22]. In this paper, a “function”
represents both total and partial Boolean functions.

Communication Complexity. The two-party communication complexity
model is defined as follows. One party, say Alice, has input x from a finite set
X and another party, say Bob, input y from a finite set Y . One of them, say, Bob
wants to compute the value f(x, y) for a function f . (In some cases, relations are
considered instead of functions.) Their communication process is called a quantum
(resp. classical) protocol if the communication is done by using quantum bits (resp.
classical bits). In particular, the protocol is called one-way if the communication is
only from Alice to Bob. The communication cost of the protocol is the maximum
number of (qu)bits needed over all (x, y) ∈ X×Y by the protocol. The unbounded-
error one-way quantum (resp. classical) communication complexity of f , denoted
by Q(f) (resp. C(f)), is the communication cost of the best one-way quantum
(resp. classical) protocol with success probability strictly larger than 1/2. In what
follows, the term “classical” is often omitted when it is clear from the context. We
denote the communication matrix of f by MMMf = ((−1)f(x,y)). (We use the bold
font letters for denoting vectors and matrices.)

Arrangements. The notion of arrangement has often been used as one of the
basic concepts in computer science such as computational geometry and learning
theory. The arrangement of points and hyperplanes has two well-studied mea-
sures: the minimum dimension and margin complexity. We use the former, as
in [23], to characterize the unbounded-error one-way communication complexity
(while the latter was used in [12] to give a lower bound of bounded-error quan-
tum communication complexity under prior shared entanglement). A point in Rn

is denoted by the corresponding n-dimensional real vector. Also, a hyperplane
{(ai) ∈ Rn |

∑n
i=1 aihi = hn+1} on Rn is denoted by the (n + 1)-dimensional

114 K. Iwama et al.

real vector h = (h1, . . . , hn, hn+1), meaning that any point (ai) on the plane
satisfies the equation

∑n
i=1 aihi = hn+1. A {1,−1}-valued matrix MMM on X × Y

is realizable by an arrangement of a set of |X | points px = (px1 , . . . , pxk) and a set
of |Y | hyperplanes hy = (hy1 , . . . , h

y
k, h

y
k+1) in Rk if for any x ∈ X and y ∈ Y ,

δ(px,hy) := sign(
∑k

i=1 p
x
i h

y
i − h

y
k+1) is equal to MMM(x, y). Here, sign(a) = 1 if

a > 0, −1 if a < 0, and 0 otherwise. Intuitively, the point lies above, below,
or on the plane if δ(px,hy) = 1, −1, and 0, respectively. The value k is called
the dimension of the arrangement. Let kMMM denote the smallest dimension of all
arrangements that realize MMM . In particular, if MMM = MMMf then we say that f is
realized by the arrangement, and denote kMMM by kf .

Bloch Vector Representations of Quantum States. Mathematically, the
N -level quantum state is represented by an N ×N positive matrix ρρρ satisfying
Tr(ρρρ) = 1. (Note that if N = 2n then ρρρ is considered as a quantum state that
consists of n qubits.) In this paper we use N × N matrices IIIN ,λλλ1, . . . ,λλλN2−1,
called generator matrices, as a basis to represent N -level quantum states. Here,
IIIN is the identity matrix (the subscript N is often omitted), and λλλi’s are the
generators of SU(N) satisfying (i) λλλi = λλλ†i , (ii) Tr(λλλi) = 0 and (iii) Tr(λλλiλλλj) =
2δij . Then, the following lemma is known (see, e.g., [17]).

Lemma 1. For any N -level quantum state ρρρ and any N×N generator matrices
λλλi’s, there exists an (N2 − 1)-dimensional vector r = (ri) such that ρρρ can be
written as

ρρρ =
1
N

⎛

⎝III +

√
N(N − 1)

2

N2−1∑

i=1

riλλλi

⎞

⎠ . (1)

The vector r in this lemma is often called the Bloch vector of ρρρ. Note that λλλi
can be any generator matrices satisfying the above conditions. In particular, it

is well-known [22] that for N = 2 one can choose σσσ1 =
(

1 0
0 −1

)
, σσσ2 =

(
0 1
1 0

)
,

and σσσ3 =
(

0 −ı
ı 0

)
of Pauli matrices as λλλ1,λλλ2, and λλλ3, respectively. Generally

for N = 2n, one can choose the tensor products of Pauli matrices (including III)
multiplied by

√
2/N for λλλ1, . . . ,λλλN2−1.

Note that Lemma 1 is a necessary condition for ρρρ to be a quantum state.
Although our knowledge of the sufficient condition is relatively weak (say, see
[14,17]), the following two lemmas on the mathematical description of N -level
quantum states are enough for our purpose.

Lemma 2 ([17]). Let r=
√∑N2−1

i=1 r2i . Then, ρρρ= 1
N

(
III+

√
N(N−1)

2

∑N2−1
i=1 riλλλi

)

is a quantum state if and only if r ≤
√

2
N(N−1)

1

|m(
∑N2−1

i=1 (ri
r)λλλi)|

, where m(AAA)

denotes the minimum of eigenvalues of a matrix AAA, and λλλi’s are any generator
matrices.

Lemma 3 ([14]). Let B(RN2−1) be the set of Bloch vectors of all N -level quan-
tum states. Let Drs(RN2−1) = {r ∈ RN2−1 | |r| ≤ 1

N−1} (called the small

Unbounded-Error One-Way Classical and Quantum 115

ball), and Drl
(RN2−1) = {r ∈ RN2−1 | |r| ≤ 1} (called the large ball). Then,

Drs(RN2−1) ⊆ B(RN2−1) ⊆ Drl
(RN2−1).

3 Quantum Tight Bound

In [13], we gave a geometric view of the quantum protocol on random access
coding. It turns out that this view together with the notion of arrangements is
a powerful tool for characterizing the unbounded-error one-way quantum com-
munication complexity.

Theorem 1. Q(f) = �log(kf + 1)/2� for every function f : X × Y → {0, 1}.
The outline of the proof is as follows: In Lemma 4 we first establish a rela-
tion similar to Lemma 1 between a POVM (Positive Operator-Valued Measure)
{EEE,I − EI − EI − E} over n qubits and a (22n−1)-dimensional (Bloch) vector h(EEE). Then,
we prepare Lemma 5 to show that the measurement results of POVM {EEE,I − EI − EI − E}
on a state ρρρ correspond to the arrangement operation δ(r(ρρρ),h(EEE)), where r(ρρρ)
is the Bloch vector for ρρρ.

Now in order to proveQ(f) ≥ �log(kf +1)/2�, suppose that there is a protocol
whose communication complexity is n. This means for any x ∈ X and y ∈ Y , we
have n-qubit states ρρρx and POVMs {EEEy, III −EEEy} such that: (i) the dimensions
of r(ρρρx) and h(EEEy) are 22n − 1 and 22n (by Lemmas 1 and 4, and note that
N = 2n), and (ii) MMMf (x, y) = sign(Tr(EEEyρρρx)− 1/2) = δ(r(ρρρx),h(EEEy)) (the first
equality by the assumption and the second one by Lemma 5). By (ii) we can
conclude that the arrangement of points r(ρρρx) and hyperplanes h(EEEy) realizes
f , and by (i) its dimension is 22n− 1. Thus, kf is at most 22n− 1, implying that
n (= Q(f)) ≥ �log(kf + 1)/2�.

To prove the converse, suppose that there exists an (N2 − 1)-dimensional
arrangement of points rx and hyperplanes hy realizing f . For simplicity, suppose
that N2 − 1 = kf (see the proof of Theorem 1 for the details). Let us fix some
generator matrices λλλi’s. However, ρρρx obtained directly from λλλi’s and rx by Eq.(1)
may not be a valid quantum state. Fortunately, by Lemma 6 we can simply
multiply rx by a fixed constant factor to obtain r′x such that r′x lies in the
small ball in Lemma 3 and therefore corresponds to an n-qubit state ρρρ(r′x).
Similarly, by Lemma 7 we can get h′

y corresponding to POVM {EEE(h′
y), III −

EEE(h′
y)}. Obviously, the arrangement of points r′x and hyperplanes h′

y realizes f ,
its dimension is the same N2 − 1 and the corresponding ρρρ(r′x) and {EEE(h′

y), III −
EEE(h′

y)} are an N -level (or �logN�-qubit) quantum state and a POVM over N -
level quantum states, respectively. Now, by Lemma 5, we can compute f(x, y)
by sign(Tr(EEE(h′

y)ρρρ(r′x))− 1/2), which means Q(f) ≤ �logN� = �log(kf + 1)/2�.
According to the above outline, we start to present technical lemmas whose

proofs are omitted. The following lemma, shown similarly as Lemma 1, is a
necessary condition for {EEE,III −EEE} to be a POVM.

Lemma 4. For any POVM {EEE,III−EEE} over N -level quantum states and N ×N
generator matrices λλλi’s, there exists an N2-dimensional vector e = (ei) such
that EEE can be written as EEE = eN2III +

∑N2−1
i=1 eiλλλi.

116 K. Iwama et al.

We call the above vector e = (e1, . . . , eN2−1, eN2) the Bloch vector of POVM
{EEE,III−EEE}. The next lemma relates the probability distribution of binary values
obtained by measuring a quantum state ρρρ with a POVM {EEE,III −EEE} with their
Bloch vectors.

Lemma 5. Let r = (ri) ∈ RN2−1 and e = (ei) ∈ RN2
be the Bloch vectors of

an N -level quantum state ρρρ and a POVM {EEE,III −EEE}. Then, the probability that
the measurement value 0 is obtained is

Tr (EEEρρρ) = eN2 +

√
2(N − 1)

N

N2−1∑

i=1

riei.

The last two lemmas provide a shrink-and-shift mapping from any real vectors
and hyperplanes to, respectively, Bloch vectors of quantum states lying in the
small ball of Lemma 3 and POVMs.

Lemma 6. (1) For any r = (r1, r2, . . . , rk) ∈ Rk and N satisfying N2 ≥ k + 1,

ρρρ(r) =
1
N

(

III +

√
N(N − 1)

2

k∑

i=1

(
ri

|r|(N − 1)

)
λλλi

)

is an N -level quantum state.
(2) If ρρρ(r) is a quantum state, then ρρρ(γr) is also a quantum state for any

γ ≤ 1.

Lemma 7. For any hyperplane h = (h1, . . . , hk, hk+1) ∈ Rk+1, let N be any
number such that N2 ≥ k + 1, and let α, β be two positive numbers that are at
most 1

2

(
|hk+1|+h

√
2(N−1)

N

) where h =
∑k

i=1 h
2
i . Then, the N2-dimensional vector

defined by h(α, β) = (βh1, . . . , βhk, 0, . . . , 0, 1/2− αhk+1) is the Bloch vector of
a POVM {EEE0,EEE1} over N -level quantum states, where EEE0 and EEE1 are given as

EEE0 =
(

1
2
− αhk+1

)
III+β

k∑

i=1

hiλλλi and EEE1 =
(

1
2

+ αhk+1

)
III−β

k∑

i=1

hiλλλi. (2)

Now we prove our main theorem in this section.

Proof of Theorem 1. kf is simply written as k in this proof.
(Q(f) ≥ �log(k + 1)/2�). Let n = Q(f) and N = 2n. Assume that there

is an n-qubit protocol for f . That is, Alice on input x sends an n-qubit state
ρρρx to Bob with input y. He then measures ρρρx with a POVM {EEEy, III − EEEy} so
that sign(Tr(EEEyρρρx) − 1/2) = MMMf (x, y). From Lemmas 1 and 4 we can define
the points px = (pxi) ∈ RN2−1 and hyperplanes hy = (hyi) ∈ RN2

so that px is

the Bloch vector of ρρρx, and hy =
(√

2(N−1)
N ey1, . . . ,

√
2(N−1)

N eyN2−1, 1/2− e
y
N2

)

where ey = (eyi) is the Bloch vector of the POVM {EEEy, III −EEEy}. Notice that by

Unbounded-Error One-Way Classical and Quantum 117

Lemma 5, Tr(EEEyρρρx) = eyN2 +
√

2(N−1)
N

∑N2−1
i=1 pxi e

y
i , which is > 1/2 ifMMMf (x, y) =

1 and < 1/2 if MMMf (x, y) = −1 by assumption. Thus, we can see that

δ(px,hy) = sign

⎛

⎝eyN2 +

√
2(N − 1)

N

N2−1∑

i=1

pxi e
y
i − 1/2

⎞

⎠ =MMMf (x, y),

meaning that there exists an arrangement of points and hyperplanes in RN2−1

which realizes f . Thus, by definition, k is at most N2−1 = 22n−1 which implies
Q(f) = n ≥ �log(k + 1)/2�.

(Q(f) ≤ �log(k + 1)/2�). Suppose that there is a k-dimensional arrangement
of points px = (pxi) ∈ Rk and hyperplanes hy = (hyi) ∈ Rk+1 that realizes MMMf .
That is, δ(px,hy) = MMMf (x, y) for every (x, y) ∈ X × Y . By carefully shrinking
and shifting this arrangement into Bloch vectors in the small ball, we will show
the construction of an n-qubit protocol for f , that is, n-qubit states ρρρx for Alice
and POVMs {EEEy, III −EEEy} for Bob with the smallest n satisfying k ≤ 22n − 1,
and hence obtain Q(f) ≤ n = �log(k + 1)/2�.

Let γx = min
{

1
|px|(2n−1) ,

1
2n−1

}
for each x ∈ X . Then, since (2n)2 ≥ k + 1,

Lemma 6 implies that 1
2n

(
III +

√
2n(2n−1)

2

∑k
i=1 γxp

x
i λλλi

)
is an n-qubit state, and

hence γxpx is the Bloch vector of its qubit state. Moreover, Lemma 7 implies that
by taking βy = 1

2

(
|hy

k+1|+
√∑

k
i=1(h

y
i)2

√
2(2n−1)

2n

) , hy(βy, βy) = (βyh
y
1, . . . , βyh

y
k, 0,

. . . , 0, 1/2− βyhyk+1) is the Bloch vector of a POVM over n-qubit states.

Now let γ = 1√
2
minx∈Xγx, β = miny∈Y βy, and α =

√
2(2n−1)

2n γβ. Since
γ ≤ γx for any x ∈ X and 0 < α < β ≤ βy for any y ∈ Y , Lemmas 6(2) and
7 show that γpx and hy(β, α) are also the Bloch vectors of an n-qubit state ρρρx
and a POVM {EEEy, III −EEEy} over n-qubit states, respectively. By Lemma 5, the
probability that the measurement value 0 is obtained is

Tr(EEEyρρρx) =
1
2
− αhyk+1 +

√
2(2n − 1)

2n
γβ

k∑

i=1

pxi h
y
i =

1
2

+ α

(
k∑

i=1

pxi h
y
i − h

y
k+1

)

=
{
> 1/2 if MMMf (x, y) = 1
< 1/2 if MMMf (x, y) = −1,

where the last inequality comes from the assumption. Therefore, the states ρρρx
and POVMs {EEEy, III −EEEy} can be used to obtain an n-qubit protocol for f . �

Combined with the results in [8,10], Theorem 1 gives us a nontrivial bound
for the inner product function IPn (i.e., IPn(x, y) =

∑n
i=1 xiyi mod 2 for any

x = x1 · · ·xn ∈ {0, 1}n and y = y1 · · · yn ∈ {0, 1}n). Note that the bounded-error
quantum communication complexity is at least n − O(1), and n/2 − O(1) even
if we allow two-way protocol and prior entanglement [21].

Corollary 1. �n/4� ≤ Q(IPn) ≤ �((log 3)n+ 2)/4�.

118 K. Iwama et al.

4 Classical Tight Bound

Paturi and Simon [23] shows that for every function f : X × Y → {0, 1},
�log kf� ≤ C(f) ≤ �log kf�+ 1. We remove this small gap as follows.

Theorem 2. C(f) = �log(kf + 1)� for every function f : X × Y → {0, 1}.

Proof. Let k = kf in this proof.
(C(f) ≥ �log (k + 1)�). Let N = 2C(f). Suppose that there is a C(f)-bit pro-

tocol for f . Paturi and Simon (in Theorem 2 in [23]) gave an N -dimensional ar-
rangement of points px = (pxi) ∈ RN and hyperplanes hy = (hy1 , . . . , h

y
N , 1/2) ∈

RN+1, that is, δ(px,hy) = MMMf (x, y) for every (x, y) ∈ X × Y . Noting that
the points px are probabilistic vectors satisfying

∑N
i=1 pi = 1, we can reduce

the dimension of the arrangement to N − 1. We define qx = (qxi) ∈ RN−1 and
ly = (lyi) ∈ RN from px and hy, respectively, as follows: qx =

(
px1 , p

x
2 , . . . , p

x
N−1

)

and ly =
(
hy1 − h

y
N , h

y
2 − h

y
N , . . . , h

y
N−1 − h

y
N ,

1
2 − h

y
N

)
. From the assumption

and pxN = 1−
∑N−1

i pxi ,

N−1∑

i=1

qxi l
y
i − l

y
N =

N−1∑

i=1

pxi (hyi − h
y
N)− 1

2
+ hyN =

N−1∑

i=1

pxi h
y
i −

1
2

+ hyN −
N−1∑

i=1

pxi h
y
N

=
N∑

i=1

pxi h
y
i −

1
2

=
{
> 0 if MMMf (x, y) = 1
< 0 if MMMf (x, y) = −1.

Thus, δ(qx, ly) = MMMf (x, y) for every (x, y) ∈ X × Y . That is, Mf is realizable
by the (N − 1)-dimensional arrangement of points qx and hyperplanes ly. By
definition, k ≤ N − 1 = 2C(f) − 1, which means that C(f) ≥ �log (k + 1)�.

(C(f) ≤ �log (k + 1)�). The proof is also based on that of Theorem 2 of Paturi
and Simon [23]. They showed the existence of a protocol where Alice (with input
x) sends a probabilistic mixture of (at most) k + 2 different messages to Bob
(with input y). In this proof we reduce the number of messages to k+1. That is,
we construct the following protocol using k + 1 different messages: Alice sends
a message Sj with probability qxj where j ∈ [k + 1], and Bob outputs 0 with
probability lyj upon receiving Sj . Here, [n] := {1, 2, . . . , n} for any n ∈ N. We
will show that the probability that Bob outputs 0, represented as

∑k+1
j=1 q

x
j l
y
j , is

> 1/2 if MMMf (x, y) = 1 and < 1/2 if MMMf (x, y) = −1.
Assume that there exists a k-dimensional arrangement of points px = (pxi) ∈

Rk and hyperplanes hy = (hyi) ∈ Rk+1 that realizes MMMf , that is, δ(px,hy) =
MMMf (x, y) for every (x, y) ∈ X × Y . Let s = maxx∈Xmaxi∈[k]|pxi |, αx = 1 +
∑k

i=1(s + pxi) for each x ∈ X , and βy = max(|hy1 |, . . . , |h
y
k|, |h

y
k+1 + s

∑k
i=1 h

y
i |)

for each y ∈ Y . Then, we define qx = (qxi) ∈ Rk+1 and ly = (lyi) ∈ Rk+1 by qx =
(
s+px

1
αx

,
s+px

2
αx

, . . . ,
s+px

k

αx
, 1
αx

)
and ly =

(
1
2 + hy

1
2βy

, 1
2 + hy

k

2βy
, 1

2 −
hy

k+1+s
∑k

i=1 h
y
i

2βy

)
. It

Unbounded-Error One-Way Classical and Quantum 119

can be easily checked that 0 ≤ qxi ≤ 1 for all (x, i) ∈ X × [k],
∑k+1

i=1 q
x
i = 1, and

0 ≤ lyi ≤ 1 for all (y, i) ∈ Y × [k + 1]. Moreover,
k+1∑

i=1

qxi l
y
i =

k∑

i=1

(
s+ pxi
αx

)(
1
2

+
hyi
2βy

)
+

1
αx

(
1
2
−
hyk+1 + s

∑k
i=1 h

y
i

2βy

)

=
1
2

+
1

2αxβy

(
k∑

i=1

hyi p
x
i − h

y
k+1

)

=
{
> 1/2 if MMMf (x, y) = 1
< 1/2 if MMMf (x, y) = −1.

Hence, given a k-dimensional arrangement of points and hyperplanes realizing
MMMf , we can construct a protocol using at most k + 1 different messages for f .
This means that C(f) ≤ �log (k + 1)�. This completes the proof.

Now we obtain our main result in this paper.

Theorem 3. For every function f : X × Y → {0, 1}, Q(f) = �C(f)/2�.

5 Applications to Random Access Coding

In this section we discuss the random access coding as an application of our
characterizations of Q(f) and C(f). The concept of quantum random access
coding (QRAC) and the classical random access coding (RAC) were introduced
by Ambainis et al. [4]. The (m,n, p)-QRAC (resp. (m,n, p)-RAC) is an encoding
of m bits using n qubits (resp. n bits) so that any one of the m bits can be
obtained with probability at least p. In fact, the function computed by the RAC
(or QRAC) is known before as the index function in the context of communi-
cation complexity. It is denoted as INDEXn(x, i) = xi for any x ∈ {0, 1}n and
i ∈ [n] (see [18]).

5.1 Existence of QRAC and RAC

First we use Theorems 1 and 2 to show the existence of RAC and QRAC. As
seen in [23], the smallest dimension of arrangements realizing INDEXn is n.
Thus, Theorem 1 gives us the following corollary for its unbounded-error one-
way quantum communication complexity.

Corollary 2. Q(INDEXn) = �log(n+ 1)/2�.
Similarly, Theorem 2 gives its classical counterpart, which is tighter than [23].

Corollary 3. C(INDEXn) = �log(n+ 1)�.
Since random access coding is the same as INDEXn as Boolean functions, the
following tight results are obtained for the existence of random access coding.

Corollary 4. (22n − 1, n,> 1/2)-QRAC exists, but (22n, n,> 1/2)-QRAC does
not exist. Moreover, (2n− 1, n,> 1/2)-RAC exists, but (2n, n,> 1/2)-RAC does
not exist.

Corollary 4 solves the open problem in [13] in its best possible form. It also
implies the non-existence of (2, 1, > 1/2)-RAC shown in [4]. Note that this fact
does not come directly from the characterization of C(f) in [23].

120 K. Iwama et al.

5.2 Explicit Constructions of QRAC and RAC

In this subsection, we give an explicit construction of (22n− 1, n,> 1/2)-QRAC
and (2n− 1, n,> 1/2)-RAC that leads to a better success probability than what
obtained from direct applications of Theorems 1 and 2. For the case of QRAC,
the construction is based on the proof idea of Theorem 1 combined with the
property of the index function. Their proofs are omitted due to space constraint.

Theorem 4. For any n ≥ 1, there exists a (22n − 1, n, p)-QRAC such that
p ≥ 1

2 + 1

2
√

(2n−1)(22n−1)
.

We can also obtain the upper bound of the success probability of (22n− 1, n, p)-
QRAC from the asymptotic bound by Ambainis et al. [4]: For any (22n−1, n, p)-

QRAC, p ≤ 1
2 +

√
(ln2)n
22n−1 . It remains open to close the gap between the lower

and upper bounds of the success probability.
Similarly, for the case of RAC we have the following theorem.

Theorem 5. There exists a (2n − 1, n, p)-RAC such that p ≥ 1
2 + 1

2(2n+1−5) .

The success probability of (2n−1, n, p)-RAC can also be bounded by the asymp-

totic bound in [4] : For any (2n − 1, n, p)-QRAC, p ≤ 1
2 +

√
(ln2)n
2n−1 .

6 Concluding Remarks

We proved the tight possible separation between unbounded-error one-way quan-
tum and classical communication complexities for Boolean functions. However,
it still remains open whether similar results hold for the two-way case, and for
the case of computing non-Boolean functions (such as relational problems).

Acknowledgements

R.R. would like to thank David Avis of McGill Univ. for introducing the world
of arrangements, and Kazuyoshi Hidaka and Hiroyuki Okano of Tokyo Research
Lab. of IBM Japan for their supports. We also thank Tsuyoshi Ito of Univ. of
Tokyo and Hans Ulrich Simon of Ruhr-Universität Bochum for helpful discussion.

References

1. Aaronson, S.: Limitation of quantum advice and one-way communication. Theory
of Computing 1, 1–28 (2005)

2. Aaronson, S.: The learnability of quantum states, quant-ph/0608142
3. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Com-

puting 1, 47–79 (2005)
4. Ambainis, A., Nayak, A., Ta-shma, A., Vazirani, U.: Dense quantum coding and

a lower bound for 1-way quantum automata. In: Proc. 31st STOC, pp. 376–383
(1999) Journal version appeared in J. ACM 49, 496–511 (2002)

Unbounded-Error One-Way Classical and Quantum 121

5. Bar-Yossef, Z., Jayram, T.S., Kerenidis, I.: Exponential separation of quantum
and classical one-way communication complexity. Proc. 36th STOC, pp. 128–137
(2004)

6. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and
computation. Proc. 30th STOC, pp. 63–68 (1998)

7. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys.
Rev. Lett. 87, Article no 167902 (2001)

8. Forster, J.: A linear lower bound on the unbounded error probabilistic communi-
cation complexity. J. Comput. Syst. Sci. 65, 612–625 (2002)

9. Forster, J., Krause, M., Lokam, S.V., Mubarakzjanov, R., Schmitt, N., Simon, H.U.:
Relation between communication complexity, linear arrangements, and computa-
tional complexity. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FST TCS 2001:
Foundations of Software Technology and Theoretical Computer Science. LNCS,
vol. 2245, pp. 171–182. Springer, Heidelberg (2001)

10. Forster, J., Simon, H.U.: On the smallest possible dimension and the largest pos-
sible margin of linear arrangements representing given concept classes. Theoret.
Comput. Sci. 350, 40–48 (2006)

11. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential sep-
arations for one-way quantum communication complexity, with applications to
cryptography. In: Proc. 39th STOC (to appear). Also, quant-ph/0611209

12. Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fin-
gerprinting. In: Proc. 21st CCC, pp. 288–298 (2006)

13. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S. (4,1)-
quantum random access coding does not exist – one qubit is not enough to recover
one of four bits. New J. Phys. 8, Article no. 129 (2006)

14. Jakóbczyk, L., Siennicki, M.: Geometry of Bloch vectors in two-qubit system.
Phys. Lett. A 286, 383–390 (2001)

15. Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way
protocols. In: Proc. 32nd STOC, pp. 644–651 (2000)

16. Klauck, H.: Lower bounds for quantum communication complexity. In: Proc. 42nd
FOCS, pp. 288–297 (2001)

17. Kimura, G., Kossakowski, A.: The Bloch-vector space for N-level systems – the
spherical-coordinate point of view. Open Sys. Information Dyn. 12, 207–229 (2005).
Also, quant-ph/0408014

18. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge (1997)
19. Newman, I.: Private vs. common random bits in communication complexity. In-

form. Process. Lett. 39, 67–71 (1991)
20. Nayak, A.: Optimal lower bounds for quantum automata and random access codes.

In: Proc. 40th IEEE FOCS, pp. 369–376 (1999)
21. Nayak, A., Salzman, J.: Limits on the ability of quantum states to convey classical

messages. J. ACM 53, 184–206 (2006)
22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information,

Cambridge (2000)
23. Paturi, R., Simon, J.: Probabilistic communication complexity. J. Comput. Syst.

Sci. 33, 106–123 (1986)
24. Razborov, A.: Quantum communication complexity of symmetric predicates.

Izvestiya Mathematics 67, 145–159 (2003)

A Lower Bound on Entanglement-Assisted

Quantum Communication Complexity

Ashley Montanaro1 and Andreas Winter2

1 Department of Computer Science, University of Bristol, Bristol, BS8 1UB, U.K
montanar@cs.bris.ac.uk

2 Department of Mathematics, University of Bristol, Bristol, BS8 1TW, U.K
a.j.winter@bristol.ac.uk

Abstract. We prove a general lower bound on the bounded-error entan-
glement-assisted quantum communication complexity of Boolean func-
tions. The bound is based on the concept that any classical or quantum
protocol to evaluate a function on distributed inputs can be turned into
a quantum communication protocol. As an application of this bound, we
give a very simple proof of the statement that almost all Boolean func-
tions on n + n bits have communication complexity linear in n, even in
the presence of unlimited entanglement.

1 Introduction

The field of communication complexity aims to characterise the information
that is required to be transmitted between two or more separated parties in
order for them to compute some function of their joint inputs. Following the
field’s inception by Yao [25], it has been found to have many links to other
areas of computer science. Here we will be concerned with the generalisation to
quantum communication complexity. (See [24] and [15] for excellent introductions
to quantum and classical communication complexity, respectively.)

Specifically, consider a total Boolean function f : {0, 1}n × {0, 1}n �→ {0, 1}.
The quantum communication complexity of f is defined to be the minimum
number of qubits required to be transmitted between two parties (Alice and
Bob) for them to compute f(x, y) for any two n-bit inputs x, y, given that Alice
starts out with x and Bob with y. This number is clearly upper-bounded by
n, but for some functions may be considerably lower. Alice and Bob may be
allowed some probability of error ε, and may be allowed to share an entangled
state before they start their protocol. We will assume that Bob has to output
the result.

Some functions are known to have a quantum communication complexity
lower than their classical communication complexity (for example, a bounded-
error protocol for the disjointness function f(x, y) = 1 ⇔ |x ∧ y| = 0 requires
Ω(n) bits of classical communication, but only Θ(

√
n) qubits of quantum com-

munication [1,22]), but the extent of the possible reduction in communication
is unknown. In particular, it is still open whether the quantum communication

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 122–133, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Lower Bound on Entanglement-Assisted Quantum 123

complexity of total functions can ever be exponentially smaller than the classi-
cal communication complexity, although it has been shown [21] that quantum
communication can exponentially reduce the communication cost of computing
a partial function (where there is a promise on the input). It is therefore of in-
terest to produce lower bounds on quantum communication complexity. In this
context, the model with prior entanglement is less well understood; although
there are strong bounds known for some classes of functions [5,22], there are few
general lower bounds [4].

In this paper, we develop an elegant result of Cleve et al. that relates computa-
tion to communication. Cleve et al. showed [5] that, if Alice and Bob have access
to a protocol to exactly compute the inner product function IP (x, y) =

∑
i xiyi

(mod 2), then this can be used to produce a quantum protocol that communi-
cates Alice’s input x to Bob. They used this to show that IP cannot be com-
puted (exactly and without prior entanglement) by sending fewer than n bits
from Alice to Bob. Similar results hold for the bounded-error case and with prior
entanglement.

We show that a weaker form of this result can be extended to all Boolean
functions. That is, for almost any Boolean function f , the ability for Alice and
Bob to compute f implies the ability for Alice to send some arbitrary information
to Bob. The extension leads to the development of a new complexity measure for
Boolean functions: communication capacity. Given a Boolean function f(x, y),
we define the communication capacity of f as the maximum number of bits
which the execution of a protocol to compute f allows Alice to communicate to
Bob (in an asymptotic sense). As we will show, this gives a lower bound on the
quantum communication complexity of f , with or without entanglement. It is
easy to see that concept has no classical analogue: if Alice and Bob are given a
black-box protocol to compute a Boolean function and are only allowed to input
classical data to it, each use of the protocol can communicate at most one bit of
arbitrary information.

Some comments on notation: we will use M to denote the square communica-
tion matrix of f (whereMxy is equal to (−1)f(x,y)).H(v) will denote the Shannon
entropy of a vector v (H(v) = −

∑
i vi log vi), and S(ρ) the von Neumann en-

tropy of a density matrix ρ (S(ρ) = −tr(ρ log ρ), i.e. the Shannon entropy of the
eigenvalues of ρ). All logarithms will be taken to base 2. We assume familiarity
with quantum computation [20].

We will use the standard notation QE(f) to denote the quantum communi-
cation complexity of f in the case where the protocol must be exact, Qε(f) the
complexity where Alice and Bob are allowed to err with probability ε < 1/2,
and Q2(f) the complexity in the case where ε = 1/3. In all three cases, Alice
and Bob’s initial state is separable; Q∗

E(f), Q∗
ε (f) and Q∗

2(f) will represent the
equivalent quantities in the case where they are allowed to share an arbitrary
initial entangled state.

Then our main result can be stated as follows (a more precise statement is
given as Theorem 2 below).

124 A. Montanaro and A. Winter

Theorem 1. Let f : {0, 1}n × {0, 1}n �→ {0, 1} be a total Boolean function
with communication matrix M . Then, for any diagonal matrices A and B where
Aii, Bii ≥ 0 for all i, and where

∑
iA

2
ii =

∑
iB

2
ii = 1,

Q∗
2(f) = Ω(H(σ2(AMB))/ logn) (1)

where σ2(M) is the vector of squared singular values of a matrix M , i.e. the
eigenvalues of M †M .

This lower bound is a generalisation of a bound obtained by Klauck [13] on
quantum communication complexity in the model without entanglement (his
bound is the special case where Aii = Bii = 1/

√
2n). The result here can thus

be seen as extending Klauck’s bound to the model of entanglement-assisted
quantum communication, and giving it a satisfying operational interpretation.
As our bound also holds for classical communication complexity, it fits into the
framework of results using ideas from quantum information to say something
about classical computation.

As is usual in computational complexity, we would expect most functions
to have “high” quantum communication complexity. Kremer showed [14] by
a counting argument that a random function f has Q2(f) ≥ n/2 (and thus
QE(f) ≥ n/2). Buhrman and de Wolf extended Kremer’s methods to show that,
for all f , Q∗

E(f) ≥ (log rank(f))/2 [4] (an equivalent result is shown in section
6.4.2 of [19]). As almost all Boolean matrices have full rank, this shows that for
almost all f , Q∗

E(f) ≥ n/2. Very recently, Gavinsky, Kempe and de Wolf [8]
have shown the final remaining case: for almost all f , Q∗

2(f) = Ω(n). Their tech-
nique was to relate quantum communication protocols to quantum fingerprinting
protocols, and then to show a relationship between quantum fingerprinting and
some well-studied concepts from classical computational learning theory. Linial
and Shraibman also obtained this result very recently [16], by extending the
well-known discrepancy lower bound to entanglement-assisted quantum commu-
nication complexity.

As an application of our communication capacity technique, we reprove the
result that for almost all f , Q∗

2(f) = Ω(n). The proof is of a quite different
character and of (arguably) a more “quantum” nature, as it is based on showing
that the entropy of almost all density matrices produced in a certain random
way is high.

Following the completion of this work, Linial and Shraibman have shown [17]
that the minimum γ2 norm of matrices that approximate the communication ma-
trix M gives a lower bound on entanglement-assisted quantum communication
complexity. This norm is defined as

γ2(M) = min
XY=M

‖X‖�2→�∞‖Y ‖�1→�2 (2)

where ‖X‖�2→�∞ is the largest �2 norm of a row of X , and ‖Y ‖�1→�2 is the
largest �2 norm of a column of Y . Among other results, Linial and Shraibman
use this lower bound to extend the bound of Klauck [13] to the model of quantum
communication with entanglement. Their work thus proves the special case of
Theorem 1 where Aii = Bii = 1/

√
2n.

A Lower Bound on Entanglement-Assisted Quantum 125

2 Turning Any Distributed Function into a
Communication Protocol

In this section, we will describe how to change any protocol for evaluating a
distributed function into a communication protocol. This is an extension of the
protocol in [5] for the IP function, but for some functions, the communication
will be considerably more inefficient than IP allows (Alice may only be able to
send " n bits to Bob).

2.1 Exact Protocols

Say Alice and Bob have access to a classical or quantum protocol that computes
f(x, y) exactly. We express this as a unitary P that performs the following action.

P |x〉A|y〉B |0〉B|a〉AB = |x〉A|y〉B |f(x, y)〉B|a′〉AB (3)

where |a〉, |a′〉 are arbitrary (and possibly entangled) ancilla states shared by
Alice and Bob. Note that, as P does not modify the first two registers, we may
decompose it as follows:

P =
∑

x,y

|x〉〈x|A ⊗ |y〉〈y|B ⊗ Uxy (4)

for some unitary Uxy acting only on the last two registers. Following [5], we will
turn this into a “clean” protocol P ′ by giving Bob an additional qubit to copy
the answer into, then running the protocol backwards to uncompute the “junk”
|a′〉. The steps of the clean protocol are thus

(i)→ |x〉A|y〉B|0〉B|0〉B |a〉AB
(ii)→ |x〉A|y〉B|f(x, y)〉B |0〉B|a′〉AB

(iii)→ |x〉A|y〉B|f(x, y)〉B |f(x, y)〉B |a′〉AB
(iv)→ |x〉A|y〉B|0〉B|f(x, y)〉B |a〉AB

where now the fourth register contains the answer. Ignoring the third and fifth
registers, which are the same at the beginning and the end of the protocol, we
are left with the map

P ′|x〉A|y〉B|0〉B = |x〉A|y〉B|f(x, y)〉B (5)

Note that, if the original protocol P communicated a qubits from Alice to Bob
and b qubits from Bob to Alice, the protocol P ′ requires a+ b qubits to be com-
municated in each direction. That is, P ′ sends as many qubits in the “forward”
direction as the original protocol P sends in total. Now say Alice wants to com-
municate her input x to Bob using this protocol. They start with the following
state, where (by) is an arbitrary probability distribution on Bob’s inputs:

|ψ〉 = |x〉A

⎛

⎝
∑

y∈{0,1}n

√
by|y〉B

⎞

⎠ 1√
2

(|0〉 − |1〉)B (6)

126 A. Montanaro and A. Winter

Note that this state is separable (so we do not require entanglement to execute
the communication protocol). After executing the clean protocol for f , they are
left with

P ′|ψ〉 = |x〉A

⎛

⎝ 1√
2

∑

y∈{0,1}n

√
by|y〉B (|f(x, y)〉 − |1− f(x, y)〉)B

⎞

⎠ (7)

= |x〉A

⎛

⎝
∑

y∈{0,1}n

(−1)f(x,y)
√
by|y〉B

⎞

⎠ 1√
2

(|0〉 − |1〉)B (8)

Ignoring the registers that remain the same throughout, Bob has the following
state at the end of the protocol.

|ψx〉 =
∑

y∈{0,1}n

(−1)f(x,y)
√
by|y〉 (9)

This state provides some information about Alice’s bit string x. If 〈ψx|ψx′〉 = 0
for all x′ �= x (as is the case with the protocol of [5] for IP, where Bob uses
the uniform distribution on his inputs) then Bob can determine x with certainty
and hence has received n bits from Alice. If this is not the case, then we can
still quantify precisely how much information can be transmitted. The protocol
is equivalent to Alice encoding the classical bit-string x as a state |ψx〉, and
co-operating with Bob to send it to him. Say Alice uses a distribution (ax) on
her inputs. Then the ensemble representing what Bob eventually receives is

ρ =
∑

x∈{0,1}n

ax|ψx〉〈ψx| (10)

By Holevo’s theorem [10], the entropy S(ρ) describes the maximum number of
bits of classical information about x available to Bob by measuring ρ. And, by the
Holevo-Schumacher-Westmoreland channel coding theorem for a channel with
pure signal states [9], Alice and Bob can achieve this bound (in an asymptotic
sense) using block coding!

Therefore, the ability to compute f exactly can be used to transmit S(ρ) bits
of information through a quantum channel, even though this does not hold if
Alice and Bob are restricted to a classical channel. We thus define the commu-
nication capacity of a Boolean function f as the maximum over all probability
distributions (ax) (on Alice’s inputs) and (by) (on Bob’s inputs) of

S

⎛

⎝
∑

x∈{0,1}n

ax|ψx〉〈ψx|

⎞

⎠ , where |ψx〉 =
∑

y∈{0,1}n

(−1)f(x,y)
√
by|y〉 (11)

2.2 Bounded Error Protocols

In the case where Alice and Bob have access to a protocol computing f with
some probability of error, Bob will not have the state |ψx〉 at the end of the

A Lower Bound on Entanglement-Assisted Quantum 127

protocol, but rather some approximation |ψεx〉. We will now show that, if the error
probability is small, this is in fact still sufficient to communicate a significant
amount of information from Alice to Bob. As before, Alice will use a distribution
(ax) on her inputs, and Bob a distribution (by).

Say Alice and Bob are using a protocol P ε that computes f with probability
of error ε, where ε < 1/2. As before, the |x〉 and |y〉 registers will be unchanged
by this protocol, so we can write

P ε =
∑

x,y

|x〉〈x|A ⊗ |y〉〈y|B ⊗ U ε
xy (12)

Now let us run the protocol on the same starting state |ψ〉 as in the previous
section.

(i) |x〉A

(
1√
2

∑

y∈{0,1}n

√
by|y〉B|0〉B(|0〉 − |1〉)B

)

|a〉AB

(ii)→ |x〉A

(
1√
2

∑

y∈{0,1}n

√
by|y〉B(αxy|0〉+ βxy|1〉)B(|0〉 − |1〉)B

)

|a′〉AB

where the effect of U ε
xy on the “answer” qubit has been decomposed into αxy

and βxy components. If f(x, y) = 0, then |αxy|2 ≥ 1− ε, and thus (by unitarity)
|βxy|2 ≤ ε; if f(x, y) = 1, |βxy|2 ≥ 1 − ε and |αxy|2 ≤ ε. The ancilla register is
still completely arbitrary, and in particular may be entangled with any of the
other registers. Continuing the protocol, we have

(iii)→ |x〉A

(
1√
2

∑

y∈{0,1}n

√
by|y〉B(αxy|0〉(|0〉−|1〉)− βxy|1〉(|0〉−|1〉))B

)

|a′〉AB

(iv)→ |x〉A

(
1√
2

∑

y∈{0,1}n

√
by|y〉B(αxy(α∗

xy|0〉+ γ∗xy|1〉)|0〉 − αxy(α∗
xy|0〉+

+γ∗xy|1〉)|1〉 − βxy(β∗xy|0〉+ δ∗xy|1〉)|0〉+ βxy(β∗xy|0〉+ δ∗xy|1〉)|1〉)B

)

|a〉AB

where we introduce γ∗xy and δ∗xy as arbitrary elements of (U ε
xy)†, subject only to

the constraint that U ε
xy be unitary. We may now remove registers that end the

protocol unchanged and rewrite Bob’s final state as

|ψεx〉 =
∑

y∈{0,1}n

√
by|y〉

(
(|αxy |2 − |βxy|2)|0〉+ (αxyγ∗xy − βxyδ∗xy)|1〉

)
(13)

Now, if f(x, y) = 0, then |αxy|2 − |βxy|2 ≥ 1 − 2ε > 0, whereas if f(x, y) = 1,
|αxy|2 − |βxy|2 ≤ 2ε− 1 < 0. We may therefore write

|ψεx〉 =
∑

y∈{0,1}n

√
by|y〉

(
(−1)f(x,y) cos θxy|0〉+ eiφxy sin θxy|1〉

)
(14)

128 A. Montanaro and A. Winter

where θxy is real with cos θxy ≥ 1− 2ε, and φxy is an arbitrary phase. Crucially,
the form of these states is quite restricted and close to the original |ψx〉. In fact,
it is clear that

|(〈ψx|〈0|)|ψεx〉|2 ≥ (1− 2ε)2 (15)

Set ρε =
∑

x∈{0,1}n ax|ψεx〉〈ψεx| (this is what Bob receives). We will compare this
to the state ρ′ =

∑
x∈{0,1}n ax|ψx〉|0〉〈ψx|〈0|, where of course S(ρ′) = S(ρ). We

have
‖ρ′ − ρε‖1 ≤ 2

√
1− (1− 2ε)2 ≤ 4

√
ε (16)

We will use Fannes’ inequality [6] to show that S(ρε) ≈ S(ρ). Define the function

η0(x) =
{
−x log x for x ≤ 1/e
1/e log e for x > 1/e (17)

Then Fannes’ inequality gives that

S(ρε) ≥ S(ρ)− 4
√
εn− log η0(4

√
ε) (18)

and we are done.

2.3 Communication Complexity Lower Bounds from
Communication Capacity

A lower bound for the communication capacity of a function f can be written
down in terms of its communication matrix M as follows. As before, set

ρ =
∑

x∈{0,1}n

ax|ψx〉〈ψx| for |ψx〉 =
∑

y∈{0,1}n

(−1)f(x,y)
√
by|y〉 (19)

for arbitrary probability distributions (ax), (by) on Alice and Bob’s inputs. Define
the rescaled Gram matrix G as Gij =

√
ai
√
aj〈ψi|ψj〉. Now it is known [12] that

G will have the same eigenvalues as ρ, and thus the same entropy. But it can
easily be verified that

G = (AMB)(AMB)† (20)

where A and B are diagonal matrices with Aii =
√
ai, Bii =

√
bi. So the eigen-

values of G are simply the singular values squared of AMB. We may thus write

S(ρ) = H(σ2(AMB)) (21)

where σ2(M) denotes the vector containing the squared singular values of a
matrix M , i.e. the eigenvalues of M †M . We can now produce lower bounds
on the quantum communication complexity of f by appealing to the result of
Nayak and Salzman [18] which states that, if Alice wishes to transmit n bits
to Bob over a quantum channel with probability of success p, Alice must send
m ≥ 1

2

(
n− log 1

p

)
bits to Bob. If they are not allowed to share prior entangle-

ment, the factor of 1/2 vanishes. This immediately gives a lower bound on the

A Lower Bound on Entanglement-Assisted Quantum 129

exact quantum communication complexity of f , as lower bounds on the forward
communication required for the “clean” protocols that we use translate into lower
bounds on the total amount of communication needed for any communication
protocol.

In the bounded-error case, we can still use the Nayak-Salzman result. Consider
a block coding scheme with blocks of length k where each letter |ψεx〉 is produced
by one use of f , as in the previous section. By [9] there exists such a scheme
that transmits kS(ρε) − o(k) bits of information with k uses of f , as k → ∞,
and probability of success p→ 1. A lower bound on the bounded-error quantum
communication complexity of f follows immediately:

mk ≥ 1
2

(kS(ρε)− o(k)− o(1)), (22)

hence, after taking the limit k →∞, p→ 1, we find m ≥ 1
2S(ρε).

In order to reduce the error probability ε to O(1/n2) (to remove the additive
term linear in n in inequality (18)), it is sufficient to repeat the original protocol
O(log n) times and take a majority vote [14]. Alternatively, using (18) directly
gives a better bound for functions for which S(ρ) is linear in n. We thus have
the following theorem.

Theorem 2. Let f : {0, 1}n × {0, 1}n �→ {0, 1} be a total Boolean function
with communication matrix M . Then, for any diagonal matrices A and B where
Aii, Bii ≥ 0 for all i, and where

∑
iA

2
ii =

∑
iB

2
ii = 1,

QE(f) ≥ H(σ2(AMB)) (23)

Q∗
E(f) ≥ 1

2
H(σ2(AMB)) (24)

Qε(f) ≥
{
Ω(H(σ2(AMB))/ log n)
H(σ2(AMB))− 4

√
εn− log η0(4

√
ε) (25)

Q∗
ε (f) ≥

{
Ω(H(σ2(AMB))/ log n)
1
2 (H(σ2(AMB))− 4

√
εn− log η0(4

√
ε)) (26)

where η0(x) is defined as in (17).

If we use the uniform distribution on Alice and Bob’s inputs, then AMB =
M/2n. In the case of the models without entanglement, Klauck obtained this
specialised result via a different method [13]. This theorem can thus be seen
as simultaneously extending Klauck’s work to the model with entanglement,
generalising it, and giving it an operational interpretation. The special case of
the uniform distribution was also used by Cleve et al. [5] to prove their lower
bound on the communication complexity of IP.

Note that, as H(σ2(AMB)) is upper bounded by log rank(M), the previously
known “log rank” lower bound [4] is superior for lower bounding exact quantum
communication complexity (QE(f) and Q∗

E(f)).

130 A. Montanaro and A. Winter

3 Rényi Entropic Bounds on Communication Capacity

A disadvantage of the von Neumann entropy S(ρ) is the difficulty involved in its
computation. The second Rényi entropy S2(ρ) [23] provides an easily computable
lower bound on S(ρ). S2(ρ) is defined as

S2(ρ) = − log tr(ρ2) = − log
∑

i,j

|ρij |2 (27)

and we have the fundamental property that S2(ρ) ≤ S(ρ). The Rényi entropy
also obeys the bounds 0 ≤ S2(ρ) ≤ n. As with the von Neumann entropy, the
Rényi entropy is a function only of the eigenvalues of ρ, so the Rényi entropy
of the density matrix corresponding to an ensemble of equiprobable states is
the same as that of the rescaled Gram matrix corresponding to these states.
We can use this to write down a formula for the Rényi entropy of a density
matrix ρ corresponding to the communication matrix M of a function (as in
the previous section, specialising to the uniform distribution on Alice and Bob’s
inputs), which gives a lower bound on its communication capacity and thus its
entanglement-assisted communication complexity.

S2(ρ) = − log tr
(

1
24n

(MM †)2
)

= 4n− log

⎛

⎝
∑

i,j

(
∑

k

MikMjk

)2
⎞

⎠ (28)

= 4n− log

⎛

⎝
∑

i,j,k,l

MikMjkMilMjl

⎞

⎠ (29)

Rényi entropic arguments have previously been used in a different way by van Dam
and Hayden [7] to put lower bounds on quantum communication complexity.

4 The Quantum Communication Complexity of a
Random Function

In this section, we will show a lower bound on the communication capacity – and
thus the quantum communication complexity – of a random function (one which
takes the value 0 or 1 on each possible input with equal probability). Define the
state ρ as

ρ =
1
2n

2n
∑

k=1

|ψk〉〈ψk|, where |ψk〉 =
1√
2n

2n−1∑

i=0

(−1)a
k
i+1 |i〉 (30)

where ak is a randomly generated 2n-bit string, and aki represents the i’th bit of
ak. We will show that the Rényi entropy S2(ρ) is high for almost all ρ.

Theorem 3. Pr [S2(ρ) < (1 − δ)n] ≤ e−(2δn−1)2/2.

A Lower Bound on Entanglement-Assisted Quantum 131

Proof. We have

S2(ρ) = 4n− log

⎛

⎝
∑

i,j

(
∑

k

MikMjk

)2
⎞

⎠ (31)

= 4n− log

⎛

⎝
∑

i

(
∑

k

(Mik)2
)2

+
∑

i�=j

(
∑

k

MikMjk

)2
⎞

⎠ (32)

= 4n− log
(
N3 + T

)
(33)

where we define N = 2n and T =
∑

i�=j (
∑

kMikMjk)2. It is then clear that

Pr [S2(ρ) < (1− δ)n] = Pr
[
T > N3(N δ − 1)

]
(34)

Each term in the inner sum in T (the sum over k) is independent and picked
uniformly at random from {−1, 1}. We will now produce a tail bound for T using
“Bernstein’s trick” (see Appendix A of [3]): from Markov’s inequality we have

Pr [T > a] < E(eλT)/eλa < E(eλX11)N
2
/eλa (35)

where we define Xij = (
∑

kMikMjk)2: each Xij is independent and identically
distributed, so T is the sum of N(N − 1) < N2 copies of X11. It remains to
calculate E(eλX11). This can be written out explicitly as follows.

E(eλX11) =
1

2N

N∑

k=0

(
N

k

)
eλ(N−2k)2 (36)

It is then straightforward to see (using an inequality from [3]) that the following
series of inequalities holds.

E(eλX11) ≤ 1
2N

N∑

k=0

(
N

k

)(
eλ(N−2k)2 + e−λ(N−2k)2

)
(37)

≤ 1
2N−1

N∑

k=0

(
N

k

)
eλ

2(N−2k)4/2 ≤ 1
2N−1

N∑

k=0

(
N

k

)
eλ

2N4/2 = 2eλ
2N4/2 (38)

Inserting this in (35), and minimising over λ, gives

Pr [T > a] < 2e−a
2/2N6

(39)

and substituting a = N3(N δ − 1) gives the required result.

In particular, putting δ = 1/2 gives that Pr [S2(ρ) < n/2] ≤ 2e−(
√
N−1)2/2, which

is doubly exponentially small in n. As ρ corresponds to the communication ma-
trix of a random function, Theorem 2 immediately gives the result that the
entanglement-assisted quantum communication complexity of almost all func-
tions is Ω(n).

132 A. Montanaro and A. Winter

5 Discussion and Open Problems

We have shown that the implementation of any distributed computation between
Alice and Bob entails the ability to communicate from one user to the other. This
communication capacity of a Boolean function of two arguments is naturally a
lower bound on the communication complexity to compute that function, and
we have proved corresponding lower bounds, even in the presence of arbitrary
entanglement.

These bounds show that random functions of two n-bit strings mostly have
communication complexity close to n. However, in general it has to be noted that
our bounds are not always tight: an example is provided by the set-disjointness
problem, where Alice and Bob want to determine if their strings x and y have
a position where they are both 1. It is known that the quantum communication
complexity of this function is Θ(

√
n) [22,1]. On the other hand, an implicit upper

bound on the entropy in our main theorem was already given for this case in [2],
and it is only O(log n). Thus, not quite surprisingly, the ability of a function
to let Alice communicate to Bob is not the same as the communication cost of
implementing this computation.

Looking again at our main theorem, we are left with one interesting ques-
tion: is the logarithmic factor that we lose in the bounded error model really
necessary? It appears to be a technicality, since we need to boost the success
probability to apply Fannes’ inequality, but we were unable to determine if it is
just that or if there are cases in which the lower bound is tight.

Acknowledgements. AM would like to thank Richard Jozsa for careful read-
ing and comments on this manuscript, and Tony Short and Aram Harrow for
helpful discussions. We thank Ronald de Wolf for pointing out references [17]
and [19], and a referee for helpful comments on presentation. AW acknowledges
support via the EC project QAP, as well as from the U.K. EPSRC. He also grate-
fully notes the hospitality of the Perimeter Institute for Theoretical Physics in
Waterloo, Ontario, where part of this work was done.

References

1. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Com-
puting, vol 1, pp. 47-79 (2005), quant-ph/0303041

2. Ambainis, A., Schulman, L.J., Ta-Shma, A., Vazirani, U., Wigderson, A.: The
quantum communication complexity of sampling. SIAM J. Comput. 32, 1570–1585
(2003)

3. Alon, N., Spencer, J.: The probabilistic method. Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. Wiley, New York (2000)

4. Buhrman, H., de Wolf, R.: Communication complexity lower bounds by polynomi-
als. In: Proc. CCC’01, pp. 120-130 (2001), cs.CC/9910010

5. Cleve, R., van Dam, W., Nielsen, M., Tapp, A.: Quantum entanglement and the
communication complexity of the inner product function. In: Selected papers from
the First NASA International Conference on Quantum Computing and Quantum
Communications, pp. 61–74 (February 17-20 1998), quant-ph/9708019

quant-ph/0303041
cs.CC/9910010
quant-ph/9708019

A Lower Bound on Entanglement-Assisted Quantum 133

6. Fannes, M.: A continuity property of the entropy density for spin lattice systems.
In: Commun. Math. Phys. vol. 31, pp. 291–294 (1973)

7. van Dam, W., Hayden, P.: Renyi-entropic bounds on quantum communication
(2002), quant-ph/0204093

8. Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fin-
gerprinting. In: Proc. CCC’06, pp. 288–298 (2006), quant-ph/0603173

9. Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wootters, W.: Clas-
sical information capacity of a quantum channel. Phys. Rev. A 54(3), 1869–1876
(1996)

10. Holevo, A.S.: Bounds for the quantity of information transmittable by a quan-
tum communications channel. Problemy Peredachi Informatsii, vol. 9(3), pp. 3–
11, 1973. English translation Problems of Information Transmission, vol. 9, pp.
177–183 (1973)

11. Horn, R.A., Johnson, C.: Matrix analysis. Cambridge University Press, Cambridge
(1996)

12. Jozsa, R., Schlienz, J.: Distinguishability of states and von Neumann entropy. Phys.
Rev. A 62 012301 (2000), quant-ph/9911009

13. Klauck, H.: Lower bounds for quantum communication complexity. Proc. FOCS’01,
pp. 288–297 (2001), quant-ph/0106160

14. Kremer, I.: Quantum communication. Master’s thesis, Hebrew University (1995)
15. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University

Press, Cambridge (1997)
16. Linial, N., Shraibman, A.: Learning complexity vs. communication complexity.

Manuscript (2006), http://www.cs.huji.ac.il/∼nati/PAPERS/lcc.pdf
17. Linial, N., Shraibman, A.: Lower bounds in communication complex-

ity based on factorization norms. In: Proc. STOC’07, (to appear 2007)
http://www.cs.huji.ac.il/∼nati/PAPERS/quant cc.pdf

18. Nayak, A., Salzman, J.: On communication over an entanglement-assisted quantum
channel. In: Proc. STOC’02, pp. 698–704 (2002), quant-ph/0206122

19. Nielsen, M.A.: Quantum information theory. PhD thesis, University of New Mexico,
Albuquerque (1998), quant-ph/0011036

20. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge University Press, Cambridge (2000)

21. R. Raz. Exponential separation of quantum and classical communication complex-
ity. In: Proc. STOC’99, pp. 358–367 (1999)

22. Razborov, A.A.: Quantum communication complexity of symmetric predicates.
Izvestiya of the Russian Academy of Science, vol. 67, pp. 159–176 (2003),
quant-ph/0204025

23. Probability, A.R.: Probability theory. North-Holland, Amsterdam (1970)
24. de Wolf, R.: Quantum communication and complexity. Theoretical Computer Sci-

ence 287(1), 337–353 (2002)
25. Yao, A.: Some complexity questions related to distributive computing. In: Proc.

STOC’79, pp. 209–213 (1979)

quant-ph/0204093
quant-ph/0603173
quant-ph/9911009
quant-ph/0106160
http://www.cs.huji.ac.il/~nati/PAPERS/lcc.pdf
http://www.cs.huji.ac.il/~nati/PAPERS/quant_cc.pdf
quant-ph/0206122
quant-ph/0011036
quant-ph/0204025

Separating Deterministic from Nondeterministic

NOF Multiparty Communication Complexity

(Extended Abstract)

Paul Beame1,�, Matei David2,��, Toniann Pitassi2,���, and Philipp Woelfel2,†

1 University of Washington
2 University of Toronto

Abstract. We solve some fundamental problems in the number-on-
forehead (NOF) k-party communication model. We show that there ex-
ists a function which has at most logarithmic communication complexity
for randomized protocols with a one-sided error probability of 1/3 but
which has linear communication complexity for deterministic protocols.
The result is true for k = nO(1) players, where n is the number of bits on
each players’ forehead. This separates the analogues of RP and P in the
NOF communication model. We also show that there exists a function
which has constant randomized complexity for public coin protocols but
at least logarithmic complexity for private coin protocols. No larger gap
between private and public coin protocols is possible. Our lower bounds
are existential and we do not know of any explicit function which allows
such separations. However, for the 3-player case we exhibit an explicit
function which has Ω(log log n) randomized complexity for private coins
but only constant complexity for public coins.

It follows from our existential result that any function that is complete
for the class of functions with polylogarithmic nondeterministic k-party
communication complexity does not have polylogarithmic deterministic
complexity. We show that the set intersection function, which is complete
in the number-in-hand model, is not complete in the NOF model under
cylindrical reductions.

1 Introduction

The question of how much communication is necessary in order to compute
a function f : X1 × · · · × Xk → O when its input is distributed between k
computationally unbounded players was first introduced in [17] and it has since
been shown to have many diverse applications in complexity theory. The case
of k = 2 players has been studied extensively [11]. For two or more players, we
are interested in the ”number-on-forehead” model (NOF), first introduced by

� Supported by NSF grant CCR-0514870.
�� Supported by OGS.

��� Supported by NSERC.
† Supported by DFG grant Wo 1232/1-1.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 134–145, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Separating Deterministic from Nondeterministic NOF 135

Chandra, Furst and Lipton in [7]. In this model, the input is partitioned into k
parts, so that player i can see all parts except for the ith part (since it is ‘written
on his forehead’).

The number-on-forehead communication model is a fascinating and complex
model that is not well understood when k ≥ 3. The complexity of the situation
arises from the fact that every part of the input is seen by multiple players. As the
number of players increases, the sharing becomes increasingly generous. During
the execution of a protocol, the set of inputs consistent with a particular message
sequence is described by a so-called cylinder intersection. Cylinder intersections
appear difficult to understand combinatorially.

Lower bounds for multiparty complexity in the number-on-forehead model
are connected to a major open problem in complexity theory: it has been es-
tablished that superlogarithmic communication complexity lower bounds in the
NOF model for any explicit function with polylogarithmically many players
would imply explicit lower bounds for ACC [6, 10]. The best lower bound ob-
tained so far establishes a lower bound of Ω(n/2k), which breaks down when the
number of players is greater than logarithmic [3, 8, 16, 9]. Lower bounds in this
model have many other important applications as well, including: constructions
of pseudorandom generators for space bounded computation, constructions of
universal traversal sequences, time-space tradeoffs [3], circuit complexity bounds
[10, 15, 14], and proof complexity bounds [4].

The motivation for our work is to pursue a broader understanding of the
NOF complexity model. In particular, we would like to answer some of the basic
questions that are still open for this model, but have well-known solutions in
the 2-party model. For k ≥ 3, we consider the three usual versions of communi-
cation complexity: deterministic, randomized and nondeterministic complexity.
Are there functions separating these three different complexity measures? Sur-
prisingly, the relationships between these complexity measures have not been
resolved previously, even for k = 3.

Our main result is that for any k that is nO(1) there is a function with n
bits on each players’ forehead that is computable with a polylogarithmic com-
plexity by a randomized k-party communication protocol with 1-sided error but
which requires linear complexity for deterministic protocols. We obtain this re-
sult nonconstructively by showing that deterministic protocols for a certain class
of simple functions have a nice normal form and then establishing a lower bound
for such function via a counting argument over protocols in normal form. We
thus separate the randomized 1-sided error and deterministic k-party NOF com-
munication complexity classes RPcck and Pcck . As a corollary of our lower bounds,
we also establish an optimal separation between the public and private coin
randomized NOF models.

These bounds are nonconstructive but, for k at most logarithmic in the in-
put size, we can also give explicit families of simple functions with Ω(log n)
deterministic k-party complexity in the NOF model. (We believe that they have
superpolylogarithmic deterministic complexity.) The best previous lower bound
for any explicitly defined simple function is the Ω(log logn) lower bound from[5]

136 P. Beame et al.

for the Exact-T function (originally investigated in [7]) in the special case of
k = 3 players. As a corollary of our bound we obtain that our function fam-
ilies have Ω(log logn) complexity for randomized private coin protocols (with
constant error probability) but only O(1) complexity for public coin protocols.

The problem of separating deterministic from nondeterministic NOF com-
plexity is particularly interesting because of its connection to proof complexity.
In recent work [4], it has been shown that for k = 3, (logn)ω(1) lower bounds
on the randomized NOF complexity of set intersection, which has nondetermin-
istic NOF complexity O(log n), implies lower bounds for polynomial threshold
proof systems, such as the Lovász-Schrijver proof systems, as well as the Chvátal
cutting planes proof system. Moreover, it seems possible that these results can
be modified to show that randomized lower bounds for any function with small
NOF nondeterministic communication complexity would give lower bounds for
related cutting planes proof systems.

This brings us to our second question: is there a ‘complete’ problem for the
class of problems with efficient NOF nondeterministic algorithms under a suit-
able notion of reduction? Given our separation result, such a function would
automatically be hard for deterministic protocols. Following [1], it is not hard
to see that set intersection is complete under communication-free reductions for
the number-in-hand (NIH) model and in [4] it had been assumed that the same
holds for the number-on-forehead (NOF) model. (The number-in-hand model
is an alternative generalization of the 2-player model in which each player gets
his part of the input in his hand, and thus each player sees only his own part.)
However, we prove that under communication-free reductions, set intersection is
not complete in the NOF model.

2 Definitions and Preliminaries

In the NOF multiparty communication complexity game [7] there are k parties
(or players), numbered 1 to k, that are trying to collaborate to compute a func-
tion f : X1 × . . .×Xk → {0, 1} where each Xi = {0, 1}n. The kn input bits are
partitioned into k sets, each of size n. For (x1, . . . , xk) ∈ {0, 1}kn, and for each i,
player i knows the values of all of the inputs except for xi (which conceptually
is thought of as being placed on player i’s forehead).

The players exchange bits according to an agreed-upon protocol, by writing
them on a public blackboard. A protocol specifies, for every possible blackboard
contents, whether or not the communication is over, the output if over and the
next player to speak if not. A protocol also specifies what each player writes as
a function of the blackboard contents and of the inputs seen by that player. The
cost of a protocol is the maximum number of bits written on the blackboard.

In a deterministic protocol, the blackboard is initially empty. A public-coin
randomized protocol of cost c is simply a probability distribution over deter-
ministic protocols of cost c, which can be viewed as a protocol in which the
players have access to a shared random string. A private-coin randomized pro-
tocol is a protocol in which each player has access to a private random string.

Separating Deterministic from Nondeterministic NOF 137

A nondeterministic protocol is a randomized private coin protocol with 1-sided
error (only false negatives) and an error probability less than 1.

The deterministic communication complexity of f , written Dk(f), is the min-
imum cost of a deterministic protocol for f that always outputs the correct
answer. For 0 ≤ ε < 1/2, let Rpub

k,ε (f) denote the minimum cost of a public-coin
randomized protocol for f which, for every input, makes an error with probabil-
ity at most ε (over the choice of the deterministic protocols). We write Rpub

k (f)
for Rpub

k,1/3(f). Let Rk,ε(f) denote the minimum cost of a private-coin randomized
protocol for f which, for every input, makes an error with probability at most
ε (over the choice of the private random strings). We write Rk(f) for Rk,1/3(f).
For both public-coin and private-coin complexities we add a superscript 1 if
we require that the protocol makes error only on 1-inputs (i.e., false-negatives),
and superscript 0 if we require that the protocol makes error only on 0-inputs
(i.e., false-positives). For example, R0,pub

k,ε (f) is the minimum cost of a k-player
public-coin protocol for f which is always correct on 1-inputs and makes error
at most ε on 0-inputs.

Since the general model laid out above is very powerful, we are also interested
in communication restrictions. A player is oblivious in a certain protocol if the
message he writes on the board is a function of the inputs he sees, but not a
function of the messages sent by other players. Since we are interested in the best
protocol, we may safely assume that all oblivious players write first, and then
non-oblivious players continue to communicate using the information written by
the former. A protocol in which all players are oblivious is called simultaneous.
The simultaneous multiparty model was studied in [2], who proved new lower
bounds, as well as surprising upper bounds in this model.

Since any function fn on kn bits can be computed using only n bits of com-
munication, following [1], for sequences of functions f = (fn)n∈N, algorithms are
considered “efficient” or “polynomial” if only polylogarithmically many bits are
exchanged. Accordingly, let Pcck denote the class of function families f for which
Dk(fn) is (logn)O(1), let NPcck denote the class of function families f with non-
deterministic complexity (logn)O(1), and let RPcck denote the class of function
families f for which R1

k(fn) is (logn)O(1).
Multiparty communication complexity lower bounds are proven by analyzing

properties of functions on cylinder intersections.

Definition 1. An i-cylinder Ci in X1 × . . . × Xk is a set such that for all
x1 ∈ X1, . . . , xk ∈ Xk, x

′
i ∈ Xi we have (x1, . . . , xi, . . . , xk) ∈ Ci if and only if

(x1, . . . , x
′
i, . . . , xk) ∈ Ci. A cylinder intersection is a set of the form

⋂k
i=1 Ci

where each Ci is an i-cylinder in X1 × · · · ×Xk.

3 Separating Pcc
k from RPcc

k

3.1 Oblivious Players, Simple Functions, and a Normal Form

We will be interested in a special type of Boolean functions for which we can
show, that without loss of generality, all but one of the players is oblivious. For

138 P. Beame et al.

sets X1, . . . , Xk a function f : X1× · · ·×Xk → {0, 1} is simple for player i if for
all (x1, . . . , xi−1, xi+1, . . . xk) ∈ X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xk there exists
at most one x∗i ∈ Xi such that f(x1, . . . , xi−1, x

∗
i , xi+1, . . . , xk) = 1.

If f is simple for player i then it is reducible with no communication to
2-player n-bit equality EQ. Player i can compute the unique value for the input
on its forehead for which the output could be 1 (if it exists), and any other player
sees that input. All the players have to do is to decide whether these strings are
equal. We know that R0

2,1/n(EQ) is O(log n) and R0,pub
2 (EQ) is O(1). Therefore

we get the following.

Lemma 2. For all k and all simple functions f on kn bits, R0
k,1/n(f) is O(log n)

and R0,pub
k (f) is O(1).

The following theorem shows that if a function is simple for one player then
this player can act obliviously with only a small increase in the deterministic
communication complexity.

Theorem 3. Let f : X1 × · · · × Xk → {0, 1} be a function that is simple for
player i and has Dk(f) = d. Then there is a protocol P ′ for f in which player
i first sends d bits and then all players j ∈ {1, . . . , k} − {i} simultaneously send
exactly one bit bj such that f(x1, . . . , xk) = 1 if and only if all bits bj = 1.

Proof (Sketch). Let f be simple for player 1. Let P be a protocol for f with
complexity d. We describe protocol P ′ on input (x1, . . . , xk). Assume that player
1 sees the partial input (x2, . . . , xk) on the other players’ foreheads. Let x∗1 be
the input in X1 such that f(x∗1, x2 . . . , xk) = 1, if one exists, an arbitrary input
in X1, otherwise. Player 1 “simulates” protocol P for the input (x∗1, x2, . . . , xk);
i.e., she writes on the blackboard exactly the string I∗ that would have been
written by players 1, . . . , k if protocol P were executed for that input. Then each
player r, 2 ≤ r ≤ k, verifies that I∗ is consistent with what player r would
have sent in protocol P if it had seen (x1, . . . , xr−1, xr+1, . . . , xk) on the other
players’ foreheads. If player r does not find an error and the output of P is 1
for blackboard contents I∗, then he accepts by sending bit br = 1. Otherwise he
sends br = 0. ��

3.2 Representing Simple Functions by Colorings and Cylinder
Intersections

Most lower bound proofs for Dk(f) use the fact shown in [3] that any k-party
protocol with complexity d for a function f yields a partitioning of the input
into O(2d) disjoint cylinder intersections on which f is constant. For k ≥ 3 play-
ers, the known techniques for proving lower bounds on the number of cylinder
intersections needed for such a partitioning are discrepancy-based and inher-
ently yield lower bounds even for nondeterministic and randomized protocols.
Therefore, these techniques are not suitable for proving good lower bounds for
functions with low nondeterministic communication complexity.

Separating Deterministic from Nondeterministic NOF 139

For simple functions we obtain different, although related, structures. These
structures seem to be better suited for lower bound proofs for functions in RPcck ,
as they will allow us to separate this class from Pcck and to prove Ω(log n) lower
bounds for explicit functions.

Throughout this section, f : X1 × · · · × Xk → {0, 1} is simple for player 1.
For any natural number D and a set S, a D-coloring of S is a mapping c :
S → [D]. Since f is simple for player 1 (Alice), there exists a function g :
X2 × · · · ×Xk → X1 ∪ {⊥}, where g(x2, . . . , xk) = ⊥ if f(x1, . . . , xk) = 0 for all
x1 ∈ X1, and otherwise g(x2, . . . , xk) = x∗1, where x∗1 is the the unique element
in X1 with f(x∗1, x2, . . . , xk) = 1. In fact, any such mapping g uniquely defines
the simple function f .

Assume that f can be computed by a d-bit protocol P . The special protocol P ′

for f , derived in Theorem 3, can be characterized by a coloring of X2× · · ·×Xk

and cylinder intersections in X2 × · · · × Xk: Let c be the 2d-coloring of X2 ×
· · · ×Xk, where c(x2, . . . , xk) is the message Alice sends if she sees (x2, . . . , xk).
Consider a fixed message m from Alice and a fixed value a ∈ X1 on Alice’s
forehead. The subset of points in X2×· · ·×Xk for which all other players accept
if they see a on Alice’s forehead and receive message m is a cylinder intersection
Im,a. Each such cylinder intersection Im,a may also contain points that are not
colored m. However, it is not possible that a point p = (x2, . . . , xk) ∈ Im,a has
color m but g(p) �= a because then Alice would send message m if she saw p
and the other players would all accept if they saw a on Alice’s forehead. Hence,
(a, x2, . . . , xk) would be accepted by P ′, a contradiction. We obtain the following.

Lemma 4. Every function f that is simple for player 1 and has k-player com-
munication complexity d can be uniquely represented by cylinder intersections
Im,a ∈ X2 × · · · ×Xk, m ∈ [2d], a ∈ X1, and a 2d-coloring c of X2 × · · · ×Xk,
such that ∀a ∈ X1, y ∈ X2 × · · · ×Xk: f(a, y) = 1⇔ y ∈ Ic(y),a.

In particular, Im,a contains all points y ∈ X2 × · · · ×Xk with color c(y) = m
and f(a, y) = 1, but no point y′ with color c(y′) = m and f(a, y′) = 0.

Proof. We have already seen how to obtain c and the cylinder intersections Im,a
from the function f . This representation is unique because for any input (a, p)
with a ∈ X1 and p ∈ X2× · · · ×Xk we can retrieve the function value f(a, p) by
checking whether p ∈ Ic(p),a. ��

3.3 The Lower Bound

In the following we consider a family of functions which have logarithmic com-
munication complexity for randomized protocols with one-sided error and error
probability bounded by 1/3. Using Lemma 4 we give an upper bound on the
number of different deterministic protocols for the functions in that class in or-
der to show that at least one such function requires at least linear deterministic
communication complexity.

For positive integers n, m and t, let Gt,n,m be the set of all mappings g :
{0, 1}n·t → {0, 1}m. For any function g ∈ Gk−1,n,m, define fg : {0, 1}m ×
{0, 1}n·(k−1) by fg(x1, . . . , xk) = 1 if and only if g(x2, . . . , xk) = x1. By the proof

140 P. Beame et al.

of Lemma 2, randomized protocols for functions fg, g ∈ Gk,n,m, have complexity
at most O(logm). Hence, it follows that fg ∈ co-RPcck for all g ∈ Gk,n,n/2.

Theorem 5. There is a g ∈ Gk−1,n,n/2 such that Dk(fg) is Ω(n− log k).

Corollary 6. Pcck �= RPcck for any k that is nO(1).

Proof (of Theorem 5). Any function g ∈ Gk−1,n,m has a domain of size 2(k−1)n

and a range of size 2m. Therefore, it is not possible to encode every such function
g with less than m · 2(k−1)n bits. Note that if two functions g, g′ are different,
then fg and fg′ are different, too.

Clearly, any function fg, g ∈ Gk−1,n,m, is simple for Alice. Assume that any
such function fg has Dk(fg) ≤ d. Then by Lemma 4, every such function fg can
be uniquely represented by a 2d-coloring of

(
{0, 1}n

)k−1 and 2m · 2d cylinder

intersections in
(
{0, 1}n

)k−1. The 2d-coloring of
(
{0, 1}n

)k−1 can be encoded
with d · 2(k−1)n bits. The number of i-cylinders in X1 × · · · × Xt is 2Πj �=i|Xj |.
Hence, (k − 1) · 2(k−2)n bits suffice for a unique encoding of any cylinder inter-
section in

(
{0, 1}n

)k−1. Thus, the total number of bits in which any function fg,
g ∈ Gk−1,n,m, can be encoded is bounded above by

d · 2(k−1)n + 2d+m · (k − 1) · 2(k−2)n = d · 2(k−1)n + (k − 1) · 2d+m+(k−2)n

As we have seen above, the number of bits needed to describe a function fg
for g ∈ Gk−1,n,m is at least m · 2(k−1)n. Therefore, if for all fg a protocol with
complexity c exists then

d · 2(k−1)n + (k − 1) · 2d+m+(k−2)n ≥ m · 2(k−1)n.

This is equivalent to 2d ≥ 2n−m · (m− d)/(k− 1). Hence, d ≥ min{m− 1, n−
m−log(k−1)}, which for m =

⌊
(n− log k)/2

⌋
is at least (n−log k)/2−O(1). ��

3.4 Separating Public from Private Coins

We now consider the difference between public-coin and private-coin randomized
protocols. Trivially, any private-coin protocol can be simulated by tossing the
coins in public, so for all f and k, Rpub

k (f) ≤ Rk(f). In the other direction,
Newman [13, 11] provides a simulation of a public-coin protocol by a private-
coin protocol. (Although it is stated for the special case of 2 players, the proof
works for any number of players.)

Proposition 7 ([13]). There is a c > 0 such that for every k ≥ 2 and function
f : {0, 1}kn → {0, 1}, Rk(f) ≤ Rpub

k (f) + c�log2 n�.
We see that the maximum gap between the public-coin and private-coin random-
ized complexities of f is Θ(log n), and it is achieved when Rpub

k (f) is O(1) and
Rk(f) is Θ(log n). The natural question arises, is there a function that achieves
this gap? Our results allow us to answer this question affirmatively.

In order to obtain lower bounds, we need the following extension of Lemma 3.8
in [11] to k players. We omit the proof due to space constraints.

Lemma 8. If k1/δ < Dk(f) for some δ < 1, then Rk(f) is Ω(logDk(f)).

Separating Deterministic from Nondeterministic NOF 141

Corollary 9. Let δ < 1. For all k such that k < nδ, there exists a kn-bit
function f such that Rpub

k (f) is O(1) and Rk(f) is Θ(log n).

Proof. By Theorem 5 there is a function f that is simple for player 1 such that
Dk(f) is Ω(n). By Lemma 8, Rk(f) is Ω(log n). By Lemma 2, Rk(f) is O(log n)
and Rpub

k (f) is O(1). ��

4 Lower Bounds for Explicit Simple Functions

The separations in Section 3.3 are nonconstructive. We conjecture that there also
exists an explicit simple function that gives a linear or near linear separation
between Dk(fn) and R0

k(fn). In the following we prove Ω(log n) bounds for
the deterministic complexity of some explicit simple functions. This yields a
separation between the deterministic and public coin randomized complexity for
explicit simple functions, though this is much weaker than our conjecture.

We give two constructions of explicit functions, one for k = 3 and, one that
holds for all k ≥ 3. Write Fq for the field of q elements. Let X = F2n , Y = F2m

for some positive integers m and n. For (a, b) ∈ X × Y let the hash function
ha,b : F2n → F2m be defined as ha,b(x) = φ(a ·x)+b, where φ is a homomorphism
from F2n to F2m . Let H be the family of hash functions ha,b for a ∈ X , b ∈ Y .
The explicit function for k = 3 is given by f : Y × X × H → {0, 1}, where
f(y, x, h) = 1 iff h(x) = y which is clearly simple for player 1.

For the other construction let k ≥ 3, let X1 = F2m and X2 = . . . = Xk = Fn2m

for positive integers n andm with m ≥ log2 n. Let β1, . . . , βn be distinct elements
of F2m and define vi = (βi−1

1 , . . . , βi−1
n) for 1 ≤ i ≤ n. The explicit function is

fg where g(x2, . . . , xk) =
∑n

i=1

∏k
j=2〈vi, xj〉 and operations are over F2m .

Theorem 10. There is a δ < 1 such that
(a) for m = nδ and f : Y ×X×H → {0, 1} defined as above, D3(f) is Ω(logn),
(b) for any k ≥ 3, n ≥ 4k+1, m = nδ, and fg defined as above, Dk(fg) is
Ω(log n).

Proof. We give the proof for part (a): Let d = D3(f). Fix some ε with 0 < ε < δ
and let m = nδ. Assume for contradiction that d ≤ ε · log2 n.

Consider the 2n+m × 2n matrix M where rows correspond to hash functions
h ∈ H , columns correspond to inputs x ∈ X and the entry Mh,x is the hash
function value h(x). Cylinder intersections in H×X are rectangles. By Lemma 4,
there is a 2d-coloring c of M and there are 2d+m rectangles R�,y, � ∈ [2d], y ∈ Y ,
such that ∀(y, x, h) ∈ Y ×X ×H : (h, x) ∈ Rc(h,x),y ⇔ h(x) = y. Call an entry
Mh,x an (�, y) entry iff c(h, x) = � and h(x) = y. Correctness of the protocol
implies that for y′ �= y, R�,y does not contain any (�, y′) entries.

Consider the coloring c of the matrix entries in M . The proof proceeds in-
ductively decreasing the number of colors that are available and shrinking the
matrix. During each such step, we introduce a number of “holes” in the matrix
(entries that are colored in the original matrix with one of the removed colors).
We show that eventually there are no colors left to use but the matrix still does

142 P. Beame et al.

not consist only of holes. This will contradict the existence of the initial coloring,
hence of the d-bit protocol.

We prove by induction on i ≥ 0 that, as long as i ≤ 2d = nε, the following
hold for large enough n:

– there exists a rectangle Ri such that |Ri| ≥ 22n+m−i(d+2),
– Ri contains at most i · 22n holes,
– non-hole entries in Ri can be colored with 2d − i colors.

Assuming that we have established this inductive statement, letting i = 2d we
see that there are no colors left for coloring the rectangle R2d . Moreover, for large
enough n, this rectangle has size at least 22n+m−nε(2+ε·log2 n). Since m = nδ and
δ > ε, |R2d | > 22n+d. The number of holes in this rectangle is bounded above by
2d · 22n, so the rectangle is not empty, which is a contradiction.

We now prove the inductive statement. For i = 0, let R0 = M . The existence
of a d-bit protocol yields a coloring of R0 (with no holes) using 2d colors.

Now assume the inductive statement is true for some 0 ≤ i < 2d. The number
of non-hole entries in Ri is at least 22n+m ·

(
2−i(d+2) − i · 2−m

)
. Since i < 2d and

m−d > nε(d+2) > i(d+2) (for large enough n), the number of non-hole entries
in Ri is larger than 22n+m−i(d+2)−1. Let (�, y) be the most popular color-value
pair from the non-hole entries in Ri and let Ri+1 = Ri ∩ R�,y. The number
of color-value pairs is at most 2d+m, so the number of occurrences of the most
popular pair (�, y) in Ri is at least 22n+m−i(d+2)−1−(m+d) = 22n−(i+1)(d+2)+1.
By construction, |Ri+1| is at least the number of such (�, y) entries. Since Ri+1

is a rectangle, by the Hash Mixing Lemma [12], for any y ∈ Y ,

Pr[h(x) = y] ≤ 1
|Y | +

√
|H|

|Ri+1|·|Y | ≤ 2−m + 2((i+1)(d+2)−n−1)/2 ≤ 2−m+1

since |H |/|Ri+1||Y | ≤ 2n−2n+(i+1)(d+2)−1, (i + 1)(d + 2) ≤ nε log n < nδ = m
and n ≥ 3m for sufficiently large n. Hence, the number of y-valued entries in
Ri+1 is at most |Ri+1| · 2−m+1. By the lower bound from above for the number
of (�, y)-pairs in Ri+1, we have 22n−(i+1)(d+2)+1 ≤ |Ri+1| · 2−m+1 and thus we
obtain the stronger bound |Ri+1| ≥ 22n+m−(i+1)(d+2) as required.

Since Ri+1 ⊆ R�,y, by Lemma 4 all �-colored entries in Ri+1 are (�, y) entries.
Define the holes in Ri+1 to be its (�, y) entries along with all holes in Ri. Thus,
the number of colors available for non-hole entries has been reduced by at least
1. The number of extra holes we introduce is at most the number of entries in
M with value y. Hence, at most 22n new holes can be introduced in a round.
This completes the inductive step, and therefore the proof of (a).

The proof for part (b) is similar but requires the following property of g which
is a natural analogue of the Hash Mixing Lemma [12] over cylinder intersections.
Its proof is in the full paper.

Lemma 11. Let Z = Fn2m . For k ≥ 3 and any cylinder intersection I ⊆ Zk−1

and any y ∈ F2m , choosing (x2, . . . , xk) from the uniform distribution on Zk−1,∣
∣Pr[g(x2, . . . , xk)=y and (x2,. . . , xk)∈I]−2−m|I|/|Z|k−1

∣
∣ ≤ 2−(m−2)n/4k−1

. ��

Separating Deterministic from Nondeterministic NOF 143

By Lemma 2, both f and fg defined above have O(1) public-coin randomized
complexity but by Theorem 10 and Lemma 8, we obtain that R3(f) and Rk(fg)
are both Ω(log logn). In fact, we conjecture that the D3(f) and Dk(fg) are
both ω(logn) or even nΩ(1). Proving the latter would yield explicit examples of
function in RPcc3 but not in Pcc3 .

5 On Complete Problems for NPcc
k

An alternative approach to separating Pcck from RPcck with an explicit function
is to find a function that is complete in some sense. If we can prove for some
explicit function that it is “at least as hard” as any function in RPcck , then by our
separation result we can conclude that it is not in Pcck . Proving a lower bound
for a function complete for NPcck has the added benefit of potentially separating
NPcck from RPcck as well. (Recall that simple functions are in RPcck so they cannot
separate NPcck from RPcck .) The set intersection function is complete for the class
analogous to NPcck in the number-in-hand (NIH) model, and thus also for NPcc2 .
In this section, we prove that this function is not complete for NPcck for k ≥ 3.

For sets X1, . . . , Xk, write X for X1 × · · · ×Xk. We write x ∈ X to denote
a k-tuple (x1, . . . , xk) where xi ∈ Xi for all i ∈ [k]. Use ϕ to denote a k-tuple
of functions ϕ1, . . . , ϕk. Furthermore, for i ∈ [k], write α−i for the (k − 1)-tuple
obtained from α by removing the i-th coordinate.

In two-party communication complexity Babai, Frankl, and Simon [1] defined
a natural notion of a reduction between problems called a ‘rectangular’ reduction
that does not require any communication to compute.

Definition 12. For k = 2, let f : X → {0, 1} and g : X ′ → {0, 1}. A pair of
functions ϕ with ϕi : Xi → X ′

i is a rectangular reduction of f to g, written
f & g, if and only if f(x1, x2) = g(ϕ1(x1), ϕ2(x2)).

Furthermore, they defined an appropriate ‘polynomially-bounded’ version of
rectangular reduction for function families.

Definition 13. For function families f = {fn} and g = {gn} where fn, gn :
({0, 1}n)2 → {0, 1}, we write f &p g if and only if there is a function m : N→ N

such that for every n, fn & gm(n) and m(n) is 2(logn)O(1)
.

Proposition 14 ([1]). Let f and g be function families. If f &p g and g ∈ Pcc2
then f ∈ Pcc2 . If f &p g and g ∈ NPcc2 then f ∈ NPcc2 .

Definition 15. A function family g is complete for NPcc2 under rectangular
reductions if and only if g ∈ NPcc2 and for all f ∈ NPcc2 , f &p g.

The set intersection function is Disjk,n : ({0, 1}n)k → {0, 1} defined by
Disjk,n(x) = 1 if and only if there is some i ∈ [n] such that x1,i = . . . = xk,i = 1.
Clearly, Disjk ∈ NPcck . Babai, Frankl and Simon observed the following:

Proposition 16 ([1]). Disj2 is complete for NPcc2 under rectangular reductions.

144 P. Beame et al.

For k ≥ 3, rectangular reductions extend to cubic reductions in the NIH model
of communication complexity. Moreover, it is easy to see that the completeness
result of Proposition 16 continues to hold in the NIH model under cubic reduc-
tions. One might conjecture that Disjk is also complete for NPcck under a natural
extension of rectangular reductions in the NOF model. Such a notion of reduc-
tion should not require any communication between the parties. This yields the
following definition:

Definition 17. Given f : X → {0, 1} and g : X ′ → {0, 1} we say that functions
ϕ are a cylindrical reduction of f to g if and only if for every x ∈ X there is an
x′ ∈ X ′ such that for all i ∈ [k], ϕi(x−i) = x′−i and f(x) = g(x′). Thus each ϕi
maps the NOF view of the i-th player on input x for f to the NOF view of the
i-th player on input x′ for g.

We show that cylindrical reductions must be of a special form, given by the nat-
ural no-communication reductions associated with the number-in-hand model.
A = A1 × · · · ×Ak is a cube, if Ai ⊆ Xi for all i ∈ [k].

Lemma 18. If there is a cylindrical reduction of f : X → {0, 1} to Disjk,m

then f−1(1) is a union of m cubes. ��

Theorem 19. There is a function f : {0, 1}3n → {0, 1} with deterministic 3-
party NOF communication complexity at most 3 such that any cylindrical reduc-
tion of f to Disj3,m requires m > 2n−3.

Proof. For x, y, z ∈ {0, 1}n, define f(x, y, z) to be 1 if and only if x, y, and
z are pairwise orthogonal in Fn2 . There is a trivial 3-party NOF protocol for
f in which 3 bits are exchanged, namely, each party checks that the inputs it
sees are orthogonal. We now show that any way to write f−1(1) as a union of
cubes must contain exponentially many cubes since each cube can only cover an
exponentially small portion of f−1(1).

For u, v ∈ {0, 1}n, let h(u, v) = 1 iff 〈x, y〉 = 0 in Fn2 . Then f(x, y, z) =
h(x, y)h(y, z)h(x, z). Consider the uniform distribution μ over {0, 1}3n.

We first show that f−1(1) is a set of probability more than 1/8. Under μ, for
each pair u, v ∈ {x, y, z}, the probability that h(u, v) = 1 is 1/2 + 1/2n+1 > 1/2
(consider whether or not u = 0n). We claim that the probability that f(x, y, z) =
1 is at least 1/8. Suppose that x �= 0n. Then the probability that y is orthogonal
to x is precisely 1/2. Now, z is orthogonal to the span 〈{x, y}〉 with probability
at least 1/4. So, conditioned on x �= 0n, the probability that f(x, y, z) = 1 is
at least 1/8. If x = 0n then the probability that f(x, y, z) = 1 is precisely the
probability that y and z are orthogonal which is at least 1/2. Therefore the
probability that f(x, y, z) = 1 is more than 1/8 overall.

Now since f(x, y, z) = h(x, y)h(y, z)h(x, z), any cube C = A1 ×A2 ×A3 with
C ⊆ f−1(1) must, in particular, have, A1 × A2 ⊆ h−1(1). Thus every x ∈ A1

must be orthogonal to every y ∈ A2 and so the dimensions of their spans must
satisfy dim(〈A1〉) + dim(〈A2〉) ≤ n. Therefore |A1 × A2| ≤ |〈A1〉 × 〈A2〉| ≤
2dim(〈A1〉)+dim(〈A2〉) ≤ 2n so |C| ≤ 2n|A1 × A2| ≤ 22n and the probability that
(x, y, z) ∈ C is at most 2−n. The claimed result follows immediately. ��

Separating Deterministic from Nondeterministic NOF 145

This argument can be extended to other functions h : {0, 1}2n → {0, 1} that have
only small 1-monochromatic rectangles. It suffices that h(x, y)h(y, z)h(x, z) be
1 on a large fraction of inputs. Also, although the above Lemma is stated only
for k = 3 it is easy to see that the same bounds hold for larger k.

Given that any function f(x, y, z) of the form h1(x, y)h2(x, z)h3(y, z) has com-
munication complexity at most 3, it seems unlikely that any function is complete
for NPcc3 under efficient reductions that do not require communication.

References

[1] Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity
theory (preliminary version). In: FOCS27th, pp. 337–347 (1986)

[2] Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of
simultaneous messages. SJCOMP 33, 137–166 (2004)

[3] Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. JCSS 45, 204–232 (1992)

[4] Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for lovász-schrijver systems
and beyond follow from multiparty communication complexity. In: ICALP 32nd,
pp. 1176–1188 (2005)

[5] Beigel, R., Gasarch, W., Glenn, J.: The multiparty communication complexity of
Exact-T: Improved bounds and new problems. In: MFCS31st, pp. 146–156 (2006)

[6] Beigel, R., Tarui, J.: On ACC. In: FOCS 32nd, pp. 783–792 (1991)
[7] Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: STOC 15th,

pp. 94–99 (1983)
[8] Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness.

SIAMDM 6, 110–125 (1993)
[9] Ford, J., Gál, A.: Hadamard tensors and lower bounds on multiparty communi-

cation complexity. In: ICALP 32nd, pp. 1163–1175 (2005)
[10] H̊astad, J., Goldmann, M.: On the power of small-depth threshold circuits. Com-

pCompl 1, 113–129 (1991)
[11] Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University

Press, Cambridge (1997)
[12] Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal

hashing. TCS 107, 121–133 (1993)
[13] Newman, I.: Private vs. common random bits in communication complexity.

IPL 39, 67–71 (1991)
[14] Nisan, N.: The communication complexity of threshold gates. In: Proceedings of

Combinatorics, Paul Erdos is Eighty, pp. 301–315 (1993)
[15] Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SJ-

COMP 22, 211–219 (1993)
[16] Raz, R.: The BNS-Chung criterion for multi-party communication complexity.

CompCompl 9, 113–122 (2000)
[17] Yao, A.C.C.: Some complexity questions related to distributive computing (pre-

liminary report). In: STOC 11th, pp. 209–213 (1979)

An Optimal Decomposition Algorithm for

Tree Edit Distance

Erik D. Demaine, Shay Mozes�, Benjamin Rossman, and Oren Weimann

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA

edemaine@mit.edu,shaymozes@gmail.com,brossman@mit.edu,oweimann@mit.edu

Abstract. The edit distance between two ordered rooted trees with ver-
tex labels is the minimum cost of transforming one tree into the other
by a sequence of elementary operations consisting of deleting and re-
labeling existing nodes, as well as inserting new nodes. In this paper,
we present a worst-case O(n3)-time algorithm for this problem, improv-
ing the previous best O(n3 log n)-time algorithm [7]. Our result requires
a novel adaptive strategy for deciding how a dynamic program divides
into subproblems, together with a deeper understanding of the previ-
ous algorithms for the problem. We prove the optimality of our algo-
rithm among the family of decomposition strategy algorithms—which
also includes the previous fastest algorithms—by tightening the known
lower bound of Ω(n2 log2 n) [4] to Ω(n3), matching our algorithm’s run-
ning time. Furthermore, we obtain matching upper and lower bounds of
Θ(nm2(1+ log n

m
)) when the two trees have sizes m and n where m < n.

1 Introduction

The problem of comparing trees occurs in diverse areas such as structured text
databases like XML, computer vision, compiler optimization, natural language
processing, and computational biology [2,3,8,11,13]. One major application is the
analysis of RNA molecules in computational biology. The secondary structure
of RNA, which plays a significant role in its biological function [9], is naturally
represented as an ordered rooted tree [5,16]. Computing the similarity between
the secondary structure of two RNA molecules therefore helps determine the
functional similarities of these molecules.

The tree edit distance metric is a common similarity measure for rooted or-
dered trees. It was introduced by Tai in the late 1970’s [13] as a generalization
of the well-known string edit distance problem [15]. Let F and G be two rooted
trees with a left-to-right order among siblings and where each vertex is assigned
a label from an alphabet Σ. The edit distance between F and G is the minimum
cost of transforming F into G by a sequence of elementary operations consisting
of deleting and relabeling existing nodes, as well as inserting new nodes (allow-
ing at most one operation to be performed on each node). These operations are

� Work conducted while visiting MIT.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 146–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Optimal Decomposition Algorithm for Tree Edit Distance 147

illustrated in Fig. 1. The cost of elementary operations is given by two functions,
cdel and cmatch , where cdel(τ) is the cost of deleting or inserting a vertex with label
τ , and cmatch(τ1, τ2) is the cost of changing the label of a vertex from τ1 to τ2.
Since a deletion in F is equivalent to an insertion in G and vice versa, we can
focus on finding the minimum cost of a sequence of just deletions and relabels
in both trees that transform F and G into isomorphic trees.

Delete node y

Insert node yy

T1 T2 Tk T1 T2 Tk

x

T1 T2 Tk

Relabel node x to y

Relabel node y to x

Fig. 1. The three editing operations on a tree with vertex labels

Previous results. To state running times, we need some basic notation. Let n
and m denote the sizes |F | and |G| of the two input trees, ordered so that n ≥ m.
Let nleaves and mleaves denote the corresponding number of leaves in each tree,
and let nheight and mheight denote the corresponding height of each tree, which
can be as large as n and m respectively.

Tai [13] presented the first algorithm for computing tree edit distance, which
requires O(n2

leavesm
2
leavesnm) time and space, and thus has a worst-case run-

ning time of O(n3m3) = O(n6). Shasha and Zhang [11] improved this result
to an O(min{nheight, nleaves} · min{mheight,mleaves} · nm) time algorithm using
O(nm) space. In the worst case, their algorithm runs in O(n2m2) = O(n4) time.
Klein [7] improved this result to a worst-case O(m2n logn) = O(n3 logn) time
algorithm using O(nm) space. These last two algorithms are based on closely
related dynamic programs, and both present different ways of computing only a
subset of a larger dynamic program table; these entries are referred to as relevant
subproblems. In [4], Dulucq and Touzet introduced the notion of a decomposition
strategy (see Section 2.3) as a general framework for algorithms that use this
type of dynamic program, and proved a lower bound of Ω(nm logn logm) time
for any such strategy. Many other solutions have been developed; see [1,2,14]
for surveys. Among all these algorithms, Klein’s is the fastest in terms of worst-
case time complexity, and previous improvements to Klein’s O(n3 logn) time
bound were achieved only by constraining the edit operations or the scoring
scheme [3,10,12,17].

Our results. We present a new algorithm for computing the tree edit distance
that falls into the same decomposition strategy framework of [4,7,11]. In the
worst-case, our algorithm requires O(nm2(1 + log n

m)) = O(n3) time and O(nm)
space. The corresponding sequence of edit operations can easily be obtained
within the same time and space bounds. We therefore improve upon all known

148 E.D. Demaine et al.

algorithms in the worst-case time complexity. Furthermore, we prove a worst-
case lower bound of Ω(nm2(1+log n

m)) time for all decomposition strategy algo-
rithms. This bound improves the previous best lower bound of Ω(nm logn logm)
time [4], and establishes the optimality of our algorithm among all decomposi-
tion strategy algorithms. Our algorithm is simple, making it easy to implement,
but the analysis of the upper and lower bound proofs is quite complicated.

Roadmap. In Section 2 we give a simple and unified presentation of the two
well-known tree edit algorithms, on which our algorithm is based, and on the
class of decomposition strategy algorithms. We present and analyze the time
complexity of our algorithm in Section 3, and prove the matching lower bound
in Section 4. Final conclusions are presented in Section 5. For brevity, some of
the proofs and an explicit O(nm) space complexity version of our algorithm will
only be presented in the full version of this paper.

2 Background and Framework

Both the existing algorithms and ours compute the edit distance of finite ordered
Σ-labeled forests, henceforth forests. The unique empty forest/tree is denoted
by ∅. The vertex set of a forest F is written simply as F , as when we speak of a
vertex v ∈ F . For a forest F and v ∈ F , σ(v) denotes the Σ-label of v, Fv denotes
the subtree of F rooted at v, and F − v denotes the forest F after deleting v.
The special case of F − root(F) where F is a tree is denoted F ◦. The leftmost
and rightmost trees of F are denoted by LF and RF and their roots by �F and
rF . We denote by F − LF the forest F after deleting the entire leftmost tree
LF ; similarly F − RF . A forest obtained from F by a sequence of any number
of deletions of the leftmost and rightmost roots is called a subforest of F .

Given forests F and G and vertices v ∈ F and w ∈ G, we write cdel(v) instead
of cdel(σ(v)) for the cost of deleting or inserting v, and we write cmatch(v, w)
instead of cmatch(σ(v), σ(w)) for the cost relabeling v to w. δ(F,G) denotes the
edit distance between the forests F and G.

Because insertion and deletion costs are the same (for a node of a given label),
insertion in one forest is tantamount to deletion in the other forest. Therefore,
the only edit operations we need to consider are relabels and deletions of nodes in
both forests. In the next two sections, we briefly present the algorithms of Shasha
and Zhang, and of Klein. This presentation, inspired by the tree similarity survey
of Bille [2], is somewhat different from the original presentations and is essential
for understanding our algorithm.

2.1 Shasha and Zhang’s Algorithm [11]

Given two forests F and G of sizes n and m respectively, the following lemma is
easy to verify. Intuitively, the lemma says that in any sequence of edit operations
the two rightmost roots in F and G must either be matched with each other or
else one of them is deleted.

An Optimal Decomposition Algorithm for Tree Edit Distance 149

Lemma 1 ([11]). δ(F,G) can be computed as follows:

• δ(∅, ∅) = 0

• δ(F, ∅) = δ(F − rF , ∅) + cdel(rF)

• δ(∅, G) = δ(∅, G− rG) + cdel(rG)

• δ(F,G) = min

⎧
⎨

⎩

δ(F − rF , G) + cdel(rF),
δ(F,G− rG) + cdel(rG),
δ(R◦

F , R
◦
G) + δ(F −RF , G−RG) + cmatch(rF , rG)

Lemma 1 yields an O(m2n2) dynamic program algorithm. If we index the
vertices of the forests F and G according to their left-to-right postorder traversal
position, then entries in the dynamic program table correspond to pairs (F ′, G′)
of subforests F ′ of F and G′ of G where F ′ contains vertices {i1, i1 + 1, . . . , j1}
and G′ contains vertices {i2, i2 + 1, . . . , j2} for some 1 ≤ i1 ≤ j1 ≤ n and 1
≤ i2 ≤ j2 ≤ m.

However, as we will presently see, only O(min{nheight, nleaves} ·min{mheight,
mleaves} · nm) different relevant subproblems are encountered by the recursion
computing δ(F,G). We calculate the number of relevant subforests of F and G
independently, where a forest F ′ (respectively G′) is a relevant subforest of F
(respectively G) if it occurs in the computation of δ(F,G). Clearly, multiplying
the number of relevant subforests of F and of G is an upper bound on the total
number of relevant subproblems.

We now count the number of relevant subforests of F ; the count for G is
similar. First, notice that for every node v ∈ F , F ◦

v is a relevant subproblem.
This is because the recursion allows us to delete the rightmost root of F repeat-
edly until v becomes the rightmost root; we then match v (i.e., relabel it) and
get the desired relevant subforest. A more general claim is stated and proved
later on in Lemma 3. We define keyroots(F) = {the root of F} ∪ {v ∈ F |
v has a left sibling}. It is easy to see that every relevant subforest of F is a pre-
fix (with respect to the postorder indices) of F ◦

v for some node v ∈ keyroots(F).
If we define cdepth(v) to be the number of keyroot ancestors of v, and cdepth(F)
to be the maximum cdepth(v) over all nodes v ∈ F , we get that the total number
of relevant subforest of F is at most

∑

v∈keyroots(F)

|Fv| =
∑

v∈F
cdepth(v) ≤

∑

v∈F
cdepth(F) = |F |cdepth(F).

This means that given two trees, F and G, of sizes n and m we can compute
δ(F,G) in O(cdepth(F)cdepth(G)nm) = O(nheightmheightnm) time. Shasha and
Zhang also proved that for any tree T of size n, cdepth(T) ≤ min{nheight, nleaves},
hence the result. In the worst case, this algorithm runs inO(m2n2) = O(n4) time.

2.2 Klein’s Algorithm [7]

Klein’s algorithm is based on a recursion similar to Lemma 1. Again, we consider
forests F and G of sizes |F | = n ≥ |G| = m. Now, however, instead of recursing

150 E.D. Demaine et al.

always on the rightmost roots of F and G, we recurse on the leftmost roots if
|LF | ≤ |RF | and on the rightmost roots otherwise. In other words, the “direc-
tion” of the recursion is determined by the (initially) larger of the two forests.
We assume the number of relevant subforests of G is O(m2); we have already
established that this is an upper bound.

We next show that Klein’s algorithm yields only O(n log n) relevant subforests
of F . The analysis is based on a technique called heavy path decomposition in-
troduced by Harel and Tarjan [6]. Briefly: we mark the root of F as light. For
each internal node v ∈ F , we pick one of v’s children with maximal number of
descendants and mark it as heavy, and we mark all the other children of v as
light. We define ldepth(v) to be the number of light nodes that are ancestors of
v in F , and light(F) as the set of all light nodes in F . By [6], for any forest F
and vertex v ∈ F , ldepth(v) ≤ log |F |+O(1). Note that every relevant subforest
of F is obtained by some i ≤ |Fv| consecutive deletions from Fv for some light
node v. Therefore, the total number of relevant subforests of F is at most

∑

v∈light(F)

|Fv| =
∑

v∈F
ldepth(v) ≤

∑

v∈F
(log |F |+O(1)) = O(|F | log |F |).

Thus, we get an O(m2n logn) = O(n3 logn) algorithm for computing δ(F,G).

2.3 The Decomposition Strategy Framework

Both Klein’s and Shasha and Zhang’s algorithms are based on Lemma 1. The dif-
ference between them lies in the choice of when to recurse on the rightmost roots
and when on the leftmost roots. The family of decomposition strategy algorithms
based on this lemma was formalized by Dulucq and Touzet in [4].

Definition 1 (Strategy, Decomposition Algorithm). Let F and G be two
forests. A strategy is a mapping from pairs (F ′, G′) of subforests of F and G to
{left, right}. A decomposition algorithm is an algorithm based on Lemma 1 with
the directions chosen according to a specific strategy.

Each strategy is associated with a specific set of recursive calls (or a dynamic pro-
gram algorithm). The strategy of Shasha and Zhang’s algorithm is S(F ′, G′) =
right for all F ′, G′. The strategy of Klein’s algorithm is S(F ′, G′) = left if
|LF ′ | ≤ |RF ′ |, and S(F ′, G′) = right otherwise. Notice that Shasha and Zhang’s
strategy does not depend on the input trees, while Klein’s strategy depends
only on the larger input tree. Dulucq and Touzet proved a lower bound of
Ω(mn logm logn) time for any decomposition strategy algorithm.

3 The Algorithm

In this section we present our algorithm for computing δ(F,G) given two trees F
andG of sizes |F | = n ≥ |G| = m. The algorithm recursively uses a decomposition
strategy in a divide-and-conquer manner to achieve O(nm2(1 + log n

m)) = O(n3)

An Optimal Decomposition Algorithm for Tree Edit Distance 151

(F)

Fig. 2. A tree F with n nodes. Black nodes belong to the heavy path. White nodes are
in TopLight(F). The size of each subtree rooted at a white node is at most n

2 .

running time in the worst case. For clarity we describe the algorithm recursively
and analyze its time complexity. In the full version of this paper we prove that the
space complexity can be made O(mn) = O(n2).

We begin with the observation that Klein’s strategy always determines the di-
rection of the recursion according to the F -subforest, even in subproblems where
the F -subforest is smaller than the G-subforest. However, it is not straightfor-
ward to change this since even if at some stage we decide to choose the direction
according to the other forest, we must still make sure that all subproblems pre-
viously encountered are entirely solved. At first glance this seems like a real
obstacle since apparently we only add new subproblems to those that are al-
ready computed. Our key observation is that there are certain subproblems for
which it is worthwhile to choose the direction according to the currently larger
forest, while for other subproblems we had better keep choosing the direction
according to the originally larger forest.

For a tree F of size n, define the set TopLight(F) to be the set of roots
of the forest obtained by removing the heavy path of F (i.e., the unique path
starting from the root along heavy nodes). Note that TopLight(F) is the set
of light nodes with ldepth 1 in F (see the definition of ldepth in section 2.2).
This definition is illustrated in Fig. 2. Note that the following two conditions are
always satisfied:

(∗)
∑

v∈TopLight(F)

|Fv| ≤ n. Because Fv and Fv′ are disjoint ∀ v, v′ ∈ TopLight(F).

(∗∗) |Fv| < n
2 for every v ∈ TopLight(F). Otherwise v would be a heavy node.

The Algorithm. We compute δ(F,G) recursively as follows:

(1) If |F | < |G|, compute δ(G,F) instead. That is, make F the larger forest.
(2) Recursively compute δ(Fv, G) for all v ∈ TopLight(F). Along the way,

δ(F ◦
v′ , G◦

w) is computed and stored for all v′ not in the heavy path of F
and for all w ∈ G.

152 E.D. Demaine et al.

(3) Compute δ(F,G) using the following decomposition strategy: S(F ′, G′) =
left if F ′ is a tree, or if �F ′ is not the heavy child of its parent. Otherwise,
S(F ′, G′) = right. However, do not recurse into subproblems that were
previously computed in step (2).

The algorithm is evidentally a decomposition strategy algorithm, since for
all subproblems, it either deletes or matches the leftmost or rightmost roots.
The correctness of the algorithm follows from the correctness of decomposition
strategy algorithms in general.

Time Complexity. We show that our algorithm has a worst-case runtime of
O(m2n(1+log n

m)) = O(n3). We proceed by counting the number of subproblems
computed in each step of the algorithm. Let R(F,G) denote the number of
relevant subproblems encountered by the algorithm in the course of computing
δ(F,G).

In step (2) we compute δ(Fv, G) for all v ∈ TopLight(F). Hence, the number
of subproblems encountered in this step is

∑
v∈TopLight(F)R(Fv, G). For step

(3), we bound the number of relevant subproblems by multiplying the number of
relevant subforests in F and in G. For G, we count all possible O(|G|2) subforests
obtained by left and right deletions. Note that for any node v′ not in the heavy
path of F , the subproblem obtained by matching v′ with any node w in G was
already computed in step (2). This is because any such v′ is contained in Fv for
some v ∈ TopLight(F), so δ(F ◦

v′ , G◦
w) is computed in the course of computing

δ(Fv, G) (we prove this formally in Lemma 3). Furthermore, note that in step
(3), a node v on the heavy path of F cannot be matched or deleted until the
remaining subforest of F is precisely the tree Fv. At this point, both matching
v or deleting v result in the same new relevant subforest F ◦

v . This means that
we do not have to consider matchings of nodes when counting the number of
relevant subproblems in step (3). It suffices to consider only the |F | subforests
obtained by deletions according to our strategy. Thus, the total number of new
subproblems encountered in step (3) is bounded by |G|2|F |.

We have established that if |F | ≥ |G| then

R(F,G) ≤ |G|2|F |+
∑

v∈TopLight(F)

R(Fv, G)

and if |F | < |G| then

R(F,G) ≤ |F |2|G|+
∑

w∈TopLight(G)

R(F,Gw)

We first show, by a crude estimate, that this leads to an O(n3) runtime. Later,
we analyze the dependency on m and n accurately.

Lemma 2. R(F,G) ≤ 4(|F ||G|)3/2.

An Optimal Decomposition Algorithm for Tree Edit Distance 153

Proof. We proceed by induction on |F |+ |G|. The base of the induction is trivial.
For the inductive step there are two symmetric cases. If |F | ≥ |G| then R(F,G) ≤
|G|2|F |+

∑
v∈TopLight(F)R(Fv, G). Hence, by the inductive assumption,

R(F,G) ≤ |G|2|F |+
∑

v∈TopLight(F)

4(|Fv||G|)3/2 = |G|2|F |+ 4|G|3/2
∑

v∈TopLight(F)

|Fv|3/2

≤ |G|2|F |+ 4|G|3/2
∑

v∈TopLight(F)

|Fv| max
v∈TopLight(F)

√
|Fv|

≤ |G|2|F |+ 4|G|3/2|F |
√
|F |
2

= |G|2|F |+
√

8(|F ||G|)3/2 ≤ 4(|F ||G|)3/2

Here we have used facts (∗) and (∗∗) and the fact that |F | ≥ |G|. The case where
|F | < |G| is symmetric. ��

This crude estimate gives a worst-case runtime of O(n3). We now analyze the
dependence on m and n more accurately. Along the recursion defining the algo-
rithm, we view step (2) as only making recursive calls, but not producing any
relevant subproblems. Rather, every new relevant subproblem is created in step
(3) for a unique recursive call of the algorithm. So when we count relevant sub-
problems, we sum the number of new relevant subproblems encountered in step
(3) over all recursive calls to the algorithm. We define sets A,B ⊆ F as follows:

A =
{
a ∈ light(F) : |Fa| ≥ m

}

B =
{
b ∈ F−A : b ∈ TopLight(Fa) for some a ∈ A

}

Note that the root of F belongs to A. Intuitively, the nodes in both A and B
are exactly those for which recursive calls are made with the entire G tree. The
nodes in B are the last ones, along the recursion, for which such recursive calls
are made. We count separately:

(i) the relevant subproblems created in just step (3) of recursive calls δ(Fa, G)
for all a ∈ A, and

(ii) the relevant subproblems encountered in the entire computation of
δ(Fb, G) for all b ∈ B (i.e.,

∑
b∈B R(Fb, G)).

Together, this counts all relevant subproblems for the original δ(F,G). To see this,
consider the original call δ(F,G). Certainly, the root of F is in A. So all subprob-
lems generated in step (3) of δ(F,G) are counted in (i). Now consider the recursive
calls made in step (2) of δ(F,G). These are precisely δ(Fv, G) for v ∈ TopLight(F).
For each v ∈ TopLight(F), notice that v is either inA or inB; it is inA if |Fv| ≥ m,
and in B otherwise. If v is in B, then all subproblems arising in the entire compu-
tation of δ(Fv, G) are counted in (ii). On the other hand, if v is in A, then we are
in analogous situation with respect to δ(Fv, G) as we were in when we considered
δ(F,G) (i.e., we count separately the subproblems created in step (3) of δ(Fv, G)
and the subproblems coming from δ(Fu, G) for u ∈ TopLight(Fv)).

Earlier in this section, we saw that the number of subproblems created in
step (3) of δ(F,G) is |G|2|F |. In fact, for any a ∈ A, by the same argument, the

154 E.D. Demaine et al.

number of subproblems created in step (3) of δ(Fa, G) is |G|2|Fa|. Therefore, the
total number of relevant subproblems of type (i) is |G|2

∑
a∈A |Fa|. For v ∈ F ,

define depthA(v) to be the number of ancestors of v that lie in the set A. We
claim that depthA(v) ≤ 1 + log n

m for all v ∈ F . To see this, consider any
sequence a0, . . . , ak in A where ai is a descendent of ai−1 for all i ∈ [1, k]. Note
that |Fai | ≤ 1

2 |Fai−1 | for all i ∈ [1, k] since the ais are light nodes. Also note that
Fa0 ≤ n and that |Fak

| ≥ m by the definition of A. It follows that k ≤ log n
m ,

i.e., A contains no sequence of descendants of length > 1 + log n
m . So clearly

every v ∈ F has depthA(v) ≤ 1 + log n
m .

We now have the number of relevant subproblems of type (i) as

|G|2
∑

a∈A
|Fa| = m2

∑

v∈F
depthA(v) ≤ m2

∑

v∈F
(1 + log

n

m
) = m2n(1 + log

n

m
).

The relevant subproblems of type (ii) are counted by
∑

b∈B R(Fb, G). Using
Lemma 2, we have

∑

b∈B
R(Fb, G) ≤ 4|G|3/2

∑

b∈B
|Fb|3/2 ≤ 4|G|3/2

∑

b∈B
|Fb|max

b∈B

√
|Fb|

≤ 4|G|3/2|F |
√
m = 4m2n.

Here we have used the facts that |Fb| < m and
∑

b∈B |Fb| ≤ |F | (since the
trees Fb are disjoint for different b ∈ B). Therefore, the total number of relevant
subproblems for δ(F,G) is at most m2n(1+log n

m)+4m2n = O(m2n(1+log n
m)).

This implies:

Theorem 1. The runtime of the algorithm is O(m2n(1 + log n
m)). ��

4 A Tight Lower Bound for Decomposition Algorithms

In this section we present a lower bound on the worst-case runtime of decomposi-
tion strategy algorithms. We first give a simple proof of an Ω(m2n) lower bound.
In the case where m = Θ(n), this gives a lower bound of Ω(n3) which shows
that our algorithm is worst-case optimal among all decomposition algorithms.
To prove that our algorithm is worst-case optimal for any m ≤ n, we analyze
a more complicated scenario that gives a lower bound of Ω(m2n(1 + log n

m)),
matching the running time of our algorithm, and improving the previous best
lower bound of Ω(nm log n logm) time [4].

In analyzing strategies we will use the notion of a computational path, which
corresponds to a specific sequence of recursion calls. Recall that for all subforest-
pairs (F ′, G′), the strategy S determines a direction: either right or left. The re-
cursion can either delete from F ′ or from G′ or match. A computational path is
the sequence of operations taken according to the strategy in a specific sequence
of recursive calls. For convenience, we sometimes describe a computational path
by the sequence of subproblems it induces, and sometimes by the actual se-
quence of operations: either “delete from the F -subforest”, “delete from the
G-subforest”, or “match”.

An Optimal Decomposition Algorithm for Tree Edit Distance 155

The following lemma states that every decomposition algorithm computes the
edit distance between every two root-deleted subtrees of F and G.

Lemma 3. Given a decomposition algorithm with strategy S, the pair (F ◦
v , G

◦
w)

is a relevant subproblem for all v ∈ F and w ∈ G regardless of the strategy S.

The proofs of Lemmas 3 and 4 are given in the full version of this paper. Lemma 4
establishes an Ω(m2n) lower bound on the number of relevant subproblems for
any strategy.

Lemma 4. For any decomposition algorithm, there exists a pair of trees (F,G)
with sizes n,m respectively, s.t. the number of relevant subproblems is Ω(m2n).

This lower bound is tight when m = Θ(n), since in this case our algorithm
achieves an O(n3) runtime. To establish a tight bound when m is not Θ(n),
we use the following technique for counting relevant subproblems. We associate
a subproblem consisting of subforests (F ′, G′) with the unique pair of vertices
(v, w) such that Fv, Gw are the smallest trees containing F ′, G′ respectively. For
example, for nodes v and w with at least two children, the subproblem (F ◦

v , G
◦
w)

is associated with the pair (v, w). Note that all subproblems encountered in a
computational path starting from (F ◦

v , G
◦
w) until the point where either forest

becomes a tree are also associated with (v, w).

Lemma 5. For every decomposition algorithm, there exists a pair of trees (F,G)
with sizes n ≥ m s.t. the number of relevant subproblems is Ω(m2n log n

m).

Proof. Consider the trees illustrated in Fig. 3. The n-sized tree F is a complete
balanced binary tree, and G is a “zigzag” tree of size m. Let w be an internal
node of G with a single node wr as its right subtree and w� as a left child.
Denote m′ = |Gw|. Let v be a node in F such that Fv is a tree of size n′ + 1
where n′ ≥ 4m ≥ 4m′. Denote v’s left and right children v� and vr respectively.
Note that |Fv�

| = |Fvr | = n′

2
Let S be the strategy of the decomposition algorithm. We aim to show that

the total number of relevant subproblems associated with (v, w) or with (v, w�)
is at least n′

4 (m′− 2). Let c be the computational path that always deletes from
F (no matter whether S says left or right). We consider two complementary cases.

(F) (G)

v
rv

�
v

�
w

rw

w

Fig. 3. The two trees used to prove Ω(m2n log n
m

) lower bound

156 E.D. Demaine et al.

Case 1:
n′

4 left deletions occur in the computational path c, and at the time of
the n′

4 th left deletion, there were fewer than n′

4 right deletions.

We define a set of new computational paths {cj}1≤j≤n′
4

where cj deletes from F

up through the jth left deletion, and thereafter deletes from F whenever S says
right and from G whenever S says left. At the time the jth left deletion occurs,
at least n′

4 ≥ m′ − 2 nodes remain in Fvr and all m′ − 2 nodes are present in
Gw�

. So on the next m′ − 2 steps along cj , neither of the subtrees Fvr and Gw�

is totally deleted. Thus, we get m′ − 2 distinct relevant subproblems associated
with (v, w). Notice that in each of these subproblems, the subtree Fv�

is missing
exactly j nodes. So we see that, for different values of j ∈ [1, n

′

4], we get disjoint
sets of m′ − 2 relevant subproblems. Summing over all j, we get n′

4 (m′ − 2)
distinct relevant subproblems associated with (v, w).

Case 2:
n′

4 right deletions occur in the computational path c, and at the time
of the n′

4 th right deletion, there were fewer than n′

4 left deletions.

We define a different set of computational paths {γj}1≤j≤ n′
4

where γj deletes
from F up through the jth right deletion, and thereafter deletes from F whenever
S says left and from G whenever S says right (i.e., γj is cj with the roles of
left and right exchanged). Similarly as in case 1, for each j ∈ [1, n

′

4] we get
m′ − 2 distinct relevant subproblems in which Fvr is missing exactly j nodes.
All together, this gives n′

4 (m′ − 2) distinct subproblems. Note that since we
never make left deletions from G, the left child of w� is present in all of these
subproblems. Hence, each subproblem is associated with either (v, w) or (v, w�).

In either case, we get n′

4 (m′−2) distinct relevant subproblems associated with
(v, w) or (v, w�). To get a lower bound on the number of problems we sum over
all pairs (v, w) with Gw being a tree whose right subtree is a single node, and
|Fv| ≥ 4m. There are m

4 choices for w corresponding to tree sizes 4j for j ∈ [1, m4].
For v, we consider all nodes of F whose distance from a leaf is at least log(4m).
For each such pair we count the subproblems associated with (v, w) and (v, w�).
So the total number of relevant subproblems counted in this way is

∑

v,w

|Fv|
4

(|Gw | − 2) =
1
4

∑

v

|Fv|
m
4∑

j=1

(4j − 2) =
1
4

logn∑

i=log 4m

n

2i
·2i

m
4∑

j=1

(4j − 2)

= Ω(m2n log
n

m
) ��

Theorem 2. For every decomposition algorithm and n ≥ m, there exist trees
F and G of sizes Θ(n) and Θ(m) s.t. the number of relevant subproblems is
Ω(m2n(1 + log n

m)).

Proof. Ifm = Θ(n) then this bound is Ω(m2n) as shown in Lemma 4. Otherwise,
this bound is Ω(m2n log n

m) which was shown in Lemma 5. ��

An Optimal Decomposition Algorithm for Tree Edit Distance 157

5 Conclusions

We presented a new O(n3)-time and O(n2)-space algorithm for computing the
tree edit distance between two rooted ordered trees. Our algorithm is both sym-
metric in its two inputs as well as adaptively dependent on them. These features
make it faster than all previous algorithms in the worst case. Furthermore, we
proved that our algorithm is optimal within the broad class of decomposition
strategy algorithms, by improving the previous lower bound for this class. Our
algorithm is simple to describe and implement; our implementation in Python
spans just a few dozen lines of code.

References

1. Apostolico, A., Galil, Z. (eds.): Pattern matching algorithms. Oxford University
Press, Oxford, UK (1997)

2. Bille, P.: A survey on tree edit distance and related problems. Theoretical computer
science 337, 217–239 (2005)

3. Chawathe, S.S.: Comparing hierarchical data in external memory. In: Proceed-
ings of the 25th International Conference on Very Large Data Bases, pp. 90–101.
Edinburgh, Scotland, U.K (1999)

4. Dulucq, S., Touzet, H.: Analysis of tree edit distance algorithms. In: Baeza-Yates,
R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 83–95.
Springer, Heidelberg (2003)

5. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press, Cambridge (1997)

6. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal of Computing 13(2), 338–355 (1984)

7. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bi-
lardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

8. Klein, P.N., Tirthapura, S., Sharvit, D., Kimia, B.B.: A tree-edit-distance algo-
rithm for comparing simple, closed shapes. In: Proceedings of the 11th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 696–704 (2000)

9. Moore, P.B.: Structural motifs in RNA. Annual review of biochemistry 68, 287–300
(1999)

10. Selkow, S.M.: The tree-to-tree editing problem. Information Processing Let-
ters 6(6), 184–186 (1977)

11. Shasha, D., Zhang, K.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing 18(6), 1245–1262 (1989)

12. Shasha, D., Zhang, K.: Fast algorithms for the unit cost editing distance between
trees. Journal of Algorithms 11(4), 581–621 (1990)

13. Tai, K.: The tree-to-tree correction problem. Journal of the Association for Com-
puting Machinery (JACM) 26(3), 422–433 (1979)

14. Valiente, G.: Algorithms on Trees and Graphs. Springer, Heidelberg (2002)
15. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of

the ACM 21(1), 168–173 (1974)
16. Waterman, M.S.: Introduction to computational biology: maps, sequences and

genomes. chapters 13,14 Chapman and Hall (1995)
17. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled

trees and related problems. Pattern Recognition 28(3), 463–474 (1995)

On Commutativity Based Edge Lean Search

Dragan Bošnački1, Edith Elkind2, Blaise Genest3, and Doron Peled4

1 Department of Biomedical Engineering, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

2 Department of Computer Science, University of Southampton, U.K
3 IRISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France

4 Department of Computer Science, Bar Ilan University, Israel

Abstract. Exploring a graph through search is one of the most basic
building blocks of various applications. In a setting with a huge state
space, such as in testing and verification, optimizing the search may be
crucial. We consider the problem of visiting all states in a graph where
edges are generated by actions and the (reachable) states are not known
in advance. Some of the actions may commute, i.e., they result in the
same state for every order in which they are taken (this is the case
when the actions are performed independently by different processes).
We show how to use commutativity to achieve full coverage of the states
while traversing considerably fewer edges.

1 Introduction

In many applications one has to explore a huge state space using limited resources
(such as time and memory). Such applications include software and hardware
testing and verification [4], multiagent systems, games (e.g., for the purpose of
analyzing economic systems), etc. In such cases, it is obviously important to
optimize the search, traversing only the necessary states and edges.

In this paper, we consider the problem of searching a large state space, where
transitions between states correspond to a finite number of actions. We do not
assume that the entire system is given to us as an input. Rather, we are given
an initial state, and a method to generate states from one another. More specif-
ically, for each state, there can be one or more actions available from this state.
Executing an available action leads to another state. Also, we are given a fixed
independence relation on actions: if two actions are independent, then executing
them in any order from a given state leads to the same state. It is easy to model
many of the problems in the above-mentioned application areas in this frame-
work (we provide specific examples later in the paper). Traversing an edge and
checking whether it leads to a new state has a cost. Hence, we want to predict if
an edge is redundant (i.e., leads to a state that we have already visited or that
we will necessarily visit in the future) without actually exploring it. Exploring
fewer edges may also reduce the size of the search stack, and in particular re-
duce the memory consumption. Intuitively, the independence relation between
actions should be useful here: if two sequences of actions lead to the same state,

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 158–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Commutativity Based Edge Lean Search 159

it suffices to explore one of them. Of course, it will defy our goal to use a lot of
overhead, both in terms of time and space spent computing the subset of edges
to be explored.

The main contribution of this paper is an efficient state space search algorithm,
which we call commutativity-based edge-lean search (CBEL). Our algorithm se-
lects a total order on actions, extends it to paths (i.e., sequences of actions) in a
natural way, and only explores paths that cannot be made smaller with respect
to this order by permuting two adjacent independent actions. The proof that
combining this simple principle with depth-first search ensures visiting all states
turns out to be quite non-trivial (see Section 3). Another approach, which is
inspired by trace theory [11,12], is to only consider paths that correspond to
sequences in trace normal form (TNF) (defined later in the paper). This method
provides a more powerful reduction than the one described above, as it only ex-
plores one sequence in each trace. In Section 4, we investigate this idea in more
detail, describing an efficient data structure (called summary) that supports this
search technique. We prove that the TNF-based algorithm is guaranteed to visit
all states as long as the underlying state system contains no directed cycles. Un-
fortunately, if the state system is not loop-free, this algorithm may fail to reach
some of the states: we provide an example in Section 4. While this limits the
scope of applicability of this algorithm, many state systems, especially the ones
that arise from game-theoretic applications, are naturally acyclic. Whenever this
is the case, the TNF-based algorithm should be preferred over the algorithm of
Section 3.

A related approach is the family of partial order reductions [13,5,14]. As op-
posed to our algorithms, in general these methods — known as ample sets,
persistent sets, or stubborn sets, respectively, — do not preserve the property of
visiting all the states, but guarantee to generate a reduced state space that pre-
serves the property that one would like to check. Our algorithms are most closely
related to the sleep set approach of [5], in particular, the non-state-splitting sleep
set algorithms. In Section 5, we show that our TNF-based algorithm generates,
in fact, exactly the same reduced graph as the very first version of the sleep set
algorithm proposed in [6] (when edges are explored according to a fixed order
between actions). The counterexample of Section 4 (see Figure 1) can therefore
be seen as an explanation why in the presence of cycles, all existing sleep set
algorithms have to use additional techniques to visit all states. In particular,
the algorithm of [7] generates and checks back-edges, and discards them when
redundant, thus paying the cost of checking some of the redundant edges. A
fix suggested in [5,13] requires splitting nodes into several copies, which may
increase the number of effective states. Surprisingly, our edge lean algorithm
achieves a full coverage of the states without incurring these costs, and even in
the presence of cycles.

An obvious application area for this technique is model checking and verifica-
tion, but it can be useful in many other domains as well (see the full version of
the paper [2]) To illustrate this, in Section 6 we describe an example from bioin-
formatics where one can use this method. In Section 7, we provide the results of

160 D. Bošnački et al.

several experiments that compare our algorithms with classical depth-first search
used in SPIN [9]. Our experiments show that for a number of natural problems,
our methods provide a dramatic reduction in the number of edges explored and
the stack size.

2 Preliminaries

A system is a tuple A = 〈S, s0, Σ, T 〉 such that

– S is a finite set of states.
– s0 ∈ S is an initial state.
– Σ is the finite alphabet of actions.
– T ⊆ S × Σ × S is a labeled transition relation. We write s a−→ s′ when

(s, a, s′) ∈ T .
– A symmetric and irreflexive relation I ⊆ Σ ×Σ on letters, called the inde-

pendence relation. We require that independent transitions a I b satisfy the
following diamond condition for every state s:

If s a−→ q
b−→ r then there exists q′ ∈ S such that s b−→ q′

a−→ r. In
this case, we say that the system has the diamond property.

Note that we do not require the other common diamond condition:
If s a−→ q and s b−→ q′ then there exists r ∈ S such that s a−→ q

b−→
r.

An action a is enabled from a state s ∈ S if there exists some state s′ ∈ S such
that s a−→ s′. We say that a path ρ = s0

a1−→ · · · an−→ sn is loop-free or simple if
si �= sj for all i �= j. Its labeling is �(ρ) = a1 · · · an.

Definition 1. Let σ, ρ ∈ Σ∗. Define σ
1≡ρ iff σ = uabv and ρ = ubav, where

u, v ∈ Σ∗, and a I b. Let σ ≡ ρ be the transitive closure of the relation
1≡. This

equivalence relation is often called trace equivalence [11].

That is, ρ is obtained from σ (or vice versa) by commuting the order of an
adjacent pair of letters. For example, for Σ = {a, b} and I = {(a, b), (b, a)} we

have abbab
1≡ababb and abbab ≡ bbbaa. Notice that if the system has the diamond

property and u ≡ v, then s u−→ r iff s v−→ r.
Let " be a total order on the alphabet Σ. We call it the alphabetic order.

We extend " in the standard lexicographic way to words, i.e., v " vu and
vau" vbw for v, u , w ∈ Σ∗, a, b ∈ Σ and a" b.

All the search algorithms to be presented are based on depth-first search
(DFS), which provides a space complexity advantage over breadth-first search:

proc Dfs(q);
local q’;
hash(q);

forall q
a−→ q′ do

if q′ not hashed then Dfs(q’);
end Dfs;

On Commutativity Based Edge Lean Search 161

3 An Edge Lean Algorithm for Complete State Coverage

A key idea to reduce the number of explored edges is to make use of the diamond
property, defined in the previous section.

Definition 2. Let w ∈ Σ∗. Denote by w̃ the least word under the relation "
equivalent to w. If w = w̃, then we say that w is in trace normal form (TNF) [12].

As w̃ ≡ w, any state that can be reached by a path labeled with w can also be
reached by a path labeled with w̃. Therefore, it is tempting to limit our attention
to paths labeled with words in TNF, as such paths do explore all reachable states.
However, one has to use caution when applying this approach within the depth-
first search framework (see Section 4). The main reason for this is that all paths
explored during depth-first search are necessarily acyclic. Hence, by using this
method, we only consider paths that are both acyclic and labeled with words
in TNF. On its own, neither of these restrictions prevents us from reaching all
states. Unfortunately, it turns out that combining these limitations may result in
leaving some states unexplored; we provide an example in Section 4. Therefore,
for general state systems we have to settle for a less ambitious reduction. In what
follows, we define a smaller relation on strings in Σ∗, and prove that it suffices
to explore paths whose labeling is minimum with respect to this relation.

Set ubav �1 uabv if and only if a I b and a " b and let � be the transitive
closure of �1. We say that a word w ∈ Σ∗ is irreducible if there exists no
w′ �= w such that w � w′. Intuitively, this means that w cannot be reduced,
i.e., transformed into a smaller word with respect to �, by a local fix (a single
permutation of adjacent independent letters). We call a path ρ irreducible if its
labeling �(ρ) is an irreducible word. Observe that a prefix of an irreducible path
is also irreducible. Notice that if w is in TNF, then it is irreducible. The converse
does not necessarily hold.

Our algorithm EdgeLeanDfs explores some irreducible paths in depth-first
manner. For this, it suffices to remember the last letter a seen along the current
path, and not to extend it with letter b whenever a I b and b" a.

EdgeLeanDfs(s0,ε);

proc EdgeLeanDfs(q,prev);
local q’;
hash(q);

forall q
a−→ q′ such that prev= ε or ¬(aIprev) or prev" a do

begin
if q′ not hashed then EdgeLeanDfs(q’, a);

end EdgeLeanDfs;

Let first cbel(s) be the first path by which EdgeLeanDfs(s0, ε) reaches the
state s; if EdgeLeanDfs(s0, ε) does not reach s, set first cbel(s)=⊥.

Theorem 1. For any s ∈ A, we have first cbel(s) �= ⊥, i.e., our algorithm ex-
plores all states. This implies that EdgeLeanDfs(s0, ε) is correct.

162 D. Bošnački et al.

Proof. To prove Theorem 1, we fix a state s, and show that EdgeLeanDfs(s0, ε)
reaches this state. To do so, we start with an arbitrary simple irreducible path
in the state graph that reaches s (we show that such path always exists) and
repeatedly apply to it a transformation T , defined below. This transformation
produces another simple irreducible path that also leads to s. We show that
for any ρ for which T (ρ) is defined, an application of T results in a path that
is smaller than ρ with respect to a certain well-founded ordering, defined later.
Therefore, after a finite number of iterations, we obtain a simple irreducible path
ρ such that T (ρ) is not defined. We then prove that any such ρ is a path taken
by EdgeLeanDfs(s0, ε), i.e., s is reached by our algorithm. The details follow.

For any simple path ρ and any state t on this path, we denote by ρt the prefix
of ρ that reaches t; in particular, ρs is a simple path that reaches s. We will now
show that we can choose ρs so that it is irreducible.

Claim 1. For any path ρs, there exists a path ρ′s that is simple and irreducible.

Proof. We iteratively (1) delete loops and (2) rearrange the labels to obtain
an irreducible path. Each application of (1) strictly decreases the length of the
path, while (2) does not change its length. The path obtained also leads to s.
We obtain a simple irreducible path after a finite number of iterations.

Given a simple path ρ that reaches s, all states on ρ can be classified into three
categories with respect to ρ: we say that a state t is red if first cbel(t)= ρt,
blue if first cbel(t)�= ⊥, but first cbel(t)�= ρt, and white if first cbel(t)= ⊥. This
classification depends on the path ρ: a state can be red with respect to one
path but blue with respect to a different path. It turns out that for a simple
irreducible path, not all sequences of state colors are possible.

Lemma 1. Suppose that ρs is loop-free and irreducible. Then if t is the last red
state along ρs, all states that precede t on ρs are also red. Moreover, either t is
the last state on ρs, i.e., t = s, or the state t′ that follows t on ρs is blue.

Proof. The first statement of the lemma follows from the definition of a red state
and from the use of depth-first search. To prove the second statement, assume
for the sake of contradiction that t′ is white (t′ cannot be red as t is the last
red state on ρs). The path ρt′ is a prefix of ρs, so it is simple and irreducible.
Hence, EdgeLeanDfs(s0, ε) must explore the transition that leads from t to t′.
Therefore, t′ cannot be white.

We define a transformation T that can be applied to any simple irreducible path
ρ = ρs that contains a blue state; its output is another simple irreducible path
that reaches the same state s. Recall that �(π) denotes the labeling of a path π.
The transformation T consists of the following steps (w and v appear only for a
later reference in the proof):

(1) Let ρt be the shortest prefix of ρ such that t is blue. Decompose ρ as ρ = ρt σ.
Modify ρ by replacing ρt with first cbel(t), i.e., set ρ=first cbel(t)σ. Set
w = y = �(first cbel(t)), v = z = �(σ) and x = yz = �(ρ).

On Commutativity Based Edge Lean Search 163

(2) Eliminate all loops from ρ. Update x, y, and z by deleting the substrings
that correspond to these loops.

(3) Replace ρ with an equivalent irreducible path as follows.
(3a) Replace z with an equivalent irreducible word.
(3b) Let a be the last letter of y, and let b be the first letter of z. If a ' b

and a I b, move a from y to z and push it as far to the right as possible
within z.

(3c) Repeat Step (3b) until the last letter a of y cannot be moved to z, i.e.,
a" b or a and b are not independent.

(3d) Set x = yz, and let ρ be a path reaching s with �(ρ) = x.
(4) Repeat (2) and (3) until ρ is simple and irreducible.

By the argument in the proof of Claim 1, we only need to repeat Steps (2)
and (3) a finite number of times, so the computation of T terminates. Observe
that if s is red with respect to ρs, then T (ρs) is not defined. On the other hand,
consider a simple irreducible path ρs such that s is not red with respect to ρs. By
Lemma 1, we can apply T to ρs. The output of T (ρs) is loop-free and irreducible,
so if s is not red with respect to T (ρs), we can apply T to T (ρs). We will now
show that after a finite number of iterations n, we obtain a path T n(ρs), which
consists of red states only.

Definition 3. For a word v ∈ Σ∗, let �a(v) be the number of occurrences of the
letter a in v. We write v <� w if there exists a letter a such that for all b " a,
�b(v) = �b(w) and �a(v) < �a(w).

Claim 2. The relation <� is a well-founded (partial) order, i.e., there does not
exist an infinite sequence u1, u2, . . . , ui ∈ Σ∗ such that u1 >� u2 >�

Consider a simple irreducible path ρ = ρs. Suppose that both ρ and T (ρ) contain
blue states.

Lemma 2. Let ρ = ρtσ, where t is the first blue state on ρ, and let T (ρ) = ρ′t′σ
′,

where t′ is the first blue state on T (ρ). Let v = �(σ), v′ = �(σ′). Then v >� v
′.

Before we prove the lemma, let us show that it implies Theorem 1. Indeed,
by Claim 2, there does not exist an infinite decreasing sequence of words with
respect to <�. The strings v, v′ satisfy v′ <� v, and are well-defined as long as
both ρ and T (ρ) contain blue states. Hence, for some finite value of n, T n(ρ)
contains no blue states, it is simple and irreducible. Therefore, by Lemma 1 we
obtain a path of our algorithm that reaches s. We now prove Lemma 2.

Proof. We use the notation introduced in the description of T : we have w =
�(first cbel(t)), v = �(σ), and x = wv = �(ρ) after ρt was replaced by first cbel(t).

In the rest of the proof, we abuse notation by using the word ‘letter’ to refer
both to an element of Σ and an occurrence of this element in a word. The specific
meaning will be clear from the context. In particular, we will assign colors to
occurrences of the elements of Σ rather than the elements itself, whereas when
we write a" b, we refer to the respective elements of Σ.

164 D. Bošnački et al.

Let us color all the letters in the word wv so that all letters in w are yellow
and all letters in v are green. By construction at any point in time all letters in y
are yellow, and therefore all letters pushed into z during Step (3) are yellow. We
construct a directed acyclic graph (DAG) whose set of nodes includes all yellow
occurrences of letters in z as well as some of the green occurrences of letters.
Namely, if a yellow letter a gets pushed into z when the first letter of z is b, there
is an edge from this occurrence of a to this occurrence of b. Also, if a (yellow
or green) letter a that is currently the first letter of z gets transposed with its
right-hand side neighbor b (by (3a)), there is an edge from this occurrence of a
to this occurrence of b. Observe that in both cases if there is an edge from an
occurrence of a to an occurrence of b, then we have b" a, so our graph contains
no directed cycles. We do not delete a node from this graph even if the respective
occurrence is deleted from x by (2).

Claim 3. Each yellow letter pushed into z has an outgoing edge. Moreover, if
a letter has incoming edges, but no outgoing edges, either it has been eliminated
from x, or it is the first letter of z after the execution of T is completed.

Proof. Each yellow letter acquires an outgoing edge as it is moved into z. Now,
consider a letter that has incoming edges. It acquired them either when it was the
first letter of z and yellow letters were pushed past it, or when it was transposed
with its left-hand side neighbor and became the first letter of z. In both cases, it
was the first letter of z at some point in time. If it remains in that position till
the end of the execution of T , we are done. Now, suppose that it stopped being
the first letter of z. Then either it was deleted during loop elimination phase, in
which case we are done, or it was transposed with its right-hand side neighbor,
in which case it acquired an outgoing edge. [Claim 3]

Let G be the set of nodes of our DAG that have incoming edges, but no outgoing
edges. By Claim 3 none of the letters in G is yellow, so all of them are green.
Moreover, each letter in G either has been eliminated from x or is the first letter
of z after the end of the execution of T .

Consider the string x = yz obtained after the end of the execution of T . This
string corresponds to ρ′ = T (ρ). Recall that w corresponds to first cbel(t), which
consists of red states only, and y is a prefix of w. Hence, the prefix of ρ′ that
corresponds to y reaches a red state. Therefore, to reach a blue state along ρ′,
we need to progress over at least one letter of z, or, equivalently, v′ is a strict
suffix of z, that is, v′ does not include the first letter of z. Using Claim 3, we
conclude that v′ does not contain any of the letters in G.

Let a be the minimal (for ") letter of G. It is contained in v, but not in v′.
On the other hand, each letter c that is contained in v′, but not in v, is a yellow
letter that appears in the DAG, that is there is a path of the DAG leading from
c to some b ∈ G. By construction of the graph, the existence of a path from c to
b implies c' b, and hence c' a. Hence, for all b in v′ with b" a or b = a, b is
green, hence �b(v′) ≤ �b(v), and a ∈ G is in v but not in v′, hence �a(v′) < �a(v),
that is v′ <� v. [Lemma 2,Theorem 1]

On Commutativity Based Edge Lean Search 165

4 An Efficient Reduction for Cycle Free State Spaces

It can be argued that the reduction of Section 3 is not optimal: let a " b " c,
a I b, b I c and ¬(a I c). Let x = cab and y = bca. Then we have x ≡ y, i.e., the
states reached after x and y are the same. However, both x and y are irreducible,
since a" b and ¬(a I c). Therefore, the algorithm of Section 3 will explore both
of the paths labeled by x and y.

In this section, we describe an algorithm TNF Dfs(s0) that only explores
paths labeled with words in trace normal form. This algorithm often provides
a significant reduction in the size of stack needed, both compared to DFS and
EdgeLeanDfs. For acyclic state spaces, TNF Dfs(s0) explores all states. However,
it may not be the case in general. In the end of this section, we provide an ex-
ample in which some of the states are not reached. Denote by α(σ) the set of
letters occurring in σ.

Definition 4. A summary of a string σ is the total order ≺σ on the letters from
α(σ) such that a ≺σ b iff the last occurrence of a in σ precedes the last occurrence
of b in σ. That is, σ = vaubw, where v ∈ Σ∗, u ∈ (Σ \ {a})∗, w ∈ (Σ \ {a, b})∗.

Our reduction will be based on generating paths that are in TNF. The proofs of
the following two lemmas can be found in the full version of the paper [2].

Lemma 3. Let σ ∈ Σ∗ be in TNF and a ∈ Σ. Then σa is not in TNF if and
only if σ = vu for some v, u such that (i) vau ≡ vua and (ii) vau" vu.

Intuitively, Lemma 3 means that we can commute the last a in vua backwards
over u to obtain a string that is smaller in the alphabetic order than vu. The
following lemma shows how we can use a summary to decide whether σa is
in TNF. It implies that it suffices to consider the suffix of the summary that
commutes with a, and look among these letters for one that comes after a in the
alphabetic order.

Lemma 4. Let σ ∈ Σ∗ in TNF and a ∈ Σ. Then σa is not in TNF if and only
if there is a b ∈ α(σ) such that a" b and for each c such that b �σ c, aIc.

To perform a reduced depth-first search (DFS) that only considers strings in
TNF, we store the summary in a global array summary[1..n], where n = |Σ|.
The variable size stores the number of different letters in the current string σ.
We update the summary as we progress with the DFS, and recover the previous
value when backtracking, i.e., the value of the summary is calculated on the fly
and not stored with the state information.

The reduced DFS procedure TNF Dfs(s0) considers all transitions enabled at
the current state. For each of them, it checks whether the current string aug-
mented with this transition is in TNF. This is done through a call to the function
normal, which checks the summary, according to Lemma 4. The pseudocode de-
scription of auxiliary functions used by TNF Dfs can be found in [2].

166 D. Bošnački et al.

s0

s1 s2 s3 s4

s5 s6

bb b b bb

z

a

b

c

c

a

a

Fig. 1. A state space for which TNF DFS does not explore every state

proc TNF Dfs(q);
local q’, i;
hash(q);

forall q
a−→ q′ in increasing "-order do

if normal(a) and q’ not hashed then
i:=ord(a);
update sumr(i,a);
TNF Dfs(q’);
recover sumr(i,a);

end TNF Dfs;

Theorem 2. Given an acyclic state space A, the algorithm TNF Dfs(s0) visits
all states of A.

Proof. We show that every state s is reached by the path first(s), where first(s)
stands for the path labeled by the minimal (for ") word reaching s. Clearly,
first(s) is in TNF. By contradiction, if it is not the case, take the state with the
smallest first(s) such that s is not explored by first(s). Then first(s) = ua, with
u reaching t with u " first(s), hence u = first(t). When considering a, ua is in
TNF and acyclic, hence s will be reached by ua = first(s), and since first(s) is
minimal for ", no other path that reaches s has been considered before.

Unfortunately, for graphs that contain cycles, the conclusion of Theorem 2 is no
longer true since ua and the minimal word reaching s may have loops. Figure 1
provides an example of a (diamond closed) graph that is not fully covered by
the TNF algorithm (and hence, as shown in the next section, neither by the
SleepSetsDfs version of the sleep set algorithm). The nodes, except s6, are or-
dered in the order in which they are discovered. The node s6 is not discovered.
The alphabet is {a, b, c, z}, with the ordering a " b " c " z. The indepen-
dence relation is given by b I a, b I c. Consequently, z depends on every other
letter a, b, c, and a, c are dependent. The state s6 can only be visited through

On Commutativity Based Edge Lean Search 167

s3 and s5, with first(s3) = bca and first(s5) = bcazb. Neither bcab (≡ bbca)
nor bcazba (≡ bcaaab) is in TNF (but note that bcab is irreducible, as required
by EdgeLeanDfs), hence s6 is not visited. On the other hand, s6 is visited by
EdgeLeanDfs.

5 TNF Dfs and Sleep Sets

In the full version of the paper, we explore the relationship between the algorithms
of Sections 3 and 4, and the sleep set approach [5]. Here, we show that the most
straightforward version of the sleep set approach [6] is equivalent to TNF Dfs.

proc SleepSetsDfs(s,sleep);
local s′, current;
current:=sleep;
hash(s);

forall a �∈ sleep, s
a−→ s′ do

begin
if s′ not hashed then

SleepSetDfs(s′,current \{b | ¬(b I a)});
current := current ∪ {a};

end;
end SleepSetsDfs;

Lemma 5. Assume that both TNF Dfs and SleepSetsDfs use the same alpha-
betic priority order". Then from any given state s during the search they explore
exactly the same successors.

Proof. Consider an action a that is in the sleep set of a state s. Suppose that
s is reachable from the initial state via a path labeled with σ in TNF. Then σ
can be decomposed as σ = vu so that there is a state t reached from s0 via v, a
has been taken from t, and all the letters in u are independent of a. According
to the priority ", we have a " u. Thus, if a is in the sleep set of s, according
to Lemma 3, σa cannot be in normal form.

Conversely, assume that TNF Dfs does not take a transition labeled with a
after a state s, where the path on the stack is labeled with σ. This is because σa
is not in normal form. As per Lemma 3, let u be the longest suffix of σ such that
σ = vu, vau ≡ vua and vau" vu. Let t be the state reached after v. Then a is
enabled from t. Now, consider the sleep set algorithm. If a is taken from t, it will
be taken before the first letter of u, according to the lexicographic order priority
(since a" u). Then a must be in the sleep set of s, and thus is not taken from
it. Since a is enabled at t, if a is not taken from t, it must be because a is in the
sleep set when we reach t. But this means that there is a longer suffix u′ of σ
such that a is independent of u′, and a" u′, a contradiction to the maximality
of u.

168 D. Bošnački et al.

6 Applications

The idea of speeding up state-space search by using independence relation be-
tween actions is well-known in the model-checking community. In this section,
we present an example motivated by bioinformatics, where one can also apply
this technique. In [2], we provide examples from other domains such as voting
theory, cellular automata theory and auction theory.

Mining Maximal Frequent Itemsets. Mining maximal itemsets is an impor-
tant problem in data mining (e.g. [8]) with various applications in other areas
like, for instance, bioinformatics [10]. We assume a set I = {i1, i2, . . . , im} of m
distinct items and a database of n transactions D = t1, t2, . . . , tn. Each transac-
tion is a subset of I. Let X ⊆ I. We define the support σ(X) of X as the number
of transactions in whichX occurs as a subset. A set is frequent iff σ(X) ≥ minsup ,
with some minimum support value minsup . A frequent set is maximal if it is not
a subset of any other frequent set. The algorithm for generating all maximal
frequent sets [8] is a backtracking algorithm that, beginning with an empty set,
builds frequent sets by adding one item at a time. An item is added to the
current (frequent) set only if the new set that is obtained is frequent too. The
algorithm generates a state space whose states are frequent sets. The transitions
correspond to the actions of adding a new item to the set. The choice which
item will be added to the set is obviously non-deterministic. Two actions are
independent if they add items that are contained in all sets of the database. The
maximal frequent sets correspond to “deadlock” states, i.e., states (sets) that
cannot be further extended. Since added items are never removed from a set the
state space graph is acyclic. A variant of this algorithm is applied in bioinfor-
matics for finding similarities between biological networks [10]. For this purpose
the original problem is transformed into a one of finding maximal subgraphs in
a collection of undirected graphs. The graphs are represented as sets of edges,
therefore there is a one-to-one correspondence with the original problem (edges,
graphs, collection of graphs, vs. items, sets, database, respectively).

7 Experiments

We implemented the algorithms EdgeLeanDfs and TNF Dfs from Sections 3 and 4
in the tool Spin [9]. We tested state space generation of examples from the lit-
erature. The results are shown in Table 1: The columns correspond to regular
depth-first search, the edge lean algorithm, and the TNF-based algorithm, re-
spectively. For each example we give the number of states and edges explored,
and the maximal size of the stack, in unit, thousands (K) and millions (M). The
first two examples, DMSnoCC and DMSwithCC, are models of system-on-chip
designs of a distributed memory system on message passing network without
and with cache coherency, respectively([1]). The examples RW1, RW4, and
RW6 are models of various instances of the so-called Replicated Workers prob-
lem described in [3]. The rest of the models are from the test suite that comes

On Commutativity Based Edge Lean Search 169

Table 1. Experimental Results

Spin with regular DFS Spin with EdgeLeanDfs Spin with TNF Dfs
model states edges stack states edges stack states edges stack

DMSnoCC 229M 1009M 26M 229M 296M 47,3K 229M 265M 32,2K

DMSwithCC 132M 541M 18,9M 132M 174M 384K 132M 151M 29,2K

RW1 181K 852K 2219 181K 409K 1224 181K 339K 360

RW4 263K 1.1M 2253 263K 558K 1247 263K 462K 625

RW6 11.5M 65.6M 827K 11.5M 59.6M 784K 9.9M 41.3M 148K

petersonN 25362 69787 5837 25362 28855 1035 25362 28328 632

pftp 207K 604K 3077 207K 480K 2578 207K 473K 2824

snoopy 62179 213K 6877 62179 193K 5670 62179 192K 5546

leader 38863 158K 113 38863 51565 112 38863 51565 113

sort 374238 1.53M 177 374238 413K 176 374238 413K 177

with the standard distribution of Spin. We observed in only one case (RW6) a
difference between the number of states generated by EdgeLean and TNF.

In most of the experiments, both of our algorithms explore roughly the same
number of edges, considerably fewer than regular depth-first search. With respect
to the stack size (and thus memory consumption), our algorithms are up to a
thousand times better than regular DFS. Also, on many examples TNF uses
much less space than EdgeLean, but the converse is never the case.

References

1. Basten, T., Bošnački, D., Geilen, M.: Cluster-based Partial Order Reduction. Au-
tomated Software Engineering 11(4), 365–402 (2004)

2. Bošnački, D., Elkind, E., Genest, B., Peled, D.: On Commutativity Based Edge
Lean Search (full version), http://perso.crans.org/∼genest/BEGP.ps

3. Păsăreanu, C.S., Dwyer, M.B., Huth, M.: Assume-Guarantee Model Checking of
Software: A Comparative Case Study. In: Dams, D.R., Gerth, R., Leue, S., Massink,
M. (eds.) Theoretical and Practical Aspects of SPIN Model Checking. LNCS,
vol. 1680, Springer, Heidelberg (1999)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

5. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem, PhD thesis, University of Liege,
Computer Science Department (November 1994)

6. Godefroid, P., Wolper, P.: Using Partial Orders for the Efficient Verification of
Deadlock Freedom and Safety Properties. In: Larsen, K.G., Skou, A. (eds.) CAV
1991. LNCS, vol. 575, pp. 176–185. Springer, Heidelberg (1991)

7. Godefroid, P., Holzmann, G., Pirottin, D.: State-Space Caching Revisited. Formal
Methods in System Design 7(3), 227–242 (1995)

8. Gouda, K., Zaki, M.J.: Efficiently Mining Maximal Feqent Itemsets. In: IEEE In-
ternational Conference on Data Mining (ICDM ’01), pp. 163–170 (2001)

9. Holzmann, G.: The SPIN Model Checking. Addison Wesley, Reading (2003)

http://perso.crans.org/~genest/BEGP.ps

170 D. Bošnački et al.

10. Koyuturk, M., Grama, A., Szpankowski, W.: An Efficient Algorithm for Detecting
Frequent Subgraphs in Biological Networks. Bioinformatics 20, i200–i207 (2004)

11. Mazurkiewicz, A.: Trace semantics. In: Brauer, W., Reisig, W., Rozenberg, G.
(eds.) Advances in Petri Nets. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg
(1986)

12. Ochmanski, E.: Languages and Automata. In: Diekert, V., Rozenberg, G. (eds.)
The Book of Traces, pp. 167–204 (1995)

13. Peled, D.: Combining Partial Order Reductions with On-the-fly Model-Checking.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

14. Valmari, A.: A Stubborn Attack on State Explosion. Formal Methods in System
Design 1(4), 297–322 (1992)

Commitment Under Uncertainty:

Two-Stage Stochastic Matching Problems

Irit Katriel�, Claire Kenyon-Mathieu, and Eli Upfal��

Brown University
{irit,claire,eli}@cs.brown.edu

Abstract. We define and study two versions of the bipartite match-
ing problem in the framework of two-stage stochastic optimization with
recourse. In one version the uncertainty is in the second stage costs of
the edges, in the other version the uncertainty is in the set of vertices
that needs to be matched. We prove lower bounds, and analyze efficient
strategies for both cases. These problems model real-life stochastic inte-
gral planning problems such as commodity trading, reservation systems
and scheduling under uncertainty.

1 Introduction

Two-stage stochastic optimization with recourse is a popular model for hedging
against uncertainty. Typically, part of the input to the problem is only known
probabilistically in the first stage, when decisions have a low cost. In the second
stage, the actual input is known but the costs of the decisions are higher. We
then face a delicate tradeoff between speculating at a low cost vs. waiting for
the uncertainty to be resolved.

This model has been studied extensively for problems that can be modeled by
linear programming (sometimes using techniques such as Sample Average Ap-
proximation (SAA) when the linear program (LP) is too large.) Recently there
has been a growing interest in 2-stage stochastic combinatorial optimization
problems [1,2,6,12,19,20,21,22,24]. Since an LP relaxation does not guarantee an
integer solution in general, one can either try to find an efficient rounding tech-
nique [11] or develop a purely combinatorial approach [5,8]. In order to develop
successful algorithmic paradigms in this setting, there is an ongoing research pro-
gram focusing on classical combinatorial optimization problems [23]: set cover,
minimum spanning tree, Steiner tree, maximum weight matching, facility lo-
cation, bin packing, multicommodity flow, minimum multicut, knapsack, and
others. In this paper, we aim to enrich this research program by adding a basic
combinatorial optimization problem to the list: the minimum cost maximum bi-
partite matching problem. The task is to buy edges of a bipartite graph which
together contain a maximum-cardinality matching in the graph. We examine
� Supported in part by NSF awards DMI-0600384 and ONR Award N000140610607.

�� Supported in part by NSF awards CCR-0121154 and DMI-0600384, and ONR Award
N000140610607.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 171–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 I. Katriel, C. Kenyon-Mathieu, and E. Upfal

two variants of this problem. In the first, the uncertainty is in the second stage
edge-costs, that is, the cost of an edge can either grow or shrink in the second
stage. In the second variant, all edges become more expensive in the second
stage, but the set of nodes that need to be matched is not known.

Here are some features of minimum cost maximum bipartite matching that
make this problem particularly interesting. First, it is not subadditive: the union
of two feasible solutions is not necessarily a solution for the union of the two
instances. In contrast, most previous work focused on subadditive structures,
with the notable exception of Gupta and Pál’s work on stochastic Steiner Tree [9].
Second, the solutions to two partial instances may interfere with one another in
a way that seems to preclude the possibility of applying cost-sharing techniques
associated with the scenario-sampling based algorithms [9,10]. This intuitively
makes the problem resistant to routine attempts, and indeed, we confirm this
intuition by proving a lower bound which is stronger than what is known1 for
the sub-additive problems: in Theorem 5, we prove a hardness of approximation
result in the setting where the second-stage scenarios are generated by choosing
vertices independently. It is therefore natural that our algorithms yield upper
bounds which are either rather weak (Theorem 2, Part 1) or quite specialized
(Theorem 7). To address this issue, we relax the constraint that the output be
a maximum matching, and consider bicriteria results, where there is a tradeoff
between the cost of the edges bought and the size of the resulting matching
(Theorem 2, Part 2, and Theorem 8). This approach may be a way to circumvent
hardness for other stochastic optimization problems as well.

Although the primary focus of this work is stochastic optimization, another
popular objective for the prudent investor is to minimize, not just the expected
future cost, but the maximum future cost, over all possible future scenarios:
that is the goal of robust optimization. We also prove a bicriteria result for ro-
bust optimization (Theorem 3.) Guarding oneself against the worst case is more
delicate than just working with expectations. The solution requires a different
idea: preventing undesirable high-variance events by explicitly deciding, against
the advice of the LP solution, to not buy expensive edges (To analyze this, the
proof of Theorem 3 involves some careful rounding.) This general idea might be
applicable to other problems as well.

We note that within two-stage stochastic optimization with recourse, match-
ing has been studied before [15]. However, the problem studied here is very
different: there, the goal was to construct a maximum weight matching instead
of the competing objective of large size and small cost; moreover the set of edges
bought by the algorithm had to form exactly a matching instead of just contain
a matching. In Figure 1, we give an example illustrating the difference between
requiring equality with a matching or containment of a matching.

Our main goal in this paper is to further fundamental understanding of the
theory of stochastic optimization; however, we note that a conceivable

1 To the best of our knowledge, all previous hardness results hold only when the second
stage scenarios are given explicitly, i.e., when only certain combinations of parameter
settings are possible.

Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems 173

100

0

a c

b d

100 100

Second stage, pr .5

0

100

100

a c

b d

100

Second stage, pr .5

100

First Stage

a c

b d

0

0 100
or

Fig. 1. An example in which buying edges speculatively can help

application of this problem is commodity transactions, which can be viewed
as a matching between supply and demand. When the commodity is indivisible,
the set of possible transactions can be modeled as a weighted bipartite graph
matching problem, where the weight of an edge represents the cost or profit of
that transaction (including transportation cost when applicable). A trader tries
to maximize profits or minimize total costs depending on her position in the
transaction. A further tool that a commodity trader may employ to improve
her income is timing the transaction. We model timing as a two-stage stochastic
optimization problem with recourse: The trader can limit her risk by buying an
option for a transaction at current information, or she can assume the risk and
defer decisions to the second stage. Two common uncertainties in commodity
transactions, price uncertainty and supply and demand uncertainty, correspond
to the two stochastic two-stage matching problems mentioned above: finding
minimum weight maximum matching with uncertain edge costs, and finding
maximum matching with uncertain matching vertices. Similar decision scenar-
ios involving matchings also show up in a variety of other applications such as
scheduling and reservation systems.

Our results are summarized in the following table. We first prove (Theo-
rem 1) that, with explicit scenarios, the uncertain matching vertices case is
in fact a special case of the uncertain edge costs case. Then, it suffices to
prove upper bounds for the more general variant and lower bounds for the
restricted one. For the problem of minimizing the expected cost of the solu-
tion, we show an approximability lower bound of Ω(log n). We then describe
an algorithm that finds a maximum matching in the graph at a cost which
is an n2-approximation for the optimum. We then show that by relaxing the
demand that the algorithm constructs a maximum matching, we can “beat”
the lower bound: At a cost of at most 1/β times the optimum, we can match
at least n(1 − β) vertices. Furthermore, we show that a similar bicriteria re-
sult holds also for the robust version of the problem, i.e., when we wish to
minimize the worst-case cost.

With independent choices in the second-stage scenarios, our main contribution
is the lower bound. The reduction of Theorem 1 does not apply, but we prove,
for for both types of uncertainty, that it is NP-hard to approximate the problem
within better than a certain constant factor. We also prove an upper bound for
a special case of the uncertain matching vertices variant.

174 I. Katriel, C. Kenyon-Mathieu, and E. Upfal

Input: Explicit Scenarios Independent Choices

Criteria: Expected Cost Worst-Case Cost Expected Cost

Uncertain • n2-approximation of the cost
edge to get a maximum matching factor 1/β NP-hard to
costs [Theorem 2, part 1] approximation approximate

• 1/β-approximation of the cost of the cost within a
to match at least n(1− β) to match at least certain
vertices [Theorem 2, part 2] n(1− β) vertices constant
• Same hardness results as [Theorem 3] [Theorem 6]

below [Theorem 1]

Uncertain • Ω(log n) approximability
matching lower bound As above • As above
vertices [Theorem 4, Part 1] [Theorem 1] [Theorem 5]

• NP-hard already for • approximation for
two scenarios a special case

[Theorem 4, Part 2] [Theorem 7]
• Same upper bounds as

above [Theorem 1]

2 Explicit Scenarios

In this section, we assume that we have an explicit list of possible scenarios for
the second stage.

Uncertain edge costs. Given a bipartite graph G = (A,B,E), we can buy edge
e in the first stage at cost Ce ≥ 0, or we can buy it in the second stage at cost
Cs
e ≥ 0 determined by the scenario s. The input has an explicit list of scenarios,

and known edge costs (cse) in scenario s. For uncertain edge costs, without loss of
generality we can assume that |A| = |B| = n and that G has a perfect matching
(PM). Indeed, there is an easy reduction from the case where the maximum
matching has size k: just create a new graph by adding a set A′ of n− k vertices
on the left side, a set B′ of n− k vertices on the right side, and edges between
all vertex pairs in A′ ×B and in A×B′, with cost 0.

In the stochastic optimization setting, the algorithm also has a known second
stage distribution: scenario s occurs with probability Pr(s). The goal is, in time
polynomial in both the size of the graph and the number of scenarios, to minimize
the expected cost; if E1 denotes the set of edges bought in the first stage and Es

2

the set of edges bought in the second stage under scenario s, then:

OPT1 = min
E1,Es

2

⎧
⎨

⎩

∑

s∈S
Pr(s)

⎛

⎝
∑

e∈E1

Ce +
∑

e∈Es
2

Cs
e

⎞

⎠ : ∀s, E1 ∪ Es
2 has a PM

⎫
⎬

⎭
(1)

Stochastic optimization with uncertain edge costs has been studied for many
problems, see for example [10,17].

In the robust optimization setting, the goal is to minimize the maximum cost
(instead of the expected cost):

Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems 175

OPT2 = min
E1,Es

2

⎧
⎨

⎩
max
s∈S

⎛

⎝
∑

e∈E1

Ce +
∑

e∈Es
2

Cs
e .

⎞

⎠ : ∀s, E1 ∪ Es
2 has a PM

⎫
⎬

⎭
(2)

Robust optimization with uncertain edge costs has also been studied for many
problems, see for example [4].

Uncertain activated vertices. In this variant of the problem, there is a known
distribution over scenarios s, each being defined by a setBs ⊂ B of active vertices
that are allowed to be matched in that scenario. Each edge costs ce today (before
Bs is known) and τce tomorrow, where τ > 1 is the inflation parameter. As in
Expression 1, the goal is to minimize the expected cost, i.e.,

OPT3 = { C(E1) + τ
∑

s∈S
Pr(s)C(Es

2) : (3)

∀s, E1 ∪ Es
2 contains max matching of (A,Bs, E ∩ (A×Bs))}

Stochastic optimization with uncertain activated vertices has also been previ-
ously studied for many problems, see for example [9]. There is a similar expres-
sion for robust optimization with uncertain activated vertices.

Theorem 1 (Reduction). The two-stage stochastic matching problem with un-
certain activated vertices and explicit second-stage scenarios (OPT3) reduces to
the case of uncertain edge costs and explicit second-stage scenarios (OPT1).

Proof. We give an approximation preserving reduction.Given an instance with
stochastic matching vertices, we transform it to an instance of the problem
with stochastic edge-costs, as follows. Assume that our input graph is G =
(A,B,E) where A = {a1, . . . a|A|} and B = {b1, . . . b|B|}. We first add a set A′ =
a′1, . . . , a

′
|B| of |B| new vertices to A, and connect each a′i with bi by an edge. In

other words, we generate the graph G′ = (A∪A′, B,E∪{(a′i, bi) : 1 ≤ i ≤ |B|}).
For the edges between A and B, edge costs are the same as in the original

instance, in the first stage as well as the second stage. The costs on the edges
between A′ and B create the effect of selecting the activated vertices: For each
(a′i, bi), the first-stage cost is n2W , and the second-stage cost is n2W if b is active
and 0 otherwise. Here,W is the maximum cost of an edge, nW is an upper bound
on the cost of the optimal solution, and n2W is large enough that any solution
containing this edge cannot be an optimal, or even an n-approximate solution.
Hence, a second-stage cost of 0 for (a′i, bi) allows bi to be matched with a′i for
free, while a cost of nW forces bi to be matched with a vertex from A. This
concludes the reduction. ��

From Theorem 1, it follows that our algorithms for uncertain edges costs (The-
orems 2 and 3 below) imply corresponding algorithms for uncertain activated
vertices, and that our lower bounds for uncertain activated vertices (Theorem 4
below) imply corresponding lower bounds for uncertain edge costs.

Theorem 2 (Stochastic optimization upper bound)
(1) There is a polynomial-time deterministic algorithm for stochastic matching
(OPT1) that constructs a perfect matching at expected cost is at most 2n2·OPT1.

176 I. Katriel, C. Kenyon-Mathieu, and E. Upfal

(2) Given β ∈ (0, 1), there is a polynomial-time randomized algorithm for
stochastic matching (OPT1) that returns a matching whose cardinality, with
probability 1−e−n (over the random choices of the algorithm), is at least (1−β)n,
and whose overall expected cost is O(OPT1/β).

In particular, for any ε > 0 we get a matching of size (1−ε)n and cost O(OPT/ε)
in expectation. Note that by Theorem 4, we have to relax the constraint on the
size anyway if we wish to obtain a better-than-logn approximation on the cost,
so Part 2 of the Theorem is, in a sense, our best option.

Proof. The proof follows the general paradigm applied to stochastic optimization
in recent papers such as [11]: formulate the problem as an integer linear program;
solve the linear relaxation and use it to guide the algorithm; and use LP duality
(König’s theorem, for our problem) for the analysis.

To define the integer program, let Xe indicate whether edge e is bought in the
first stage, and for each scenario s, let Zse (resp. Y s

e) indicate whether edge e is
bought in the first stage (resp. in the second stage) and ends up in the perfect
matching when scenario s materializes. We obtain:

min
�
s∈S

Pr(s)(
�

e

CeXe +
�

e

Cs
eY s

e) s.t.

��
�

�
e:v∈e(Z

s
e + Y s

e) = 1 ∀v ∈ A ∪B, s ∈ S
Zs

e ≤ Xe ∀e ∈ E, s ∈ S
Xe, Y

s
e , Zs

e ∈ {0, 1} ∀e ∈ E, s ∈ S.

The algorithm solves the standard LP relaxation, in which the last set of con-
straints is replaced by 0 ≤ Xe, Y

s
e , Z

s
e ≤ 1. Let (Xe, Z

s
e , Y

s
e) denote the optimal

solution of the LP. Now the proof of the two parts of the theorem diverges:

Proof of part 1. In the first stage, buy every edge e such that Xe ≥ 1/(2n2). In
the second stage, under scenario s, buy every edge e such that Y s

e ≥ 1/(2n2).
Finally, output a maximum matching of the set of edges bought. The analysis,
which relies on Hall’s theorem, is in [13].

Proof of part 2. In the first stage, buy each edge e with probability 1−e−Xeα. In
the second stage under scenario s, buy each edge e with probability 1− e−Y s

e α,
where α = 8 ln(2)/β. Finally, output a maximum matching of the set of edges
bought. The analysis, which relies on König’s theorem, is in [13]. ��

Theorem 3 (Robust optimization). Given β ∈ (0, 1), there is a polynomial-
time randomized algorithm for robust matching (OPT2) with t scenarios that
returns a matching s.t. with probability at least 1−2/n (over the random choices
of the algorithm), the following holds: In every scenario, the algorithm incurs
cost O(OPT2(1 + ln(t)/ ln(n))/β) and outputs a matching of cardinality at least
(1− β)n.

Proof. We detail this proof, which is the most interesting one in this section. The
integer programming formulation is similar to the one used to prove Theorem 2.
More specifically, let Xe indicate whether edge e is bought in the first stage, and
for each scenario s, let Zse (resp. Y s

e) indicate whether edge e is bought in the

Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems 177

first stage (resp. in the second stage) and ends up in the perfect matching when
scenario s materializes. We obtain:

minW s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∑
e:v∈e(Z

s
e + Y s

e) = 1 ∀v ∈ A ∪B and ∀s ∈ S
Zse ≤ Xe ∀e ∈ E and s ∈ S∑

e[CeXe + Cs
eY

s
e] ≤W ∀s ∈ S

Xe, Y
s
e , Z

s
e ∈ {0, 1} ∀e ∈ E and s ∈ S.

The algorithm solves the standard LP relaxation, in which the last set of con-
straints is replaced by 0 ≤ Xe, Y

s
e , Z

s
e ≤ 1. Let w, (xe), (yse), (z

s
e) denote the

optimal solution of the LP. Let α = 8 ln(2)/β again, and let T = 3 lnn.

– In the first stage, relabel the edges so that c1 ≥ c2 ≥ · · ·. Let t1 be maximum
such that x1+x2+· · ·+xt1 ≤ T . For every j > t1, buy edge j with probability
1− e−xjα. (Do not buy any edge j ≤ t1.)

– In the second stage, relabel the remaining edges so that cs1 ≥ cs2 ≥ · · ·. Let
t2 be maximum such that ys1 + ys2 + · · ·+ yst1 ≤ T . For every j > t2, buy edge
j with probability 1− e−ys

jα. (Do not buy any edge j ≤ t2.)

Finally, the algorithm computes and returns a maximum matching of the set of
edges bought.

We note that this construction and the rounding used in the analysis are
almost identical to the construction used in strip-packing [14]. The analysis of
the cost of the edges bought is the difficult part. We first do a slight change of
notations. The cost can be expressed as the sum of at most 2m random variables
(at most m in each stage). Let a1 ≥ a2 ≥ · · · be the multiset {ce} ∪ {cse}, along
with the corresponding probabilities pi (pi = 1 − e−xeα if ai = ce is a first-
stage cost, and pi = 1 − e−ys

eα if ai = cse is a second-stage cost.) Let Xi be the
binary variable with expectation pi. Clearly, the cost incurred by the algorithm
can be bounded above by X =

∑
i>t∗ aiXi, where t∗ is maximum such that

p1 + · · ·+ pt∗ ≤ T .
To prove a high-probability bound onX , we will partition [1, 2m] into intervals

to define groups. The first group is just [1, t∗], and the subsequent groups are
defined in greedy fashion, with group [j, �] defined by choosing � maximum so
that

∑
i∈[j,�] pi ≤ T . Let G1, G2, . . . , Gr be the resulting groups. We have:

X≤
�
�≥2

�
i∈G�

aiXi ≤
�
�≥2

�
i∈G�

(max
G�

ai)Xi ≤
�
�≥2

�
i∈G�

(min
G�−1

ai)Xi ≤
�
�≥1

(min
G�

ai)
�

i∈G�+1

Xi.

On the other hand, (using the inequality 1−e−Z ≤ Z), the optimal value OPT∗

of the LP relaxation satisfies:

αOPT∗ ≥
∑

i

aipi ≥
∑

�≥1

∑

i∈G�

(min
G�

ai)pi ≥
∑

�≥1

(min
G�

ai)(T − 1).

It remains, for each group G�, to apply a standard Chernoff bound to bound the
sum of the Xi’s in G�, and use union bounds to put these results together and
yield the statement of the theorem [13]. ��

178 I. Katriel, C. Kenyon-Mathieu, and E. Upfal

We note that the proof of Theorem 3 can also be extended to the setting of
Theorem 2 to prove a high probability result: For scenario s, with probability
at least 1− 2/n over the random choices of the algorithm, the algorithm incurs
cost O(OPTs/β) and outputs a matching of cardinality at least (1− β)n, where
OPTs =

∑
E1
Ce +

∑
Es

2
Cs
e .

Finally, we can show two hardness of approximation results for the explicit
scenario case.

Theorem 4 (Stochastic optimization lower bound)

1. There exists a constant c > 0 such that Expression OPT3 (Eq (3)) is NP-
hard to approximate within a factor of c lnn.

2. Expression OPT3 (Eq (3)) is NP-hard to compute, even when there are only
two scenarios and τ is bounded.

Proof. To prove Part 1, we show that when τ ≥ n2, Expression (3) is at least as
hard to approximate as Minimum Set Cover: Given a universe S = {s1, . . . , sn}
of elements and a collection C = {c1, . . . , ck} of subsets of S, find a minimum-
cardinality subset SC of C such that for every 1 ≤ i ≤ n, si ∈ cj for some
cj ∈ SC. It is known that there exists a constant c > 0 such that approximating
Minimum Set-Cover to within a factor of c lnn is NP-hard [18].

Given an instance (S = {s1, . . . , sn};C = {c1, . . . , ck}) of Minimum Set-Cover,
we construct an instance of the two-stage matching problem with stochastic
matching vertices as follows. The graph contains |S| + 3|C| vertices: for every
element si ∈ S there is a vertex ui; for every set cj ∈ C, there are three vertices
xj , yj , and zj connected by a path (xj , yj), (yj , zj). For every set cj and element
si which belongs to cj , we have the edge (zj , ui). It is easy to see that the graph
is bipartite. The first-stage edge costs are 1 for an (xi, yi) edge costs and 0 for the
other edges. The second-stage costs are equal to the first-stage costs, multiplied
by τ . There are n equally likely second-stage scenarios: In scenario i the vertices
in {y1, . . . , yk}∪ {ui} are active. In [13] we show that the optimal solution to the
stochastic matchings instance buys, in the first stage, the edge (xj , yj) for each
set cj in some minimum set cover of the input.

The proof of Part 2 is by reduction from the Simultaneous Matchings [7]
problem and is also in [13]. ��

3 Implicit Scenarios

Instead of having an explicit list of scenarios for the second stage, it is common to
have instead an implicit description: in the case of uncertain activated vertices,
a natural stochastic model is the one in which each vertex is active in the second
stage with some probability p, independently of the status of the other nodes.
Due to independence, we get that although the total number of possible scenarios
can be exponentially large, there is a succinct description consisting of simply
specifying the activation probability of each node. In this case, we can no longer
be certain that the second-stage graph contains a perfect matching even if the
input graph does, so the requirement is, as stated above, to find the largest
possible matching. We first prove an interesting lower bound.

Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems 179

3.1 Lower Bounds

Theorem 5. Stochastic optimization with uncertain vertex set is NP-hard to
approximate within a certain constant, even with independent vertex activation.

Proof. We detail this proof, which is the most interesting of our lower bounds. We
will use a reduction from Minimum 3-Set-Cover(2), the special case of Minimum
Set-Cover where each set has cardinality 3 and each element belongs to two
sets [16]. This variant is NP-hard to approximate to within a factor of 100/99 [3].
We will prove that approximating Expression (3) to within a factor of β is at
least as hard as approximating 3-set-cover(2) to within a factor of γ = β(1 +
(3p2(1 − p) + 2p3)τ). The theorem follows by setting p to be a constant in the
interval [0, 0.0033] and τ = 1/p, because then 3p(1− p) + 2p2 < 1/99.

Given an instance (S = {s1, . . . , sn};C = {c1, . . . , ck}) of 3-set-cover(2), we
construct an instance of the two-stage matching problem with uncertain acti-
vated vertices as follows (see Figure 2). The graph contains 2|S|+ 3|C| vertices:
for every element si ∈ S there are two vertices ui, u′i connected by an edge whose
first stage cost is 1; for every set cj ∈ C, there are three vertices xj , yj , and zj
connected by a path (xj , yj), (yj , zj). For every set cj and element si which be-
longs to cj , we have the edge (zj , ui). It is easy to see that the graph is bipartite.
The first-stage edge costs are 1 for an (xi, yi) edge and 0 for the other edges.
The second-stage costs are equal to the first-stage costs, multiplied by τ . In the
second-stage scenarios, each vertex ui is active with probability p and each yi is
active with probability 1.

u 1 u’1
x 1

x 2

1z

z 2y 2

z 3x 3

x 3

y 3

1y

y 3 z 3

2u 2u’

3u’u 3

4u 4u’

5u’5u

u’u 6 6

Fig. 2. The graph obtained from the 3-Set-Cover(2) instance {s1, s2, s3}, {s1, s3, s4},
{s2, s5, s6}, {s4, s5, s6}

If p > 1/τ , then buying all (ui, u′i) edges in the first stage at cost n is optimal.
To see why, assume that an algorithm spends n′ < n in the first stage. In the
second stage, the expected number of active vertices that cannot be matched is
at least (n−n′)p and the expected cost of matching them is τ(n−n′)p > (n−n′).
We assume in the following that p ≤ 1/τ .

Consider a minimum set cover SC of the input instance. Assume that in the
first stage we buy (at cost 1) the edge (xj , yj) for every set cj ∈ SC. In the
second stage, let I be the set of active vertices and find, in a way to be described
shortly, a matchingMI between a subset I ′ of I and the vertex-set {zj : cj ∈ SC},

180 I. Katriel, C. Kenyon-Mathieu, and E. Upfal

using (zj , ui)-edges from the graph. Buy the edges in MI (at cost 0). For every
i ∈ I \ I ′, buy the edge (ui, u′i) at cost τ . Now, all active ui vertices are matched,
and it remains to ensure that the y-vertices are matched as well. Assume that
yj is unmatched. If zj is matched with some ui node, this is because cj ∈ SC, so
we bought the edge (xj , yj) in the first stage and can now use it at no additional
cost. Otherwise, we buy the edge (yj , zj) at cost 0. The second stage has cost
equal to τ times the cardinality of I \ I ′ and the first stage has cost equal to
the cardinality of the set cover. The matching MI is found in a straightforward
manner: Given SC, each element chooses exactly one set among the sets covering
it, and, if it turns out to be active, will only try to be matched to that set. Each
set in the set cover will be matched with one element, chosen arbitrarily among
the active vertices who try to be matched with it.

To calculate the expected cost of matching the vertices of I − I ′, consider
a set in SC. It has 3 elements, and is chosen by at most 3 of them. Assume
that it is chosen by all 3. With probability (1 − p)3 + 3p(1 − p)2, at most one
of them is active and no cost is incurred in the second stage. With probability
3p2(1 − p), two of them are active and a cost of τ is incurred. With probability
p3, all three of them are active and a cost of 2τ is incurred, for an expected cost
of (3p2(1 − p) + 2p3)τ . If the set is chosen by two elements, the expected cost
is at most p2τ , and if it is chosen by fewer, the expected cost is 0. Thus in all
cases the expected cost of matching I \ I ′ is bounded by |SC|(3p2(1−p) + 2p3)τ .
With a cost of |SC| for the first stage, we get that the total cost of the solution
is at most |SC|(1 + (3p2(1 − p) + 2p3)τ).

On the other hand, letM1 be the set of cost-1 edges bought in the first stage.
Let an (xi, yi) edge represent the set ci and let a (ui, u′i) edge represent the
singleton set {si}. Now, assume that M1 does not correspond to a set cover of
the input instance. Let x be the number of elements which are not covered by
the sets corresponding toM1 and let X be the number of active elements among
those x. In the second stage, the algorithm will have to match each uncovered
element vertex ui, either by its (ui, u′i) edge (at cost n) or by a (zj , ui) edge
for some set cj where si ∈ cj. In the latter case, if would have to buy the edge
(xi, yi), again at cost n. The second stage cost, therefore, is at least Xn. But the
expected value of X is x/n, thus the total expected cost is at least |M1| + x.
Since we could complete M1 into a set cover by adding at most one set per
uncovered element, we have x+ |M1| ≥ |SC|.

In summary, we get that Expression (3) satisfies

|SC| ≤ OPT ≤ |SC|(1 + (3p2(1− p) + 2p2)τ).

This means that if we can approximate our problem within a factor of β, then we
can approximate Minimum 3-Set-Cover(2) within a factor of γ = β(1 + (3p2(1−
p) + 2p3)τ), and the theorem follows. ��

Using similar ideas, we prove the following related result in [13].

Theorem 6. The case of uncertain, independent, edge costs is NP-hard to ap-
proximate within a certain constant.

Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems 181

3.2 Upper Bound in a Special Case

We can show that when ce = 1 for all e ∈ E, it is possible to construct a perfect
matching cheaply when the graph has certain properties. We study the case in
which B is significantly larger than A.

Theorem 7. Assume that the graph contains n vertex-disjoint stars s1, . . . , sn
such that star si contains d = max{1, ln(τp)}/ln(1/(1− p)) + 1 vertices from B
and is centered at some vertex of A. Then there is an algorithm whose running
time is polynomial in n and which returns a maximum-cardinality matching of
the second stage graph, whose expected cost is O(OPT3 ·min{1, ln(τp)}).
To prove this, let A = {a1, . . . , an} and B = {b1, . . . , bm}. Let E1 be the edges
in the stars. Let B2 be the vertices which are active in the second stage. Here is
the algorithm. In the first stage, if τp ≤ e then the algorithm buys nothing; else,
the algorithm buys all edges of E1, paying nd. In the second stage, the algorithm
completes its set of edges into a perfect matching in the cheapest way possible. It
remains to show that the expected cost of the second stage is low, compared to the
optimal cost. We do this by showing that the number of edges bought in the second
stage is proportional to the number of nodes ofA that have at most one active node
in their stars, and that there are few such nodes. The details are in [13].

3.3 Generalization: The Black Box Model

With independently activated vertices, the number of scenarios is extremely
large, and so solving an LP of the kind described in previous sections is pro-
hibitively time-consuming. However, in such a situation there is often a black
box sampling procedure that provides, in polynomial time, an unbiased sample
of scenarios; then one can use the SAA method to simulate the explicit scenarios
case, and, if the edge cost distributions have bounded second moment, one can
extend the analysis so as to obtain a similar approximation guarantee. The main
observation is that the value of the LP defined by taking a polynomial number
of samples of scenarios tightly approximates the the value of the LP defined by
taking all possible scenarios. An analysis similar to [5] gives:

Theorem 8. Consider a two-stage edge stochastic matching problem with (1) a
polynomial time unbiased sampling procedure and (2) edge cost distributions have
bounded second moment. For any constants ε > 0 and δ, β ∈ (0, 1), there is a
polynomial-time randomized algorithm that outputs a matching whose cardinality
is at least (1−β)n and, with probability at least 1−δ (over the choices of the black
box and of the algorithm), incurs expected cost O(OPT/β) (where the expectation
is over the space of scenarios).

References

1. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, Hei-
delberg (1997)

2. Charikar, M., Chekuri, C., Pal, M.: Sampling bounds fpr stochastic optimization.
In: APPROX-RANDOM, pp. 257–269 (2005)

182 I. Katriel, C. Kenyon-Mathieu, and E. Upfal

3. Chleb́ık, M., Chleb́ıková, J.: Inapproximability results for bounded variants of opti-
mization problems. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751,
pp. 27–38. Springer, Heidelberg (2003)

4. Dhamdhere,K.,Goyal,V.,Ravi,R., Singh,M.:Howto pay, come what may:Approxi-
mationalgorithmsfordemand-robustcoveringproblems.In:FOCS,pp.367–378(2005)

5. Dhamdhere, K., Ravi, R., Singh, M.: On two-stage stochastic minimum spanning
trees. In: Jünger, M., Kaibel, V. (eds.) Integer Programming and Combinatorial
Optimization. LNCS, vol. 3509, pp. 321–334. Springer, Heidelberg (2005)

6. Dye, S., Stougie, L., Tomasgard, A.: The stochastic single resource service-provision
problem. Naval Research Logistics 50, 257–269 (2003)

7. Elbassioni, K.M., Katriel, I., Kutz, M., Mahajan, M.: Simultaneous matchings. In:
Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 106–115. Springer,
Heidelberg (2005)

8. Flaxman, A.D., Frieze, A.M., Krivelevich, M.: On the random 2-stage minimum
spanning tree. In: SODA, pp. 919–926 (2005)

9. Gupta, A., Pál, M.: Stochastic steiner trees without a root. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 1051–1063. Springer, Heidelberg (2005)

10. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algo-
rithms for stochastic optimization. In: STOC, pp. 417–426. ACM, New York (2004)

11. Gupta, A., Ravi, R., Sinha, A.: An edge in time saves nine: LP rounding approx.
algorithms for stochastic network design. In: FOCS, pp. 218–227 (2004)

12. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits
of procratination: approximation algorithms for stochastic combinatorial optimiza-
tion problems. In: SODA, pp. 691–700 (2004)

13. Katriel, I., Kenyon-Mathieu, C., Upfal, E.: Commitment under uncertainty: Two-
stagestochasticmatchingproblems.ECCC(2007),http://eccc.hpi-web.de/eccc/

14. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock
problem. Math. Oper. Res. 25(4), 645–656 (2000)

15. Kong, N., Schaefer, A.J.: A factor 1/2 approximation algorithm for two-stage
stochastic matching problems. Eur. J. of Operational Research 172, 740–746 (2006)

16. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. of Computing and System Sciences 43, 425–440 (1991)

17. Ravi,R.,Sinha,A.:Hedginguncertainty:Approximationalgorithmsforstochasticopti-
mizationproblems.In:Bienstock,D.,Nemhauser,G.L.(eds.)IntegerProgrammingand
CombinatorialOptimization.LNCS,vol.3064,pp.101–115.Springer,Heidelberg(2004)

18. Raz, R., Safra, S.: A sub-constant error-prob. low-degree test, and a sub-constant
error-prob. PCP characterization of NP. In: STOC, pp. 475–484 (1997)

19. Shmoys, D.B., Sozio, M.: Approximation algorithms for 2-stage stochastic schedul-
ing problems. In: IPCO (2007)

20. Shmoys, D.B., Swamy, C.: The sample average approximation method for 2-stage
stochastic optimization (2004)

21. Shmoys, D.B., Swamy, C.: Stochastic optimization is almost as easy as determin-
istic optimization. In: FOCS, pp. 228–237 (2004)

22. Swamy, C., Shmoys, D.B.: The sampling-based approximation algorithms for multi-
stage stochastic optimization. In: FOCS, pp. 357–366 (2005)

23. Swamy, C., Shmoys, D.B.: Algorithms column: Approximation algorithms for 2-
stage stochastic optimization problems. ACM SIGACT News 37(1), 33–46 (2006)

24. Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G., Shapiro, A.: The sample
average approximation method applied to stochastic routing problems: a compu-
tational study. Comp. Optimization and Applications 24, 289–333 (2003)

http://eccc.hpi-web.de/eccc/

On the Complexity of Hard-Core Set

Constructions

Chi-Jen Lu1, Shi-Chun Tsai2, and Hsin-Lung Wu2

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
cjlu@iis.sinica.edu.tw

2 Department of Computer Science, National Chiao-Tung University, Hsinchu, Taiwan
{sctsai,hsinlung}@csie.nctu.edu.tw

Abstract. We study a fundamental result of Impagliazzo (FOCS’95)
known as the hard-core set lemma. Consider any function f : {0, 1}n →
{0, 1} which is “mildly-hard”, in the sense that any circuit of size s
must disagree with f on at least δ fraction of inputs. Then the hard-
core set lemma says that f must have a hard-core set H of density
δ on which it is “extremely hard”, in the sense that any circuit of size
s′ = O(s/(1

ε2 log(1
εδ

))) must disagree with f on at least (1−ε)/2 fraction
of inputs from H .

There are three issues of the lemma which we would like to address:
the loss of circuit size, the need of non-uniformity, and its inapplicability
to a low-level complexity class. We introduce two models of hard-core
set constructions, a strongly black-box one and a weakly black-box one,
and show that those issues are unavoidable in such models.

First, we show that in any strongly black-box construction, one can
only prove the hardness of a hard-core set for smaller circuits of size at
most s′ = O(s/(1

ε2 log 1
δ
)). Next, we show that any weakly black-box

construction must be inherently non-uniform — to have a hard-core set
for a class G of functions, we need to start from the assumption that f
is hard against a non-uniform complexity class with Ω(1

ε
log |G|) bits of

advice. Finally, we show that weakly black-box constructions in general
cannot be realized in a low-level complexity class such as AC0[p] — the
assumption that f is hard for AC0[p] is not sufficient to guarantee the
existence of a hard-core set.

1 Introduction

One fundamental notion in complexity theory is the hardness of a function.
Informally speaking, a function f is hard if any circuit of small size must fail
to compute it correctly on some inputs. More precisely, we can characterize the
hardness by parameters δ and s, and say that f is δ-hard (or has hardness δ) for
size s if any circuit of size s must fail to compute f correctly on at least δ fraction
of inputs. An important question is: given a δ-hard function for size s, can we
transform it into a harder function with hardness δ′ > δ for size about s? This
is known as the task of hardness amplification, and it plays a crucial role in the
study of derandomization, in which one would like to obtain an extremely hard

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 183–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

184 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

function, with hardness (1−ε)/2, so that it looks like a random function and can
be used to construct pseudo-random generators [19,2,7,8,12]. One may wonder if
the hardness of a function basically comes from a subset of density about δ. So
the question is: given any δ-hard function for size s, is there always a subset of
inputs of density about δ on which f is extremely hard for circuits of size about
s? A seminal result of Impagliazzo [7] answers this affirmatively. He showed that
any δ-hard function for size s indeed has a subset H of the inputs with density δ
on which f has hardness (1− ε)/2 for circuits of size s′ = O(s/(1

ε2 log 1
δε)). Such

a set H is called an ε-hard-core set for size s′.
In addition to answering a very basic question in complexity theory, the hard-

core set lemma has found applications in learning theory [9] and cryptography
[6], and has become an important tool in the study of pseudo-randomness. It
can be used to provide an alternative proof of Yao’s celebrated XOR Lemma [7],
or to construct a pseudo-random generator directly from a mildly-hard function,
bypassing the XOR lemma [12]. Recently, it has become a key ingredient in the
study of hardness amplification for functions in NP [11,16,17,5]. In spite of its
importance, there are some issues of the hard-core set lemma which are still not
well understood and have become the bottlenecks in some applications. This
calls for a more thorough study of the lemma.

The first issue is the loss of circuit size. Note that in Impagliazzo’s result, the
hardness on the hard-core set, although increased, is actually measured against
circuits of a smaller size s′, as opposed to the initial size s. This loss of circuit size
was later reduced by Klivans and Servedio [9] who showed the existence an ε-
hard-core set of density δ/2 for size s′ = O(s/(1

ε2 log 1
δ)). Then a natural question

is: can the size s′ be further improved to, say, Ω(s)? The second issue is non-
uniformity. Note that even when one only wants to have a hard-core set which
is hard for uniform algorithms, one still needs to start from a function which is
hard for non-uniform circuits, or algorithms supplied with advices. In fact, this
becomes the bottleneck in Trevisan’s work of uniform hardness amplification
for functions in NP [16,17], in which he showed how to amplify hardness from
δ = 1 − 1/poly(n) to δ′ = (1 − ε)/2 against BPP algorithms, with ε = 1/ logc n
for a small constant c < 1. Note that ideally one would like to have the hardness
amplified to (1 − ε)/2 with ε ≤ 1/poly(n), and what prevents Trevisan from
reaching this goal (or even with ε = 1/ logn) is the large number (proportional
to 1/ε2) of advice bits needed by the hard-core set lemma. On the other hand,
it is known that hardness amplification for functions in a higher complexity
class, such as EXP, only requires O(log(1/ε)) bits of advice [12]. So a natural
question is: can the number of advice bits needed in the hard-core set lemma
be reduced? The third issue is that the lemma currently does not apply to a
low-level complexity class such as AC0[p]. That is, one needs to start from the
assumption that f is hard for a complexity class which is high enough to include
the majority function. Thus, an interesting question is: for any function f which
is δ-hard for AC0[p], does it always have an ε-hard-core set for AC0[p]?

All these three issues seem inherent in Impagliazzo’s proof and they look
difficult to resolve. One may wonder that perhaps they are indeed impossible to

On the Complexity of Hard-Core Set Constructions 185

avoid. However, proving such negative results appears to require proving circuit
lower bounds, which seems to be far beyond our reach. Therefore, we would like
to identify general and reasonable models for the hard-core set lemma in which
such negative results can actually be proven.

Black-Box Hard-Core Set Constructions. The hard-core set lemma, when stated
in the contrapositive way, basically says that given any function f with no hard-
core set for small circuits (on any such subset H , there is a small circuit CH
with a good correlation with f), one can find a small circuit C which is close
to f . A closer look at Impagliazzo’s proof shows that the circuit C is simply
the weighted majority on a small subset of those circuits CH ’s. In fact, one
can replace the class of small circuits CH ’s by any class G of functions, and
Impagliazzo’s proof shows that given any f with no hard-core set for functions
in G, one can construct a function C close to f by taking a weighted majority
on a small subset of functions in G. We call this type of argument a hard-core
set construction, and note that C only uses those functions in G as an oracle.

This motivates us to define our first model of hard-core set constructions as
follows. We say that a (non-uniform) oracle algorithm Dec

(·) with a decision
function D : {0, 1}q → {0, 1} realizes a strongly black-box (δ, ε, k)-construction
(of hard-core set) if the following holds. First, Dec will be given a family G =
{g1, · · · , gk} of functions as oracle together with a multi-set I = {i1, . . . , iq} as
advice, and for any input x, it will query the functions gi1 , · · · , giq , all at x,
and then output D(gi1(x), · · · , giq (x)). Moreover, it satisfies the property that
for any G and for any f which has no ε-hard-core set of density Ω(δ) for G,
there exists a multi-set I of size q such that the function Dec

G,I is δ-close to f
(Dec

G,I(x) �= f(x) for at most δ fraction of x). We call q the query complexity
of Dec, and observe that it relates to the loss of circuit size in the hard-core set
lemma, with s′ = O(s/q). Note that the known hard-core set constructions [7,9]
are in fact done in such a strongly black-box way.

Our second model of hard-core set constructions generalizes the first one by
removing the constraint on how the algorithm Dec works; the algorithm Dec

and its advice now are allowed to be of arbitrary form. We say that a (non-
uniform) oracle algorithm Dec

(·) realizes a weakly black-box (δ, ε, k)-construction
(of hard-core set) if the following holds. For any family G of k functions and for
any function f which has no ε-hard-core set of density Ω(δ) for G, there exists
an advice string α such that Dec

G,α is δ-close to f .

Our Results. We have three results, which give negative answers to the three
questions we raised before, with respect to our models of black-box constructions.
Note that our lower bound for our second model (weakly black-box one) also
holds for our first model as the first model is a special case of the second one.

Our first result shows that any strongly black-box (δ, ε, k)-construction must
require a query complexity of q = Ω(1

ε2 log 1
δ). Our lower bound explains why it

is very difficult to have a smaller loss of circuit size in the hard-core set lemma;
in fact, any strongly black-box construction must suffer a loss of such a large

186 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

factor q. Note that our lower bound is tight as it is matched (up to a constant
factor) by the upper bound from the construction of Klivans and Servedio [9].

Our second result shows that any weakly black-box (δ, ε, k)-construction must
require an advice of length Ω(1

ε log k). This explains why it is difficult to have
a uniform version of the hard-core set lemma; in fact, any weakly black-box
construction is inherently non-uniform. Moreover, one cannot hope to improve
Trevisan’s uniform hardness amplification results [16,17] by reducing the number
of advice bits needed in the hard-core set construction, unless one can come up
with a non-black-box approach. Note that from the query upper bound of [9],
one can immediately have an advice upper bound of O(1

ε2 (log 1
δ) log k), which

has a gap from our lower bound. It is not clear which bound can be further
improved, but our feeling is that this upper bound may likely be improved.

Our third result shows that no weakly black-box (δ, ε, k)-construction can
be implemented in a low-level complexity class such as AC0[p] for a prime p,
when δ < 1/20 and ε ≤ 1/n. More precisely, we show that the function Dec

realizing such a black-box construction can be used to approximate the majority
function, but on the other hand, the majority function cannot be approximated
by an AC0[p] circuit. Therefore one cannot have a hard-core set lemma for AC0[p],
unless one can prove it in a non-black-box way.

Bounds from Hardness Amplification. There is no previous result directly on
the lower bounds of hard-core set constructions. However, one can obtain such
bounds from lower bounds for the task of hardness amplification [18,10]. This is
because the hard-core set lemma can be used for hardness amplification, as shown
in [7], and a closer inspection shows that a black-box hard-core set construction
in fact yields a hardness amplification in a similar black-box model.

In particular, one can have the following. First, using a recent result of Viola
[18], we can derive a lower bound of min(1

10ε ,
n

5 logn) on the query complexity
of any strongly black-box (δ, ε, k)-construction. Note that this bound is always
smaller than our bound. Second, we can use the result in [10] to derive an advice
lower bound ofΩ(log (1−δ)2

ε) for any weakly black-box (δ, ε, k)-construction. Note
that this bound is exponentially worse than ours. Finally, we can use another
result of Viola [18] to show that for any weakly black-box (δ, ε, k)-construction,
if the function Dec satisfies the additional condition that it only needs a short
(logarithmic in the circuit size of Dec) advice, then it cannot be implemented
by an AC0[p] circuit. Note that this additional condition is not required in our
result and our proof is much simpler. (On the other hand, under this additional
condition, Viola achieved something stronger: such Dec can be used as oracle
gates by an AC0 circuit to compute the majority function exactly.)

2 Preliminaries

For any n ∈ N, let [n] denote the set {1, . . . , n} and let Un denote the uniform
distribution over {0, 1}n. For a finite set X , we will also use X to denote the
uniform distribution over it when there is no confusion. For a string x ∈ {0, 1}n,

On the Complexity of Hard-Core Set Constructions 187

we let xi denote the i-th bit of x. Let Fn denote the set of all Boolean functions
f : {0, 1}n → {0, 1}. Let SIZE(s) be the class of Boolean functions computed by
circuits of size s. Let AC0[p](s) denote the class of Boolean functions computed by
constant-depth circuits of size s equipped with modp gates (which output 0 ex-
actly when the input bits sum to 0 modulo p), and let AC0[p] = AC0[p](poly(n)).
Given a multi-set (or simply a set) S, we let |S| denote the number of elements
in it, counting multiplicity. Given a set G = {g1, · · · , gk} ⊆ Fn, together with a
multi-set I = {i1, · · · , iq} ⊆ [k] of indices, let gI denote the function such that
gI(x) = (gi1(x), · · · , giq (x)) for x ∈ {0, 1}n. We say that two functions f and g
in Fn are δ-close if Prx∈Un [f(x) �= g(x)] ≤ δ. All the logarithms in this paper
will have base two.

We will need the following simple lower bound on the tail probability of bi-
nomial distribution. We omit the proof due to the space constraint.

Fact 1. Let Z1, · · · , Zt be i.i.d. binary random variables, with E[Zi] = μ for
every i ∈ [t]. Suppose ε < 1

5 and t = Ω(1
ε2). Then we have the following: (1)

if μ ≤ 1+2ε
2 , then Pr[

∑
i∈[t] Zi ≤ 1−ε

2 t] ≥ 2−O(ε2t), and (2) if μ ≥ 1−2ε
2 , then

Pr[
∑

i∈[t] Zi ≥ 1+ε
2 t] ≥ 2−O(ε2t).

We will also need the following result, known as Turán’s Theorem, which can be
found in standard textbooks (e.g. [1]).

Fact 2. (Turán’s Theorem) Given a graph G = (V,E), let dv denote the de-
gree of a vertex v. Then the size of its maximum independent set is at least∑

v∈V
1

dv+1 .

2.1 Hardness and Hard-Core Set Lemma

We say that a function f ∈ Fn is δ-hard (or has hardness δ) for size s, if for any
C ∈ SIZE(s), Prx∈Un [C(x) �= f(x)] > δ. Impagliazzo introduced the following
notion of a hard-core set of a hard function.

Definition 1. [7] We say that a function f ∈ Fn has an ε-hard-core set H ⊆
{0, 1}n for size s, if for any C ∈ SIZE(s), Prx∈H [C(x) �= f(x)] > 1−ε

2 .

Now we can state Impagliazzo’s hard-core set lemma [7], which is the focus of
our paper.

Lemma 1. [7] Any function f ∈ Fn which is δ-hard for size s must have an
ε-hard-core set H for size s′, with |H | ≥ δ2n and s′ = O(s/(1

ε2 log 1
δε)).

Note that in this lemma, the hardness on the set H is measured against a smaller
circuit size s′, as compared to the original circuit size s. This was later improved
by Klivans and Servedio [9] to s′ = O(s/(1

ε2 log 1
δ)) but at the expense of having

a slightly smaller hard-core set of size δ2n−1. A closer look at their proofs shows
that they work for the more general setting with hardness measured against any
class of functions instead of just circuits. For this, let us first formalize the notion
that a function has no hard-core set for a class G ⊆ Fn.

188 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

Definition 2. Given a set G = {g1, · · · , gk} ⊆ Fn, we say that a function f ∈
Fn is (δ, ε,G)-easy if for any H ⊆ {0, 1}n of size δ2n, there is a function g ∈ G
such that Prx∈H [g(x) �= f(x)] ≤ 1−ε

2 .

Then from [7] and its improvement in [9], one actually has the following.

Lemma 2. For some q = O(1
ε2 log 1

δ), there exists a function D : {0, 1}q →
{0, 1} ∈ SIZE(poly(q)) such that for some constant c the following holds. For
any G = {g1, · · · , gk} ⊆ Fn, if a function f ∈ Fn is (cδ, ε,G)-easy, then there is
a multi-set I with |I| = q such that Prx [D(gI(x)) �= f(x)] ≤ δ.
In [7], c = 1 and D is the majority function (and q = O(1

ε2 log 1
δε)), while in [9],

c = 1/2 and D is the majority of majority functions.

2.2 Black-Box Constructions of Hard-Core Sets

Now we introduce our two models for black-box construction of hard-core set.
The first one is stronger than the second.

Definition 3. We say that a (non-uniform) oracle algorithm Dec
(·) realizes a

strongly black-box (δ, ε, k)-construction (of a hard-core set) if for some q ∈ N it
has a decision function D : {0, 1}q → {0, 1} such that for some constant c the
following holds. For any G = {g1, · · · , gk} ⊆ Fn, if a function f ∈ Fn is (cδ, ε,G)-
easy, then there is a multi-set I with |I| = q such that Dec

G,I(x) = D(gI(x))
and Prx

[
Dec

G,I(x) �= f(x)
]
≤ δ. We call q the query complexity of Dec.

In this model, I can be seen as an advice, so the advice is of the form of a multi-
set I = {i1, . . . , iq}, and the algorithm Dec is restricted to be of the following
form: on input x, it queries the functions gi1 , . . . , giq all on the input x, applies
the function D on the q answer bits, and outputs D(gi1(x), . . . , giq (x)). Note that
the known hard-core set constructions are in fact done in our first model [7,9].
Our second model generalizes the first one by removing the format constraint
on the algorithm Dec and its advice. That is, the algorithm Dec and its advice
now are allowed to be of arbitrary form.

Definition 4. We say that a (non-uniform) oracle algorithm Dec
(·) realizes a

weakly black-box (δ, ε, k)-construction (of a hard-core set) if for some constant
c the following holds. For any G = {g1, · · · , gk} ⊆ Fn, if a function f ∈ Fn
is (cδ, ε,G)-easy, then there is an advice string α such that Prx[Dec

G,α(x) �=
f(x)] ≤ δ.
Note that in the two definitions above, we do not place any constraint on the
computational complexity of Dec. Our first two results show that even having
an unbounded computational power, Dec still needs to make a sufficient num-
ber of queries and use a sufficient number of advice bits in these two models,
respectively. On the other hand, our third result targets on the computational
complexity of Dec and show that it cannot be implemented in a low-level com-
plexity class such as AC0[p]. Here, we say that the oracle algorithm Dec

G can
be implemented in a circuit class if the function Dec

G can be computed by a
circuit in the class equipped with functions from G as oracle gates.

On the Complexity of Hard-Core Set Constructions 189

3 Query Complexity in Strongly Black-Box Constructions

In this section, we give a lower bound on the query complexity of any strongly
black-box construction of hard-core set. Formally, we have the following.

Theorem 1. Suppose 2−c1n ≤ ε, δ < c2, and ω(1
ε2 log 1

δ) ≤ k ≤ 22c3n

, for small
enough constants c1, c2, c3 > 0. Then any strongly black-box (δ, ε, k)-construction
must have a query complexity of q = Ω(1

ε2 log 1
δ).

Our lower bound is optimal since it is matched (up to a constant factor) by the
upper bound from the construction of Klivans and Servedio (Lemma 2). Note
that the assumption k ≥ ω(1

ε2 log 1
δ) ≥ 2Ω(n) is reasonable, since in standard

settings of the hard-core set lemma, G typically consists of circuits of polynomial
(or larger) size, which gives k = |G| ≥ 2poly(n).

The roadmap for the proof is the following. Consider any Dec which realizes
such a strongly black-box construction. We would like to show the existence of
a function f and a family G = {g1, . . . , gk} of functions such that f is (cδ, ε,G)-
easy (with c being the constant associated with Dec) but the algorithm Dec

without making enough queries cannot approximate f well. We will prove their
existence by a probabilistic argument.

Now we proceed to the proof of the theorem. Suppose the parameters ε, δ, k
satisfy the condition stated in the theorem. Suppose we have such a black-box
construction realized by an oracle algorithm Dec with the decision function D.
Consider k independent random functions b1, . . . , bk from Fn, which will serve
as noise vectors, such that for any i and x, Pr[bi(x) = 0] = 1+2ε

2 .
Now let f be a perfectly random function from Fn, so that Pr[f(x) = 1] = 1

2
for any x, and let g1, . . . , gk be k independent noisy versions of f defined as
gi(x) = f(x)⊕bi(x), for any i and x. Let B = {b1, . . . , bk} and G = {g1, . . . , gk}.
First, we have the following, the proof of which is a simple application of a
Chernoff bound and a union bound and is omitted due to the space constraint.

Lemma 3. If k = ω(1
ε2 log 1

δ), then Prf,G [f is not (cδ, ε,G)-easy] = o(1).

Next, we show that with a small q, Dec is unlikely to approximate f well. Recall
that for a multi-set I = {i1, · · · , iq} ⊆ [k], gI(x) = (gi1(x), . . . , giq (x)). We say
that Dec can δ-approximate f if there is a multi-set I ⊆ [k] with |I| = q such
that D ◦ gI is δ-close to f (i.e., Prx [D(gI(x)) �= f(x)] ≤ δ).

Lemma 4. If q = o(1
ε2 log 1

δ), then Prf,G[Dec can δ-approximate f] = o(1).

Proof. Consider any multi-set I ⊆ [k] with |I| = q. First we show the following.

Claim. For any x ∈ {0, 1}n, Prf,G [D(gI(x)) �= f(x)] ≥ 2δ.

Proof. Let Ĩ denote the set of elements from I, removing multiplicity, and D̃ the
function such that D̃(gĨ(x)) = D(gI(x)). For example, for I = {1, 1, 2}, we have
Ĩ = {1, 2} and D̃(g1(x), g2(x)) = D(g1(x), g1(x), g2(x)). Then

Pr
f,G

[D(gI(x)) �= f(x)] = Pr
f,G

[D̃(gĨ(x)) �= f(x)] =
1
2
p(0) +

1
2
p(1),

190 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

where p(v) = Prf,G[D̃(gĨ(x)) = v | f(x) = 1 − v] for v ∈ {0, 1}, so it suffices to
give a lower bound for either p(0) or p(1). Let Ĩ = {i1, . . . , iq̃}, where q̃ is clearly
at most q. Assume without loss of generality that |D̃−1(1)| ≥ 2q̃−1, and we will
give a lower bound for p(1) (otherwise, we bound p(0) in a similar way). Let
Z = (Z1, . . . , Zq̃) denote the sequence of random variables (bi1(x), . . . , biq̃ (x)),
which are i.i.d. with E[Zi] = 1−2ε

2 . Note that gi(x) = bi(x) when f(x) = 0, so

p(1) = Pr
B

[
D̃(bi1(x), . . . , biq̃ (x)) = 1

]
=

∑

y∈D̃−1(1)

Pr[Z = y].

The above is the sum of |D̃−1(1)| ≥ 2q̃−1 values from the 2q̃ values: Pr[Z = y]
for y ∈ {0, 1}q̃, so it is clearly no less than the sum of the 2q̃−1 smallest values
from them. Observe that Pr[Z = y] = (1−2ε

2)#1(y)(1+2ε
2)q̃−#1(y), where #1(y)

denotes the number of 1’s in the string y, so Pr[Z = y] ≤ Pr[Z = y′] whenever
#1(y) ≥ #1(y′). As a result, p(1) is at least

∑

y:#1(y)>
1
2 q̃

Pr[Z = y] = Pr

⎡

⎣
∑

i∈[q̃]

Zi >
1
2
q̃

⎤

⎦ ≥ Pr

⎡

⎣
∑

i∈[q̃]

Zi >
1 + ε

2
q̃

⎤

⎦ ≥ 2−O(ε2 q̃),

by Fact 1 (2). So when q̃ ≤ q = o(1
ε2 log 1

δ), we have Prf,G [D(gI(x)) �= f(x)] ≥
1
2p(1) ≥ 2δ. ��

Now for any multi-set I with |I| = q, let Yx, for x ∈ {0, 1}n, denote the binary
random variable such that Yx = 1 if and only if D(gI(x)) �= f(x). Clearly, they
are i.i.d. random variables, and we know from above that E[Yx] ≥ 2δ for any
x. So by Chernoff bound, Prf,G [D ◦ gI is δ-close to f] = Pr[

∑
x Yx ≤ δ2n] ≤

2−Ω(δ22n). Then a union bound gives

Pr
f,G

[∃I with |I| = q : D ◦ gI is δ-close to f] ≤ kq · 2−Ω(δ22n) ≤ o(1),

since ε, δ ≥ 2−c1n and k ≤ 22c3n

, for small enough constants c1, c3 > 0. ��

From Lemma 3 and 4, we conclude that there exist f ∈ Fn and G = {g1, . . . , gk}
⊆ Fn which satisfy the following:

– f is (cδ, ε,G)-easy, and
– for every multi-set I ⊆ [k] of size q = o(1

ε2 log 1
δ), Prx [D(gI(x)) �= f(x)] > δ.

Therefore, any Dec realizing a strongly black-box (δ, ε, k)-construction must
have q = Ω(1

ε2 log 1
δ), when k = ω(1

ε2 log 1
δ). This proves Theorem 1.

4 Advice Complexity in Weakly Black-Box Constructions

In this section, we show a length lower bound on the advice needed in any weakly
black-box construction of hard-core set. This explains why a uniform version of
the hard-core set lemma is hard to come by and any black-box construction is
inherently non-uniform. Formally, we have the following.

On the Complexity of Hard-Core Set Constructions 191

Theorem 2. Suppose 2−c1n ≤ ε, δ < c2, and 1
ε3 ≤ k ≤ 22c3n

, for small enough
constants c1, c2, c3 > 0. Then any weakly black-box (δ, ε, k)-construction must
need an advice of length Ω(1

ε log k).

As a comparison, the construction of Klivans and Servedio (Lemma 2) provides
an upper bound of O(1

ε2 log 1
δ log k) on the advice length, so there is a gap of

a factor O(1
ε log 1

δ) between our lower bound and their upper bound. As in
Theorem 1, one can also argue that the range assumption on the parameters
is reasonable.

The roadmap for the proof is the following. Consider any Dec realizing
such a weakly black-box construction. We will show the existence of a family
G = {g1, . . . , gk} ⊆ Fn with respect to which we can find a large collection
Γ of functions satisfying the following two properties: (1) any function in Γ is
(cδ, ε,G)-easy (with c the constant associated with Dec), and (2) any two func-
tions in Γ are not 2δ-close. This then implies a lower bound of log |Γ | on the
advice length. Again, we will show the existence by a probabilistic argument.

Now we proceed to the proof of the theorem. First, we independently sample k
perfectly random functions g1, . . . , gk ∈ Fn (for any i and x, gi(x) = 1 with prob-
ability exactly 1

2), and let G = {g1, . . . , gk}. Now for any set I = {i1, · · · , it} ⊆
[k], let GI be the function such that GI(x) = Maj(gi1(x), · · · , git(x)), where
Maj denotes the majority function. Then we have the following, which follows
from the known result that any majority gate has a good correlation with one
of its input bits [4,3].

Lemma 5. Let G = {g1, · · · , gk} be any set of functions from Fn. Then for any
I ⊆ [k], the function GI is (cδ, 1

|I| , G)-easy.

Let t =
⌊

1
ε

⌋
, let V t = {I ⊆ [k] : |I| = t}, and consider the class {GI : I ∈ V t}

of functions. Lemma 5 tells us that each function in the class is (cδ, ε,G)-easy.
Our next step is to find a large collection of functions from this class such that
any two of them are not close. Note that whether or not two functions GI , GJ

are close really depends on the choice of G. We will show that if I and J have
a small intersection, then GI and GJ are unlikely to be close for a random G.

Lemma 6. ∀I, J ∈ V t with |I ∩ J | < t
2 , PrG [GI is 2δ-close to GJ] ≤ 2−Ω(2n).

Proof. Consider any such I and J . First, we prove the following.

Claim. For any x ∈ {0, 1}n, PrG [GI(x) �= GJ(x)] = Ω(1).

Proof. Note that for any x, g1(x), . . . , gk(x) can be seen as a sequence of i.i.d.
binary random variables Z1, . . . , Zk, with E[Zi] = 1

2 for each i. Let ZI denote
the subsequence of random variables Zi for i ∈ I, and similarly for ZJ . Thus our
goal is to show that Pr[Maj(ZI) �= Maj(ZJ)] = Ω(1).

Let K = I ∩ J , I1 = I \ K, and J1 = J \ K, and note that |K| < |I1|, |J1|.
Consider the following three events.

– A1:
∣∣
∣
∑

i∈K Zi −
|K|
2

∣∣
∣ ≤ 1

2

√
|K|. By Chernoff bound, Pr[¬A1] < α for a

constant α < 1, so Pr[A1] = Ω(1).

192 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

– A2:
∑

i∈I1 Zi ≤
1
2 (|I1| −

√
|I1|). By Fact 1 (1) with μ = 1

2 , Pr[A2] = Ω(1).
– A3:

∑
i∈J1

Zi ≥ 1
2 (|J1|+

√
|J1|). By Fact 1 (2) with μ = 1

2 , Pr[A3] = Ω(1).

Now observe that if A1 ∧A2, then

∑

i∈I
Zi ≤

1
2

(|K|+ |I1|+
√
|K| −

√
|I1|) <

|K|+ |I1|
2

=
|I|
2
,

which implies that Maj(ZI) = 0. Similarly, if A1 ∧A3, then

∑

i∈J
Zi ≥

1
2

(|K|+ |J1| −
√
|K|+

√
|J1|) >

|K|+ |J1|
2

=
|J |
2
,

which implies that Maj(ZJ) = 1. That is, if A1 ∧ A2 ∧ A3, then Maj(ZI) =
0 ∧ Maj(ZJ) = 1, so Maj(ZI) �= Maj(ZJ). Since the events A1, A2, A3 are
independent from each other (as each depends on a separate set of random
variables), we have

Pr[Maj(ZI) �= Maj(ZJ)] ≥ Pr[A1 ∧A2 ∧A3] = Pr[A1] · Pr[A2] · Pr[A3] ≥ Ω(1).

��

From this, we next show that GI and GJ are unlikely to agree on many x. For
any x ∈ {0, 1}n, consider the binary random variable Yx such that Yx = 1 if and
only if GI(x) �= GJ(x). From the above claim, we know that EG[Yx] ≥ c0 for
some constant c0. So by Chernoff bound, we have

Pr
G

[GI is 2δ-close to GJ] = Pr

[
∑

x

Yx ≤ 2δ2n
]

≤ 2−Ω((c0−2δ)22n) ≤ 2−Ω(2n),

as we assume that δ < c2 for a small enough constant c2. ��

Call G nice if for any I, J ∈ V t with |I ∩ J | < t
2 , GI is not 2δ-close to GJ .

By a union bound, PrG[G is not nice] ≤
(
k
t

)2 · 2−Ω(2n) ≤ 22t log k · 2−Ω(2n) < 1,
as t ≤ 1

ε ≤ 2c1n and k ≤ 22c3n

, for small enough constants c1, c3 > 0. This
guarantees the existence of a nice G. From now on, we will fix on one such G.

Consider the undirected graph G = (V,E) where V = {GI : I ∈ V t} and E
consists of those pairs of GI , GJ which are 2δ-close to each other. Then we have
the following.

Lemma 7. G has an independent set of size at least kΩ(t).

Proof. Since G is nice, there cannot be an edge between vertices GI and GJ if
|I ∩J | < t

2 . Thus, the degree of any vertex GI is at most the number of GJ with
|I ∩ J | ≥ t

2 , which is at most

∑

t
2≤i<t

(
t

i

)(
k − t
t− i

)
≤

∑

t
2≤i<t

(
t

i

)(
k
t
2

)
≤ 2t

(
k
t
2

)
≤
(

8ek
t

)t/2
≤ kt/2,

On the Complexity of Hard-Core Set Constructions 193

where the first and last inequalities, respectively, hold under the conditions that
k ≥ 1

ε3 ≥ t3 and t =
⌊

1
ε

⌋
is at least a large enough constant, while the third

inequality uses the fact that
(
n
m

)
≤ (enm)m. Then by Turán’s theorem (Fact 2),

G has an independent set of size
(
k
t

)
1

kt/2+1
≥
(
k
t

)t 1
kt/2+1

≥ k2t/3 1
kt/2+1

≥ kΩ(t),

where the second inequality follows from the assumption that k ≥ t3. ��
Now we are ready to finish the proof of the theorem. From Lemma 7, we know
that G has an independent set Γ of size kΩ(t). Note that any two GI , GJ ∈ Γ
are not 2δ-close. Furthermore, we know from Lemma 5 that every GI ∈ Γ
is (cδ, ε,G)-easy, since |I| = t ≤ 1

ε . Therefore, an advice of length log |Γ | =
Ω(t log k) = Ω(1

ε log k) is required, because for each advice α, Dec
G,α can only

be δ-close to at most one GI ∈ Γ . This proves Theorem 2.

5 No Weakly Black-Box Construction in AC0[p]

In this section, we show that no weakly black-box construction of hard-core set
can be implemented in AC0[p]. More precisely we have the following.

Theorem 3. Suppose 1 < δ < 1/20, 0 < ε < 1, k ≥ n, and p a prime. Let
t = min(�1/ε�, n). Then no weakly black-box (δ, ε, k)-construction can be imple-
mented in AC0[p](2poly(log t)).

The idea is the following. Suppose we have a function Dec realizing such a black-
box construction. Let I = [t] and note that 1/t ≥ ε. From the previous section,
we know that for any G, the function GI is (cδ, ε,G)-easy (with c the constant
associated with Dec), so there must exist some advice α such that Dec

G,α is
δ-close to the function GI , which is the majority function over g1, . . . , gt. As will
be shown later, by defining G properly, we can use Dec

G,α to approximate the
majority function on t input variables. Then we need the following lower bound
on the majority function. The proof is based on bounds from [13,14,15] and is
omitted due to the space constraint.

Lemma 8. For any C : {0, 1}t → {0, 1} in AC0[p](2poly(log t)) and for a large
enough t, we have Prx [C(x) �= Maj(x)] ≥ 1/20.

We define the function gi as gi(x) = xi for i ∈ [n] and gi(x) = 0 other-
wise, for x ∈ {0, 1}n. Let G = {g1, . . . , gk}. Then GI(x) = Maj(x1, . . . , xt)
for any x ∈ {0, 1}n, so there must be some advice α such that Prx[Dec

G,α(x) �=
Maj(x1, . . . , xt)] ≤ δ, and by an average argument there must be some fixed
x̄t+1, . . . , x̄n such that

Pr
x1,...,xt

[Dec
G,α(x1, . . . , xt, x̄t+1, . . . , x̄n) �= Maj(x1, . . . , xt)] ≤ δ.

Such α and x̄t+1, . . . , x̄n can be hard-wired into the circuit for Dec, and observe
that all the oracle gates can be removed as every oracle query can be answered
by some input bit xi or a fixed constant. So if Dec

G can be computed by
an AC0[p](2poly(log t)) circuit equipped with oracle gates from G, we can obtain
from it an AC0[p](2poly(log t)) circuit (without oracle gates) which is δ-close to the
majority function on t bits and contradicts Lemma 8. This pro es Theorem 3.

194 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

References

1. Alon, N., Spencer, J.: The probabilistic method, 2nd edn. Wiley-Interscience, New
York (2000)

2. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complex-
ity 3(4), 307–318 (1993)

3. Goldmann, M., H̊astad, J., Razborov, A.: Majority gates vs. general weighted
threshold gates. Computational Complexity 2, 277–300 (1992)

4. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of
bounded depth. In: Proceedings of the 28th Annual IEEE Symposium on Founda-
tions of Computer Science, pp. 99–110 (1987)

5. Healy, A., Vadhan, S., Viola, E.: Using nondeterminism to amplify hardness. SIAM
Journal on Computing 35(4), 903–931 (2006)

6. Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the
37th ACM Symposium on Theory of Computing, pp. 664–673. ACM Press, New
York (2005)

7. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: Proceed-
ings of the 36th Annual IEEE Symposium on Foundations of Computer Science,
pp. 538–545. IEEE Computer Society Press, Los Alamitos (1995)

8. Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In: Proceedings of the 29th ACM Symposium on
Theory of Computing, pp. 220–229. ACM Press, New York (1997)

9. Klivans, A., Servedio, R.A.: Boosting and hard-core sets. Machine Learning 51(3),
217–238 (2003)

10. Lu, C.-J., Tsai, S.-C., Wu, H.-L.: On the complexity of hardness amplification. In:
Proceedings of the 20th Annual IEEE Conference on Computational Complexity,
pp. 170–182. IEEE Computer Society Press, Los Alamitos (2005)

11. O’Donnell, R.: Hardness amplification within NP. In: Proceedings of the 34th ACM
Symposium on Theory of Computing, pp. 751–760. ACM Press, New York (2002)

12. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR
lemma. Journal of Computer and System Sciences 62(2), 236–266 (2001)

13. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In: Proceedings of the 19th ACM Symposium on Theory of Computing,
pp. 77–82. ACM Press, New York (1987)

14. Szegedy, M.: Algebraic methods in lower bounds for computational models with
limited communication. Ph.D. thesis, University of Chicago (1989)

15. Tarui, J.: Degree complexity of boolean functions and its applications to relativized
separations. In:Proceedingsof the6thAnnual IEEEConference onStructure inCom-
plexity Theory, pp. 382–390. IEEE Computer Society Press, Los Alamitos (1991)

16. Trevisan, L.: List decoding using the XOR lemma. In: Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, pp. 126–135. IEEE
Computer Society Press, Los Alamitos (2003)

17. Trevisan, L.: On uniform amplification of hardness in NP. In: Proceedings of the
37th ACM Symposium on Theory of Computing, pp. 31–38. ACM Press, New York
(2005)

18. Viola, E.: The Complexity of Hardness Amplification and Derandomization. Ph.D.
thesis, Harvard University (2006)

19. Yao, A.: Theory and applications of trapdoor functions. In: Proceedings of the 23rd
Annual IEEE Symposium on Foundations of Computer Science, pp. 80–91. IEEE
Computer Society Press, Los Alamitos (1982)

Approximation by DNF:

Examples and Counterexamples

Ryan O’Donnell and Karl Wimmer

Carnegie Mellon University, Pittsburgh PA 15213, USA
odonnell@cs.cmu.edu, kwimmer@andrew.cmu.edu

Abstract. Say that f : {0, 1}n → {0, 1} ε-approximates g : {0, 1}n →
{0, 1} if the functions disagree on at most an ε fraction of points. This
paper contains two results about approximation by DNF and other small-
depth circuits:

(1) For every constant 0 < ε < 1/2 there is a DNF of size 2O(
√

n) that
ε-approximates the Majority function on n bits, and this is optimal up
to the constant in the exponent.

(2) There is a monotone function F : {0, 1}n → {0, 1} with total
influence (AKA average sensitivity) I(F) ≤ O(log n) such that any DNF
or CNF that .01-approximates F requires size 2Ω(n/ log n) and such that
any unbounded fan-in AND-OR-NOT circuit that .01-approximates F
requires size Ω(n/ log n). This disproves a conjecture of Benjamini, Kalai,
and Schramm (appearing in [BKS99, Kal00, KS05]).

1 Introduction

1.1 Definitions

This paper is concerned with approximating boolean functions f : {0, 1}n →
{0, 1} by DNF formulas of small size. Let us first give the requisite definitions.

Circuits: We will consider single-output circuits composed of unbounded fan-in
AND and OR gates over the input literals (inputs and negated inputs). The
size of a circuit is the number of AND and OR gates it contains, and the depth
of the circuit is the number of AND and OR gates on the longest path from
an input bit to the output gate. We will also make the not completely standard
definition that the width of a circuit is the maximum, over all AND and OR
gates, of the number of literals feeding into the gate.

We will only be concerned with constant-depth circuits in this paper, and
we will be particularly interested in depth 2. We assume circuits of depth 2 are
always given by an OR of ANDs of literals, in which case they are DNFs, or by
an AND of ORs of literals, in which case they are CNFs. The ORs in a DNF
are called its terms and the ANDs in a CNF are called its clauses.

Finally, we will often identify a circuit over n input bits with the boolean
function {0, 1}n → {0, 1} that it computes.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 195–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 R. O’Donnell and K. Wimmer

Approximation: Given two functions f, g : {0, 1}n → {0, 1}, we will say that f
ε-approximates g, or f is an ε-approximator for g, if the fraction of inputs
in {0, 1}n on which they disagree is at most ε. We will also write this as

Pr
x

[f(x) �= g(x)] ≤ ε,

with the convention that boldface letters are random variables, and that they
are drawn from the uniform distribution on {0, 1}n unless otherwise specified.

We will later need the following well known observation, showing that small-
size circuits are well approximated by small-width circuits:

Observation 1. If C is a circuit of size s, then for every ε > 0 there is a
“simplification” C′ of C that ε-approximates C and has width at most log(s/ε).1

By “simplification” we mean that C′ is obtained from C by replacing some of its
gates with constants, so that C′ has size and depth no more than C, and C′ is a
DNF (respectively, CNF) if C is.

Proof. (Sketch.) Replace all AND gates with fan-in at least log(s/ε) by 0; replace
all OR gates with fan-in at least log(s/ε) by 1. ��

1.2 Approximation by DNF

DNF formulas are one of the simplest and most natural representation classes
for boolean functions. Although every function can be computed by a DNF,
some functions on n bits may require DNFs of size Ω(2n). The natural question
we pursue in this paper is whether this size can be significantly reduced for
a given function if we are only required to ε-approximate it, for some small
constant ε. Positive results along these lines would have interesting applications
in several research areas, including computational learning theory and the the
study of threshold phenomena in random graphs; these topics will be discussed in
Sections 1.3 and 1.4, respectively. However there do not seem to be many results
on either upper or lower bounds for approximation by DNF in the literature.

A notable conjecture in this area was made 8 years ago by Benjamini, Kalai,
and Schramm [BKS99] (published again in [Kal00, KS05]). To describe this con-
jecture, which we call the BKS Conjecture, we need to recall the notion of total
influence [KKL88, LMN93]:

Definition 1. Given a function f : {0, 1}n → {0, 1}, the influence of the ith
coordinate on f is

Infi(f) = Pr
x

[f(x) �= f(σix)],

where σix denotes x with its ith bit flipped. The total influence (or average
sensitivity) of f is

I(f) =
n∑

i=1

Infi(f) = E
x

[#{y ∼ x : f(y) �= f(x)}] ,

where the notation y ∼ x means that the Hamming distance between y and x is 1.
1 In this paper log denotes log2.

Approximation by DNF: Examples and Counterexamples 197

The total influence is an important measure of the complexity of a function, used
frequently in learning theory, threshold phenomena, and complexity theory. One
important result to note is that constant-depth circuits of small size have small
total influence:

Theorem 2. Let f : {0, 1}n → {0, 1} be computed by a circuit of depth d and
size s. Then I(f) ≤ O(logd−1 s).

This was first proved by Boppana [Bop97], tightening an argument made by Linial,
Mansour, and Nisan [LMN93] based on H̊astad’s Switching Lemma [H̊as86]. Note
that the d = 2 case of this theorem is quite easy, building on the simple result that
I(f) ≤ 2w for any f computable by a DNF of width w.

We can now state Benjamini, Kalai, and Schramm’s conjecture, which essen-
tially asserts a converse to Theorem 2 for monotone functions:

BKS Conjecture: For every ε > 0 there is a constant K = K(ε) < ∞ such that
the following holds: Every monotone f : {0, 1}n → {0, 1} can be ε-approximated
by a depth-d circuit of size at most

exp
(

(K · I(f))1/(d−1)
)
,

for some d ≥ 2.
(Recall that f is monotone if x ≤ y ⇒ f(x) ≤ f(y).) Observation 1 implies
that the BKS Conjecture could also add the condition that width is at most
(K · I(f))1/(d−1) without loss of generality.

If this conjecture were true it would be an important characterization of mono-
tone functions with small total influence; if it were further true with d fixed to
2 it would yield very interesting positive results for approximation by DNF (or
CNF).

1.3 Approximating Majority by DNF

Suppose the BKS Conjecture were true even with d fixed to 2. This would
imply that for every constant ε > 0, every monotone function f could be ε-
approximated by a DNF or CNF of size exp(O(I(f))). Using Observation 1, we
could further make the width of the approximator O(I(f)). One reason to hope
that this is true is that it is true, even for non-monotone functions, if one allows
a more powerful class of depth-2 circuits:

Definition 2. A TOP (“threshold of parities” [Jac95]) is a depth-2 circuit with
Parity gates at the lower level and a Majority gate on top.

Proposition 1. For all ε > 0, every boolean function f is ε-approximated by a
TOP of width O(I(f)/ε).

This proposition was shown in [KKL88, LMN93] by relating the total influence
of a function to its Fourier spectrum.

TOP circuits arise frequently as the hypothesis class in many uniform-
distribution learning algorithms. Examples include Linial, Mansour, and Nisan’s

198 R. O’Donnell and K. Wimmer

algorithm for learning depth-d size-s circuits [LMN93], Jackson’s Harmonic Sieve
algorithm for learning polynomial-size DNFs [Jac95], Bshouty and Tamon’s al-
gorithm for learning monotone functions [BT96], and O’Donnell and Servedio’s
algorithm for learning monotone polynomial-size decision trees [OS06]. (Inci-
dentally, except for Jackson’s algorithm, all of these proceed by proving upper
bounds on total influence.) An open question in learning theory is whether these
algorithms (especially Jackson’s DNF algorithm) can be made to use the simpler
class of DNFs as their hypothesis class.

This suggests the idea of trying to approximate TOPs by DNFs. By Proposi-
tion 1, approximating TOPs by DNFs could also be considered a way of attacking
the BKS Conjecture. Now the Parities in a TOP could be converted to DNFs
or CNFs of no greater width. But how to approximate the Majority by a small
DNF or CNF is an interesting question. We solve the problem of ε-approximating
Majority by DNFs in Sections 2 and 3. Unfortunately, the size necessary is too
large to give good approximations of TOPs.

The question of computing Majority by small circuits has a long and inter-
esting history. Significant work has gone into computing Majority with small
circuits of various sorts [PPZ92, AKS83, HMP06, Bop86, Val84]. Some of this
work involves the subproblem of constructing small circuits for “approximate-
Majority” — i.e., circuits that correctly compute Majority whenever the number
of 1’s in the input is at least a 2/3 fraction or at most a 1/3 fraction. Note that
this notion of approximation is not at all the same as our notion. Constructions
of constant-depth circuits for this “approximate-Majority” have had important
consequences for complexity theory [Ajt83, Ajt93, Vio05]. It seems, however,
that no paper has previously investigated the existence of small constant-depth
circuits for Majority that are ε-approximators in our sense.

Our result on this topic is the following, following from the main results proved
in Sections 2 and 3:

Theorem 3. For every constant 0 < ε < 1/2, the Majority function on n bits
can be ε-approximated by a DNF of size exp(O(

√
n)), and this is best possible up

to the constant in the exponent.

Note that the following fact is well known:

Proposition 2. Every monotone function f : {0, 1}n → {0, 1} satisfies I(f) ≤
I(Majn) = (

√
2/π + o(1))

√
n.

Thus Theorem 3 shows that the BKS Conjecture with d fixed to 2 is true for
the Majority function.

Our proof of the upper bound in Theorem 3 is by the probabilistic method; we
essentially use the random DNF construction of Talagrand [Tal96]. Our proof of
the lower bound in Theorem 3 uses the Kruskal-Katona Theorem to show that
even ε-approximators for Majority must have total influence Ω(

√
n); the lower

bound then follows from Theorem 2:

Theorem 4. Suppose f : {0, 1}n → {0, 1} is a (1/2−δ)-approximator for Majn,
for constant δ > 0. Then any depth-d circuit computing f requires size
exp(Ω(n1/(2d−2))).

Approximation by DNF: Examples and Counterexamples 199

We remark that switching lemmas do not seem to provide any help in proving
lower bounds on ε-approximating DNFs; a short discussion of this appears in
the full version of this paper.

1.4 Threshold Phenomena and the BKS Conjecture

One of the main motivations behind the BKS Conjecture is to provide general
conditions under which a monotone function has large total influence. Benjamini,
Kalai, and Schramm made their conjecture in the context of problems about
threshold phenomena and noise sensitivity in random graphs. There, proving
lower bounds on total influence is important, as the total influence relates to
certain “critical exponents” in percolation problems, and it also captures the
sharpness of “thresholds” for graph properties.

To understand the connection to threshold phenomena, consider the Erdős-
Rényi random graph model on v vertices, and write n =

(
v
2

)
. Now a boolean

string in {0, 1}n can be identified with a graph, and a boolean function f :
{0, 1}n → {0, 1} can be identified with a collection of graphs. We say that f is
a graph property if it closed under permutations of the v vertices. Suppose
f is a nontrivial monotone graph property (i.e., f is a monotone function that
is not constantly 0 or 1). Then as we increase the edge probability p from 0
to 1, the probability that a random graph from the p-biased distribution on
{0, 1}n satisfies f increases continuously from 0 to 1. Hence there will be a
critical exponent p∗ where the probability of a random graph satisfying f is 1/2.
It is of great interest to understand how rapidly the probability of satisfying
p jumps from near 0 to near 1 in the interval around p∗. The Russo-Margulis
Lemma [Mar74, Rus78] shows that ∂

∂pE[f] = 4p(1−p)I(p)(f), for an appropriate
p-biased definition of total influence. It follows that graph properties having
“sharp” thresholds corresponds to them having large total influence.

A celebrated theorem of Friedgut [Fri99] provides a version of the depth-2
BKS Conjecture in the context of graph properties with p∗ = o(1):

Friedgut’s Theorem. There is a function K = K(C, ε) <∞ such that the follow-
ing holds: If f is a monotone graph property with critical probability p∗ = o(1)
and I(p

∗)(f) ≤ C, then f can be ε-approximated (with respect to the p∗-biased
distribution on {0, 1}n) by a DNF of width K(C, ε). In particular, one can take
K(C, ε) = O(C/ε).

This result has been used with great success to show that various natural
graph properties — and also random k-SAT problems — have sharp thresholds
(see, e.g., [Fri05]); one proves this essentially by showing that the property cannot
be well approximated by a small-width DNF.

The relationship between sharp thresholds and large total influence continues
to hold in the context of general monotone boolean functions (i.e., not necessarily
graph properties). Indeed, there has been significant interest in trying to extend
Friedgut’s Theorem to the general, no-symmetry case. The BKS Conjecture is
one proposal for such an extension (in the case of p∗ = 1/2). It is weaker than the
Friedgut Theorem in that it allows for approximating circuits of depth greater

200 R. O’Donnell and K. Wimmer

than 2. However the BKS Conjecture’s size/width bound for d = 2 is very strong,
essentially matching Friedgut’s Theorem — it states that in the d = 2 case, K
may be taken to have a linear dependence on I(f).

Some partial progress has been made towards proving Friedgut’s Theorem in
the case of general monotone boolean functions. In an appendix to Friedgut’s
paper, Bourgain [Fri99] showed that every boolean function with I(f) ≤ C has a
Fourier coefficient f̂(S) with |S| ≤ O(C) and |f̂(S)| ≥ exp(−O(C2)); he used this
to show that when f is monotone and p∗ = o(1), there is a term of width O(C)
that has exp(−O(C2))-correlation with f . Friedgut himself later showed [Fri98]
that his theorem can be extended to general functions, even non-monotone ones
(assuming p∗ is bounded away from 0 and 1), at the expense of taking K(C, ε) =
exp(O(C/ε)).

However it turns out that these generalizations cannot be taken too far —
our main result in Section 4 is that the BKS Conjecture is false. Specifically, we
show:

Theorem 5. There is a monotone function F : {0, 1}n → {0, 1} with total
influence I(F) ≤ O(log n) satisfying the following: Any DNF or CNF that .01-
approximates F requires width Ω(n/ logn) and hence size 2Ω(n/ logn); and, any
circuit that .01-approximates F requires size Ω(n/ logn).

This rules out the BKS Conjecture. In particular, it shows that Friedgut’s The-
orem cannot be proved for general monotone functions (in the p∗ = 1/2 case)
unless one takes K(C, .01) ≥ exp(Ω(C)). We remark that the function F used
in the theorem is is computed by a polynomial-size, depth-3 circuit.

2 Approximating Majority

In this section we show how to construct a DNF of size 2O(
√
n/ε) that ε-approximates

Majority on n bits. In the next section we explain why this result is optimal up to
the constant in the exponent.

Theorem 6. For all ε ≥ 1/
√
n, there is a DNF of width w = 1

ε

√
n and size

(ln 2)2w which is an O(ε)-approximator for Majn.

Proof. Our construction is by the probabilistic method, inspired by the random
DNF construction of Talagrand [Tal96]. Specifically, let D be a randomly chosen
DNF with (ln 2)2w terms, where each term is chosen by picking w variables
independently with replacement. It suffices to show that

E
D

[Pr
x

[D(x) �= Maj(x)]] ≤ O(ε), (1)

because then a particular D must exist which has Pr[D(x) �= Maj(x)] ≤ O(ε).
Due to space limitations, the proof of (1) is deferred to the full version of this
paper. ��

Approximation by DNF: Examples and Counterexamples 201

3 A Lower Bound for Majority, Via Total Influence

The main result in this section shows that corrupting the Majority function,
Majn, on even a large fraction of strings cannot decrease its total influence very
much:

Theorem 7. Let f : {0, 1}n → {0, 1} be an ε-approximator for Majn. Then

I(f) ≥
{

(1−O(ε)) · I(Majn) if ω(1√
n

) ≤ ε ≤ 1/4,

Ω(ε) · I(Majn) if 1/4 ≤ ε ≤ 1/2− ω(1√
n

).

As mentioned in Proposition 2, the total influence of Majn is Θ(
√
n). Thus

Boppana’s relation, Theorem 2, implies the following:

Corollary 1. For any constant ε < 1/2, every ε-approximator for Majn with
depth d requires size at least

exp
(
Ω(n1/(2d−2))

)
.

In particular, any ε-approximating DNF for Majority requires size at least
exp(Ω(

√
n)).

This matches the upper bound we proved in Theorem 6, up to the constant in
the exponent.

Due to space limitations, the proof of Theorem 7 is deferred to the full version
of this paper. The main tool used therein is the Kruskal-Katona Theorem.

4 Falsifying the BKS Conjecture

In this section our goal is to falsify the BKS Conjecture. In particular, we will
have to prove a lower bound for ε-approximating a monotone function by DNF
and CNF. Note that the technique we used in Section 3 — lower-bounding the
total influence of an approximator and then using Theorem 2 — is useless here.
This is because the BKS Conjecture was made as a converse to Theorem 2!

Since we have difficulty enough showing size lower bounds for ε-approximating
DNF, we should hope that our lower bounds for higher depths follow for an easy
reason. This suggests looking for a counterexample among monotone functions
with total influence" log2 n, since for such functions we will only have to prove
sublinear size lower bounds for ε-approximating circuits of depth d ≥ 3.

The function we will use to falsify the BKS Conjecture will be based on the
Tribes functions. These were originally introduced by Ben-Or and Linial [BOL90];
we will use slightly different parameters than they did, to simplify notation.

Given b ∈ N, write I = {1, 2, . . . , 2b}, J = {1, 2, . . . , b}, and n = b2b. We
define the Tribes function Tribesn : {0, 1}n → {0, 1} as follows. Given an input
x ∈ {0, 1}n, we index its bits as xi,j , for i ∈ I and j ∈ J . We also write
yi =

∧
j∈J xi,j . Tribesn(x) is then defined to be

∨
i∈I yi.

202 R. O’Donnell and K. Wimmer

In other words, Tribesn is given by the monotone read-once DNF of width b
and size 2b+1. We have

Pr
x

[Tribesn(x) = 1] = 1− (1 − 2−b)2
b ≈ 1− 1/e,

so Prx[Tribesn(x) = 1] is uniformly bounded away from 0 and 1.
We also define the monotone complement of Tribesn:

Tribes†n(x) = Tribesn(x1,1, x1,2, . . . , x2b,b).

The function Tribes†n(x) is given by the monotone read-once CNF of width b
and size 2b+1. It has Pr[Tribes†n(x) = 1] ≈ 1/e. Ben-Or and Linial showed that
I(Tribesn) = Θ(log n), and the same holds for Tribes†n by boolean duality.

Suppose we attempt to approximate Tribesn with some CNF C. We view C
as being an AND of ORs, where each OR’s wires may pass through a NOT gate
before being wired to an input gate xi,j .

Now further suppose we introduce additional “input gates” yi, where each yi
is always equal to

∧
j∈J xi,j , and we allow the circuit C to access the yi gates if

it wants. Our main lemma uses the fact that Tribesn depends only on the yi’s
to show that C can be taken to only depend on the yi’s as well:

Lemma 1. Suppose Tribesn is ε-approximated by a CNF C of size s and width
w over the variables (xi,j)i∈I,j∈J . Then there is another CNF C′ of size at most
s and width at most w only over the variables (yi)i∈I that also ε-approximates
Tribesn.

Proof. Given C over the input gates xi,j , imagine that every wire going to an
input gate xi,j is instead rewired to access xi,j ∨yi. Call the resulting circuit C1.
We claim that C1 and C compute the same function of x. The reason is that on
any input x where yi = 0, the rewiring to xi,j ∨ yi has no effect; and, on any
input x where yi = 1, the rewiring to xi,j∨yi converts xi,j to 1, but that still has
no effect since yi = 1 ⇒ xi,j = 1. Since C was an ε-approximator for Tribesn,
we have

Pr
x

[C1(x,y) �= Tribesn(x)] ≤ ε.

Now picking x uniformly at random induces the 2−b-biased product distribu-
tion on y ∈ {0, 1}I. We can get the same distribution on (x,y) by picking y first
and then picking x conditioned on y. I.e., for each i ∈ I: if yi = 1 then all xi,j ’s
are chosen to be 1; if yi = 0 then the substring xi ∈ {0, 1}J is chosen uniformly
from {0, 1}J \ {(1, 1, . . . , 1)}.

In view of this, and using the fact that Tribesn depends only on y, we have

E
y

[
Pr

x | y

[
C1(x,y) �= Tribesn(y)

]]
≤ ε.

We next introduce new input gates (zi,j)i∈I,j∈J that take on random values,
completely independent of the xi,j ’s and the yi’s. Each substring (zi,j)j∈J will

Approximation by DNF: Examples and Counterexamples 203

be uniform on {0, 1}J \ {(1, 1, . . . , 1)}; i.e., it will have the same distribution
as (xi)j∈J | yi = 0. Now let the circuit C2 be the same as C1 except with all
accesses to the xi,j ’s replaced by accesses to the corresponding zi,j’s.

We claim that for every string y ∈ {0, 1}I, the distributions C1(x|y, y) and
C2(z, y) are identical. The reason is that for each i ∈ I such that yi = 1,
the (xi,j)j∈J and (zi,j)j∈J values are irrelevant, since C1 only accesses xi,j by
accessing xi,j ∨ yi and the same is true of C2 and zi,j . On the other hand, for
each i ∈ I such that yi = 0, the (xi,j)j∈J and (zi,j)j∈J values are identically
distributed.

In light of this, we conclude

E
y

[
Pr
z

[
C2(z,y) �= Tribesn(y)

]]
≤ ε,

which can be switched to

E
z

[
Pr
y

[
C2(z,y) �= Tribesn(y)

]]
≤ ε.

Since z and y are independent, we can conclude there must be a particular
setting z∗ such that

Pr
y

[
C2(z∗,y) �= Tribesn(y)

]
≤ ε.

We may now take C′ to be the circuit only over the y gates gotten by fixing
the input z∗ for C2. It is easy to check that C′ has width at most w and size
at most s. ��

We can now use Lemma 1 to show that Tribesn has no good CNF approximator
of width much smaller than n/ logn:

Theorem 8. Any CNF that .2-approximates Tribesn must have width at least
(1/3)2b = Ω(n/ logn).

Proof. Let C be a CNF of width w that .2-approximates Tribesn over the vari-
ables (xi,j)i∈I,j∈J . Using Lemma 1, convert it to a CNF C′ over the variables
(yi)i∈I that .2-approximates Tribesn. We may assume that no term in C′ includes
both yi and yi for some i. We now consider two cases.

Case 1: Every term in C′ includes at least one negated yi. In this case, C′ is
1 whenever y = (0, 0, . . . , 0). But Tribesn is 0 when y = (0, 0, . . . , 0). Since this
occurs with probability (1− 2−b)2

b ≥ 1/4 > .2, we have a contradiction.
Case 2: C′ has at least one term in which all yi’s are unnegated. Suppose this

term has width w. Since yi is true only with probability 2−b, this term is true with
probability at most w2−b, by the union bound. And whenever this term is false,
C′ is false. Hence Pr[C′ = 0] ≥ 1−w2−b. Since Pr[Tribesn = 0] ≤ 1/e and C′ is
a .2-approximator for Tribesn, we must have 1−w2−b ≤ 1/e+ .2⇒ w2−b ≥ 1/3,
completing the proof. ��

204 R. O’Donnell and K. Wimmer

By symmetry of 0 and 1, we infer:

Corollary 2. Any DNF that .2-approximates Tribes†n must have width at least
Ω(n/ logn).

As an aside, we can now show that the idea of approximating TOPs by DNFs dis-
cussed in Section 1.3 cannot work. Since Tribes†n is computable by a polynomial-
size CNF, Jackson’s Harmonic Sieve learning algorithm [Jac95] can produce
a polynomial-size O(log n)-width TOP ε-approximator for it, for any constant
ε > 0. But one can never convert this to even a .2-approximating DNF of size
smaller than 2Ω(n/ logn), by Corollary 2 combined with Observation 1.

We now define the function that contradicts the BKS Conjecture:

Definition 3. Let n be of the form b2b+1. We define Fn : {0, 1}n → {0, 1} to
be the OR of Tribesn/2 and Tribes†n/2, on disjoint sets of bits.

Proposition 3. Fn is a monotone function computable by a depth-3 read-once
formula, and I(F) = O(log n).

The fact that I(Fn)=O(log n) holds because I(Fn) ≤ I(Tribesn/2)+I(Tribes†n/2)=
O(log n) +O(log n).

Theorem 9. Any depth-2 circuit that .04-approximates Fn must have size at
least 2Ω(n/ logn).

Proof. Suppose D is a DNF of size s that .04-approximates Fn. By Observa-
tion 1, we can replace it with a DNF D′ of width at most log(100s) which
.04 + 1/100 = .05-approximates Fn.

Consider choosing x ∈ {0, 1}n/2 uniformly at random from the set of strings
that make Tribesn/2 false, and also choosing y ∈ {0, 1}n/2 independently and
uniformly at random. Since at least 1/4 of all strings make Tribesn/2 false (close
to 1/e, in fact), this distribution is uniform on some subset of {0, 1}n of fractional
size at least 1/4. Since D′ errs in computing Fn on at most a .05 fraction of
strings, we conclude that

Pr[D′(x,y) �= Fn(x,y)] ≤ 4 · .05 = .2.

Note that Fn(x,y) is always just Tribes†n/2(y). We conclude that there must be
a particular setting of bits x∗ ∈ {0, 1}n/2 such that

Pr[D′(x∗,y) �= Tribes†n/2(y)] ≤ .2.

Hence we have a DNF D′′ = D′(x∗, ·) over {0, 1}n/2 of width at most log(100s)
that .2-approximates Tribes†n/2. By Corollary 2, we conclude that log(100s) ≥
Ω(n/ logn). Hence the original DNF D has size at least 2Ω(n/ log n).

A very similar argument, restricting to the inputs to Fn where the Tribes†n/2
part is 0 and then using Theorem 8 shows that any CNF that is a .04-approximator
for Fn must have size at least 2Ω(n/ logn). This completes the proof. ��

Approximation by DNF: Examples and Counterexamples 205

Theorem 9 already implies that the BKS Conjecture cannot hold with d always
equal to 2. To completely falsify the conjecture, we need the following additional
observations:

Proposition 4. Any function f : {0, 1}n → {0, 1} that .02-approximatesFn must
depend on at least Ω(n) input bits.

Proof. It is very well known (see [DF06] for a written proof) that there is an
explicit ε > 0 (and certainly ε = .1 is achievable) such that any function g :
{0, 1}n → {0, 1} that ε-approximates Tribesn/2 must depend on at least Ω(n)
of its input bits. Now an argument very similar to the one used in the proof of
Theorem 9 shows that if f is a .02-approximator for Fn, then some restriction
of f must be a δ-approximator for Tribesn/2 with δ ≤ 4 · .02 < .1. Since this
restriction must depend on at least Ω(n/2) input bits, we conclude that f must
also depend on at least this many input bits. ��

Proposition 5. Any circuit that .01-approximates Fn must have size at least
Ω(n/ logn).

Proof. Suppose the circuit C has size s and is a .01-approximator for Fn. By
Observation 1, there is another circuit C′ of size at most s and width at most
log(100s) that .01-approximates C; this C′ is thus a .01+.01 = .02-approximator
for Fn. But C′ depends on at most size × width = s log(100s) literals. Hence
s log(100s) ≥ Ω(n) by Proposition 4 and so s ≥ Ω(n/ logn). ��

Finally, we’ve established:

Theorem 10. The BKS Conjecture is false.

Proof. We use the function Fn, which is monotone and has I(Fn) = O(log n).
The BKS Conjecture implies that there is some universal constantK = K(.01) <
∞ such that the following holds: There is a circuit C that .01-approximates Fn
and has depth d and size s, for some d and s satisfying

s ≤ exp
(

(K · I(Fn))1/(d−1)
)

= exp
(
O(log1/(d−1) n)

)
.

Now d can’t be 2, since this would imply s ≤ poly(n), and we know from Theo-
rem 9 that there is no circuit .01-approximatingFn of depth 2 and size 2o(n/ log n).
But d ≥ 3 is also impossible, since this would imply s ≤ exp(

√
logn), and we

know from Proposition 5 that there is no circuit .01-approximating Fn of size
o(n/ logn). ��

References

[Ajt83] Ajtai, M.: Σ1
1-formulae on finite structures. Annals of Pure and Applied

Logic 24, 1–48 (1983)
[Ajt93] Ajtai, M.: Approximate counting with uniform constant-depth circuits. In:

Advances in Computational Complexity Theory, pp. 1–20. Amer. Math.
Soc., Providence, RI (1993)

206 R. O’Donnell and K. Wimmer

[AKS83] Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps. Com-
binatorica 3, 1–19 (1983)

[BKS99] Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of boolean functions
and applications to percolation. Inst. Hautes Études Sci. Publ. Math. 90,
5–43 (1999)

[BOL90] Ben-Or, M., Linial, N.: Collective coin flipping. In: Micali, S. (ed.) Random-
ness and Computation, Academic Press, New York (1990)

[Bop86] Boppana, R.: Threshold functions and bounded depth monotone circuits. J.
Comp. Sys. Sci. 32(2), 222–229 (1986)

[Bop97] Boppana, R.: The average sensitivity of bounded-depth circuits. Inf. Process.
Lett. 63(5), 257–261 (1997)

[BT96] Bshouty, N., Tamon, C.: On the Fourier spectrum of monotone functions.
Journal of the ACM 43(4), 747–770 (1996)

[DF06] Dinur, I., Friedgut, E.: Lecture notes (2006), available at
http://www.cs.huji.ac.il/∼analyt/scribes/L11.pdf

[Fri98] Friedgut, E.: Boolean functions with low average sensitivity depend on few
coordinates. Combinatorica 18(1), 474–483 (1998)

[Fri99] Friedgut, E.: Sharp thresholds of graph properties, and the k-SAT problem.
J. American Math. Soc. 12(4), 1017–1054 (1999)

[Fri05] Friedgut, E.: Hunting for sharp thresholds. Random Struct. & Algo-
rithms 26(1-2), 37–51 (2005)

[H̊as86] H̊astad, J.: Computational Limitations for Small Depth Circuits. MIT Press,
Cambridge, MA (1986)

[HMP06] Hoory, S., Magen, A., Pitassi, T.: Monotone circuits for the majority func-
tion. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006
and RANDOM 2006. LNCS, vol. 4110, Springer, Heidelberg (2006)

[Jac95] Jackson, J.: The Harmonic sieve: a novel application of Fourier analysis to
machine learning theory and practice. PhD thesis, Carnegie Mellon Univer-
sity, (August 1995)

[Kal00] Kalai, G.: Combinatorics with a geometric flavor: some examples, 2000.
GAFA Special Volume 10, Birkhauser Verlag, Basel (2000)

[KKL88] Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean func-
tions. In: Proceedings of the 29th Annual Symposium on Foundations of
Computer Science, pp. 68–80 (1988)

[KS05] Kalai, G., Safra, S.: Threshold phenomena and influence. In: Computational
Complexity and Statistical Physics, Oxford University Press, Oxford (2005)

[LMN93] Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier trans-
form and learnability. Journal of the ACM 40(3), 607–620 (1993)

[Mar74] Margulis, G.: Probabilistic characteristics of graphs with large connectivity.
Prob. Peredachi Inform. 10, 101–108 (1974)

[OS06] O’Donnell, R., Servedio, R.: Learning monotone decision trees in polynomial
time. SIAM J. Comp. (to appear, 2006)

[PPZ92] Paterson, M., Pippenger, N., Zwick, U.: Optimal carry save networks.
Boolean function complexity 169, 174–201 (1992)

[Rus78] Russo, L.: On the critical percolation probabilities. Z. Wahrsch. Werw. Ge-
biete 43, 39–48 (1978)

[Tal96] Talagrand, M.: How much are increasing sets positively correlated? Combi-
natorica 16(2), 243–258 (1996)

[Val84] Valiant, L.: Short monotone formulae for the majority function. J. Algo-
rithms 5(3), 363–366 (1984)

[Vio05] Viola,E.:Onprobabilistictimeversusalternatingtime.ECCC2005,173(2005)

http://www.cs.huji.ac.il/~analyt/scribes/L11.pdf

Exotic Quantifiers, Complexity Classes, and

Complete Problems

(Extended Abstract)

Peter Bürgisser1,� and Felipe Cucker2,��

1 Dept. of Mathematics, University of Paderborn, D-33095 Paderborn, Germany
pbuerg@upb.de

2 Dept. of Mathematics, City University of Hong Kong, Hong Kong
macucker@math.cityu.edu.hk

Abstract. We define new complexity classes in the Blum-Shub-Smale
theory of computation over the reals, in the spirit of the polynomial
hierarchy, with the help of infinitesimal and generic quantifiers. Basic
topological properties of semialgebraic sets like boundedness, closedness,
compactness, as well as the continuity of semialgebraic functions are
shown to be complete in these new classes. All attempts to classify the
complexity of these problems in terms of the previously studied com-
plexity classes have failed. We also obtain completeness results in the
Turing model for the corresponding discrete problems. In this setting, it
turns out that infinitesimal and generic quantifiers can be eliminated, so
that the relevant complexity classes can be described in terms of usual
quantifiers only.

1 Introduction

The complexity theory over the real numbers introduced by L. Blum, M. Shub,
and S. Smale developed quickly after their foundational paper [4]. Complexity
classes other than PR and NPR were introduced (e.g., in [8,17,11]), complete-
ness results were proven (e.g., in [8,17,22]), separations were obtained ([10,16]),
machine-independent characterizations of complexity classes were exhibited
([6,14,18]).

There are two points in this development which we would like to stress. Firstly,
all the considered complexity classes were natural versions over the real numbers
of existing complexity classes in the classical setting. Secondly, the catalogue
of completeness results is disapointingly small. For a given semialgebraic set
S ⊆ Rn, deciding whether a point in Rn belongs to S is PR-complete [17],
deciding whether S is non-empty (or non-convex, or of dimension at least d
for a given d ∈ N) is NPR-complete [4,15,22], and computing its Euler-Yao
characteristic is FP#P

R

R
-complete [8]. That is, essentially, all.

� Partially supported by DFG grant BU 1371 and Paderborn Institute for Scientific
Computation.

�� Partially supported by City University SRG grant 7001712.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 207–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

208 P. Bürgisser and F. Cucker

Yet, there are plenty of natural problems involving semialgebraic sets: comput-
ing local dimensions, deciding denseness, closedness, unboundedness, etc. Con-
sider, for instance, the latter. We can express that S is unbounded by

∀K ∈ R ∃x ∈ Rn (x ∈ S ∧ ‖x‖ ≥ K). (1)

Properties describable with expressions like this one are common in classical com-
plexity theory and in recursive function theory. Extending an idea by Kleene [19]
for the latter, Stockmeyer introduced in [24] the polynomial time hierarchy which
is built on top of NP and coNP in a natural way.1 Recall, a set S is in NP when
there is a polynomial time decidable relation R such that, for every x ∈ {0, 1}∗,

x ∈ S ⇐⇒ ∃y ∈ {0, 1}size(x)O(1)
R(x, y).

The class coNP is defined replacing ∃ by ∀. Classes in the polynomial hierarchy
are then defined by allowing the quantifiers ∃ and ∀ to alternate (with a bounded
number of alternations). If there are k alternations of quantifiers, we obtain the
classes Σk+1 (if the first quantifier is ∃) and Πk+1 (if the first quantifier is ∀).
Note that Σ1 = NP and Π1 = coNP. The definition of these classes over R is
straightforward [3, Ch. 21].

It follows thus from (1) that deciding unboundedness is in Π2
R

, the universal
second level of the polynomial hierarchy over R. On the other hand, it is easy to
prove that this problem is NPR-hard. But we do not have completeness for any
of these two classes.

A similar situation appears for deciding denseness. We can express that S ⊆
Rn is Euclidean dense by

∀x ∈ Rn ∀ε > 0 ∃y ∈ Rn (y ∈ S ∧ ‖x− y‖ ≤ ε)

thus showing that this problem is in Π2
R

. But we can not prove hardness in
this class. Actually, we can not even manage to prove NPR-hardness or coNPR-
hardness. Yet a similar situation occurs with closedness, which is in Π3

R
since we

express that S is closed by

∀x ∈ Rn ∃ε > 0 ∀y ∈ Rn (x �∈ S ∧ ‖x− y‖ ≤ ε⇒ y �∈ S)

but the best hardness result we can prove is coNPR-hardness. It would seem
that the landscape of complexity classes between PR and the third level of the
polynomial hierarchy is not enough to capture the complexity of the problems
above.

A main goal of this paper is to show that the two features we pointed out
earlier namely, a theory uniquely based upon real versions of classical complexity
classes, and a certain scarsity of completeness results, are not unrelated. With
the help of infinitesimal and generic quantifiers we shall define complexity classes
1 All along this paper we use a subscript R to differentiate complexity classes over R

from discrete complexity classes. To further emphasize this difference, we use sans
serif to denote the latter.

Exotic Quantifiers, Complexity Classes, and Complete Problems 209

lying in between the different levels of the polynomial hierarchy. These new
classes will allow us to determine the complexity of some of the problems we
mentioned (and of others we didn’t mention) or, in some cases, to decrease the
gap between their lower and upper complexity bounds as we know them today.

A remarkable feature of these classes is that, as with the classes in the poly-
nomial hierarchy, they are defined using quantifiers which act as operators on
complexity classes. The properties of these operators naturally become an object
of study for us. Thus, another goal of this paper is to provide some structural
results for these operators.

We remark that a similar classification has already been achieved in the so
called additive BSS model, without the need to introduce exotic quantifiers [7,9].

2 Preliminaries

We assume some basic knowledge on real machines and complexity as presented,
for instance, in [3,4].

An algebraic circuit C over R is an acyclic directed graph where each node has
indegree 0, 1 or 2. Nodes with indegree 0 are either labeled as input nodes or with
elements of R (we shall call them constant nodes). Nodes with indegree 2 are
labeled with the binary operators of R, i.e., one of {+,×,−, /}. They are called
arithmetic nodes. Nodes with indegree 1 are either sign nodes or output nodes.
All the output nodes have outdegree 0. Otherwise, there is no upper bound for
the outdegree of the other kinds of nodes. For an algebraic circuit C , the size
of C , is the number of nodes in C . The depth of C , is the length of the longest
path from some input node to some output node.

An arithmetic node computes a function of its input values in an obvious
manner. Sign nodes compute the function sgn defined by sgn(x) = 1 if x ≥ 0
and sgn(x) = 0 otherwise. To a circuit C with n input gates and m output gates
is associated a function fC : Rn → Rm. This function may not be total since
divisions by zero may occur (in which case, by convention, fC is not defined on
its input). We say that an algebraic circuit is a decision circuit if it has only one
output gate whose parent is a sign gate. Thus, a decision circuit C with n input
gates computes a function fC : Rn → {0, 1}. The set decided by the circuit is

SC = {x ∈ Rn | fC (x) = 1}.

Subsets of Rn decidable by algebraic circuits are known as semialgebraic sets.
They are defined as those sets which can be written as a Boolean combination
of solution sets of polynomial inequalities {x ∈ Rn | f(x) ≥ 0}.

Semialgebraic sets will be inputs to problems considered in this paper. They
will be either given by a Boolean combination of polynomial equalities and in-
equalities or by a decision circuit. If not otherwise specified, we mean the first
variant. In this case, polynomials are encoded with the so called dense encoding,
i.e., they are represented by the complete list of their coefficients (including zero
coefficients).

210 P. Bürgisser and F. Cucker

We close this section by recalling a completeness result, which will play an
important role in our developments. For d ∈ N let DimR(d) be the problem of,
given a semialgebraic set S, deciding whether dimS ≥ d. In [22] Koiran proved
that DimR is NPR-complete.

2.1 Infinitesimal and Generic Quantifiers

We are going to define three logical quantifiers in the theory of the reals. Suppose
ϕ(ε) is a formula with one free variable ε. The expression Hεϕ(ε) shall express
that ϕ(ε) holds for sufficiently small real ε > 0, that is,

Hε ϕ(ε)
def≡ ∃μ > 0 ∀ε ∈ (0, μ) ϕ(ε). (2)

Suppose that ψ(x) is a formula with n free variables x1, . . . , xn. We shall write
∀∗xψ(x) in order to express that almost all x ∈ Rn (with respect to the Euclidean
topology) satisfy ψ(x). Explicitly,

∀∗xψ(x)
def≡ ∀x0 ∀ε > 0 ∃x (‖x− x0‖ < ε ∧ ψ(x)). (3)

If we put Sψ = {x ∈ Rn | ψ(x) holds} this is equivalent to dim(Rn − Sψ) < n,
as Sψ is semialgebraic, cf. [5]. Furthermore, we shall write ∃∗xψ(x) to express
that almost all x ∈ Rn (with respect to the Zariski topology) satisfy ψ(x). This
is the case iff dimSψ = n, which is in turn equivalent to

∃∗xψ(x)
def≡ ∃x0 ∃ε > 0 ∀x (‖x− x0‖ < ε⇒ ψ(x)), (4)

which expresses that Sψ contains an open ball. (For a proof of this equivalence
see [5].) The generic quantifiers ∀∗ and ∃∗ were previously introduced by
Koiran [22], while the infinitesimal quantifier H so far hasn’t been studied in
a complexity framework.

By definition, ∃∗ψ(x) is equivalent to ¬(∀∗¬ψ(x)). By contrast, it is easy to
see that the quantifier H allows to pull in negations: ¬Hεϕ(ε) is equivalent to
Hε¬ϕ(ε).

We are next going to interpret the new quantifiers as operators acting on
complexity classes. We denote by R∞ the disjoint union �n≥0Rn. If x ∈ Rn ⊂ R∞

we define its size to be |x| = n.

Definition 2.1. Let C be a complexity class of decision problems.

1. The class HC consists of the A ⊆ R∞ such that there exists B ⊆ R × R∞,
B ∈ C, such that, for all x ∈ R∞,

x ∈ A ⇐⇒ Hε (ε, x) ∈ B.

2. Let Q be one of the quantifiers ∀, ∀∗, ∃, ∃∗. The class Q C consists of the
A ⊆ R∞ such that there exists a polynomial p and B ⊆ R∞ × R∞, B ∈ C,
such that, for all x ∈ R∞,

x ∈ A ⇐⇒ Qz ∈ Rp(|x|) (z, x) ∈ B.

Exotic Quantifiers, Complexity Classes, and Complete Problems 211

By repeatedly applying these operators to PR we may define many new com-
plexity classes, which can be seen as a refinement of the polynomial hierarchy
over the reals. These classes somehow take into account the topology of R, an
aspect completely absent in the discrete setting.

In order to simplify notation we will omit PR and write simply NPR =∃PR =∃,
coNPR = ∀PR = ∀ etc. We call the classes defined this way polynomial classes.
It is easy to see that they are closed under many-one reductions. Completeness
shall always refer to such reductions.

2.2 Standard Complete Problems

Let Standard(H∃) be the problem of deciding, given a polynomial f in n + 1
variables (in dense encoding), whether

Hε ∃x ∈ Rnf(ε, x) = 0.

The problem Standard(H∀) is analogously defined by requiring f(ε, x) �= 0
instead. The usual proof of NPR-completeness of the real feasibility problem [3,4]
yields:

Proposition 2.2. Standard(H∃) is H∃-complete and Standard(H∀) is H∀-
complete.

We remark that any polynomial class can be shown to have a standard complete
problem.

3 Natural Problems Complete for H∃ and H∀

Consider the following problems

UnboundedR (Unboundedness) Given a semialgebraic set S, is it unbounded?
EAdhR (Euclidean Adherence) Given a semialgebraic set S and a point x,

decide whether x belongs to the Euclidean closure S of S.
LocDimR (Local Dimension) Given a semialgebraic set S ⊆ Rn, a point x ∈ S,

and d ∈ N, is dimx S ≥ d?

Proposition 3.1. UnboundedR, EAdhR, and LocDimR are H∃-complete.

Proof. A set S is unbounded if and only if

Hε ∃x ∈ Rn (ε‖x‖ ≥ 1 ∧ x ∈ S).

This shows UnboundedR ∈ H∃. In a similar way one sees that EAdhR ∈ H∃.
Let B(x, ε) denote the open ε-ball centered at x. From the equivalence

dimx S ≥ d ⇐⇒ Hε dim(S ∩B(x, ε)) ≥ d

and the fact [22] that DimR ∈ NPR we conclude LocDimR ∈ H∃.

212 P. Bürgisser and F. Cucker

For showing hardness, consider the auxiliary problem L ⊆ R∞ consisting of,
given g ∈ R[ε,X1, . . . , Xn], deciding whether

Hε ∃t ∈ (−1, 1)n g(ε, t1, . . . , tn) = 0.

We first reduce Standard(H∃) to L, which will show that L is H∃-complete, cf.
Proposition 2.2. To do so, note that the existence of a root in Rn of a polyno-
mial f is equivalent to the existence of a root in the open unit cube (−1, 1)n for
a suitable other polynomial. This is so since the mapping ψ(λ) = λ

1−λ2 bijects
(−1, 1) with R. Therefore, for f ∈ R[Y,X1, . . . , Xn],

Hε ∃x ∈ Rn f(ε, x1, . . . , xn) = 0 ⇐⇒ Hε ∃t ∈ (−1, 1)n g(ε, t1, . . . , tn) = 0,

where di = degxi
f and g ∈ R[Y, T1, . . . , Tn] is given by

g(ε, t1, . . . , tn) := (1− t21)d1(1− t22)d2 · · · (1− t2n)dnf(ε, ψ(t1), . . . , ψ(tn)).

Note that we can construct g in time polynomial in the size of f . (As we are
representing f and g in the dense encoding, the divisions can be eliminated in
polynomial time.) So the mapping f �→ g indeed reduces Standard(H∃) to L.

In order to reduce L to UnboundedR we associate to g ∈ R[Y, T1, . . . , Tn]
the semialgebraic set S := {(y, t) ∈ R × (−1, 1)n | h(y, t) = 0}, where h is the
polynomial defined by h(Y, T) = Y 2 degY gg(1/Y 2, T). Then g ∈ L if and only if
S is unbounded. This proves that UnboundedR is H∃-complete.

We reduce now UnboundedR to EAdhR. To a polynomial f of degree d in n
variables we assign f ′ := ‖X‖2df(‖X‖−2X). Let S ⊆ Rn be a semialgebraic set
given by a Boolean combination of inequalities of the form f(x) > 0. Without
loss of generality, 0 �∈ S. The set defined by the same Boolean combination of
the inequalities f ′(x) > 0 and the condition x �= 0 is the image of S under the
inversion map i : Rn \ {0} → Rn \ {0}, x �→ ‖x‖−2x. Hence S is unbounded if
and only if 0 belongs to the closure of i(S) \ {0}.

Finally, it is easy to reduce EAdhR to LocDimR. For given S ⊆ Rn and
x ∈ Rn put take S′ = Rn if x ∈ S. Else, put S′ = S ∪ {x}. Then x ∈ S iff
dimx S

′ ≥ 1. �
A basic semialgebraic set is the solution set S ⊆ Rn of a system of polynomial
equalities and inequalities of the form

f = 0, h1 ≥ 0, . . . , hp ≥ 0, g1 > 0, . . . , gq > 0. (5)

Consider the following problems:

BasicClosedR (Closedness for basic semialgebraic sets) Given a basic semi-
algebraic set S, is it closed?

BasicCompactR (Compactness for basic semialgebraic sets) Given a basic
semialgebraic set S, is it compact?

Theorem 3.2. BasicClosedR and BasicCompactR are H∀-complete.

Exotic Quantifiers, Complexity Classes, and Complete Problems 213

The proof needs some preparation. For a basic semialgebraic set S given as in (5)
define for ε > 0

Sε = {f = 0, h1 ≥ 0, . . . , hp ≥ 0, g1 ≥ ε, . . . , gq ≥ ε}.

Note that Sε ⊆ Sε′ ⊆ S for 0 < ε′ < ε and that S = ∪ε>0Sε.

Lemma 3.3. Suppose that KS := {f = 0, h1 ≥ 0, . . . , hp ≥ 0} is bounded. Then
S is closed iff Sε = S for sufficiently small ε > 0.

The condition Hε (Sε = S) is testable in H∀. For showing membership of
BasicClosedR to H∀ it is therefore sufficient to reduce the general situation to
the one with bounded KS .

Let Sn denote the n-dimensional unit sphere and N = (0, . . . , 0, 1). The stere-
ographic projection π : Sn − {N} → Rn, (x, t) �→ 1

1−tx is a homeomorphism.

Consider S̃ := π−1(S) ∪ {N} Then, S̃ is a basic semialgebraic set such that K S̃

is bounded. Moreover, S is closed in Rn iff S̃ is closed in Rn+1. This shows mem-
bership of BasicClosedR to H∀. The claimed membership of BasicCompactR

follows now by using UnboundedR ∈ H∃.
The proof of H∀-hardness is based on the following lemma.

Lemma 3.4. There exists a constant c > 0 with the following property. To
f ∈ R[ε,X1, . . . , Xn] of degree d and N = (nd)cn we assign the semialgebraic set

S :=
{

(ε, x, y) ∈ (0,∞)× (−1, 1)n × R | f(ε, x) = 0 ∧ y

n∏

k=1

(1− x2
k) = εN

}
.

Then for all f we have

Hε ∀x ∈ (−1, 1)n f(ε, x) �= 0⇐⇒ S is closed in Rn+2.

The proof of this lemma uses efficient quantifier elimination over R, cf. [23, Part
III], and the following auxiliary result, whose proof is based on the description of
the half-branches of real algebraic curves by means of Puiseux series, cf. [2, §13].

Lemma 3.5. Let T ⊆ (0,∞)× (0,∞) be a semialgebraic set given by a Boolean
combination of inequalities of polynomials of degree strictly less than d and let
(0, 0) ∈ T . Then there exists a sequence of points (tν , εν) in T such that

lim
ν→∞

εdν
tν

= 0.

Proof of Theorem 3.2. It suffices to prove H∀-hardness. Lemma 3.4 (plus
the reduction in the proof of Proposition 3.1 to allow the variables xi to vary in R)
allows us to reduce Standard(H∀) to BasicClosedR. Indeed, a description of
the set S in its statement can be obtained in polynomial time from a description

214 P. Bürgisser and F. Cucker

of f . However, the exponent N is exponential in the size of f . In order to reduce
the degree N we introduce the variables z1, . . . , zlogN (assuming N is a power
of 2) and replace y

∏n
k=1(1− x2

k) = εN by the equalities

z1 = ε2, zj = z2
j−1 (j = 2, . . . , logN), y

n∏

k=1

(1− x2
k) = zlogN .

This defines a basic semialgebraic set S′ homeomorphic to S whose size in
dense encoding is polynomial in the size of f . This completes the proof for
BasicClosedR. Hardness of BasicCompactR follows as before by means of
the stereographic projection. �

Problem 3.6. Can Theorem 3.2 be extended to arbitrary semialgebraic sets? We
note that the three problems of deciding, for an arbitrary semialgebraic set S,
whether S is compact, whether it is open, or whether it is closed are polynomial
time equivalent.

Complexity results for problems involving functions instead of sets are also of
interest. Consider the following problems:

ContR (Continuity) Given a circuit C , decide whether fC is total and con-
tinuous.

Cont
DF
R (Continuity for Division-Free Circuits) Given a division-free cir-

cuit C , decide whether fC is continuous.
ContPoint

DF
R (Continuity at a Point for Division-Free Circuits) Given a

division-free circuit C with n input gates and a point x ∈ Rn, decide whether
fC is continuous at x.

Theorem 3.7. ContPoint
DF
R is H∀-complete. Moreover, Cont

DF
R ∈ H2∀ and

ContR ∈ H3∀ and both problems are ∀-hard.

4 Quantifying Genericity

It is customary to express denseness in terms of adherence. For instance, a subset
S ⊆ Rn is Euclidean dense in Rn iff ∀x ∈ Rn (x, S) ∈ EAdhR. We formally define
EDenseR as follows:

EDenseR (Euclidean Denseness) Given a decision circuit C with n input
gates, decide whether SC = Rn.

Therefore, one would expect at least NPR-hardness (if not Π2
R

-completeness) for
EDenseR. The situation is quite different, however. Let the problem ZDenseR

be the counterpart of EDenseR for the Zariski topology.

Proposition 4.1. EDenseR is ∀∗-complete and ZDenseR is ∃∗-complete.

Exotic Quantifiers, Complexity Classes, and Complete Problems 215

The following result locates ∃∗ and ∀∗ with respect to the previously studied
complexity classes.

Proposition 4.2. We have ∃∗ ⊆ ∃ ⊆ H2∃∗ and ∀∗ ⊆ ∀ ⊆ H2∀∗.

Proof. The proof of the inclusion ∃∗ ⊆ ∃ relies on a technique by Koiran [22]
developed for showing that DIM(d) is in NPR. Using this technique, one may in
fact show the following general inclusion for any polynomial complexity class C

∃∗C ⊆ ∃C and ∀∗C ⊆ ∀C. (6)

In order to show that ∃ ⊆ H2∃∗ note that for f ∈ R[X1,Xn] we have

∃x f(x) = 0 ⇐⇒ Hδ ∃x
(
‖x‖2 ≤ δ−1 ∧ f(x) = 0

)

⇐⇒ HδHε ∃x
(
‖x‖2 ≤ δ−1 ∧ f(x)2 < ε

)

⇐⇒ HδHε ∃∗x
(
‖x‖2 < δ−1 ∧ f(x)2 < ε

)

the second equivalence by the compactness of closed balls. �

5 Discrete Setting

We discuss here the relationship between polynomial classes and classical com-
plexity theory. Thus we restrict the input polynomials in the problems consid-
ered so far to polynomials with integer coefficients (represented in binary), or
to constant-free circuits (i.e., circuits which use only 0 and 1 as values associ-
ated to their constant nodes). The resulting problems can be encoded in a finite
alphabet and studied in the classical Turing setting. In general, if L denotes a
problem defined over R or C, we denote its restriction to integer inputs by LZ.
This way, the discrete problems Unbounded

Z

R, EAdh
Z

R, BasicClosed
Z

R, etc.
are well defined.

Another natural restriction (considered e.g. in [13,20,21]), now for real ma-
chines, is the requirement that no constants other than 0 and 1 appear in the
machine program. Complexity classes arising by considering such constant-free
machines are indicated by a superscript 0 as in P0

R
, NP0

R, etc.
The simultaneous consideration of both these restrictions leads to the notion

of constant-free Boolean part.

Definition 5.1. Let C be a complexity class over R. The Boolean part of C is
the discrete complexity class

BP(C) = {S ∩ {0, 1}∞ | S ∈ C}.

We denote by C0 the subclass of C obtained by requiring all the considered ma-
chines over R to be constant-free. The constant-free Boolean part of C is defined
as BP0(C) := BP(C0).

216 P. Bürgisser and F. Cucker

Some of the classes BP0(C) do contain natural complete problems. This raises the
issue of characterizing these classes in terms of already known discrete complexity
classes. Unfortunately, there are not many real complexity classes C for which
BP0(C) is completely characterized in such terms. The only such result we know
is BP0(PARR) = PSPACE, proved in [12]. An obvious solution (which may be
the only one) is to define new discrete complexity classes in terms of Boolean
parts. In this way we define the classes PR := BP0(PR), NPR := BP0(NPR) and
coNPR = coBP0(NPR) = BP0(coNPR).

While never explicited as a complexity class, the computational resources be-
hind PR have been around for quite a while. A constant-free machine over R

restricted to binary inputs is, in essence, a unit-cost Random Access Machine
(RAM). Therefore, PR is the class of subsets of {0, 1}∗ decidable by a RAM in
polynomial time. In [1] it was shown that PR is contained in the counting hierar-
chy and some empirical evidence pointing towards P �= PR was collected. We also
note that the existential theory of the reals over the language {{0, 1},+,−,×,≤}
is an NPR-complete problem.

Theorem 5.2. For any polynomial class C we have BP0(HC) = BP0(C).

The proof is based on the old idea of simulating the infinitesimal ε by a doubly
exponentially small number 22Nc

, which can be computed by a straight-line
program in time polynomial in N by repeated squaring. A second ingredient is
the theorem on efficient quantifier elimination [23, Part III].

Combining Theorem 5.2 with Proposition 4.2 we obtain:

Corollary 5.3. We have BP0(∃∗) = BP0(∃) = BP0(H∃) = NPR and BP0(∀∗)=
BP0(∀) = BP0(H∀) = coNPR.

All our completeness results induce completeness results in the classical setting.

Corollary 5.4. (a) The discrete versions of UnboundedR, EAdhR, LocDimR,
and ZDenseR are NPR-complete.

(b) The discrete versions of the following problems are coNPR-complete:
BasicClosedR, BasicCompactR, EDenseR, ContPoint

DF
R , ContR.

Proof. The claimed memberships follow from the definition of BP0, Corol-
lary 5.3, and a cursory look at the membership proofs for their real versions
which show that the involved algorithms are constant-free.

For proving hardness we first note that Standard(H∃)Z is hard for BP0(H∃)
(and similarly for Standard(∃∗)). Indeed, when restricted to binary inputs, the
reduction in the proof of Proposition2.2 can be performed by a Turing machine
in polynomial time. We next note that the reductions shown in this paper for all
the problems above also can be performed by a Turing machine in polynomial
time when restricted to binary inputs. �

Exotic Quantifiers, Complexity Classes, and Complete Problems 217

Thus, based on Theorem 5.2, we obtain in Corollary 5.4 the completeness for
the discrete problems ContPoint

DF
R and Cont

Z

R even though we do not have
completeness results for the corresponding real problems. This suggests that we
are not far away from completeness.

References

1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Bro-Miltersen, P.: On the com-
plexity of numerical analysis. In: Proc. 21st Ann. IEEE Conference on Compu-
tational Complexity, pp. 331–339. IEEE Computer Society Press, Los Alamitos
(2006)

2. Bliss, G.A.: Algebraic functions. Dover Publications, New York (1966)
3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.

Springer, Heidelberg (1998)
4. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over

the real numbers. Bull. Amer. Math. Soc. 21, 1–46 (1989)
5. Bochnak, J., Coste, M., Roy, M.F.: Géometrie algébrique réelle, Folge. Ergebnisse

der Mathematik und ihrer Grenzgebiete, 3, vol. 12. Springer, Heidelberg (1987)
6. Bournez, O., Cucker, F., de Naurois, P.J., Marion, J.-Y.: Implicit complexity over

an arbitrary structure: sequential and parallel polynomial time. J. Logic Com-
put. 15(1), 41–58 (2005)

7. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations I:
Semilinear sets. SIAM J. Comp. 33, 227–260 (2003)

8. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations
II: Algebraic and semialgebraic sets. Journal of Complexity 22(2), 147–191 (2006)

9. Bürgisser, P., Cucker, F., de Naurois, P.J.: The complexity of semilinear sets in
succinct representation. Comp. Compl. 15, 197–235 (2006)

10. Cucker, F.: PR �= NCR. Journal of Complexity 8, 230–238 (1992)
11. Cucker, F.: On the Complexity of Quantifier Elimination: the Structural Approach.

The Computer Journal 36, 399–408 (1993)
12. Cucker, F., Yu, D.: On the power of real Turing machines over binary inputs. SIAM

J. Comp. 26, 243–254 (1997)
13. Cucker, F., Koiran, P.: Computing over the reals with addition and order: Higher

complexity classes. Journal of Complexity 11, 358–376 (1995)
14. Cucker, F., Meer, K.: Logics which capture complexity classes over the reals. J.

Symbolic Logic 64(1), 363–390 (1999)
15. Cucker, F., Rosselló, F.: On the complexity of some problems for the Blum, Shub

& Smale model. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 117–129.
Springer, Heidelberg (1992)

16. Cucker, F., Shub, M.: Generalized knapsack problems and fixed degree separations.
Theoret. Comp. Sci. 161, 301–306 (1996)

17. Cucker, F., Torrecillas, A.: Two p-complete problems in the theory of the reals.
Journal of Complexity 8, 454–466 (1992)

18. Grädel, E., Meer, K.: Descriptive complexity theory over the real numbers. In:
Grädel, E., Meer, K. (eds.) The mathematics of numerical analysis, Park City, UT.
Lectures in Appl. Math, vol. 32, pp. 381–403. Amer. Math. Soc, Providence, RI
(1996)

19. Kleene, S.C.: Recursive predicates and quantifiers. Trans. Amer. Math. Soc. 53,
41–73 (1943)

218 P. Bürgisser and F. Cucker

20. Koiran, P.: Computing over the reals with addition and order. Theoret. Comp.
Sci. 133, 35–47 (1994)

21. Koiran, P.: A weak version of the Blum, Shub & Smale model. J. Comp. Syst.
Sci. 54, 177–189 (1997)

22. Koiran, P.: The real dimension problem is NPR-complete. Journal of Complex-
ity 15(2), 227–238 (1999)

23. Renegar, J.: On the computational complexity and geometry of the first-order
theory of the reals. part I, II, III. J. Symb. Comp. 13(3), 255–352 (1992)

24. Larry, J.: The polynomial-time hierarchy. Theoret. Comput. Sci. 3(1), 1–22
(1976/1977)

Online Conflict-Free Colorings for Hypergraphs�

Amotz Bar-Noy1, Panagiotis Cheilaris1,2,3,��, Svetlana Olonetsky4,
and Shakhar Smorodinsky5,���

1 Brooklyn College
2 The Graduate Center

City University of New York
3 School of ECE

National Technical University of Athens
4 Tel-Aviv University
5 Courant Institute
New York University

Abstract. We provide a framework for online conflict-free coloring (CF-
coloring) of any hypergraph. We use this framework to obtain an efficient
randomized online algorithm for CF-coloring any k-degenerate hyper-
graph. Our algorithm uses O(k log n) colors with high probability and
this bound is asymptotically optimal for any constant k. Moreover, our
algorithm uses O(k log k log n) random bits with high probability. As a
corollary, we obtain asymptotically optimal randomized algorithms for
online CF-coloring some hypergraphs that arise in geometry. Our algo-
rithm uses exponentially fewer random bits compared to previous results.

We introduce deterministic online CF-coloring algorithms for points
on the line with respect to intervals and for points on the plane with
respect to halfplanes (or unit discs) that use Θ(log n) colors and recolor
O(n) points in total.

1 Introduction

A hypergraph is a pair (V, E), where V is a finite set and E ⊂ 2V . The set V is
called the ground set or the vertex set and the elements of E are called hyperedges.
A proper k-coloring of a hypergraph H = (V, E), for some positive integer k, is a
function χ : V → {1, 2, . . . , k} such that no S ∈ E with |S| ≥ 2 is monochromatic.
Let χ(H) denote the minimum integer k for which H has a k-coloring. χ(H) is
called the chromatic number of H . A conflict-free coloring (CF-coloring) of H is
a coloring of V with the further restriction that for any hyperedge S ∈ E there
exists a vertex v ∈ S with a unique color (i.e., no other vertex of S has the same

� The first two authors are partially supported by the CUNY Collaborative Incentive
Research Grants Program Round 11 (2004–2006).

�� Supported by the European Social Fund (75%) and National Resources (25%)
under the program EPEAEK II, ‘Heraclitus’.

��� Work on this paper was supported by the NSF Mathematical Sciences Postdoctoral
Fellowship award 0402492.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 219–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

220 A. Bar-Noy et al.

color as v). Both proper coloring and CF-coloring of hypergraphs are generaliza-
tions of vertex coloring of graphs (the definition coincides when the underlying
hypergraph is a simple graph). Therefore the computational complexity of such
colorings is at least as hard as for simple graphs.

The study of conflict-free colorings was originated in the work of Even et
al. [6] and Smorodinsky [12] who were motivated by the problem of frequency
assignment in cellular networks. Specifically, cellular networks are heterogeneous
networks with two different types of nodes: base stations (that act as servers) and
clients. Base stations are interconnected by an external fixed backbone network
whereas clients are connected only to base stations. Connections between clients
and base stations are implemented by radio links. Fixed frequencies are assigned
to base stations to enable links to clients. Clients continuously scan frequencies
in search of a base station with good reception. The fundamental problem of
frequency assignment in such cellular networks is to assign frequencies to base
stations so that every client, located within the receiving range of at least one
station, can be served by some base station, in the sense that the client is located
within the range of the station and no other station within its reception range has
the same frequency (such a station would be in “conflict” with the given station
due to mutual interference). The goal is to minimize the number of assigned
frequencies (“colors”) since the frequency spectrum is limited and costly.

Let R be a set of regions in the plane. For a point p ∈ ∪r∈Rr, let r(p) =
{r ∈ R | p ∈ r}. Let H(R) denote the hypergraph (R, {r(p) | p ∈ ∪r∈R}). We
say that H(R) is the hypergraph induced by R. Even et al. [6] showed that any
hypergraph induced by a family R of n discs in the plane admits a CF-coloring
with only O(log n) colors and that this bound is tight in the worst case. In
addition to the practical motivation, this new coloring model has drawn much
attention of researchers through its own theoretical interest and such colorings
have been the focus of several recent papers (see, e.g., [1,5,6,7,8,10,11,12,13]).
To capture a dynamic scenario where antennas can be added to the network,
Chen et al. [7] initiated the study of online CF-coloring of hypergraphs. They
considered a very simple hypergraph H which has its vertex set represented as
a set P of n points on the line and its hyperedge set consists of all intersections
of the points with some interval. The set P ⊂ R is revealed by an adversary
online: Initially, P is empty, and the adversary inserts points into P , one point
at a time. Let P (t) denote the set P after the t-th point has been inserted. Each
time a point is inserted, the algorithm needs to assign a color c(p) to it, which is
a positive integer. Once the color has been assigned to p, it cannot be changed
in the future. The coloring should remain conflict-free at all times. That is, for
any interval I that contains points of P (t), there is a color that appears exactly
once in I. Among other results, [7] provided a deterministic algorithm for online
CF-coloring n points on the line with Θ(log2 n) colors in the worst case.

An online CF-coloring framework: In this paper, we investigate the most
general form of online CF-coloring applied to arbitrary hypergraphs. Suppose
the vertices of an underlying hypergraph H = (V, E) are given online by an
adversary. Namely, at every given time step t, a new vertex vt ∈ V is given and

Online Conflict-Free Colorings for Hypergraphs 221

the algorithm must assign vt a color such that the coloring is a valid conflict-free
coloring of the hypergraph that is induced by the vertices Vt = {v1, . . . , vt} (see
the exact definition in section 2). Once vt is assigned a color, that color cannot
be changed in the future. The goal is to find an algorithm that minimizes the
maximum total number of colors used (where the maximum is taken over all
permutations of the set V).

We present a general framework for online CF-coloring any hypergraph. Inter-
estingly, this framework is a generalization of some known coloring algorithms.
For example the Unique-Max Algorithm of [7] can be described as a special case
of our framework. Also, when the underlying hypergraph is a simple graph then
the First-Fit online algorithm is another special case of our framework. Based on
this framework, we introduce a randomized algorithm and show that the maxi-
mum number of colors used is a function of the ‘degeneracy’ of the hypergraph.
We define the notion of a k-degenerate hypergraph as a generalization of the
same notion for simple graphs. Specifically we show that if the hypergraph is
k-degenerate, then our algorithm uses O(k logn) colors with high probability.
This is asymptotically tight for any constant k.

As demonstrated in [7], the problem of online CF-coloring the very special
hypergraph induced by points on the real line with respect to intervals is highly
non-trivial. Chen, Kaplan and Sharir [10] studied the special hypergraph induced
by points in the plane with respect to halfplanes and unit discs and obtained
a randomized online CF-coloring with O(log3 n) colors with high probability.
Recently, the (randomized) bound Θ(log n) just for these two special cases was
obtained independently by Chen [4]. Our algorithm is more general and uses only
Θ(log n) colors; an interesting evidence to our algorithm being fundamentally
different from the ones in [4,7,10], when used for the special case of hypergraphs
that arise in geometry, is that it uses exponentially fewer random bits. The
algorithms of [4,7,10] use Θ(n log n) random bits, whereas our algorithm uses
O(log n) random bits.

Another interesting corollary of our result is that we obtain a randomized on-
line coloring for k-inductive graphs with O(k logn) colors with high probability.
This case was studied by Irani [9] who showed that a greedy First-Fit algorithm
achieves the same bound deterministically.

Deterministic online CF-coloring with recoloring: We initiate the study of online
CF-coloring where at each step, in addition to the assignment of a color to the
newly inserted point, we allow some recoloring of other points. The bi-criteria
goal is to minimize the total number of recolorings done by the algorithm and the
total number of colors used by the algorithm. We introduce an online algorithm
for CF-coloring points on the line with respect to intervals, where we recolor at
most one already assigned point at each step. Our algorithm uses Θ(log n) colors.
This is in contrast with the O(log2 n) colors used by the best known deterministic
algorithm by Chen et al. [7] that does not recolor points. We also show online
algorithm for CF-coloring points on the plane with respect to halfplanes that
uses Θ(log n) colors and the total number of recolorings is O(n). For this problem
no deterministic algorithm was known before.

222 A. Bar-Noy et al.

Paper organization: Section 2 defines the notion of a k-degenerate hypergraph.
Section 3 presents the general framework for online CF-coloring of hypergraphs.
Section 4 introduces the randomized algorithm derived from the framework.
Section 5 shows deterministic online algorithm for intervals and halfplanes with
recoloring. Section 6 describes the results for the hypergraphs that arise from
geometry. Finally, Section 7 concludes with a discussion and some open
problems.

2 Preliminaries

We start with some basic definitions:

Definition 1. Let H = (V, E) be a hypergraph. For a subset V ′ ⊂ V , let H(V ′)
be the hypergraph (V ′, E ′) where E ′ = {e ∩ V ′|e ∈ E and e ∩ V ′ �= ∅}. H(V ′) is
called the induced hypergraph on V ′.

Definition 2. For a hypergraph H = (V, E), the Delaunay graph G(H) is the
simple graph G = (V,E) where the edge set E is defined as E = {(x, y) | {x, y} ∈
E} (i.e., G is the graph on the vertex set V whose edges consist of all hyperedges
in H of cardinality two).

Definition 3. A simple graph G = (V,E) is called k-degenerate (or k-inductive)
for some positive integer k, if every (vertex-induced) subgraph of G has a vertex
of degree at most k.

Definition 4. Let k > 0 be a fixed integer and let H = (V, E) be a hyper-
graph on n vertices. Fix a subset V ′ ⊂ V . For a permutation π of V ′ such
that V ′ = {v1, ..., vi} (where i = |V ′|) let Cπ(V ′) =

∑i
j=1 d(vj), where d(vj) =

|{l < j|(vj , vl) ∈ G(H({v1, ..., vj}))}|, that is, d(vj) is the number of neighbors
of vj in the Delaunay graph of the hypergraph induced by {v1, ..., vj}. Assume
that ∀V ′ ⊂ V and for all permutations π ∈ S|V ′| we have Cπ(V ′) ≤ k |V ′|. Then
we say that H is k-degenerate.

It is not difficult to see that our definition of a k-degenerate hypergraph is a
generalization of that of a k-degenerate graph.

3 An Online CF-Coloring Framework

Let H = (V, E) be any hypergraph. Our goal is to define a framework that colors
the vertices V in an online fashion. That is, the vertices of V are revealed by an
adversary one at a time. At each time step t, the algorithm must assign a color
to the newly revealed vertex vt. This color cannot be changed in the future. The
coloring has to be conflict-free for all the induced hypergraphsH(Vt) t = 1, . . . , n,
where Vt ⊂ V is the set of vertices revealed by time t.

Online Conflict-Free Colorings for Hypergraphs 223

For a fixed positive integer h, let A = {a1, . . . , ah} be a set of h auxiliary
colors (not to be confused with the set of ‘real’ colors used for the CF-coloring:
{1, 2, . . . }). Let f : N→ A be some fixed function. We now define the framework
that depends on the choice of the function f and the parameter h.

A table (to be updated online) is maintained where each entry i at time t is
associated with a subset V i

t ⊂ Vt in addition to an auxiliary proper coloring of
H(V i

t) with at most h colors. We say that f(i) is the color that represents entry
i in the table. At the beginning all entries of the table are empty. Suppose all
entries of the table are updated until time t−1 and let vt be the vertex revealed
by the adversary at time t. The framework first checks if an auxiliary color can
be assigned to vt such that the auxiliary coloring of V 1

t−1 together with the color
of vt is a proper coloring of H(V 1

t−1 ∪ {vt}). Any (proper) coloring procedure
can be used by the framework. For example a first-fit greedy in which all colors
in the order a1, . . . , ah are checked until one is found. If such a color cannot
be found for vt, then entry 1 is left with no changes and the process continues
to the next entry. If however, such a color can be assigned, then vt is added to
the set V 1

t−1. Let c denote such an auxiliary color assigned to vt. If this color
is the same as f(1) (the auxiliary color that is associated with entry 1), then
the final color in the online CF-coloring of vt is 1 and the updating process for
the t-th vertex stops. Otherwise, if an auxiliary color cannot be found or if the
assigned auxiliary color is not the same as the color associated with this entry,
the updating process continues to the next entry. The updating process stops at
the first entry i for which vt is both added to V i

t and the auxiliary color assigned
to vt is the same as f(i). The color of vt in the final conflict-free coloring is then
set to i.

It is possible that vt never gets a final color. In this case we say that the
framework does not halt. However, termination can be guaranteed by imposing
some restrictions on the auxiliary coloring method and the choice of the function
f . For example, if first-fit is used for the auxiliary colorings at any entry and if f
is the constant function f(i) = a1, for all i, then the framework is guaranteed to
halt for any time t. In section 4 we derive a randomized online algorithm based
on this framework. This algorithm halts with probability 1 and moreover it halts
after a “small” number of entries with high probability. The above framework
produces a valid CF-coloring in case it halts (proof omitted):

Lemma 1. If the above framework halts for any vertex vt then it produces a
valid online CF-coloring of H.

The above algorithmic framework can also describe some well-known determin-
istic algorithms. For example, if first-fit is used for auxiliary colorings and f is
the constant function, f(i) = a1, for all i, then: (a) If the input hypergraph
is induced by points on a line with respect to intervals then the algorithm de-
rived from the framework becomes identical to the Unique Maximum Greedy
algorithm described and analyzed in [7]. (b) If the input is a k-degenerate graph
(also called k-inductive graph), the derived algorithm is identical to the First-Fit
greedy algorithm for coloring graphs online.

224 A. Bar-Noy et al.

4 An Online Randomized CF-Coloring Algorithm

There is a randomized online CF-coloring in the oblivious adversary model that
always produces a valid coloring and the number of colors used is related to the
degeneracy of the underlying hypergraph in a manner described in theorem 1.

Theorem 1. Let H = (V, E) be a k-degenerate hypergraph on n vertices. Then
there exists a randomized online CF-coloring algorithm for H which uses at most
O(log1+ 1

4k+1
n) = O(k logn) colors with high probability.

The algorithm is based on the framework of section 3. In order to define the
algorithm, we need to state what is the function f , the set of auxiliary colors of
each entry and the algorithm we use for the auxiliary coloring at each entry. We
use the set A = {a1, . . . , a2k+1}. For each entry i, the representing color f(i) is
chosen uniformly at random from A. We use a first-fit algorithm for the auxiliary
coloring.

Our assumption on the hypergraph H (being k-degenerate) implies that at
least half of the vertices up to time t that ‘reached’ entry i (but not necessarily
added to entry i), denoted by Xt

≥i, have been actually given some auxiliary color
at entry i (that is,

∣
∣V i
t

∣
∣ ≥ 1

2

∣
∣Xt

≥i
∣
∣). This is easily implied by the fact that at least

half of those vertices vt have at most 2k neighbors in the Delaunay graph of the
hypergraph induced by Xt−1

≥i (since the sum of these quantities is at most k
∣
∣Xt

≥i
∣
∣

and since V i
t ⊂ Xt

≥i). Therefore since we have 2k + 1 colors available, there is
always a free color to assign to such a vertex. The following lemma shows that
if we use one of these ‘free’ colors then the updated coloring is indeed a proper
coloring of the corresponding induced hypergraph as well (proof omitted).

Lemma 2. Let H = (V, E) be a k-degenerate hypergraph and let V j
t be the subset

of V at time t and at level j as produced by the above algorithm. Then for any
j and t if vt is assigned a color distinct from all its neighbors in the Delaunay
graph G(H(V j

t)) then this color together with the colors assigned to the vertices
V j
t−1 is also a proper coloring of the hypergraph H(V j

t).

We proceed to the analysis of the performance of the algorithm.

Lemma 3. Let H = (V, E) be a hypergraph and let χ be a coloring produced
by the above algorithm on an online input V = {vt} for t = 1, . . . , n. Let Xi

(respectively X≥i) denote the random variable counting the number of points of
V that were assigned a final color at entry i (respectively a final color at some
entry ≥ i). Let Ei = E[Xi] and E≥i = E[X≥i] (note that X≥i+1 = X≥i −Xi).
Then:

E≥i ≤
(

4k + 1
4k + 2

)i−1

n

Proof. By induction on i. The case i = 1 is trivial. Assume that the statements hold
for i. To complete the induction step, we need to prove that E≥i+1 ≤ (4k+1

4k+2)in.

Online Conflict-Free Colorings for Hypergraphs 225

By the conditional expectation formula, we have for any two random variables
X , Y that E[X] = E[E[X | Y]]. Thus

E≥i+1 = E[E[X≥i+1 | X≥i]] = E[E[X≥i −Xi | X≥i]] = E[X≥i −E[Xi | X≥i]].

It is easily seen that E[Xi | X≥i] ≥ 1
2

X≥i

2k+1 since at least half of the vertices
of X≥i got an auxiliary color by the above algorithm. Moreover each of those
elements that got an auxiliary color had probability 1

2k+1 (This is the only place
where we need to assume that the adversary is oblivious and does not have access
to the random bits) to get the final color i. Thus

E[X≥i−E[Xi | X≥i]] ≤ E[X≥i−
1

2(2k + 1)
X≥i] =

4k + 1
4k + 2

E[X≥i] ≤
(

4k + 1
4k + 2

)i
n

by linearity of expectation and by the induction hypotheses. ��

Lemma 4. The expected number of colors used by the above algorithm is at most
log 4k+2

4k+1
n+ 1.

Proof. Let Ii be the indicator random variable for the following event: some
points are colored with a real color in entry i. We are interested in the number
of colors used, that is Y :=

∑∞
i=1 Ii. Let b(k, n) = log(4k+2)/(4k+1) n. Then,

E[Y] = E[
∑

1≤i
Ii] = E[

∑

1≤i≤b(k,n)

Ii] + E[X≥b(k,n)+1] ≤ b(k, n) + 1

and we also have the following concentration result:

Pr[more than c · b(k, n) colors are used] ≤ E≥c·b(k,n)+1 ≤
1

nc−1

both by Markov’s inequality and lemma 3. ��

Remark: In the above description of the algorithm, all the random bits are chosen
in advance (by deciding the values of the function f in advance). However, one
can be more efficient and calculate the entry f(i) only at the first time we need
to update entry i, for any i. Since at each entry we need to use O(log k) random
bits and we showed that the number of entries used is O(k logn) w.h.p then the
total number of random bits used by our algorithm is O(k log k logn) w.h.p.

5 Deterministic Online CF-Coloring with Recoloring

5.1 An O(log n) Algorithm with Recoloring for Intervals

We describe a deterministic online CF-coloring algorithm for intervals that is
only allowed to recolor a single “old” point during each insertion of a new point.
The algorithm is based on the framework developed in Section 3 where we use 3
auxiliary colors {a, b, c} and f is the constant function f(l) = a ∀l. We refer to

226 A. Bar-Noy et al.

points colored with b or c as d-points. In order to have only logarithmic number
of entries, we slightly modify the framework (using a recoloring procedure) such
that the number of points colored with a in each entry of the table is at least one
third of the total points that reach that entry. To achieve this goal, our algorithm
maintains the following invariant in every level: There are at most two d-points
between every pair of points colored with a (i.e., between every pair that are
consecutively colored a among the a-points). Therefore, at least a third of the
points at each entry get color a, and two thirds are deferred for coloring in a
higher entry. The total number of colors is at most log3/2 n + 1. When a new
point p arrives, it is colored according to the following algorithm, starting from
entry 1:

– If p is not adjacent to a point colored with an auxiliary color a then p is
assigned auxiliary color a and gets its final color in that entry.

– We color point p with b or c greedily as long as it does not break the invariant
that between any two consecutive a’s we have at most two d-points.

– It remains to handle the case where the new point p has a point colored with
a on one side and a point, say q, colored with d on the other side, such that
q has no adjacent point colored with a. We assign to p the auxiliary color
of q (thus it is a d-point) in the current entry and in all higher entries for
which q got an auxiliary color and assign to it the real color of q, and we
recolor q with the auxiliary color a (and delete the corresponding appearance
of it in all higher entries of he table), and thus we recolor q with the real
color of the current entry. At this point all points have an assignment of
real colors. It is not hard to check that when we recolor a point then we
do not violate the invariants at any entry: Let � be the entry that caused
recoloring, all entries before it remain the same, the change in the entry
� does not break invariants, all other entries remain the same except that
point p appears there instead of point q that was there before and there are
no points between p and q that appear in an entry higher than �.

It can be easily checked that this algorithm produces a valid CF-coloring.
Also, it can be proved that the number of recolorings is at most n− (�lgn�+ 1),
and this is tight.

5.2 An O(log n) Recoloring Algorithm for Circular Arcs

We define a hypergraph H closely related to the one induced by intervals: The
vertex set of H is represented as a set P of n distinct points on a circle C and
its hyperedge set consists of all intersections of the points with some circular
arc of C. In the static case, it can be shown that n points can be optimally
conflict-free colored with respect to circular arcs with �lg(n − 1)� + 2 colors.
Here, we are interested in an online setting, where the set P ⊂ C is revealed
incrementally by an adversary, and, as usual, the algorithm has to commit on
a color for each point without knowing how future points will be requested.
Algorithms for intervals can be used almost verbatim for circular arcs. In fact,

Online Conflict-Free Colorings for Hypergraphs 227

the recoloring algorithm for intervals, given in section 5.1, can be used verbatim,
if the notion of adjacency of points is adapted to the closed curve setting (for
n ≥ 3, each point has exactly 2 immediate neighboring points, whereas in the
intervals case, the two extreme points have only one neighbor). Again, in each
entry �, at least a third of the points is assigned auxiliary color a, and thus at
most log3/2 n+ 1 colors are used.

5.3 An O(log n) Algorithm for Circular Arcs with Substitution

We consider a variation on the problem of online conflict-free coloring with
respect to circular arcs that was given in section 5.2. In this new variation, the
adversary has, in addition to the ‘insertion move’ of a new point, a ‘substitution
move’:

The adversary can substitute a set Q of already requested consecutive
points with a single new point p, and the algorithm has to color p, such
that the whole set of points is conflict-free colored with respect to circular
arcs (in that set, p is included, but all points in Q are removed).

Our algorithm for this variation of the problem relies on the one given in
section 5.2. For an insertion move of the adversary, it colors the new point like
in section 5.2. For a substitution move of the adversary, it colors the new point p,
with the highest color occurring in the points of Q. Point p also gets the entries
of the unique point q ∈ Q with the highest color. It is not difficult to see that the
coloring remains conflict-free after each move. We remark that a recoloring can
happen only in an insertion move and that substitution moves do not make the
algorithm introduce new colors. The following is true for every t (proof omitted):

Lemma 5. After t moves, the above coloring algorithm uses at most log3/2 t+1
colors.

5.4 An O(log n) Algorithm with Recoloring for Halfplanes

In this section we describe a deterministic algorithm for online CF-coloring points
with respect to halfplanes that uses O(log n) colors and recolors O(n) points.
Thus it can also be modified for CF-coloring points in the plane with respect
to unit discs as remarked in Section 6. At every time instance t, the algorithm
maintains the following invariant (Vt is the set of points that have appeared):
All points (strictly) inside the convex hull of Vt are colored with the same special
color, say ‘�’. The set of points on the convex hull of Vt, denoted by CH(Vt), are
colored with another set of colors, such that every set of consecutive points on
the convex hull has a point with a unique color. If one considers the points of
CH(Vt) in the circular order they appear on the convex hull, it is enough to CF-
color them (with that circular order) with respect to circular arcs. The number
of colors used in CH(Vt) must be logarithmic on t. It is not difficult to see that
every subset of points of Vt induced by a halfplane contains a set of consecutive
points on the convex hull of Vt, and thus the whole coloring is conflict-free.

228 A. Bar-Noy et al.

We describe how the algorithm maintains the above invariant. A new point
vt+1 that appears at time t+1 is colored as follows: If it is inside the convex hull
of Vt, then it gets color ‘�’. Otherwise, the new point vt+1 will be on CH(Vt+1),
in which case we essentially use the algorithm of section 5.3 to color it. We have
two case, which correspond to a substitution and an insertion move, respectively:

– It might be the case that vt+1 forces some points (say they comprise set
Q) that where in CH(Vt) to belong to the interior of CH(Vt+1), so in order
to maintain the invariant, all points in Q are recolored to ‘�’, and vt+1 is
colored with the maximum color occurring in Q (this is like a substitution
move of section 5.3).

– If, on the other hand, no points of CH(Vt) are forced into the convex hull,
then point vt+1 ∈ CH(Vt+1) is colored like in an insertion move of section 5.3,
with the algorithm for circular arcs. In that last case, in order to maintain
logarithmic number of colors on t, one recoloring of a point in CH(Vt+1)
might be needed.

The total number of recolorings is guaranteed to be O(n), because for every
insertion, at most one recoloring happens on the new convex hull, and every
point colored with ‘�’ remains with that color.

6 Application to Geometry

Our randomized algorithm has applications to conflict-free colorings of certain
geometric hypergraphs studied in [4,7,10]. We obtain the same asymptotic result
as in [4] but with better constant of proportionalities and much fewer random
bits. For example, if the hypergraph H is induced by intervals, it can be proved
(with an analysis similar to the one given in section 4) that for any order of
insertion of n points, when the auxiliary color for each entry is chosen uniformly
at random from {a, b, c}, the expected number of colors used is bounded by
log 3

2
n + 1. It is interesting that the best known upper bound for dynamically

coloring n points deterministically, when the whole insertion order is known
in advance, is also log 3

2
n + 1 (see [3] for further details). In our algorithm the

expected number of colors is bounded by 1+log3/2 n ≈ 1.71 log2 n, whereas in [4]
by 1 + log8/7 n ≈ 5.19 log2 n, three times our bound. When H is the hypergraph
obtained by points in the plane intersected by halfplanes or unit disks, we obtain
online randomized algorithms that use O(log n) colors w.h.p. We summarize it
as follows:

Lemma 6. Let V be a finite set of n points in the plane and let E be all subsets
of V that can be obtained by intersecting V with a halfplane. Then the hypergraph
H = (V, E) is 4-degenerate.

Proof. The proof uses a few geometric lemmata. Details are omitted. ��

Corollary 1. Let H be the hypergraph as in lemma 6. Then the expected num-
ber of colors used by our randomized online CF-coloring applied to H is at most

Online Conflict-Free Colorings for Hypergraphs 229

log 18
17
n+ 1. Also the actual number of colors used is O(log 18

17
n) with high prob-

ability. The number of random bits is O(log n) with high probability

Proof. The proof follows immediately from lemmata 6, 4 and theorem 1. ��

Corollary 2. Let V be a finite set of n points in the plane and let E be all subsets
of V that can be obtained by intersecting V with a unit disc. Then there exists a
randomized online algorithm for CF-coloring H which uses O(log n) colors and
O(log n) random bits with high probability.

Proof (outline). Chen, Kaplan and Sharir [10] observed that by an appropriate
partitioning of the plane one can modify any online algorithm for CF-coloring
points with respect to halfplanes to a CF-coloring of points with respect to
congruent discs. Using the same technique as developed in [10] and Corollary 1
we obtain the desired result. ��

7 Discussion and Open Problems

We presented a framework for online CF-coloring any hypergraph. This frame-
work coincides with some known algorithms in the literature when restricted to
some special underlying hypergraphs. We derived a randomized online algorithm
for CF-coloring any hypergraph (in the oblivious adversary model) and showed
that the performance of our algorithm depends on a parameter which we refer to
as the degeneracy of the hypergraph which is a generalization of the known no-
tion of degeneracy in graphs (i.e., when the hypergraph is a simple graph then
this term is the same as the classical definition of degeneracy of a graph; see
Definition 3). Specifically, if the hypergraph is k-degenerate then our algorithm
uses O(k logn) colors w.h.p, which is asymptotically optimal for any constant
k, and O(k log k logn) random bits. This is the first efficient online CF-coloring
for general hypergraphs and subsumes all the previous randomized algorithmic
results of [4,7,10]. It also substantially improves the efficiency with respect to
the amount of randomness used in the special cases studied in [4,7,10].

It would be interesting to find an efficient online deterministic algorithm for
conflict-free coloring k-degenerate hypergraphs. Even for the very special case
of a hypergraph induced by points and intervals where the number of neighbors
of the Delaunay graph of every induced hypergraph is at most two), the best
known deterministic online CF-coloring algorithm from [7] uses Θ(log2 n) colors.
We hope that our technique together with a possible clever de-randomization
technique can shed light on this problem.

As mentioned already, the framework of section 3 can describe some known
algorithms such as the Unique Max Greedy of [7] for online CF-coloring points
on a line with respect to intervals. No sharp asymptotic bounds are know for
the performance of Unique Max Greedy. The best known upper bound is lin-
ear, whereas the best known lower bound is Ω(

√
n). We believe that this new

approach could help analyze the performance of Unique Max Greedy.
In Section 5 we initiate the study of online CF-coloring with recoloring: We

provide a deterministic online CF-coloring for points on the real line with respect

230 A. Bar-Noy et al.

to intervals and show that our algorithm uses Θ(log n) colors and at most one
recoloring per insertion. This is in contrast with the best known deterministic
online CF-coloring for this case that uses Θ(log2 n) colors in the worst case
and does not recolor any other point ([7]). We also present deterministic online
algorithms for CF-coloring points with respect to circular arcs and halfplanes
(and unit discs) that use O(log n) colors and O(n) recolorings in the worst case.
It would be interesting to obtain an online CF-coloring algorithm with O(log n)
and O(1) recolorings per insertion for the case of halfplanes.

Acknowledgements. We would like to thank Amos Fiat, Haim Kaplan, János
Pach, David Peleg, and Micha Sharir for helpful discussions concerning the prob-
lems studied in this paper.

References

1. Ajwani, D., Elbassioni, K., Govindarajan, S., Ray, S.: Conflict-free coloring for
rectangle ranges using O(n0.382+ε) colors. In: 19th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2007) (to appear)

2. Alon, N., Smorodinsky, S.: Conflict-free colorings of shallow discs. In: Proc. 22nd
Annual ACM Symposium on Computational Geometry (SoCG 2006), pp. 41–43.
ACM Press, New York (2006)

3. Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Conflict-free coloring for intervals: from
offline to online. In: Proc. 18th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA 2006), pp. 128–137. ACM Press, New York (2006)

4. Chen, K.: On how to play a coloring game against color-blind adversaries. In:
Proc. 22nd Annual ACM Symposium on Computational Geometry (SoCG 2006),
pp. 44–51. ACM Press, New York (2006)

5. Elbassioni, K., Mustafa, N.: Conflict-Free Colorings of Rectangles Ranges. In: Du-
rand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 254–263. Springer,
Heidelberg (2006)

6. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple
geometric regions with applications to frequency assignment in cellular networks.
SIAM Journal on Computing 33(1), 94–136 (2003) Also in Proceedings of the 43th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002)

7. Chen, K., Fiat, A., Kaplan, H., Levy, M., Matoušek, J., Mossel, E., Pach, J.,
Sharir, M., Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring
for intervals. SIAM Journal on Computing 36, 1342–1359 (2006)

8. Har-Peled, S., Smorodinsky, S.: On conflict-free coloring of points and simple re-
gions in the plane. Discrete and Computational Geometry 34, 47–70 (2005)

9. Irani, S.: Coloring inductive graphs on-line. Algorithmica 11(1), 53–72 (1994)
10. Chen, K., Kaplan, H., Sharir, M.: Online CF coloring for halfplanes, congruent

disks, and axis-parallel rectangles. Manuscript (2005)
11. Pach, J., Tóth, G.: Conflict free colorings. In: Discrete and Computational Geom-

etry, The Goodman-Pollack Festschrift, Springer, Heidelberg (2003)
12. Smorodinsky, S.: Combinatorial Problems in Computational Geometry. Ph.D Dis-

sertation, School of Computer Science, Tel-Aviv University (2003)
13. Smorodinsky, S.: On the chromatic number of some geometric hypergraphs. In:

Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2006), pp. 316–323. ACM Press, New York (2006)

Distributed Computing with Advice:

Information Sensitivity of Graph Coloring

Pierre Fraigniaud1, Cyril Gavoille2, David Ilcinkas3,�, and Andrzej Pelc3,��

1 CNRS and University Paris 7
2 LaBRI, Université Bordeaux 1

3 Département d’informatique, Université du Québec en Outaouais

Abstract. We study the problem of the amount of information (ad-
vice) about a graph that must be given to its nodes in order to achieve
fast distributed computations. The required size of the advice enables
to measure the information sensitivity of a network problem. A problem
is information sensitive if little advice is enough to solve the problem
rapidly (i.e., much faster than in the absence of any advice), whereas it
is information insensitive if it requires giving a lot of information to the
nodes in order to ensure fast computation of the solution. In this paper,
we study the information sensitivity of distributed graph coloring.

1 Introduction

This work is a part of a recent project aiming at studying the quantitative
impact of knowledge on the efficiency when computing with distributed entities
(nodes of a distributed system, mobile users in ad hoc networks, etc.). Indeed,
as observed by Linial [16], ”within the various computational models for parallel
computers, the limitations that follow from the local nature of the computation
are specific to the distributed context”. Two frameworks have been considered for
analyzing the limitations incurring because of the local nature of the distributed
computation. One aims at identifying which tasks can or cannot be computed
locally, i.e., when every node can acquire knowledge only about the nodes that
are at constant distance from it. Surprisingly, non trivial tasks can be achieved
locally [20]. This is for instance the case of weak-coloring, a basis for a solution
to some resource allocation problems. However, many important problems in
distributed computing do not have a local solution [14]. This is the case of
computing an approximate minimum vertex cover or an approximate minimum
dominating set.

The other framework that has been considered is distributed computing with
advice. In this framework, the computing entities can be given information about
� A part of this work was done during the stay of this author at the Research Chair in

Distributed Computing of the Université du Québec en Outaouais, as a postdoctoral
fellow.

�� Andrzej Pelc was supported in part by NSERC discovery grant and by the Research
Chair in Distributed Computing of the Université du Québec en Outaouais.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 231–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

232 P. Fraigniaud et al.

the instance of the considered problem. The traditional approach is actually
qualitative in the sense that algorithms are designed or impossibility results are
proved under the assumption that the nodes are aware of specific parameters,
e.g., the size of the network. It was proved that the impact of knowledge con-
cerning the environment is significant in many areas of distributed computing,
as witnessed by [8,18] where a lot of impossibility results and lower bounds are
surveyed, many of them depending on whether or not the nodes are provided
with partial knowledge of the topology of the network. A quantitative approach
was recently introduced in [9], in which limitations of local computation can
be estimated by establishing tradeoffs between the efficiency of the computa-
tion (number of steps, number of messages, etc.) and the amount of information
provided to the nodes about their environment, independently of what kind of
information they receive.

More precisely, we consider network computing with advice in the following
context. A network is modeled as an undirected graph, where links represent
communication channels between nodes. Nodes of n-node networks have distinct
IDs from {1, . . . , n}, and communication ports at a node of degree d are labeled
by distinct integers from {1, . . . , d}. A priori, every node knows only its own ID,
and the labels of its ports. All additional knowledge available to the nodes of
the graph (in particular knowledge concerning the topology and the labels of
the rest of the graph), is modeled by an oracle providing advice. An oracle is a
function O whose arguments are networks, and the value O(G), for a network
G = (V,E), called the advice provided by the oracle to this graph, is in turn
a function f : V → {0, 1}∗ assigning a finite binary string to every node v of
the graph. Intuitively, the oracle looks at the entire labeled graph with IDs, and
assigns to every node some information, coded as a string of bits. A node v is
informed by the oracle if the string f(v) is non-empty. The size of the advice
given by the oracle to a given graph G is the sum of the lengths of all strings it
assigns to nodes. Hence this size is a measure of the amount of information about
the graph, available to its nodes. Clearly, the size of advice is not smaller than
the number of informed nodes. The objective is to establish tradeoffs between
the size of the advice and the computational efficiency of the network.

Specifically, we focus on the distributed graph coloring problem, one of the
most challenging problems in network computing for its practical applications,
e.g., in radio networks [19], and for its relation with many other problems such
as maximal independent set (MIS) [14,22] and symmetry breaking [11]. Initially,
each node knows its ID from {1, . . . , n}. The c-coloring problem requires each
node to compute a color in {1, . . . , c}, under the constraint that any two adjacent
nodes have different colors. Computation proceeds in rounds following Linial’s
model defined in [16] (a.k.a., LOCAL model [24]). At each round, a node sends
a message to each of its neighbors, receives messages from each of its neighbors,
and performs some local computations. The LOCAL model does not put any
limit on the message size and any restrictions on local computations because it is
designed to estimate limitations of local computing. The complexity of c-coloring
a graph G is measured by the number of rounds required to compute a proper

Distributed Computing with Advice 233

Size of advice
O(n log c)

Execution time

Information
sensitive

Information
insensitive

t(n,c)

Fig. 1. Tradeoff between the execution time and the size of advice

c-coloring. There is an obvious relation between the complexity of c-coloring and
the maximum distance between two nodes that exchange information during the
computation.

Coloring graphs using advice provided by oracle O consists in designing an
algorithm that is unaware of the graph G at hand but colors it distributively,
as long as every node v of the graph G is provided with the string of bits f(v),
where f = O(G). Trivially, an advice of size O(n log c) bits that provides the
appropriate color to each node yields a coloring algorithm working in 0 rounds.
On the other hand, an advice of size 0, i.e., providing no information, yields an
algorithm running in t(n, c) rounds where t(n, c) is the complexity of the coloring
problem in the usual distributed setting (i.e., with no advice).

The theory of network computing with advice allows us to establish tradeoffs
between these two extreme cases. Different forms of tradeoffs are illustrated
in Figure 1. This figure plots the execution time as a function of the size of
advice (i.e., the amount of information given to the nodes). The execution time
decreases as the size of advice increases, for instance such as illustrated by the
dashed curve. Depending on how quickly the time decreases enables to roughly
classify problems as ”sensitive” or ”insensitive” to information. A problem is
information sensitive if few bits of information given to the nodes enable to
decrease drastically the execution time. Conversely, a problem is information
insensitive if the oracle must give a lot of information to the nodes for the
execution time to decrease significantly. In this paper, we study the information
sensitivity of graph coloring.

1.1 Our Results

To study the information sensitivity of graph coloring, we focus on lower bounds
on the size of advice necessary for fast distributed coloring of cycles and trees,
two important cases analyzed in depth by Linial in his seminal paper [16]
(cf. also [10]).

234 P. Fraigniaud et al.

We show that coloring a cycle is information insensitive. Precisely, we show
that, for any constant k, Ω(n/ log(k) n) bits of advice are needed in order to beat
the Θ(log∗ n) time of 3-coloring a cycle, where log(k) n denotes k iterations of
logn. This shows a huge gap between 3-coloring in time Θ(log∗ n) and 3-coloring
below this time: while the first can be done without any advice [6], the second
requires almost as much information as if colors were explicitly assigned to nodes
(which would take O(n) bits).

The result for cycles easily extends to oriented trees (i.e., rooted trees in
which every node in the tree knows its parent in the tree), proving that, for
any constant k, Ω(n/ log(k) n) bits of advice are needed in order to beat the
O(log∗ n) time of 3-coloring an oriented tree [10]. Coloring an oriented tree is
thus also information insensitive.

The power of orienting a tree (i.e., giving an orientation of its edges toward a
root), from the point of view of distributed coloring, was known since Linial [16]
proved that no algorithm can color the d-regular unoriented tree of radius r
in time at most 2

3r by fewer that 1
2

√
d colors. Hence 3-coloring unoriented trees

essentially requires Θ(D) rounds, where D is the diameter of the tree. Therefore,
informing every node of the port leading to its parent in the tree results in
decreasing the time of 3-coloring from Ω(D) to O(log∗ n). We revisit this result
using our quantitative approach. Precisely, we aim at computing the amount of
advice required to reach the O(log∗ n) time bound. It is known that O(n log logn)
bits of advice enable to orient a tree (i.e., to select a root, and to give to every
node the port number of the edge leading to its parent) with an algorithm
working in 0 rounds [5], and O(n) bits of advice enable to orient a tree with an
algorithm working in 1 round [4]. However, 3-coloring a tree in time Θ(log∗ n)
does not necessarily require to orient the tree. Nevertheless, we show that, for
any constant k, Ω(n/ log(k) n) bits of advice are needed in order to 3-color all n-
node unoriented trees in time Θ(log∗ n). Thus, while for oriented trees 3-coloring
in time O(log∗ n) can be done without any additional information [10], achieving
the same efficiency for arbitrary trees requires almost as much information as if
colors were explicitly assigned to nodes.

Finally, both for cycles and trees, even if oriented, we also show that Ω(n) bits
of advice are needed for 3-coloring in constant time (i.e., for 3-coloring to become
a locally solvable problem). Thus constant-time coloring requires essentially as
much information as if colors were explicitly assigned to nodes. In fact, our lower
bounds hold not only for the total number of bits of advice given to nodes but
also for the number of nodes that must be informed (i.e., the number of nodes
that are given at least one bit of advice).

Although we formulate our results for the task of 3-coloring, they remain true
for coloring with any constant number of colors, by slight technical modification
of the proofs.

While our lower bound proofs present different technical challenges in the case
of the cycle and that of trees, the underlying idea is similar in both cases. Linial
[16] constructed the neighborhood graph N [G] of a graph G in order to estimate
the time of coloring G using the chromatic number of N [G]. Since in our case

Distributed Computing with Advice 235

there is an oracle giving advice to nodes, we have to use a more complex tool
in the lower bound argument. We also argue about the chromatic number of a
suitably chosen graph H in order to bound coloring time of G. However, in our
case, this graph depends on the oracle as well as on the time of coloring, and
on the graph G, and hence it is very irregularly structured. We show that, if
the number of nodes of G informed by the oracle is not too large, then H has a
large chromatic number, and thus forces large coloring time of G. (Equivalently,
if G can be colored fast then the advice must be large.) The main difficulty
in our argument is to show the existence of a regularly structured subgraph
(whose chromatic number can be bounded from below) in the highly irregularly
structured graph H .

1.2 Related Work

Because of the intrinsic difficulty of computing the chromatic number of a graph
in the sequential setting [12], or even to approximate it [3,7], the distributed
computing literature dealing with graph coloring mostly focuses on the (Δ+ 1)-
coloring problem, where Δ denotes the maximum degree of the graph. In fact,
the interest expressed for the (Δ+1)-coloring problem is also due to its intriguing
relation with the maximal independent set (MIS) problem, already underlined by
Linial in [16]. In particular, combining the best known algorithms for MIS [1,17]
with the reduction from (Δ+ 1)-coloring to MIS by Linial yields a randomized
(Δ+ 1)-coloring algorithm working in expected time O(log n). Using techniques
described in [2] and [23], one can compute a (Δ+ 1)-coloring (as well as a MIS)
of arbitrary graphs in deterministic time O(n1/

√
logn). For graphs of maximum

degree bounded by Δ, (Δ+ 1)-coloring can be achieved in time O(Δ log n) (see
[2]). [6] described a PRAM algorithm that can be easily transformed into an
algorithm working in the LOCAL model, computing a 3-coloring of oriented
cycles in O(log∗ n) rounds. This bound is tight as proved by Linial [16]. Simi-
larly, [10] described a 3-coloring of oriented trees working in O(log∗ n) rounds.
The O(Δ2)-coloring algorithm in [16], working in O(log∗ n) rounds, can be easily
converted into a (Δ + 1)-coloring algorithm working in O(Δ2 + log∗ n) rounds,
reaching the same complexity as the algorithm in [11]. [15] analyses what can
be achieved in one round, and proves that no algorithm based on iterations of
the application of a 1-round algorithm can achieve O(Δ)-coloring in less than
Ω(Δ/ log2Δ+log∗ n) rounds. On the other hand, [15] presents a (Δ+1)-coloring
algorithm working in O(Δ logΔ+ log∗ n) rounds, thus improving [2,11,16]. Re-
cently, the power of orienting the network was also demonstrated in terms of bit
complexity in [13].

2 Coloring Cycles with Advice

In order to prove the lower bounds listed in Section 1.1 on the size of advice
needed for fast 3-coloring of all cycles, we prove the following result.

236 P. Fraigniaud et al.

Theorem 1. Suppose that an oracle O informs at most q nodes in any n-
node cycle. Then the time of 3-coloring of n-node cycles using oracle O is
Ω(log∗(n/q)). This result holds even if the cycle is oriented, i.e., even if the
nodes have a consistent notion of clockwise and counterclockwise directions.

Proof. Recall the definition of the directed graph Bt,n from [16]. Let s = 2t+1 <
n − 1. The nodes of the graph are sequences of length s of distinct integers
from {1, . . . , n}. Intuitively, node (x1, x2, . . . , xs) of the graph Bt,n represents the
information acquired in time t by node xt+1 of a labeled directed cycle containing
a segment (x1, x2, . . . , xs). Out-neighbors of node (x1, x2, . . . , xs) are all nodes
(x2, x3, . . . , xs, y), where y �= x1. Note that the chromatic number χ(Bt,n) is a
lower bound on the number of colors with which an n-node cycle may be colored
distributively in time t. Thus, by restricting attention to 3-coloring algorithms,
this yields a lower bound on the time of 3-coloring.

It was proved in [16] that χ(Bt,n) ≥ log(2t) n. For any set X ⊆ {1, . . . , n} of
size > s + 1, define Bt,n(X) to be the subgraph of Bt,n induced by all nodes
(x1, x2, . . . , xs) with xi ∈ X , for all 1 ≤ i ≤ s. It is easy to see that the graph
Bt,n(X) is isomorphic to Bt,|X|.

Fix an oracle O giving advice to all cycles of length n. Let q be the maximum
number of nodes informed by oracle O in any of these cycles. Without loss of
generality we may assume that the number of bits given to any node is not more
than needed to code all directed labeled cycles of length n, i.e., �log(n − 1)!�.
Consider a 3-coloring algorithm for cycles of length n using oracleO and running
in time t. If t ≥ n/(2q)−1, we are done. Hence suppose that t < n/(2q)−1 which
implies s < n/q. We define the directed graph Bt,n,O that will be crucial in our
argument. The nodes of the graph are sequences ((x1, α1), (x2, α2), . . . , (xs, αs)),
where xi are distinct integers from {1, . . . , n} and αi are binary strings of
length at most �log(n − 1)!�. Intuitively, node ((x1, α1), (x2, α2), . . . , (xs, αs))
represents the total information acquired in time t by node xt+1 of a labeled
directed cycle containing a segment (x1, x2, . . . , xs), including labels of nodes
at distance at most t and advice given to them by the oracle. There exists a
(directed) edge from node v = ((x1, α1), (x2, α2), . . . , (xs, αs)) to a node w, if
w = ((x2, α2), . . . , (xs, αs), (y, β)) and if there exists a labeled directed cycle of
length n containing the segment (x1, x2, . . . , xs, y), such that oracle O applied to
this cycle gives advice α1, α2, . . . , αs, β to nodes x1, x2, . . . , xs, y, respectively. We
will say that the segment (x1, x2, . . . , xs, y) of such a cycle induces this directed
edge. Similarly as above, the chromatic number χ(Bt,n,O) is a lower bound on
the number of colors with which the cycle may be colored distributively in time
t, using oracle O. Note that a coloring algorithm using oracle O does not need to
assign a color to all nodes ((x1, α1), (x2, α2), . . . , (xs, αs)) of Bt,n,O. Indeed, it is
possible that there is no cycle containing the segment (x1, x2, . . . , xs), such that
oracle O applied to this cycle gives advice α1, α2, . . . , αs to nodes x1, x2, . . . xs,
respectively. However, by definition, such “non-legitimate” nodes are isolated in
the graph Bt,n,O and hence they do not affect its chromatic number.

We will establish a lower bound on the chromatic number of Bt,n,O, and then
show how to deduce from it a lower bound on the time of 3-coloring with oracleO.

Distributed Computing with Advice 237

To this end it is sufficient to focus on the subgraph B̃t,n,O of Bt,n,O induced by
the nodes ((x1, α1), (x2, α2), . . . , (xs, αs)), with all αi being empty strings. By
definition, the graph B̃t,n,O is isomorphic to a subgraph of Bt,n and has the same
number of nodes as Bt,n. By a slight abuse of notation we will identify B̃t,n,O
with this subgraph of Bt,n.

Claim 1. For n/q sufficiently large, there exists a set X of size

k =

⌊(
n

q(s+ 1)

)1/(s+1)
⌋

such that Bt,n(X) is a subgraph of B̃t,n,O.

Due to lack of space, the proof of Claim 1 is omitted.
In view of Claim 1, the chromatic number of Bt,n,O can be bounded as follows

(for n/q sufficiently large):

χ(Bt,n,O) ≥ log(s−1) k = log(s−1)

(
n

q(s+ 1)

)1/(s+1)

.

Since t is the running time of a 3-coloring algorithm for cycles of length n using

oracle O, we have χ(Bt,n,O) ≤ 3, which implies log(s−1)
(

n
q(s+1)

)1/(s+1)

≤ 3. In

order to finish the argument, it is enough to prove that s ≥ 1
5 log∗(n/q). Suppose

not. Thus n/q ≥ 2216
. For such large n/q we have

log
n

q(s+ 1)
> log

n

q
− log log∗

n

q
≥ 1

2
log

n

q
.

Hence
1

s+ 1
log

n

q(s+ 1)
>

1
2(s+ 1)

log
n

q
≥ 1

2 log∗ n
q

log
n

q
≥ log log

n

q
.

This implies
(

n

q(s+ 1)

)1/(s+1)

> log
n

q
,

and

3 ≥ log(s−1)

(
n

q(s+ 1)

)1/(s+1)

> log(s) n

q
.

Thus s ≥ log∗ n
q − 2, which contradicts the assumption s < 1

5 log∗(n/q). ��

Theorem 1 has several interesting consequences. The following corollary proves
that transforming the 3-coloring problem into a locally solvable problem (in the
sense of [20]) essentially requires to give the solution to the nodes.

Corollary 1. Any distributed algorithm that produces a 3-coloring of all cycles
of length n in constant time requires advice for Ω(n) nodes.

The next corollary proves that 3-coloring of cycles is information insensitive.

238 P. Fraigniaud et al.

Corollary 2. Any distributed algorithm that produces a 3-coloring of all cycles
of length n in time o(log∗ n) requires advice for Ω(n/ log(k) n) nodes, for any
constant k.

3 Coloring Trees with Advice

Theorem 1 concerning cycles has an interesting consequence concerning trees,
that proves that 3-coloring is information insensitive in oriented trees. Recall
that a tree is oriented if it is rooted, and every node is aware of which of its
incident edges leads to its parent in the tree. If there exists an oracle O informing
at most q nodes in any n-node oriented tree, and a 3-coloring algorithm A using
O and working in t(n) rounds, then there exists an oracle O′ informing at most
q + 2 nodes in any n-node oriented cycle, and a 3-coloring algorithm A′ using
O′ and working in t(n) + 1 rounds. O′ picks arbitrarily two neighboring nodes
x and y in the cycle. Assume that y is the neighbor of x in the counterclockwise
direction. O′ gives the advice (tail) to x, and the advice (t(n), root) to y. The
ith node v in the cycle, counting counterclockwise from x, receives from O′ the
advice f(vi) given by O to the node vi at distance i from the root of the oriented
path P rooted at one of its two extremities, where f = O(P). A′ proceeds in
t(n) + 1 rounds. During rounds 1 to t(n), A′ simply executes A, for which nodes
x and y just act as if they would be respectively the tail and the root of a
directed path from x to y. At round t(n) + 1 of A′, the root node y checks if its
color is different from x. If not, it takes a color distinct from the colors if its two
neighbors. This simple reduction enables to establish the following corollary of
Theorem 1 proving that 3-coloring oriented trees is information insensitive.

Corollary 3. Suppose that an oracle O informs at most q nodes in any n-node
oriented tree. Then the time of 3-coloring of n-node oriented trees using oracle
O is Ω(log∗(n/q)). Thus in particular any distributed algorithm that produces
a 3-coloring of all n-node oriented trees in time o(log∗ n) requires advice for
Ω(n/ log(k) n) nodes, for any constant k.

The main result of this section is a lower bound on the size of advice necessary
for fast coloring of all n-node unoriented trees. In fact we will show that this
bound holds already for the class of all unoriented complete d-regular trees.
These are trees Td,r such that each leaf is at distance r from the root, and each
internal node has degree d. It should be stressed that the notion of root and
children is brought up only to facilitate the definition. From the point of view of
nodes, the tree is not rooted (a node does not have information which neighbor is
its parent).

Theorem 2. Fix d ≥ 37. Any 3-coloring algorithm working in time t for the
class of n-node unoriented complete d-regular trees requires advice for at least
n

dd2t nodes.

Proof. Fix d ≥ 37, t > 0, and r > 2t+ 3. Consider any node v of the tree Td,r at
distance at least t+1 from all leaves. The number of nodes at distance at most t

Distributed Computing with Advice 239

from v will be denoted by α(t). We have α(t) = d ·
∑t−1

1=0(d− 1)i ≤ 2(d− 1)t− 1.
Consider an edge e of the tree Td,r whose both extremities are at distance at
least t+1 from all leaves. The subtree induced by the set of nodes at distance at
most t from one of these extremities will be be called the bow-tie of Td,r based
on edge e. The number of nodes in this bow-tie will be denoted by β(t). We have
β(t) = α(t) + 1 + (d− 1)t ≤ 3(d− 1)t.

Consider the tree Td,r with a labeling Φ of nodes and ports. Φ labels all nodes
by distinct integers from {1, . . . , n}, where n = 1 + α(r), and labels all ports at
internal nodes by integers from {1, . . . , d}. For any such labeled tree, consider its
subtrees of the formN(v, t, Φ), where t is a positive integer and v is a node of Td,r
at distance at least t+1 from any leaf of Td,r. N(v, t, Φ) is defined as the labeled
subtree of Td,r induced by all nodes at distance at most t from v. Note that if
restrictions of labelings Φ and Φ′ to the subtree of Td,r induced by all nodes at
distance at most t from v are identical, then N(v, t, Φ) = N(v, t, Φ′). Consider
the following graph Gt(Td,r). The nodes of the graph are all subtrees N(v, t, Φ)
of Td,r for all possible nodes v and labelings Φ of nodes and ports of Td,r. Two
nodes of Gt(Td,r) are adjacent, if and only if, they are of the form N(v, t, Φ)
and N(v′, t, Φ), for some labeling Φ, with v and v′ adjacent in Td,r. Note that
the graph Gt(Td,r) is a subgraph of the t-neighborhood graph of Td,r, defined in
[16]. Moreover, it follows from [16] that the chromatic number χ(Gt(Td,r)) is a
lower bound on the number of colors with which the tree Td,r may be colored
distributively in time t, and that χ(Gt(Td,r)) ≥ 1

2

√
d, if t < 2r/3. Also, for

any set X ⊆ {1, . . . , n}, we define the graph G(X) as the subgraph of Gt(Td,r)
induced by nodes with labels from the set X . Note that, for |X | = 1 + α(s), for
some positive integer s ≤ r, the graph G(X) is isomorphic to Gt(Td,s).

Fix an oracle O giving advice to all n-node labeled trees Td,r. Let q be the
maximum number of nodes informed by oracle O in any of these trees. Without
loss of generality we may assume that the number of bits given to any node is
not more than needed to code all n-node labeled trees Td,r. There are dα(r−1)

port labelings of Td,r, and for each such labeling there are n! ways to label nodes.
Hence the number of bits needed to code these trees is at most �log(dα(r−1)n!)�.
Consider a 3-coloring algorithm for n-node labeled trees Td,r using oracle O and
running in time t. We define the following graph Gt,O(Td,r). Nodes of this graph
are couples of the form (N(v, t, Φ), f), where N(v, t, Φ) is the tree defined above
and f is a function from nodes of this tree into the set of binary strings of length
at most �log(dα(r−1)n!)�. Intuitively, the value f(w) is the advice given to node
w of N(v, t, Φ) by the oracle, and the entire couple (N(v, t, Φ), f) represents the
total information acquired in time t by node v, including advice given to nodes
of N(v, t, Φ) by the oracle. Edges of the graph Gt,O(Td,r) are defined as follows.
There is an (undirected) edge between two nodes of Gt,O(Td,r) if these nodes are
of the form (N(v, t, Φ), f) and N(v′, t, Φ), f ′), for some labeling Φ, where v and
v′ are adjacent in Td,r and for all nodes w of N(v, t, Φ) and w′ of N(v′, t, Φ), the
values f(w) and f ′(w′) are advice strings given to nodes w and w′, respectively,
by oracleO for the tree Td,r labeled by Φ. We will say that this edge of Gt,O(Td,r)
is induced by the bow-tie based on edge {v, v′} of the tree Td,r labeled by Φ.

240 P. Fraigniaud et al.

The chromatic number χ(Gt,O(Td,r)) is a lower bound on the number of colors
with which the tree Td,r may be colored distributively in time t, using oracle O.
Similarly as in the case of the cycle, there may be “non-legitimate” nodes in
Gt,O(Td,r) but they are isolated and thus do not affect the chromatic number.

In order to establish a lower bound on the chromatic number of Gt,O(Td,r),
it is sufficient to focus on the subgraph G̃t,O(Td,r) induced by the nodes

(N(v, t, Φ), f)

with f being a function giving the empty string to all nodes. By definition,
the graph G̃t,O(Td,r) is isomorphic to a subgraph of Gt(Td,r) and has the same
number of nodes as Gt(Td,r). Similarly as before we will identify G̃t,O(Td,r) with
this subgraph of Gt(Td,r).

Claim 2. Let ν(k) be the number of sets X of size k, such that the graph G(X)
is not a subgraph of G̃t,O(Td,r). Then

ν(k) ≤ 2 · q · n! · d4dt

n ·
(
n− β(t)

)
!
·
(
n− β(t)
k − β(t)

)
.

Due to lack of space, the proof of Claim 2 is omitted.
Suppose that ν(k) <

(
n
k

)
. Then there exists a set X of size k for which G(X)

is a subgraph of G̃t,O(Td,r). Since k = α(s) for s > 3t/2, it follows from [16] that
the chromatic number of the graph G(X) (and thus also of the graph Gt,O(Td,r))
is at least 1

2

√
d, which is larger than 3 for d ≥ 37. This contradicts the fact that

we consider a 3-coloring algorithm running in time t. Hence we may assume
ν(k) ≥

(
n
k

)
. From Claim 2, this implies

2 · q · n! · d4dt

n ·
(
n− β(t)

)
!
·
(
n− β(t)
k − β(t)

)
≥
(
n

k

)

and hence the number q of informed nodes satisfies

q ≥
n ·

(
k − β(t)

)
!

2 · d4dt · k!
≥ n

2 · d4dt · kβ(t)
.

Since k = α(� 32 t+ 1�) ≤ d 7
2 t and β(t) ≤ 3(d− 1)t, we have

q ≥ n

2 · d4dt · d 7
2 t·3(d−1)t

≥ n

dd2t .

��

Remark. By considering trees of a sufficiently large constant degree (instead of
just degree d ≥ 37) we can generalize the above result to the case of c-coloring,
for any constant c.

Theorem 2 has several interesting consequences. The following corollary pro-
ves that lack of cycles does not help in coloring a network since transforming the
3-coloring problem in trees into a locally solvable problem essentially requires,
as for cycles, to give the solution to the nodes.

Distributed Computing with Advice 241

Corollary 4. Any distributed algorithm that produces a 3-coloring of all n-node
trees in constant time requires advice for Ω(n) nodes.

The next corollary proves that reaching the O(log∗ n) bound in unoriented trees
requires lot of advice. This should be contrasted with the fact that O(log∗ n) is
the complexity of 3-coloring of oriented trees, without advice.

Corollary 5. Any distributed algorithm that produces a 3-coloring of all n-node
unoriented trees in time O(log∗ n) requires advice for Ω(n/ log(k) n) nodes, for
any constant k.

4 Conclusion

We presented lower bounds on the amount of advice that has to be given to
nodes of cycles and of trees in order to produce distributively a fast 3-coloring
of these networks. Although our lower bounds are very close to the obvious
upper bound O(n), some interesting detailed questions concerning the trade-offs
between the size of advice and the time of coloring remain open, even for cycles
and trees. In particular, what is the minimum number of bits of advice to produce
a 3-coloring of every n-node cycle or tree in a given time t = o(log∗ n)? More
generally, what is the information sensitivity of coloring arbitrary graphs? For
arbitrary graphs, it is natural to consider the maximum degreeΔ as a parameter,
and seek distributed (Δ+1)-coloring. It was proved in [15] that a (Δ+1)-coloring
can be produced in time OΔ logΔ + log∗ n). What is the minimum number of
bits of advice to produce a (Δ+ 1)-coloring in time O(log∗ n)? And in constant
time? We conjecture that for the former task O(n) bits of advice are sufficient,
and for the latter Ω(n logΔ) bits of advice are needed.

References

1. Alon, N., Babai, L., Itai, A.: A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem. J. Algorithms 7(4), 567–583 (1986)

2. Awerbuch, B., Goldberg, A., Luby, M., Plotkin, S.: Network Decomposition and
Locality in Distributed Computation. In: 30th Symp. on Foundations of Computer
Science(FOCS), pp. 364–369 (1989)

3. Bellare, M., Goldreich, O., Sudan, M.: Free Bits, PCPs, and Nonapproximability
– Towards Tight Results. SIAM Journal on Computing 27(3), 804–915 (1998)

4. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-Guided Graph
Exploration by a Finite Automaton. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 335–346.
Springer, Heidelberg (2005)

5. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Labeling Schemes
for Tree Representation. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A.
(eds.) IWDC 2005. LNCS, vol. 3741, pp. 13–24. Springer, Heidelberg (2005)

6. Cole, R., Vishkin, U.: Deterministic coin tossing and accelerating cascades: micro
and macro techniques for designing parallel algorithms. In: 18th ACM Symp. on
Theory of Computing (STOC), pp. 206–219. ACM Press, New York (1986)

242 P. Fraigniaud et al.

7. Feige, U., Kilian, J.: Zero Knowledge and the Chromatic Number. J. Comput. Syst.
Sci. 57(2), 187–199 (1998)

8. Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing.
Distributed Computing 16, 121–163 (2003)

9. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for
communication tasks. In: 25th ACM Symp. on Principles of Distributed Computing
(PODC), pp. 179–187. ACM Press, New York (2006)

10. Goldberg, A., Plotkin, S.: Efficient parallel algorithms for (Δ + 1)-coloring and
maximal independent set problems. In: 19th ACM Symp. on Theory of Computing
(STOC), pp. 315–324. ACM Press, New York (1987)

11. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse
graphs. In: 19th ACM Symp. on Theory of Computing (STOC), pp. 315–324.
ACM Press, New York (1987)

12. Karp, R.: Reducibility Among Combinatorial Problems. Complexity of Computer
Computations, 85–103 (1972)

13. Kothapalli, K., Onus, M., Scheideler, C., Schindelhauer, C.: Distributed coloring
in O(

√
log n) bit rounds. In: 20th IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS), IEEE Computer Society Press, Los Alamitos (2006)
14. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed Locally! In:

23th ACM Symp. on Principles of Distributed Computing (PODC), pp. 300–309.
ACM Press, New York (2004)

15. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In:
25th ACM Symp. on Principles of Distributed Computing (PODC), pp. 7–15. ACM
Press, New York (2006)

16. Linial, N.: Locality in distributed graph algorithms. SIAM J. on Computing 21(1),
193–201 (1992)

17. Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set Problem.
SIAM J. Comput. 15(4), 1036–1053 (1986)

18. Lynch, N.: A hundred impossibility proofs for distributed computing. In: 8th ACM
Symp. on Principles of Distributed Computing (PODC), pp. 1–28. ACM Press,
New York (1989)

19. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: 17th
ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 39–48.
ACM Press, New York (2005)

20. Naor, M., Stockmeyer, L.: What can be computed locally? In: 25th ACM Sym-
posium on Theory of Computing (STOC), pp. 184–193. ACM Press, New York
(1993)

21. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.
Distributed Computing 14, 97–100 (2001)

22. Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and
network decomposition problems. In: 24th ACM Symp. on Theory of Computing
(STOC), pp. 581–592. ACM Press, New York (1992)

23. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decompo-
sition. Journal of Algorithms 20(2), 356–374 (1996)

24. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics (2000)

Private Multiparty Sampling and

Approximation of Vector Combinations

Yuval Ishai1, Tal Malkin2, Martin J. Strauss3, and Rebecca N. Wright4

1 Computer Science Dept., Technion, Haifa 32000 Israel
2 Dept. of Computer Science, Columbia University, New York, NY 10025 USA

3 Depts. of Math and EECS, University of Michigan, Ann Arbor, MI 48109 USA
4 Computer Science Dept., Stevens Institute of Technology, Hoboken, NJ 07030 USA

Abstract. We consider the problem of private efficient data mining of
vertically-partitioned databases. Each of several parties holds a column
of a data matrix (a vector) and the parties want to investigate the com-
ponentwise combination of their vectors. The parties want to minimize
communication and local computation while guaranteeing privacy in the
sense that no party learns more than necessary. Sublinear-communication
private protocols have been primarily been studied only in the two-party
case. We give efficient multiparty protocols for sampling a row of the
data matrix and for computing arbitrary functions of a row, where the
row index is additively shared among two or more parties. We also give
protocols for approximating the componentwise sum, minimum, or max-
imum of the columns in which the communication and the number of
public-key operations are at most polynomial in the size of the small
approximation and polylogarithmic in the number of rows.

1 Introduction

There are many real-life scenarios in which several mutually distrusting entities
(e.g., credit agencies, hospitals, or network carriers) have a common interest in
obtaining useful summaries of their combined data. For instance, the parties
may want to learn basic statistics on the combined data, measure the amount
of similarity between their inputs, or detect irregularities or fraud by means of
identifying major discrepancies in common entries.

In our setting, each of M parties P1, . . . , PM has a length-N (column) vector,
denoted xm for Pm as a private input. For some M -ary function f , the parties
want to compute a length-N vector y whose n’th component yn is given by
f(x1

n, x
2
n, . . . , x

M
n). We write this as y = f(x) and call y a combination of the

parties’ inputs. Examples of combination functions are the identity function
(where an M -ary identity function simply returns its M inputs as outputs), or
the sum function (that returns the sum of its M inputs).

If N is small, general secure multiparty computation [17,18] can be used
efficiently. We provide solutions that are efficient even when N (and there-
fore y) is very large. We aim for solutions with local computation at most
polynomial in N and M and communication at most polynomial in M and

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 243–254, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

244 Y. Ishai et al.

log(N). Towards this end, we provide solutions in which the parties do not com-
pute y, but rather some moderately sized “approximation” or “summary” of
it. In the non-private setting, there is a rich body of work demonstrating that
communication complexity can be dramatically improved by using an approx-
imate solution that allows a small error probability (e.g., [1,22,16,4,8]). Gen-
erally, however, these existing approximations are not private, meaning that
some of the parties may learn more than what follows from their inputs and
outputs.

Useful approximations that the parties may wish to compute include a sample
of components in y or a known transform of y such as the Fourier transform; sta-
tistical summaries of y, such as a norm of y; an approximate reconstruction of y,
such as a piecewise-constant approximation with error nearly optimal according
to some norm; and a succinct data structure to which one can pose queries about
y. As a concrete class of examples, we focus on the quantity ‖y‖a = (

∑
n y

a
n)1/a,

which we call a norm of y and denote by �a. (Technically, it is only a norm for
certain values of a.) One can regard a norm of y as an approximation to the
vector y. A useful special case is the problem of multiparty set intersection size.
The parties have subsets A1, A2, . . . , AM of a known universe of size N and we
want to compute |

⋂
mAm|. (In this case the vector combination function f is the

bitwise-AND, namely y = f(x1, . . . , xM) =
∧
m x

m, and the output the parties
seek is ‖y‖1 =

∑
n yn.) Even in the two-party case and without any privacy

requirements, it is impossible to achieve a constant multiplicative approxima-
tion with a sublinear amount of communication. We thus settle for an additive
approximation, up to an error of ±εN .

Our Results. We present communication-efficient solutions to a large class of
useful special cases of efficient private distributed computation. Our results also
have useful consequences for the general theory of secure multiparty computa-
tion with sublinear communication and highlight some qualitatively interesting
differences between the two-party and the multiparty case.

Specifically, we show solutions to two multiparty problems: private multi-
party sampling (Section 3) and private approximation of vector combinations
(Section 4). Our private multiparty sampling solution uses two-party private
information retrieval (PIR) as a building block. Private multiparty sampling it-
self is a useful tool in a wide range of private approximation scenarios, such
as communication-efficient multiparty approximations of set intersection and of
the �2-norm of the sum of M input vectors. For private approximation of vector
combinations, we consider approximations to the componentwise sum, minimum,
or maximum over M vectors of integers. In a private computation setting, this
problem is usually not interesting in the two-party case, as the input vector of
one party together with the output vector allows her to determine most (if not
all) of the other party’s input. However, when there is a larger number of parties,
this problem becomes natural.

In the full version of the paper, we also discuss some interesting consequences
of our results to the general problem of reducing sublinear-communication secure
multiparty computation to two-party PIR.

Private Multiparty Sampling and Approximation 245

Related Work. The approach of constructing secure sublinear-communication
protocols was initiated in the context of private information retrieval [6] and
further studied both in other specific contexts (e.g., [24]) and in more general
settings [27]. Freedman et al. [13] give an efficient two-party protocol for approx-
imating the size of an intersection of sets from a universe of size N with additive
error small compared with N . That is, they compute the AND of x1

n and x2
n at

some random position n unknown to the parties. Our results in Section 3 can
be regarded as a generalization of this result to more than two parties and to
functions other than the AND of bits. Indyk and Woodruff [20] give a two-party,
polylog-communication private protocol for approximating the �2-norm of the
difference (or sum) of vector inputs. Our results of Section 3 can be used to
extend their result to more than two parties.

Naor and Nissim [27] present a general compiler of any two-party protocol into
a private protocol which preserves the communication, up to polynomial factors.
This compiler, however, generally requires an exponential amount of local com-
putation and thus it is not directly useful for the approximation problems we
consider. Nevertheless, for the classes of functions for which their compilation
technique efficiently applies, our results of Section 3 can be used to efficiently
generalize their protocols from two parties to more than two parties providing
security against any subset of the parties.

2 Background

2.1 Privacy

When mutually suspicious parties conduct a computation on their joint data,
they want to guarantee that the privacy of their inputs is protected, in the sense
that the protocol leaks nothing more than necessary about their inputs. In our
context, where the computed output of the parties is an approximation g(y) of
a combination vector y = f(x), we consider two types of privacy guarantee.

Privacy with respect to the output. This is the traditional privacy guar-
antee for secure multiparty computation [5,17] of output g(f(x)) from inputs
x. Given a functionality mapping the parties’ inputs to (possibly randomized)
outputs, the requirement is that no set of parties can learn anything about the
inputs of other parties from protocol messages beyond their own inputs and
outputs. In our setting, this privacy guarantee is the desired one in applications
where the parties are willing to disclose the result g(f(x)) but do not want to
reveal any other information.

Privacy with respect to the combination vector. This kind of guaran-
tee, introduced in [12], is “privacy of approximations.” A protocol is a private
approximation protocol for f if its output is (with high probability) a good

246 Y. Ishai et al.

approximation1 for the exact output of f , and moreover each set of parties learn
nothing additional from protocol messages (including the actual output of the
protocol) beyond their own inputs and the ideal output, f(x). Stated in our
context, while the output of the protocol is g(f(x)), the privacy guarantee is
that nothing is leaked that doesn’t follow from f(x). This is a weaker privacy
guarantee (which admits much more efficient results in some cases). This is
appropriate in applications where the parties do not mind disclosing f(x), but
do not want any further information leaked.
Adversary model. All of our protocols are computationally private against a
non-adaptive, semi-honest (passive) adversary corrupting an arbitrary subset of
the M parties. Naor and Nissim [27] showed how to upgrade security in the semi-
honest model into security in the malicious model with a low communication
overhead. Thus, from a theoretical point of view, our solutions can be modified to
provide security in the malicious model while remaining communication-efficient.
From a more practical point of view, most of our protocols provide reasonable
security guarantees against malicious adversaries even without modification. In
particular, the highly efficient protocols in Section 4 are fully private against a
malicious adversary in the sense that it cannot learn more about the inputs of
uncorrupted parties than is allowed in an ideal function evaluation.

2.2 PIR and Oblivious Transfer

We make use of private information retrieval (PIR) and oblivious transfer (OT).
A PIR protocol allows a receiver to retrieve an item from a large database held by
a sender without revealing which item she is after, and while using only a small
amount of communication [6,23]. A symmetric PIR (SPIR) protocol [15,28], or
sublinear-communication oblivious transfer [30,11], further guarantees that the
receiver cannot learn more than a single entry of the database. Any PIR pro-
tocol can be used (in a black-box way) to obtain an OT protocol with similar
communication complexity [28,9]. The communication complexity of PIR and
OT on a database containing N short entries (say, bits) can made as small as
O(N ε) for an arbitrary constant ε > 0, assuming that a homomorphic encryp-
tion scheme exists [23,31,26], or even polylogarithmic in N under more specific
assumptions [3,25,14]. In the following, when referring to OT (and its variants)
we always assume the communication to be sublinear in N .

3 Private Multiparty Sampling

In this section, we consider the challenge of extending a private sampling tech-
nique that lies in the core of previous two-party private approximation proto-
cols [12,13,20], to the multiparty setting. Private multiparty sampling allows M
1 In this paper, we do not insist on a specific notion of approximation, such as additive

or multiplicative one. Instead, we accept whatever function g the parties want to
compute as a useful approximation of f , and focus on guaranteeing privacy of the
protocol. For example, statistical summaries such as the norm of the vector are often
used as an approximation of a vector.

Private Multiparty Sampling and Approximation 247

parties, each holding a database xm, to privately obtain f(x1
r , . . . , x

M
r) where f

is some fixed M -argument functionality (say, exclusive-or) and r is an index of
a random entry that should remain secret.

When there is no restriction on communication complexity, a private multi-
party sampling protocol can be constructed by making a black-box use of an
arbitrary OT protocol, as follows from general techniques for secure multiparty
computation [18,19,21]. Interestingly, such a construction becomes more chal-
lenging to obtain in the domain of sublinear-communication protocols. Further,
this difficulty does not arise in the two-party setting and only seems to crop up
when there are three or more parties. Indeed, a simple black-box construction of
two-party private sampling from an arbitrary OT protocol (alternatively, PIR)
is given in [12]. This construction maintains the communication complexity of
the underlying OT protocol.2 Thus, sublinear-communication OT (alternatively,
PIR) can be used as a black box to realize sublinear-communication two-party
private sampling. We do not know whether the same is true in the multiparty
setting; this is an interesting question left open by our work.

Instead, we present a private multiparty sampling protocol that makes black-
box use of PIR but it relies on the assumption that the underlying PIR protocol
has only a single round of interaction (which is the case for almost all PIR
protocols from the literature). The round complexity of our protocol is linear
in the number of parties. In the full version of this paper, we also show how to
implement private multiparty sampling with non-black-box use of an underlying
PIR primitive. Although this is less efficient, it can be based on an arbitrary
PIR protocol (even one using multiple rounds) and can yield a constant-round
protocol (assuming that the PIR protocol is).

Private multiparty sampling can be used as a building block in a wide range of
private approximation scenarios. For instance, it can be used in a straightforward
way to obtain communication-efficient approximations for multiparty set inter-
section. Generalizing a two-party protocol of [13], if we let f be the bitwise AND
function, the intersection size can be efficiently approximated (up to a small
additive error) by making multiple invocations of the sampling primitive and
outputting the fraction of 1’s in the outputs. Private sampling can also be used,
following the two-party techniques of [20], to obtain polylog-communication pri-
vate approximation of the �2-norm of the sum of the M inputs.

3.1 Oblivious Transfer with Distributed Receiver

Towards implementing private multiparty sampling, we introduce and study a
distributed variant of oblivious transfer which is of independent interest. (This
primitive can be used as a basic building block for sublinear-communication mul-
tiparty protocols, generalizing the protocol compiler from [27] to the multiparty
case. Details are omitted due to space.)
2 The protocol from [12] is described for the special case where f is the exclusive-or

function but can be generalized (as was done in [13,20]) to arbitrary functions f .
Our discussion is quite insensitive to the particular choice of f and in fact applies
also to the simpler “distributed OT” primitive defined in Section 3.1.

248 Y. Ishai et al.

In distributed OT, the role of the receiver is distributed between M parties.
(A very different variant of distributed OT was considered in [29].) Specifically,
a large database x of N entries is held by a distinguished party, say P1, who
functions as a sender. The entries of the database are indexed by some finite
group of size N , which is taken to be ZN by default. The index n of the entry
to be retrieved is distributed between the M parties in an additive way. That
is, n =

∑M
m=1 nm, where each nm is a local input of Pm and addition is taken

over the underlying group. At the end of the protocol, some distinguished party,
say PM , should learn the selected entry xn. More formally, we define distributed-
receiver oblivious transfer (or distributed OT for short) as an (M − 1)-private
protocol for the following M -party functionality.

Definition 1 (Functionality DistOTG). Let G be a finite group of size N . The
functionality DistOTG is defined as follows:

– Inputs: Each party m, 1 ≤ m ≤M , holds a group element nm ∈ G. The first
party P1 additionally holds a database x = (xn)n∈G.

– The last party PM outputs xn1+...+nM . Other parties have no output.

3.2 Private Multiparty Sampling from Distributed OT

We now present efficient black-box construction of private multiparty sampling
protocols from distributed OT. We start by formally defining the sampling func-
tionality induced by f .

Definition 2 (Functionality Sample-f). Let f be an M -party functionality.
(The functionality f is a deterministic or randomized mapping from M inputs
to M outputs.) The randomized functionality Sample-f is defined as follows:

– Inputs: Each party m, 1 ≤ m ≤M , holds a database xm = (xmn)n∈[N].
– The functionality picks a secret, uniformly random index r ∈ [N] and outputs
f(x1

r , x
2
r, . . . , x

M
r).

We start by handling the easier case where f is the identity function, outputting
the concatenation of its M inputs. We denote the resulting sampling function-
ality by Sample-ID. In this case, we can use the following reduction to DistOTG
where G is an arbitrary group of size N . In the following, we arbitrarily identify
elements of G with indices in [N].

Reducing Sample-ID to DistOT

1. Each party Pm picks a random group element rm ∈R G.
2. In parallel, the parties make M calls to DistOT, where in call i party Pi acts

as sender with database xi and every party Pm (including Pi) lets nm = rm.
As a result, party PM obtains the values xmr1+...+rM

for 1 ≤ m ≤ M and
sends them to all parties.

3. Each party outputs the M values received from PM .

The correctness and privacy of the above reduction are straightforward to verify.

Private Multiparty Sampling and Approximation 249

We now turn to the question of obtaining Sample-f from DistOT, for a general
functionality f . We start by observing that Sample-f can be efficiently reduced to
a simpler (randomized) functionality Sample-AS, where AS (for “additive shar-
ing”) outputs an M -tuple of strings that are random subject to the restriction
that their exclusive-or is the concatenation of the M inputs.

Proposition 1. For any polynomial-time computable M -argument function f
there is a constant-round black-box (M − 1)-private reduction of Sample-f to
Sample-AS and 1-out-of-2 OT.

Proof (sketch): The reduction proceeds by first invoking Sample-AS to ob-
tain an additively shared representation of the inputs to f , and then running
a general-purpose constant-round protocol (based on OT) to compute f from
these shares. For the latter one can use the protocol of Beaver et al. [2].

In the above reduction, the OT primitive could be dispensed with, as it can be
implemented from Sample-AS (using [9]).

Given the above, it suffices to reduce Sample-AS to Sample-ID. For simplicity,
we restrict the attention to the case where each entry of a database xm is a single
bit. (The general case of �-bit entries can be handled analogously.) A natural
approach that comes to mind is to let each party Pm mask every bit of xm

with a random bit bm, invoke Sample-ID on the resulting masked databases, and
then use a private computation of a (randomized) linear function to convert the
masked entries xmr ⊕ bm together with the masks bm into the required additive
sharing. This approach fails for the following reason: an adversary corrupting
Pm can learn both xmr ⊕ bm (from the output of Sample-ID) and the mask bm,
which together reveal xmr and thus (together with xm) give partial information
about r. This is not allowed by the ideal functionality Sample-AS. Other variants
of this approach fail for similar reasons.

To avoid the above problem, we must generate the masks in a completely
distributed way. We achieve this by using DistOT over the group G′ = G× Z2:

Reducing Sample-AS to DistOT

1. Each party Pm prepares an extended database (x′)m of size 2N such that
for each n′ = (n, b) ∈ G′ we have (x′)mn′ = xmn ⊕ b. In addition, each Pm picks
a random group element rm ∈R G and M random bits bm,m′, 1 ≤ m′ ≤M .

2. In parallel, the parties make M calls to DistOTG′ . In call i party Pi acts
as sender with database (x′)i and every party Pm (including Pi) lets n′m =
(rm, bm,i). As a result, party PM obtains the values (x′)m(r1,b1,m)+...+(rM ,bM,m)

= xmr1+...+rM
⊕ (b1,m ⊕ b2,m ⊕ · · · ⊕ bM,m) for 1 ≤ m ≤M .

3. Each party Pm, m < M , outputs the M -tuple (bm,1, bm,2, . . . , bm,M). For
m = M , party PM outputs the exclusive-or of this M -tuple with the M -
tuple obtained in Step 2 above.

Proposition 2. The reduction described above is an (M − 1)-private black-box
reduction from Sample-AS to DistOT. Moreover, the reduction is totally non-
interactive.

250 Y. Ishai et al.

Combining Propositions 1 and 2 yields an efficient black-box reduction from
Sample-f to DistOT.

3.3 Implementing Distributed OT

It remains to implement DistOT. We mainly focus on general constructions based
on 1-out-of-nOT (equivalently, PIR [28,9]). For n ∈ G, we use x <<G n to denote
the database x′ obtained from x by applying the permutation induced by adding
n to each index. That is, x′n′ = xn′+n, where addition is in the group G. Note
that in the default case where G = ZN , the notation “<<” corresponds to the
usual notation of a cyclic shift to the left. When there is no ambiguity or when
the choice of the group does not matter, we omit the group subscript.

A black-box construction of DistOT using one-round OT
A one-round OT can be specified by a randomized query algorithm Q(n, ρ)
(where ρ is the receiver’s secret randomness), an answering algorithm A(x, q)
and a reconstruction algorithm R(a, ρ). (The security parameter k is implicit in
this notation.) The reduction proceeds as follows. Each party Pm sends an OT
query pointing to its input nm to the sender P1. Each such query can be used to
“obliviously shift” the database x by the amount nm; more precisely, the n-th
entry of a shifted database y is simply the answer to the OT query on y << n. The
result of each such oblivious shift may be viewed as being encrypted using the
key owned by the originator of the OT query. At the end of the M − 1 oblivious
shifts, the sender holds an (M−1)-iterated encryption of x << (

∑M
m=1 nm)−n1.

The (n1)-th entry xn1+...+nM can be recovered by passing its iterated encryption
between the parties, letting each peel off its own layer of encryption using the
OT reconstruction function. (See Figure 1.)

1. Each party Pm, m > 1, picks an OT query qm = Q(nm, ρm), and sends it
to P1.

2. P1 initializes aM+1 := x.
3. For i = M downto 2, party P1 lets ai be a database of N entries defined

by ai
n = A(ai+1 <<G ni, qi). It then sends b1 = a2

n1 to P2.
4. For i = 2 to M − 1, party Pi lets bi = R(bi−1, ρi) and sends bi to Pi+1.
5. Party PM outputs bM = R(bM−1, ρM).

Fig. 1. A black-box reduction of DistOT to one-round OT

Proposition 3. The reduction described in Figure 1 is (M − 1)-private.

Proof (sketch): Correctness is easy to verify. For privacy, we briefly sketch a
formal construction of a simulator. The simulator is given the inputs of corrupted
parties and, possibly, the output xn1+...+nM . It simulates the message sequence bi
by iteratively applying the OT simulator starting from either the actual output

Private Multiparty Sampling and Approximation 251

(if PM is corrupted) or a default output otherwise. The output of each iteration
is used for the next iteration, along with either an actual input ni (if Pi is
corrupted) or a default input (if Pi is uncorrupted). This simulation process
produces all messages bi along with the local inputs ρi, qi in reverse order.

The complexity of the above reduction depends on the number of parties M and
the relation between the size �′ of the answers of the OT protocol to the length
of the database entries �. Ideally, we have �′ = �+ k · polylog(N), where k is the
security parameter. (Such an OT protocol can be based on the Damg̊ard-Jurik
encryption scheme [10,25].) In this case, the complexity of the resulting DistOT
protocol (on top of the length of the OT queries) is �+Mk·polylog(N). Thus, the
protocol can be applied also for non-constantM . When the number of parties M
is viewed as constant, the DistOT protocol can be made communication-efficient
even if, say, �′ = poly(�, k) ·N0.9. (By “communication-efficient,” we mean that
the dependence on N can be reduced to poly(�, k) ·N ε for an arbitrary ε > 0.)
Such an OT protocol can be based on an arbitrary homomorphic encryption
scheme [23,31].

4 Private Approximation of Vector Combinations

In this section, towards further reducing the communication complexity, we con-
sider as approximation functions any of a wide array of natural “summary”
functions of the combined data vector y (e.g., the �2-norm or an approximate
t-term Fourier representation). Specifically, we consider M ≥ 3 parties holding
length-N vectors x1, . . . , xm who, ideally, want to compute (and are willing to
disclose to the other parties) the componentwise sum y =

∑
m x

m of their vec-
tors or the componentwise minimum y =

∧
m x

m of their vectors. The actual
output computed is an approximate size-t summary Y for y (e.g., the �2-norm,
or an approximate t-term Fourier representation).

We exploit the fact that the entire (long) vector y may be leaked in order
to obtain simple private protocols for the above problems, in which the com-
munication and the number of public-key operations are at most polynomial in
the size of the small approximation and polylogarithmic in N . In contrast, most
previous protocols for sublinear-communication secure approximation (including
the results of Section 3) require roughly as many public-key operations as the
size of the entire database (given the current state of the art of PIR).

4.1 Vector Sums

Proposition 4. Suppose parties P1, P2, . . . , PM hold length-N vectors x1, x2,
. . . , xM . Let y =

∑
m x

m be the componentwise sum. There is a protocol for
generating a Gaussian random variable with mean zero and variance

∑
n y

2
n that

leaks (to any subset of the parties) no more than y, requires local computation
NMO(1), communication MO(1), and O(1) rounds of interaction.

252 Y. Ishai et al.

Proof: If each component rn of a vector r is a unit normal random variable,
then

∑
n rnyn is a Gaussian random variable Y with mean zero and variance

equal to our desired value,
∑

n y
2
n. In particular, Y together with r leak nothing

else about the inputs xm beyond what is implied by their sum y. The sum∑
n rnyn can in turn be computed by first letting each party compute a local

sum sm =
∑

n rnx
m
n and then using a standard (M − 1)-private protocol for

adding up the M (short) integers sm. The protocol is described in Figure 2.
The communication of the protocol in Figure 2 is as claimed, because the

secure-sum protocol is applied to M numbers sm, and not length-N vectors.

Sketch Sum

1. The parties agree on pseudorandom Gaussian random vector r in the clear.
2. Party m receives vector xm as input.
3. The parties individually compute sketches sm =

�
n rnxm

n .
4. The parties use a secure-sum sub-protocol to compute

�
m sm =�

m

�
n rnxm

n =
�

n rn

�
m xm

n =
�

n rnyn, where y =
�

m xm is the
componentwise sum of the parties’ input vectors.

Fig. 2. A protocol for computing an additive sketch

Sketch Min

1. The parties agree on pseudorandom exponential random vector r in the
clear.

2. Party m receives vector xm as input.
3. The parties individually compute sketches sm =

�
n rnxm

n .
4. The parties use a secure sub-protocol to compute

�
m sm =�

m

�
n rnxm

n =
�

n rn

�
m xm

n =
�

n rnyn, where y =
�

m xm is the com-
ponentwise minimum of the parties’ input vectors.

Fig. 3. A protocol for computing a minimum sketch

4.2 Vector Minima

We generalize the above protocol to the componentwise minimum instead of
sum. Also, instead of approximating the quantity

∑
n y

2
n, we approximate the

harmonic mean, or its inverse,
∑

n y
−1
n . See, e.g., [7] for example uses in algo-

rithms of estimating the parameter of an exponential random variable.

Proposition 5. Suppose parties P1, P2, . . . , PM hold length-N positive-valued
vectors x1, x2, . . . , xM . Let y =

∧
m x

m be the componentwise minimum. There is
a protocol for generating an exponential random variable with parameter(∑

n y
−1
n

)
that leaks (to any subset of the parties) no more than y, requires local

computation NMO(1), communication MO(1), and O(1) rounds of interaction.

Private Multiparty Sampling and Approximation 253

Proof: It is known that, if each component rn of a vector r is a unit expo-
nential random variable, then

∑
n rnyn is an exponential random variable Y

with parameter equal to our desired value of
∑

n y
−1
n . In particular, Y together

with r leak no more than y. The parties use the protocol of Figure 3. The sub-
problem for which a secure protocol is needed is computing the minimum of M
short integers, for which efficient (M − 1)-private protocols exist (e.g., using the
general-purpose constant-round protocol of [2]).

Acknowledgments

Yuval Ishai was supported by grants 36/03 and 1310/06 from the Israel Science
Foundation; Tal Malkin by NSF grant CCF-0347839; Martin Strauss by NSF
grants DMS-0510203 and DMS-0354600; and Rebecca Wright by NSF grant
CCR-0331584. We thank Stillian Stoev for helpful discussions.

References

1. Alon, N., Gibbons, P., Matias, Y., Szegedy, M.: Tracking join and self-join sizes in
limited storage. In: Proc. Eighteenth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, pp. 10–20. ACM Press, New York (1999)

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
Proc. 22th ACM STOC, pp. 503–513 (1990)

3. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 404–414. Springer, Heidelberg (1999)

4. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions
on Information Theory 52(2), 489–509 (2006)

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

6. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proc. 36th IEEE FOCS, pp. 41–50. IEEE Computer Society Press, Los Alamitos
(1995)

7. Cohen, E.: Size-estimation framework with applications to transitive closure and
reachability. J. Computer and System Sciences 55(3), 441–453 (1997)

8. Cormode, G.: Muthukrishnan, S.: Estimating dominance norms of multiple data
streams. In: Proc. 11’th European Symposium on Algorithms, pp. 148–160 (2003)

9. Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private information re-
trieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 122–138. Springer, Heidelberg (2000)

10. Damgard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. Public Key Cryptography 119–136 (2001)

11. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28, 637–647 (1985)

12. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M., Wright, R.: Secure
multiparty computation of approximations. ACM Transactions on Algorithms 2(3),
435–472 (2005). An earlier version of this paper appeared in ICALP 2001 (2001)

254 Y. Ishai et al.

13. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

14. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005)

15. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in pri-
vate information retrieval schemes. J. Computer and System Sciences 60(3), 592–
692 (1998) A preliminary version appeared in 30th STOC (1998)

16. Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast,
small-space algorithms for approximate histogram maintenance. In: Proc. 34th
ACM STOC, pp. 389–398. ACM Press, New York (2002)

17. Goldreich, O.: Secure multi-party computation (working draft, version 1.1) (1998)
Available at http://philby.ucsd.edu/cryptolib/BOOKS/oded-sc.html

18. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: Proc.
19th ACM STOC, pp. 218–229. ACM Press, New York (1987)

19. Goldreich, O., Vainish, R.: How to solve any protocol problem—an efficiency im-
provement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86.
Springer, Heidelberg (1988)

20. Indyk, P., Woodruff, D.: Private polylogarithmic approximations and efficient
matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–264.
Springer, Heidelberg (2006)

21. Killian, J.: Founding cryptography on oblivious transfer. In: Proc. 20th ACM
STOC, pp. 20–31 (1988)

22. Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier sprectrum.
In: Proc. 23th ACM STOC, pp. 455–464. ACM Press, New York (1991)

23. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: Proc. 38th IEEE FOCS, pp. 364–
373. IEEE Computer Society Press, Los Alamitos (1997)

24. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 177–206. Springer, Heidelberg (2000)

25. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005)

26. Mann, E.: Private access to distributed information. Master’s thesis, Technion -
Israel Institute of Technology, Haifa (1998)

27. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: Proc. 33th ACM STOC, pp. 590–599. ACM Press, New York (2001)

28. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proc. 31st
ACM STOC, pp. 245–254. ACM Press, New York (1999)

29. Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, Springer, Heidelberg (2000)

30. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-
81, Aiken Computation Laboratory, Harvard University (1981)

31. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In:
Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg (1998)

http://philby.ucsd.edu/cryptolib/BOOKS/oded-sc.html

Constant-Round Private Database Queries

Nenad Dedic1,� and Payman Mohassel2,��

1 Department of Computer Science, Boston University
nenad@cs.bu.edu

2 Department of Computer Science, University of California Davis
mohassel@cs.ucdavis.edu

Abstract. We consider several private database query problems. The starting
point of this work is the element rank problem: the server holds a database of n
integers, and the user an integer q; the user wishes to find out how many database
records are smaller than q, without revealing q; nothing else about the database
should be disclosed. We show a non-interactive communication-efficient solution
to this problem. We then use it to solve more complex private database queries:
range queries, range queries in plane and higher-dimensional generalizations of
element rank. We also show an improved solution to the kth ranked element prob-
lem [1], and a solution to private keyword search [9] using weaker assumptions
than those of [9]. All our solutions assume semi-honest adversarial behaviour.

1 Introduction

Private information retrieval (PIR) allows a user to query the server’s database, with-
out revealing information about the query. If the user cannot find out more information
than required, then we have symmetrically private information retrieval (SPIR). Effi-
cient solutions currently exist for limited types of queries: retrieval by address (the first
considered PIR problem [7,14]), retrieval by keyword [9]. More complex queries can
be processed as well, but less efficiently [6,17] or using relatively strong computational
assumptions [13]. It is therefore desirable to find efficient solutions to more specific
private database query problems.

For example, a new bidder in an auction might be allowed to learn how his bid
ranks compared to other bids, but unwilling to disclose the bid to the auction server.
Or consider a user who wants to compare his score against the database of an online
testing service provider, while keeping his score private. These are examples of the
element rank problem. As another motivating example, consider a driver who wishes to
get a list of all fast-food joints in a city block, but does not want to disclose his location.
This is an example of 2-d range retrieval.

In this work we mainly consider the (generalization of) element rank problem. Based
on this we show solutions to several other problems (e.g. range retrieval, 2-d range re-
trieval, shared element rank). We seek to minimize two important efficiency measures:
communication complexity and round complexity. Minimal round complexity is note-
worthy because it allows for easier integration with other protocols; we exemplify this

� Part of this work was done while the author was visiting the IPAM institute at UCLA.
�� Part of this work was done while the author was visiting the IPAM institute at UCLA. This

work was partially supported by the Packard Foundation.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 255–266, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

256 N. Dedic and P. Mohassel

by using the non-interactive nature of our basic rank protocol to solve other problems.
Note that by non-interactive, we mean protocol with one round of communication be-
tween the parties.

1.1 Contributions

We solve the following problems, in the semi-honest model:

Interval labeling problem. As the main building block, we design a non-interactive low-
communication solution to the following problem. Two players are involved: the user
whose input is an integer q, and the server whose input is a sorted sequence of integers
x1, . . . , xn, defining n+ 1 intervals, labeled with strings v0, . . . , vn. The user wishes to
find out the label of the interval to which q belongs. Our most efficient solution can be
based on homomorphic encryption and PIR [14].

Element rank; generalizations. We then show how to use interval labeling to efficiently
solve the rank problem, and generalizations of interval labeling (for example, rectangle
labeling where the server subdivides the plane in rectangles and labels each rectangle).

Equivalence of PIR and PKS. On a more theoretical note we show that, somewhat
surprisingly, non-interactive PIR alone suffices to implement non-interactive PKS.
Communication complexity is (in asymptotic terms) almost the same as that of the
underlying PIR. Previous solutions known to us use more specific algebraic assump-
tions (e.g. [9] requires homomorphic encryption). However, in a practical scenario, the
solution of [9] would likely be preferable because of greater efficiency. We note that as
a corollary we obtain that the interval labeling problem and its generalizations can be
efficiently implemented using PIR alone.

Secure computation of kth-ranked element. In [1], Aggrawal et al. design a proto-
col for secure computation of the kth-ranked element (e.g. the median) in the union
of private databases held by two parties. We use our new non-intractive protocol for
secure computation of rank of an element in a database as a subprotocol, and design
more efficient protocols for this task. More specifically, we design a new protocol with
log log(k) rounds of interaction between the two parties, as opposed to log(k) rounds
of interaction required by the protocol of [1].

Constant-round range queries; on a line or in a plane. The server holds a database
of points on a line (or, for example, on a plane). The user holds a high point and a
low point on that line (or an axis-aligned rectangle in the plane). As the output of the
protocol the user should only learn the points in the database that belong to the range
defined by his input values, i.e., all the points in the database that lie between the high
and low points (or all the points that lie inside user’s rectangle). We design constant-
round protocols for this problem, with communication linear in the number of retrieved
points. Our protocols provide privacy for both user and the server.

1.2 Related Work

Private information retrieval (PIR), introduced by Chor, et al. in [7] is the prototypical
problem of private database query evaluation. It requires that the user with input i learn
i-th entry of some databaseD. Security requirement is that i remain hidden to everyone

Constant-Round Private Database Queries 257

but the user. Another, essential, requirement is that the total communication be strictly
less than the size of D (else the problem is trivially solved by sending D). The solu-
tion given in [7] mandates statistical security, and requires multiple non-communicating
servers holding copies of D. The multiple-server requirement was lifted in [14], at the
necessary expense of downgrading to computational security. [10] introduce symmet-
ric PIR (SPIR), where server privacy is required: the user must learn nothing beyond
D[i]. SPIR can be seen as communication-efficient oblivious transfer [20]. The works
of [18,2] show how to convert any PIR to SPIR, at little cost. Many solutions to the PIR
problem have appeared since [4,5,16], improving the efficiency, or weakening/changing
the underlying hardness assumptions. Most of these solutions share an attractive feature
– they are non-interactive in the sense that they use only a single communication round.

General multi-party computation (e.g. see [12] and [11]) can be used to solve pri-
vate database query problems, but not very efficiently. It is therefore of interest to seek
more efficient solutions, even if they are more specialized. We focus specifically on
minimizing communication and interaction. Communication-efficient secure function
evaluation [17] gives a protocol for secure computation of circuits with lookup tables.
Such a protocol takes any oblivious turning machine with RAM access and turns it into
a private two-party protocol. While this can be used to implement a communication-
efficient element rank protocol, the construction is not concerned with optimizing num-
ber of rounds of interaction between the parties. Computing branching programs on
encrypted data is introduced in an independent work [13]. This work considers queries
which can be represented as branching programs and gives a non-interactive solution
to this problem. The construction given in [13] is more general than our private ele-
ment rank protocol and can be used to implement such a task. But, we use different
techniques, and by doing so can depend on more general and weaker assumptions. Fur-
thermore, some of the protocols we study in this paper such as private range queries
(see section 4) cannot be captured efficiently using branching programs.

Private keyword search (PKS) [9,6] is a natural extension of SPIR where the server
holds a set of key-value pairs (ki, vi), and the user wishes to find a value associated to
some keyword k if it exists. [6] in fact show how to privately query any server-held data
structure, using multiple interaction rounds. Private keyword search on streaming data
[19] considers a different model, where tagged documents come in streaming, and an
untrusted computer keeps, in an encrypted form, only those which have certain user-
specified combination of tags. This combination remains hidden to the untrusted com-
puter. Oblivious binary search and secure range queries [8] deals with some extensions
to PIR (e.g. retrieving entries at addresses i, i + 1, . . . , j), as well as with computing
element rank, but using a logarithmic number of rounds; this is then applied in a range
retrieval protocol, where the user whose input is (a, b) finds out all database entries with
values between a and b.

A closely related problem of non-interactive secure computation is considered in
[3]. Their setting involves a public circuit C, Alice with private input x and Bob with
private input y. After a single round of interaction Alice should learn C(x, y) and
Bob should learn nothing. They solve this problem for any polynomial-size circuit C.
Communication complexity, however, depends polynomially on the sizes of x, y, even
if the size of C(x, y) is very small.

258 N. Dedic and P. Mohassel

2 Preliminaries

Notation and conventions. We interpret binary strings as integers when convenient,
with the most significant bit to the left. [N] denotes the set {0,1,2,. . . ,N}, and [N)
denotes [N − 1]. |x| denotes the length of x. ε denotes the empty string. We write x||y
to denote the concatenation of strings x and y. We write x− to denote x with the last
symbol dropped (e.g. aaba− = aab), and for a binary string x we write x′ to denote x
with the last bit flipped (e.g. 1100′ = 1101). We write p � s to denote that p is a prefix
of s; and p ≺ s to denote p � s ∧ p �= s.

2.1 Oblivious and Succinct Computation

In this section we introduce oblivious computation, a useful abstraction for certain
non-interactive cryptographic tasks. This notion appears implicitly in [21] and more
explicitly in [3]. We systematize and make explicit its important features. Intuitively,
oblivious computation involves two parties: the user Alice holding her input x, and the
server Bob holding his input y. Some function f is given publicly, and Alice wishes to
learn f(x, y). Bob should learn nothing, and Alice should learn nothing beyond f(x, y).
Alice will send some query ex = Q(x) (which hides x) to Bob, who will produce an
answer a = A(ex, y) and send it back to Alice. Alice will then decode this answer to
get D(a) = f(x, y). Formally:

Definition 1. We say that a quadruple of PPT algorithms (G,Q,A,D) obliviously
computes a function f(x, y) if for (PK, SK) generated by G(1k):

Correctness holds: D(SK, A(PK, Q(SK, x), y)) = f(x, y).
Query secrecy holds: for any x, x′, the distributions Q(SK, x) and Q(SK, x′) are

computationally indistinguishable
Answer security holds: some PPT algorithm S simulates A(PK, Q(SK, x), y) given

only (PK, x, f(x, y)).

G is called the instance generator, Q the query computer, A the answer computer and
D the answer decoder.

This definition naturally corresponds to one-round secure two-party computation, where
only Alice gets the output. Any polynomial-sized function f can be obliviously com-
puted using one-round oblivious transfer and Yao’s garbled circuits [3]. But we will in
fact consider a more stringent setting, where no general solution is known. The server
holds a large database X = (x1, . . . , xn) and the user holds a short query q. They are
interested in obliviously computing some function f(q,X) whose output size is inde-
pendent of n, while minimizing communication. Formally:

Definition 2. We say that a quadruple of PPT algorithms (G,Q,A,D) succinctly com-
putes f(q,X = (x1, . . . , xn)) if:

Obliviousness holds: (G,Q,A,D) obliviously computes f
Succinctness holds: there is a polynomial p such that
|Q(SK, q)|+ |A(PK, Q(SK, q), X)| ≤ p(logn) for sufficiently large n.

Succinct computation is a natural umbrella definition for non-interactive cryptographic
tasks with a communication restriction. Some examples, which we use in this work, are:

Constant-Round Private Database Queries 259

Private information retrieval is succinct computation of the function

f(i, (x1, . . . , xn)) = xi.

Solutions are given, for example, in [5,16]. Note that most definitions of PIR im-
pose no limit on the number of rounds. But almost all PIR protocols from the liter-
ature are in fact non-interactive (recall, this means that they require a single round),
and therefore conform to the definition of succinct computation. This can be used
to good effect in protocols where PIR is a building block, so for purposes of this
work we take PIR to be non-interactive.

Private keyword search [9] is succinct computation of the function

PKS(w, (x1, . . . , xn, v1, . . . , vn)) =

{
va, ∃a w = xa

⊥, otherwise.

We also use contiguous PIR – a natural generalization of PIR, where a contiguous block
of s records is retrieved, while communicating Θ(s) bits. Note that the server must
necessarily learn s, simply by counting the number of bits sent. The corresponding
functionality is

ContPIR((i, s); (x1, . . . , xn)) = ((xi, . . . , xi+s−1); s).

[8] give a solution to this problem.

3 Computing Element Rank and Related Functions

We consider the following problem, which is at the heart of all the protocols in this paper.

Problem 1 (Interval Labeling). Two parties, the user Alice and the server Bob are in-
volved. Let L = 2l − 1, n and m be public integer parameters. Parties’ inputs are as
follows:

Server holds x1, . . . , xn ∈ [L] and v0, . . . , vn ∈ {0, 1}m. x1, . . . , xn is an increas-
ing sequence of numbers subdividing the interval [L] into n + 1 disjoint sub-
intervals (x0, x1], (x1, x2], . . . , (xn, xn+1] (where we take by convention x0 =
−∞, xn+1 = +∞). In each interval (xi, xi+1] the server writes a string label
vi.

User holds an integer q ∈ [L].

The output which the user wishes to find out is the label vi of the interval (xi, xi+1]
to which q belongs. Security requirements are: 1. Server learns nothing, 2. User learns
nothing except vi. Efficiency requirements are: 1. computations must be polynomial
time, 2. communication complexity must be polylog(nl).

3.1 Succinctly Computing Interval Labeling and Element Rank

Let us see how to reduce succinct computation of interval labeling to private keyword
search (PKS). It will be shown then that this implies a solution to element rank. An
obvious way, but too expensive one, would be to create a PKS database of L entries:

260 N. Dedic and P. Mohassel

for every y ∈ [L] insert (y, vi) into the database where i is such that y ∈ (xi−1, xi].
Searching for the keyword q in this database would clearly return the correct answer vi.
We now show how the database size can be reduced from L to 2ln, by inserting only
certain prefixes of xi’s.

We refer the reader to Section 2 to review the notation and conventions. In this sec-
tion we use additional notation: for a binary string s ∈ {0, 1}j, let s denote the interval
of integers [s||0l−j , s||1l−j]. Also, for user’s query q, let qi denote its i-th bit.

Database construction. The main observation of this section is the following. Consider
w ∈ {0, 1}m and i such that w ⊆ (xi−1, xi] and w′ �⊆ (xi−1, xi]. Then (w, vi) can
be added to the PKS database without introducing any ambiguity. Indeed, all integers
beginning with the prefix w, fall into the same interval (xi−1, xi], and they therefore
share the label vi. Moreover, for any predecessor u ≺ w, all integers beginning with u
span more than one interval.

This is illustrated in the following picture. Leaves of the tree represent the integers
of [L], with 0 in the left, and increasing towards right. Database values xi are circled,
and intervals (xi−1, xi] are indicated by arrows. Nodes corresponding to w’s described
above are labeled with their corresponding vi’s. In this example, L = 16, n = 3 and
(x1, x2, x3) = (1, 6, 10).

x1 x2 x3

v0 v1

v1

v1

v2

v2

v2 v3

v3

Suppose now that D is formed by inserting all such (w, vi) into it, i.e.

D = {(w, vi)| w ⊆ (xi−1, xi] ∧ w′ �⊆ (xi−1, xi]}.

Then D has the following useful properties (for proof please refer to the full version):

Lemma 1. Let q ∈ (xi−1, xi]. Then there is exactly one prefix w ≺ q for which (w, vi)
∈ D. Every other prefix p ≺ q (p �= w) is not contained as a keyword in D.

User’s query. On input q ∈ [L] the user computes private keyword search queries
kwq1, . . . , kwql, where kwqj corresponds to the prefix pj := q1||q2|| . . . ||qj . Lemma 1
ensures that exactly one of these queries will return the correct vi.
Protocol Description. The function corresponding to the interval labeling problem is

IL(q, (x1, . . . , xn, v0, . . . , vn)) = va, where q ∈ (xa, xa+1].

Note that element rank
Rank(y, (x1, . . . , xn)) = |{xi |xi < y}|

is a special case of IL – use vi = i for 0 ≤ i ≤ n. We show how to obliviously compute
IL, using private keyword search as the main building block. Let (PKSG,PKSQ,
PKSA,PKSD) be the algorithms implementing succinct computation ofPKS. Then
we have the following

Constant-Round Private Database Queries 261

Claim. Scheme 1 (see below) succinctly computes IL (i.e. it solves Problem 1).

Proof. Sketch. The main ingredient is the following simple claim.

Claim. Let w ⊆ (xi−1, xi] and w′ �⊆ (xi−1, xi]. Then w ≺ xi ∨ w ≺ xi−1 ∨ w′ ≺
xi ∨ w′ ≺ xi−1.

Proof. Straightforward case analysis. ��
LetD be the database obtained by the algorithm ILA. Using the above claim, it is easy
to prove that (w, vi) ∈ D ⇐⇒ (∃i)w ⊆ (xi−1, xi]∧w′ �⊆ (xi−1, xi]. To see this, note
that ILA iterates through the set S = {w| (∃i)w ≺ xi ∨w′ ≺ xi}; but the above claim
guarantees that it is sufficient to examine exactly the set S. This means that Lemma 1
holds forD. We are now ready to prove:

Correctness. By Lemma 1, exactly one of the queries pj has a matching entry (pj , vi) ∈
D, and i is such that q ∈ (xi−1, xi].
Privacy. As said above, there is exactly one pj with a matching database entry. All
other pi ≺ q will return ⊥ when used in private keyword search on D. Since the order
of the answers is shuffled, using privacy of PKS and standard hybrid arguments, it is
straightforward to show the privacy of interval labeling. For lack of space we do not
present the proof here.

Efficiency. Note that D contains at most 2ln entries. Server computation is therefore
O(ln). Total communication, as well as user’s computation is polylogarithmic in n
(and linear in l).

Scheme 1 (Interval Labeling)

ILG(1k):
1. output (SK, PK) = PKSG(1k)

ILQ(SK, q):
1. kwq1 ← PKSQ(SK, q1),

. . . ,
kwql ← PKSQ(SK, q1|| . . . ||ql)

2. output (kwq1, . . . , kwql)

ILA(PK, (kwq1, . . . , kwql), A = (v0, x1, v1, . . . , xn, vn)):
1. for j = 1 to l:

(a) for i = 1 to n:
i. let w be the j-bit prefix of xi

ii. if w ⊆ (xa−1, xa] and w′ �⊆ (xa−1, xa] then add (w, va) to D
iii. if w �⊆ (xb−1, xb] and w′ ⊆ (xb−1, xb] then add (w′, vb) to D

2. if fewer than 2ln entries were added, then pad D to 2ln entries
3. for j = 1 to l, compute raj = PKSA(PK, kwqj , D)
4. randomly permute (ra1, . . . , ral) and output the result

ILD(SK, (a1, . . . , ak)):
1. find the unique ai such that PKSD(SK, ai) = v �= ⊥; output v

Note that the keywords which the algorithm ILA inserts in D need not be of the same
length. PKS solutions do not support variable lengths, but it is easy to circumvent this
problem: for example, a prefix-free encoding can be padded to some fixed length.

262 N. Dedic and P. Mohassel

3.2 Extending to Higher Dimensions

Interval labeling can be naturally extended to labeling of (hyper-)rectangles in [L]d.
Here a point is defined by its d coordinates (x1, . . . , xd) ∈ [L]d. Let X1 = (x1[1] <
· · · < x1[n]),. . . ,Xd = (xd[1] < · · · < xd[n]) be d lists of coordinates (for simplicity
assume they are all of equal length n). These lists then define (n + 1)d rectangles,
labeled R0,...,0, . . . , Rn,...,n. For i1, . . . , id ∈ [n] we define the rectangle Ri1,...,id :=
{(x1, . . . , xd) | ∀j xj ∈ (xj [ij], xj [ij+1]]}. In each rectangle Ri1,...,id , a string label
zi1,...,id is written.

This construction, which we will call d-dimensional rectangle labeling, is uniquely
defined by
(X1, . . . , Xd, Z = (z0,...,0, . . . , zn,...,n)). We are interested in succinct computation of

RLd(p = (x1, . . . , xd), (X1, . . . , Xd, Z)) = zi1,...,id where p ∈ Ri1,...,id .

This problem can be solved by recursively using the succinct computation of interval
labeling. Rather than write the general solution for any d, we will exemplify it using
d = 4. This conveys the main idea clearly, but cumbersome notations associated with
arbitrary d are avoided.

We will denote the d = 4 coordinates with (x, y, u, v). Server’s input is X =
(x1, . . . , xn), Y = (y1, . . . , yn), U = (u1, . . . , un), V = (v1, . . . , vn) (xi, yi, ui, vi ∈
[L]) and a table of values Z = (z0,0,0,0, . . . , zn,n,n,n) (zi,j,k,l ∈ {0, 1}m). User’s input
is a point p = (x, y, u, v) ∈ [L]4. A scheme for succinct computation of RL4 follows.

Scheme 2
RLG4(1

k):
1. output (PK, SK) = ILG(1k)

RLQ4(SK, q):
1. output (ILQ(SK, x), ILQ(SK, y), ILQ(SK, u), ILQ(SK, v))

RLA4(PK, (ex, ey, eu, ev), (X, Y, Z)):
1. for (i, j, k) ∈ [n]3 let Di,j,k ← ILA(PK, eqv, (v1, zi,j,k,1, . . . , vd, zi,j,k,n))
2. for (i, j) ∈ [n]2 let Ei,j ← ILA(PK, equ, (u1, Di,j,1, . . . , uc, Di,j,n))
3. for i ∈ [n] let Fi ← ILA(PK, eqy, (y1, Ei,1, . . . , yb, Ei,n))
4. let ans ← ILA(PK, eqx, (x1, F1, . . . , xn, Fn))
5. output ans

RLD4(SK, a):
1. User outputs ILD(SK, ILD(SK, ILD(SK, ILD(SK, a))))

Claim. Scheme 2 succinctly computes the functionRL4.

4 Range Retrieval in 2 Dimensions

In this section we are dealing with range retrieval in 2-dimensions. For two points a =
(xa, ya), b = (xb, yb) define the rectangle 〈a, b〉 as {(x, y)|x ∈ [xa, xb), y ∈ [ya, yb)}.
The server S holds a databaseD of n points p1, . . . , pn where pi ∈ [0, L)× [0, L) (L is

Constant-Round Private Database Queries 263

a public parameter). The user U holds two points q1 = (qx1, qy1), q2 = (qx2, qy2) ∈
[0, L)× [0, L), and he wishes to retrieve all the points pi ∈ D which are in the rectangle
〈q1, q2〉. The communication of the protocol should be proportional to the number of
retrieved points |D ∩ 〈q1, q2〉|, and the server should learn only that number.

The basic idea behind the protocol is as follows. Assume for simplicity that the server’s
database contains no two points with equal either x or y coordinates, i.e. xi �= xj and
yi �= yj for all i �= j. Define the grid alignment for a point q = (x, y), denotedAlign(q)
as the pair (i, j) where i = |{xi|xi < x}| and j = |{yi|yi < y}. Then, for any two rect-
angles< a, b >, and< a′, b′ > we have thatD∩ < a, b >= D∩ < a′, b′ > if and only
ifAlign(a) = Align(a′) andAlign(b) = Align(b′). Therefore, the grid alignments of
two corners of a rectangle, uniquely determine the points that lie inside that rectangle.
Our protocol retrieves the points inside a rectangle by (1) determining the gird align-
ments corresponding to that rectangle by running the RL4 protocol (2) retrieving the
points associated to those alignments by running a contiguous-PIR protocol.

The protocol to retrieve the 2-d range is presented next. If the range size (the number
of retrieved points) is s, and k denotes the security parameter then its communication
complexity is proportional to s · poly(k), as is the user-side computation. Server-side
computation is, however, proportional to O(n5).

2-d Range Retrieval Protocol

Range− 2(q1, q2; D):
User’s input: points (q1 = (qx1, qy1), q2 = (qx2, qy2))
Server’s input: database D = (p1 = (x1, y1), . . . , pn = (xn, yn))
User’s Output: list of all pi such that xi ∈ [qx1, qx2) and yi ∈ [qy1, qy2)

– Server creates auxiliary databases X1,Y1,X2,Y2,Z and F as follows:
• X1, X2 ← (x1, x2, . . . , xn), Y1, Y2 ← (y1, y2, . . . , yn)
• set t = 0
• for (i, j, k, l) ∈ [n]4:

∗ compute s, the number of points in 〈(xi, yj), (xk, yl)〉 ∩D
∗ zi,j,k,l ← (t, s)
∗ store the s points in 〈i, j〉 ∩D in F at addresses t . . . t + s− 1
∗ t ← t + s

– U and S succinctly compute RL4((qx1, qy1, qx2+1, qy2+1); X1, Y1, X2, Y2, Z)
(see Section 3.2); U retrieves (t, s) in the end

– U and S succinctly compute ContPIR (Section 2); U ’s input is (t, s) and S’s is F

5 Private mth-Ranked Element

Given two partiesA andB with databasesDA andDB , consider the problem of secure
computation of the mth-ranked element of DA ∪DB . In [1], Aggrawal et al. design a
protocol for this problem with O(log(m)) rounds and sublinear communication com-
plexity in the size of database. We show how to use our non-interactive private element
rank protocol along with additional tricks to design a protocol with better round effi-
ciency. Particularly, we design a protocol that requires only O(log log(m)) rounds and
has a communication complexity lower than O(mε) for any 0 ≤ ε ≤ 1.

In what follows we assume that the output of private element rank protocol is shared
between the parties (no single party learns the actual output). This can be achieved

264 N. Dedic and P. Mohassel

by slightly modifying the protocol of section 3.1. More specifically, in the protocol of
section 3.1, the server initially XORs all the interval labels by a random string r, and
then the protocol proceeds as before. Server’s share of the output will be r, while the
user will receive the intended label XORed with r.

The underlying algorithm for our protocol is different from the one used by Aggrawal
et al. The general idea for the algorithm is that each party searches for the mth-ranked
element in his/her list. One party will return the mth-ranked element as a result of
the search. Next we show how to perform such a seach securely and in a round- and
communication-efficient manner. More sepecifically, we design a protocol with O(c)
rounds of interaction and O(cm1/c) communication complexity for any 1 < c < n. If
we let c = log log(m), we achieve a protocol withO(log log(m)) rounds and communi-
cation complexity ofO(m1/ log log(m)) which is smaller thanO(mε) for any 0 ≤ ε ≤ 1.
It is not clear to us how to apply similar techniques to the protocol of [1] in order to
achieve the same round efficiency.

Consider the first m elements of each database as our new databases. Initially, each
database is divided into m1/c chunks of size O(m(1−1/c)). In each iteration, we deter-
mine which chunk themth-ranked element belongs to by running the element rank pro-
tocol on the database elements that separate the chunks. We then repeat the same process
on the chunk that contains themth-ranked element. The number of iterations required in
order to find themth-ranked element is c. Next we describe the protocol in more detail:

Private mth-ranked Element

Party A’s input: database DA.
Party B’s input: database DB .
Output: the mth-ranked element in DA ∪DB .

1. Assume DA and DB are sorted in an increasing order. Denote the set of first m
elements of DA and DB by SA and SB , respectively (padded with +∞’s to size
m if necessary). For every 1 ≤ i ≤ m1/c, let ri

A = ri
B = i×m(1−1/c).

2. For j = 1 to c
(a) For i = 1 to m1/c

i. Parties run the private element rank protocol to compute shares of:
r′i

A = Rank(SA[ri
A], SB) r′i

B = Rank(SB[ri
B], SA)

ii. Let Ri
A = ri

A + r′i
A and Ri

B = ri
B + r′i

B .
(b) Parties securely compute a circuit that takes shares of ri

A, r′i
A, ri

B , and r′i
B for

every 1 ≤ i ≤ m1/c as inputs and outputs shares of Oj where

Oj = SA[ri
A] if Ri

A = m

Oj = SB [ri
B] if Ri

B = m

Oj = 0 otherwise

The circuit also outputs shares of the new ri
A and ri

B for every 1 ≤ i ≤ m1/c,
where ri

A = RtA
A + i×m(1−(j+1)/c) and ri

B = RtB
B + i×m(1−(j+1)/c) and

tA is the largest integer such that RtA
A ≤ m (similarly for tB).

3. Parties securely compute a circuit that takes shares of O1, . . . , Oc and outputs
shares of

�
Oi.

Constant-Round Private Database Queries 265

6 One-Round PIR Is Sufficient for Private Keyword Search

We recall the setup for private keyword search (PKS) problem. The server and the client
are involved. The server’s input is a database X of n pairs (xi, pi), where xi is a key-
word, and pi the corresponding payload. The client’s input is a searchword w. If there
is a pair (xi, pi) in the database such that xi = w, then the output is the corresponding
payload pi. Otherwise the output is a special symbol⊥.

In [9], Freedman et al. give a non-interactive and communication efficient solution
for this functionality. Their construction requires PIR, as well as a semantically secure
homomorphic encryption scheme. In this section we design a modified version of their
scheme, which eliminates the dependency on homomorphic encryption. In fact, any
one-round PIR suffices for our solution, and the communication complexity is essen-
tially the same as that of the underlying PIR. This establishes a somewhat surprising
implication:

Theorem 3. If there is a one-round PIR with communication complexity c(n) then there
is a one-round PKS with communication complexity c(n)polylog(n).

The basic idea of our solution is to replace the polynomials used in protocol of [9],
by Yao’s garbled circuits [15]. This already eliminates the need for homomorphic en-
cryption which was used to encrypt the coefficients of those polynomials. Further care is
necessary to make sure that after this modification the protocol remains non-interactive.
We use techniques similar to those used by Cachin et al. [3] for this purpose. Due to lack
of space, details of the construction are not included in this extended abstract. Please
see the full version of the paper for more detail.

Finally, note that all the protocols from previous sections can be implemented from
PKS only, and obviously PIR is a special case of PKS. Thus the following three prob-
lems are “equivalent up to polylog(n) factor in communication” (i.e. if any of them can
be succinctly computed, then the others can too): PIR, PKS, interval labeling.

Acknowledgment. We would like to thank Yuval Ishai for providing us with a copy of
[13], pointing to some related work and other helpful discussions.

References

1. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the kth-ranked element. In:
Proc. of Eurocrypt (2004)

2. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In:
Proc. of Eurocrypt (2001)

3. Cachin, C., Camenisch, J., Kilian, J., Mueller, J.: One-round secure computation and secure
autonomous mobile agents. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 512–523. Springer, London, UK (2000)

4. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with poly-
logarithmic communication. In: Proc. of Eurocrypt, pp. 402–414 (1999)

5. Chang, Y.-C.: Single database private information retrieval with logarithmic communication.
Cryptology ePrint Archive, Report 2004/036 (2004)

266 N. Dedic and P. Mohassel

6. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Technical Report
TR CS0917, Department of Computer Science, Technion (1997)

7. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proc.
of FOCS, pp. 41–50 (1995)

8. Dedić, N., Reyzin, L., Russell, S.: Unpublished manuscript
9. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudo-

random functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer,
Heidelberg (2005)

10. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private informa-
tion retrieval schemes. In: Proc. ACM STOC, ACM Press, New York (1998)

11. Goldreich, O.: Foundations of cryptography, vol. 2 (2004)
12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness

theorem for protocols with honest majority. In: Proceedings of 19th Annual ACM Sympo-
sium on Theory of Computing, pp. 218–229. ACM Press, New York (1987)

13. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, Springer, Heidelberg (to appear)

14. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-
private information retrieval. In: Proc. of FOCS, pp. 364–373 (1997)

15. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation. Cryptol-
ogy ePrint Archive, Report 2004/175 (2004)

16. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Zhou, J.,
Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer,
Heidelberg (2005)

17. Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation.
In: pot 33rd STOC, pp. 590–599 (2001)

18. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proc. ACM STOC,
ACM Press, New York (1999)

19. Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005)

20. Rabin, M.O.: How to exchange secrets by oblivious transfer. technical report tech. In: Tech-
nical Report Tech. Memo TR-81 (1981)

21. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC 1. In: IEEE Sym-
posium on Foundations of Computer Science, pp. 554–567. IEEE Computer Society Press,
Los Alamitos (1999)

Universal Algebra and Hardness Results for

Constraint Satisfaction Problems�

Benôıt Larose1 and Pascal Tesson2

1 Department of Mathematics and Statistics, Concordia University
larose@mathstat.concordia.ca

2 Département d’Informatique et de Génie Logiciel, Université Laval
pascal.tesson@ift.ulaval.ca

Abstract. We present algebraic conditions on constraint languages Γ
that ensure the hardness of the constraint satisfaction problem CSP(Γ)
for complexity classes L, NL, P, NP and ModpL. These criteria also
give non-expressibility results for various restrictions of Datalog. Fur-
thermore, we show that if CSP(Γ) is not first-order definable then it is
L-hard. Our proofs rely on tame congruence theory and on a fine-grain
analysis of the complexity of reductions used in the algebraic study of
CSPs. The results pave the way for a refinement of the dichotomy con-
jecture stating that each CSP(Γ) lies in P or is NP-complete and they
match the recent classification of [1] for Boolean CSP. We also infer a
partial classification theorem for the complexity of CSP(Γ) when the
associated algebra of Γ is the idempotent reduct of a preprimal algebra.

Constraint satisfaction problems (CSP) provide a unifying framework to study
various computational problems arising naturally in artificial intelligence, combi-
natorial optimization, graph homomorphisms and database theory. An instance
of this problem consists of a finite domain, a list of variables and constraints
relating the possible values of variables: one has to decide whether the variables
can be assigned values that simultaneously satisfy all constraints. This problem
is of course NP-complete and so research has focused on identifying tractable
subclasses of CSP. A lot of attention has been given to the case where all con-
straints are constructed from some constraint language Γ , i.e. some set of finitary
relations over a fixed domain. In an instance of CSP(Γ), all constraints are of
the form (xi1 , . . . , xik) ∈ Rj for some Rj ∈ Γ .

In their seminal work [9], Feder and Vardi conjectured that each CSP(Γ) either
lies in P or is NP-complete. This so-called dichotomy conjecture is the natural
extension to non-Boolean domains of a celebrated result of Schaefer [18] on the
complexity of Generalized Satisfiability which states that CSP(Γ) is either in P
or is NP-complete for any constraint language Γ over the Boolean domain.

Progress towards the dichotomy conjecture has been steady over the last fif-
teen years and has been driven by a number of complementary approaches. One
� Research supported by NSERC, FQRNT and CRM. We thank Albert Atserias, Vic-

tor Dalmau, Laszlo Egri, Andrei Krokhin, Matt Valeriote and Heribert Vollmer for
helpful discussions.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 267–278, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

268 B. Larose and P. Tesson

angle of attack relies on universal algebra: there is a natural way to associate
to a set of relations Γ an algebra A(Γ) whose operations are the functions that
preserve the relations in Γ and one can show that the complexity of CSP(Γ)
depends on the algebraic structure of A(Γ). This analysis has led to a number of
key results including a verification of the dichotomy conjecture for three-element
domains and the identification of wide classes of tractable CSP (see [4]).

A different, descriptive complexity approach has consisted in classifying CSPs
according to the sophistication of the logical apparatus required to define the
set of negative instances of CSP(Γ). It was noted early on that when ¬CSP(Γ)
is definable in the database-inspired logic programming language Datalog then
CSP(Γ) lies in P [9] and this provides a unifying explanation for a number
of (but not all) tractable cases. Further investigations have indicated strong
connections between expressibility in symmetric and linear Datalog and CSPs
solvable in, respectively, logarithmic space (L) and non-deterministic logspace
(NL) [5,8]. From a logical perspective, the simplest class of CSPs are those which
are first-order definable and recent work has provided a precise characterization
for them [2,15].

From a complexity-theoretic perspective, the classification of CSP(Γ) as
“tractable” is rather coarse. Ultimately, one would expect that every CSP(Γ)
lying in P is in fact complete for some “fairly standard” subclass of P. Over the
two-element domain, it was recently established that Schaefer’s dichotomy can
in fact be refined: each CSP(Γ) over the Boolean domain is either FO-definable
or is complete under AC0 isomorphisms for one of the classes L, NL, ⊕L, P or
NP [1].

The present paper seeks to develop the necessary tools for a refinement of the
dichotomy conjecture and for a smoother integration of the logical and algebraic
approaches to the study of CSPs. As we recall in Section 2, the algebraic angle
of attack relies on a number of basic reductions from CSP(Λ) to CSP(Γ) when
Γ and Λ are constraint languages when the algebra A(Λ) lies in the variety
generated by A(Γ) [3,4]. When the sole objective is to classify CSP(Γ) as either in
P or NP-complete, polynomial-time Turing reductions are clearly good-enough.
However, finer classifications require much tighter reductions and we show that
all but one of them is in fact first-order. Furthermore we show that all of them
preserve expressibility in Datalog and its most relevant fragments.

These reductions provide the opportunity for a systematic study of the com-
plexity of tractable CSPs. In Section 3, we begin by proving that if CSP(Γ) is
not first-order definable, then the problem is in fact L-hard. This result can be
viewed as a first step towards more general dichotomy theorems as it exhibits
a gap in the complexity of CSP. In Section 4, we use tame congruence theory
and deep classification results of idempotent strictly simple algebras to obtain
a number of hardness results for CSP(Γ). Specifically, we consider the variety
V generated by A(Γ) and give sufficient conditions on V for CSP(Γ) to be NL-
hard, ModpL-hard and P-hard. These also translate into necessary conditions for
¬CSP(Γ) to be definable in Datalog, linear Datalog and symmetric Datalog. For
a given Γ it is possible to decide whether or not V fits each of these criteria [20].

Universal Algebra and Hardness Results 269

In Section 5, we demonstrate the usefulness of the results by revisiting the results
of [1] on CSPs over the boolean domain and by classifying the complexity of a
number of CSP(Γ) when A(Γ) is the idempotent reduct of a preprimal algebra.

A number of technical proofs have been omitted due to space constraints. An
extended version of this abstract is available from the authors’ web pages.

1 Preliminaries

We first set the notation and present the required basics. We refer the reader
to [11] and [7] for algebraic and clone-theoretic results, to [12] for an introduction
to finite model theory and descriptive complexity and to [4] for a survey on the
algebraic approach to CSP.

Let σ = {R1, . . . , Rr, c1, . . . , cs} be a signature, where each Ri is a relational
symbol of arity ai and each ci is a constant symbol. A structure H of signature σ
is a tuple H = 〈H ;R1(H), . . . , Rr(H), c1(H), . . . , cs(H)〉 where H , the universe
of H, is a non-empty set, and for each i Ri(H) is a relation on H of arity ai, and
ci(H) is some fixed element of H . We use the usual convention of using G,H, . . .
to denote the universe of the structure G,H, Unless otherwise mentioned the
signatures we deal with in this paper are purely relational (i.e. without constant
symbols).

Let σ be a (relational) signature. Given two σ-structures G and H, a map f
from G to H is a homomorphism from G to H if f(Ri(G)) ⊆ Ri(H)) for all i,
where for any relation R of arity r we have

f(R) = {(f(x1), . . . , f(xr)) : (x1, . . . , xr) ∈ R}.

Two structures H and H′ are homomorphically equivalent if there exist homo-
morphisms H→ H′ and H′ → H. A structure H is a core if the only homomor-
phisms H→ H are automorphisms, or, equivalently, if it is of minimal size in its
class of homomorphically equivalent structures. Every finite structure is equiva-
lent to a structure of minimal size, and it is easy to verify that any two minimal
structures are isomorphic, hence we can talk about the core of a structure.

Let Γ be a constraint language, i.e. a finite set of relations on the set H .
Let Γ denote a relational structure on H whose set of basic relations is Γ and
let σ be its signature. We denote as Hom(Γ) the class of all finite structures
of type σ that admit a homomorphism to Γ. In this setting Γ is called the
target structure. Alternatively, we may use the notation CSP(Γ) for this decision
problem: indeed the constraints in an instance of CSP(Γ) can be regarded as
defining a σ-structure C on the set of variables and a satisfying assignment is a
homomorphism from C to Γ. Obviously, if Γ′ is the core of Γ then Hom(Γ) =
Hom(Γ′). We thus assume throughout the paper that the target structures under
consideration are cores.

1.1 Algebras and Varieties

An n-ary operation on a set A is a map from An to A. The n-ary operation f on
A preserves the k-ary relation θ on A (equivalently, we say that θ is invariant

270 B. Larose and P. Tesson

under f) if the following holds: given any matrix M of size k×n whose columns
are in θ, applying f to the rows of M will produce a k-tuple in θ. Given a set
Γ of relations on A, Pol(Γ) denotes the set of all operations on A that preserve
all relations in Γ .

An algebra is a pair A = 〈A;F 〉 where A is a non-empty set, called the universe
of A, and F is a set of operations on A, called the basic operations of A. For a
constraint language Γ over A, we denote by A(Γ) the algebra 〈A;Pol(Γ)〉, and
call it the algebra associated to CSP (Γ).

The terms (polynomials) of an algebra are the operations that can be built
from its basic operations (and the constants) using composition and projections.
Two algebras are term (polynomially) equivalent if they have the same terms
(polynomials). An operation f is idempotent if it satisfies f(x, . . . , x) = x for all
x. The idempotent reduct of the algebra A is the algebra with the same universe
and whose basic operations are the idempotent terms of A.

Subalgebras, homomorphic images and products of algebras are defined in
a natural way, as for groups or rings. Technically we require the algebras to
be indexed and of the same signature to define these notions, see [11]. A class
of similar algebras is a variety if it is closed under formation of homomorphic
images (H), subalgebras (S) and products (P). The variety generated by A is
denoted by V(A); it is known that V(A) = HSP (A), i.e. that every member C

of the variety is obtained as a homomorphic image of a subalgebra of a power of
A; furthermore this power can be taken to be finite if C is finite.

Tame Congruence Theory, developed by Hobby and McKenzie [11], is a pow-
erful tool for the analysis of finite algebras. Every finite algebra has a typeset,
which describes the local behaviour of the algebra, which contains one or more
of the following 5 types: (1) the unary type, (2) the affine type, (3) the Boolean
type, (4) the lattice type and (5) the semilattice type. There is a very tight
connection between the kind of equations that are satisfied by the algebras in a
variety and the types that are admitted (omitted) by a variety, i.e. those types
that (do not) appear in the typeset of some algebra in the variety. The theory
for idempotent algebras is somewhat more streamlined, and we now present the
two results we shall require.

An algebra is strictly simple if it is simple (i.e., has no non-trivial congruences)
and has no non-trivial subalgebras (a subalgebra is trivial if it is either the
algebra itself or is 1-element.) Because a strictly simple algebra is simple it has
a unique type from 1 to 5 associated to it. The next lemma (Lemma 3.1 [20])
will allow us to connect typesets of varieties to the complexity of CSP’s:

Lemma 1.1. Let A be a finite, idempotent algebra such that V(A) admits type
i. Then there exists a strictly simple algebra of type at most i in HS(A) where
“at most i” refers to the ordering 1 < 2 < 3 > 4 > 5 > 1.

Szendrei has characterised all idempotent strictly simple algebras, ([19] Theorem
6.1): we need the following special cases. The 2-element set is the 2-element
algebra with no basic operations 〈{0, 1}; ∅〉. The 2 element semilattices are the 2-
element algebras with a single binary operation 〈{0, 1};∧〉 and 〈{0, 1};∨〉. The 2
element lattice is the 2 element algebra with two binary operations 〈{0, 1};∨,∧〉.

Universal Algebra and Hardness Results 271

An algebra is affine if there is an abelian group structure on its base set set such
that (i) m(x, y, z) = x − y + z is a term of the algebra and (ii) every term
of the algebra is affine, i.e. commutes with the operation m. Equivalently, an
idempotent algebra is affine iff it is the idempotent reduct of a module.

Lemma 1.2 ([19]). Let A be a strictly simple idempotent algebra.

– If A has unary type (type 1) then it is term equivalent to the 2-element set;
– If A has affine type (type 2) then it is an affine algebra;
– if it is of semilattice (type 5) it is term equivalent to a 2 element semilattice;
– if A has lattice type (type 4) it is polynomially equivalent to the 2 element

lattice.

This can be used to obtain:

Corollary 1.1. Let A be a finite, idempotent, strictly simple algebra.

1. If A is of affine type, then there exists an Abelian group structure on the base
set of A such that the relation {(x, y, z) : x+ y = z} is a subalgebra of A3;

2. if A is of semilattice type, then up to isomorphism the universe of A is {0, 1}
and the relation θ = {(x, y, z) : (y ∧ z)→ x} is a subalgebra of A3;

3. if A is of lattice type, then up to isomorphism the universe of A is {0, 1} and
the relation ≤ = {(0, 0), (0, 1), (1, 1)} is a subalgebra of A2.

1.2 Fragments of Datalog

Datalog was originally introduced as a database query language. We view it here
simply as a means to define sets of σ-structures. A Datalog program over the
signature σ consists of a finite set of rules of the form h← b1∧. . .∧bk where each
of the bi and h are atomic formulas of the form R(xj1 , . . . , xjr). We distinguish
two types of relational predicates occurring in the program: predicates R that
occur at least once in the head of a rule are called intensional database predicates
(IDBs) and are not part of σ. The other predicates which occur only in the
body of a rule are called extensional database predicates and must all lie in σ.
Precise definitions of the semantics of Datalog can be found in [14,5,8]: we simply
illustrate the basics of the formalism with the following example.

Let σ be a signature consisting of a single binary relational symbol E (so that a
σ-structure is a graph) and consider the Datalog program consisting of the rules
(1) P (x, y)← E(x, y) (2) P (x, y)← P (x, z) ∧ P (z, y) and (3) G(x) ← P (x, x).
The program Q is providing a recursive specification of the IDB predicates P,G
in terms of E,P and G. The predicate P is intended to include (x, y) if there is
a path from x to y. The first rule states that this holds if (x, y) is an edge and
the second that, recursively, this holds if there is a path from x to some z and
from z to y. The predicate G then contains the x such that there is a directed
cycle around x. One of the IDBs of the Datalog program is chosen as a target
and we say that a σ-structure is accepted by the program if that target IDB is
non-empty. The program above with G as its goal thus defines the set of graphs
with a directed cycle.

272 B. Larose and P. Tesson

Rules which contain only EDBs in their body (such as (1) above) are called
non-recursive rules and those containing at most one IDB in their body (such
as (1) and (3)) are linear. Although the above example contains the non-linear
rule (2), it is easy to see that an equivalent linear program could be obtained
by replacing (2) with P (x, y) ← P (x, z) ∧ E(z, y). A program is said to be
symmetric if it is linear and such that each recursive rule R is accompanied by
its symmetric Rr, where Rr is obtained by exchanging from R by exchanging
the roles of the IDBs in its head and body. The symmetric of the above rule
would be P (x, z)← P (x, y) ∧ E(z, y).

The expressive power of Datalog and its linear, symmetric and non-recursive
fragments have been important tools in the study of CSP. A very nice result
of [2] shows that CSP(Γ) is definable by a first-order sentence iff ¬CSP(Γ) is
definable by a non-recursive Datalog program and consequently all such CSP(Γ)
are solvable in co-NLogtime. Moreover, expressibility of ¬CSP(Γ) in symmet-
ric, linear and general Datalog is a sufficient (and wide-encompassing) condition
for CSP(Γ) to lie in respectively L [8], NL [5] and P [9].

2 Nature of the Algebraic and Clone-Theoretic
Reductions

The following theorem is our starting point for a fine-grained analysis of the
complexity of constraint satisfaction problems. A relation θ is irredundant if for
each two distinct coordinates i and j there exists a tuple x of θ with xi �= xj .

Theorem 2.1. Let Γ be a finite set of relations on A such that Γ is a core. Let
A denote the idempotent reduct of the algebra associated to Γ .

1. Let C be a finite algebra in V(A), and let Γ0 be a finite set of relations invari-
ant under the basic operations of C. Then there exists a logspace many-one
reduction of CSP(Γ0) to CSP(Γ). Furthermore, if ¬CSP (Γ) is expressible
in (linear, symmetric) Datalog, then so is ¬CSP (Γ0).

2. If furthermore C ∈ HS(A) and the relations in Γ0 are irredundant, then the
above reduction is first-order.

The proof, although not conceptually difficult, is technical and is omitted for
space. The constructions are given for ten basic reductions which can be com-
posed to obtain the two claims above: their principles are not new [13,3] although
most were never explicitly shown to be first order or to preserve expressibility
in the linear and symmetric fragments of Datalog (the case of Datalog is treated
in [17]). It should be noted that logspace reductions are the best we can hope
for in the first half of the statement: indeed, it is straightforward from the defi-
nitions to see that if Γ0 = Γ ∪ {=} then one has A(Γ) = A(Γ0). But if CSP(Γ)
is first-order definable then CSP(Γ0) is L-complete (see e.g. [8]) and so there can
be no first-order reduction from CSP(Γ0) to CSP(Γ).

Universal Algebra and Hardness Results 273

3 CSP’s That Are Not FO Are L-Hard

In this section we show that for every finite set Γ , if CSP (Γ) is not first-order
expressible then it is L-hard. We require a characterisation of first-order definable
CSP’s from [15]. Consider the signature σ = {R1, . . . , Rr} whereRi is a relational
symbol of arity ai. For an integer n the n-link of type σ is the σ-structure

Ln = 〈{0, 1, . . . , n};R1(Ln), . . . , Rr(Ln)〉,

such that Ri(Ln) = ∪nj=1{j−1, j}ai for i = 1, . . . , r. Intuitively, a link is obtained
from a path 0, 1, . . . , n by replacing each edge by the relational structure of type
σ on 2 elements whose basic relations are of maximal size.

Let A and B be two σ-structures. The A-th power of B is the σ-structure

BA = 〈BA;R1(BA), . . . , Rr(BA)〉,

where BA is the set of all maps from A to B, and for i = 1, . . . , r the rela-
tion Ri(BA) consists of all tuples (f1, . . . , fai) such that (f1(x1), . . . , fai(xai)) ∈
Ri(B) whenever (x1, . . . , xai) ∈ Ri(A).

Let π1 and π2 denote the two projections from A2 to A.

Lemma 3.1 ([15]). Let Γ be a finite set of relation on A such that Γ is a core.
Then CSP (Γ) is first-order definable if and only if for some n there exists a
homomorphism P : Ln → Γ(Γ2) such that P (0) = π1 and P (n) = π2.

Theorem 3.1. For any finite constraint language Γ the problem CSP (Γ) is
either first-order definable or is L-hard.

Proof (Sketch). We assume that Γ is a core. Let σ = {R1, . . . , Rr} be the sig-
nature of the structure Γ and let Γ ′ = Γ ∪ {{a} : a ∈ A}. For a ∈ A let Sa
be a relational symbol for {a}, and let σ′ = {R1, . . . , Rr} ∪ {Sa : a ∈ A} be
the signature of the structure Γ′. It suffices to show that if CSP (Γ) is not first-
order definable then CSP (Γ ′) is L-hard (see full version): for this we construct
a first-order reduction of NOT st-connectivity (which is L-hard under first-order
reductions [12]) to CSP (Γ ′). Consider the vocabulary of graphs with two spec-
ified vertices, τ = {E, s, t} where E is a binary relational symbol and s and
t are constant symbols. We shall describe a first-order interpretation I of σ′

into τ assigning to each graph G with distinguished vertices s and t a structure
K = I(G) of type σ′ such that K admits a homomorphism to Γ′ precisely when
s and t are not connected in G.

It is clear that the following defines a symmetric relation ∼ on Γ(Γ2): let
g ∼ h if there exists a homomorphism F : L1 → Γ(Γ2) such that F (0) = g and
F (1) = h. It is also clear by definition of the links that Lemma 3.1 shows this:
for a core Γ, CSP (Γ) is first-order definable precisely when the projections are
connected in the graph defined by ∼.

We simply describe the reduction: the argument that it is indeed first-order
is omitted. Given a graph G with specified vertices s and t, we construct a σ-
structure H which is obtained from G by replacing each edge by the link L1 (in

274 B. Larose and P. Tesson

the same manner that links are obtained from paths). Consider now the product
σ-structure H×Γ2, that we transform into the σ′-structure K = I(G) as follows:
for each a ∈ A we define Sa(K) to contain all elements (g, c, d) such that g = s
and c = a OR g = t and d = a. We first show that the above is indeed a reduction
of NOT st-connectivity to CSP (Γ ′). Suppose there is a homomorphism f from
K to Γ′: in particular it is a homomorphism of σ-structures f : H × Γ2 → Γ,
which, by the natural property of products, induces a homomorphism F from H
to ΓΓ2

; by definition of the relations Sa(K), it is easy to verify that F (s) = π1

and F (t) = π2. Indeed, we have F (s)(c, d) = f(s, c, d) = c and F (t)(c, d) =
f(t, c, d) = d. Since CSP (Γ) is not first-order definable, there is no path in
Γ between the projections, hence there cannot be a path in G from s to t.
Conversely, suppose there is no such path in G. Then define a map f from
H × Γ2 to Γ by setting f(g, c, d) = c if there is a path in G from s to g and
f(g, c, d) = d otherwise. This is clearly well-defined, and obviously preserves all
the relations Sa. It is easy to see that f also preserves all relations Ri: indeed,
the map F : H→ ΓΓ2

induced by f maps all elements to one of two projections
which are “loops” in any power structure.

4 Main Theorems

We present our two main theorems. The first provides sufficient algebraic criteria
for the hardness of CSP(Γ) for a number of natural complexity classes. The
second expresses these same lower bounds in descriptive complexity terms.

Theorem 4.1. Let Γ be a finite set of relations on A such that Γ is a core, and
let A = A(Γ). Then:

1. If V(A) admits the unary type, then CSP(Γ) is NP-complete under FO re-
ductions.

2. If V(A) omits the unary type but admits the affine type, then there exists a
prime p such that CSP(Γ) is ModpL -hard under FO reductions.

3. If CSP(Γ) is not FO, then it is L-hard under FO reductions.
4. If V(A) omits the unary, and semilattice types, but admits the lattice type,

then CSP(Γ) is NL-hard under FO reductions.
5. If V(A) omits the unary type, but admits the semilattice type, then CSP(Γ)

is P-hard under FO reductions.

Proof (Sketch). (3) is the content of Theorem 3.1, and (1) follows from a result
of [3]: the reduction there is actually first-order by Theorem 2.1.

It follows from results in [11] that if A satisfies the hypothesis of one of (2), (4)
or (5) then so does its idempotent reduct, which we denote by B. By Lemma 1.1,
if B satisfies the hypothesis (i) then there exists a strictly simple algebra C ∈
HS(A) of type (i). By Corollary 1.1 it means that, in case (2), there exists
an Abelian group structure on the base set of B such that the 3-ary relation
μ = {(x, y, z) : x + y = z} is invariant under the operations of B. Consider the
set Γ ′ that consists of the relation μ, the unary relation B = {b} where b is some

Universal Algebra and Hardness Results 275

non-zero element of B such that pb = 0 for some prime p, and the unary relation
Z = {0}. We show in the full version of the paper how Theorem 2.1 can be used
to obtain a first-order reduction of CSP(Γ ′) to CSP(Γ) for some Γ for which
CSP(Γ) is mod-p L hard under FO reductions.

We proceed as in the other two cases. In case (4), we find an FO reduction
of CSP(Γ ′) to CSP(Γ) where Γ ′ = {≤, {0}, {1}}. There is a straightforward
FO-reduction from the directed graph unreachability problem to CSP(Γ ′) and
the former problem is NL-complete under first-order reductions [12].

In case (5) we find a first-order reduction of CSP(Γ ′) to CSP(Γ) where Γ ′ =
{θ, {0}, {1}} where θ = {(x, y, z) : (y ∧ z) → x}. It is again straightforward to
show that CSP(Γ ′) admits a natural FO reduction from Horn-3-Sat which is
P-hard under FO-reductions [12].

Similar arguments lead to an analogous result in which hardness is replaced by
non-expressibility for fragments of Datalog. Note that (1) is shown in [17] while
(2) and (3) rely on the fact that ¬CSP({≤, {0}, {1}}) and ¬CSP({θ, {0}, {1}})
are not definable in, respectively, symmetric and linear Datalog [6].

Theorem 4.2. Let Γ be a finite set of relations on A such that Γ is a core, and
let A = A(Γ). Then:

1. If V(A) admits the unary or affine types, then ¬CSP (Γ) is not in Datalog.
2. If V(A) omits the unary type, but admits the semilattice type, then ¬CSP (Γ)

is not in linear Datalog.
3. If V(A) omits the unary and semilattice types, but admits the lattice type,

then ¬CSP (Γ) is not in symmetric Datalog.

5 Applications

Because the algebraic criteria used in Theorems 4.1 and 4.2 are all decidable [20],
they are a very convenient first step when studying the complexity of CSP(Γ)
for a specific Γ or a specific class of them. We first show that our criteria match
Allender et al.’s [1] description of the complexity of Boolean CSP’s and line up
exactly with the expressibility in restrictions of Datalog. We finally use them to
study CSPs linked to preprimal algebras.

5.1 Boolean CSP’s

Theorem 5.1. Let Γ be a set of relations on {0, 1} such that Γ is a core. Let
V denote the variety generated by A(Γ).

1. If V admits the unary type then CSP (Γ) is NP-complete, and ¬CSP (Γ) is
not expressible in Datalog.

2. If V omits the unary type but admits the affine type, then CSP (Γ) is ⊕L-
complete and ¬CSP (Γ) is not expressible in Datalog.

3. if V admits only the Boolean type, CSP (Γ) is either first-order definable or
L-complete; if Γ is finite, ¬CSP (Γ) is expressible in symmetric Datalog;

276 B. Larose and P. Tesson

4. if V omits the unary, affine and semilattice types, but admits the lattice type,
then CSP (Γ) is NL-complete; if Γ is finite, then ¬CSP (Γ) is expressible in
linear Datalog, but not in symmetric Datalog;

5. if V omits the unary and affine types, but admits the semilattice type, then
CSP (Γ) is P-complete; if Γ is finite then ¬CSP (Γ) is expressible in Datalog,
but not in linear Datalog.

5.2 Preprimal Algebras

We now use our results to investigate the descriptive and computational com-
plexity of CSP’s whose associated algebra is the idempotent reduct of a preprimal
algebra. A finite algebra A is preprimal if its clone of term operations is maximal
in the lattice of clones, i.e. is properly contained in the set of all operations on the
base set A but there is no clone strictly between these. Maximal clones satisfy re-
markable properties, for instance every clone is contained in some maximal clone
and they are finite in number. They were completely classified by I.G. Rosenberg
(see [7]), thereby furnishing an explicit criterion to determine if a set of opera-
tions generates all operations on a finite set A by composition. Alternatively, one
may view CSP’s whose algebra is preprimal as those whose constraint language
is minimal, in the sense that it is non-trivial but every of its constraints can be
inferred from any other non-trivial constraint in the language. It is easy to see
that any maximal clone may be expressed in the form Pol (θ) for some relation θ;
we shall investigate problems CSP(Γ) where Pol(Γ) = Pol({θ}∪{{a} : a ∈ A}),
i.e. such that the associated algebra of the problem CSP (Γ) is the idempotent
reduct of a preprimal algebra. We follow Rosenberg’s classification of the rela-
tions θ that yield maximal clones, see pages 230-231 of [7]. We also require an
effective characterisation of FO definable CSP’s from [15]. Let G be a relational
structure and let a, b ∈ G. We say that b dominates a in G if for any basic
relation R of G, and any tuple t ∈ R, replacement of any occurrence of a by b
in t will yield a tuple of R. If Γ is a relational structure on A, we say that the
structure Γ2 dismantles to the diagonal if one may obtain, by successive removals
of dominated elements of Γ2, the diagonal {(a, a) : a ∈ A}.

Lemma 5.1 ([15]). Let Γ be a set of relations such that Γ is a core. Then
CSP (Γ) is first-order expressible if and only if Γ2 dismantles to the diagonal.

(P) (Permutation) Here θ = π◦ for some permutation π which is fixed point free
and of prime order. In this case ¬CSP (Γ) is expressible in symmetric Datalog
by [8]. In particular CSP(Γ) is in L and in fact is L-complete: it is easy to
show that Γ2 does not dismantle to the diagonal and thus that CSP(Γ) is not
FO-definable and L-hard by Theorem 3.1.

(E) (Equivalence) Here θ is a non-trivial equivalence relation on A; follow-
ing [8] the problem ¬CSP (Γ) is expressible in symmetric Datalog. Hence
CSP(Γ) is in L, and again L-complete because one can also show that Γ2 does
not dismantle to the diagonal.

(A) (Affine) In this case θ = {(a, b, c, d) : a + b = c + d} where 〈A; +, 0〉 is
some Abelian p-group for some prime p. Notice that the associated algebra is

Universal Algebra and Hardness Results 277

affine (in the sense defined earlier) and so the variety it generates admits the
affine type, and hence by Theorems 4.2 and 4.1 CSP(Γ) is not in Datalog, and
it is ModpL-hard and in fact ModpL-complete (see full version).

(C) (Central) Here θ is a k-ary relation (k ≥ 1) different from Ak that must
(among other things) have a central element, i.e. there is some c ∈ A such that
θ contains every tuple with an occurrence of c. In that case Γ2 does dismantles
to the diagonal and CSP(Γ) is FO-definable. It follows from Theorem 5 of [8]
that ¬CSP (Γ) is in symmetric Datalog, and if Γ does not contain a so-called
biredundant relation then CSP(Γ) is actually first-order definable [15].

(R) (Regular) Here θ is a k-ary (k ≥ 3) regular relation defined as follows. Let
S denote the structure with universe {1, . . . , k} and one basic relation θ(S) of
arity k, consisting of all tuples (x1, . . . , xk) with at least one repeated coordinate.
Operations that preserve this relation are known to be the following: all non-
surjective operations and all essentially unary operations i.e. that depend on
only one variable [7]. In particular, no non-trivial idempotent operation preserves
θ(S). For any positive integer m let Sm denote the m-th power of this structure.
A k-ary relation on the set A is regular if there exists some positive integer m,
and a surjective map μ from A to Sm such that θ = μ−1(θ(Sm)). Clearly, in this
case, the structure 〈A; θ〉 retracts onto Sm, and it is easy to see that Sm retracts
onto S (S embeds in Sm via the map x �→ (x, 1, . . . , 1).) From results in [17], the
relation θ cannot be invariant under a so-called Taylor operation, and thus A(Γ)
generates a variety that admits the unary type and CSP(Γ) is NP-complete.

(O) (Order) In this last case, θ is a bounded order relation, i.e. a reflexive,
antisymmetric, transitive relation ≤ with elements 0 and 1 such that 0 ≤ x ≤ 1
for all x ∈ A. In that case the variety generated by the associated algebra admits
type 4 or 5 and hence by Theorems 4.2 and 4.1 ¬CSP (Γ) is not expressible in
symmetric Datalog, and CSP(Γ) is NL-hard. There is not much that is known
at this time on these CSP’s, either from the algebraic or the complexity point of
view: the class of so-called order-primal algebras is vast and quite complex. There
are posets for which the problem is NP-complete, others for which the problem is
NL-complete: the examples known to be in NL have their complement definable
in linear Datalog. It is also possible to construct, from a non-bounded example
found in [17], a bounded poset whose associated problem is tractable and mod-p
L hard. Similarly, from an example found in [16], one may construct a tractable
example whose variety admits type 5 and hence is P-complete.

Our case analysis can be summarized as follows.

Theorem 5.2. Let Γ be a finite set of relations such that Pol(Γ) = Pol({θ} ∪
{{a} : a ∈ A}) where Pol(θ) is a maximal clone. If the maximal clone is of type
(P), (E), (A), (C), (R), (O), then CSP (Γ) satisfies the properties given in the
following:
(P) (Permutation) Symmetric Datalog; L-complete.
(E) (Equivalence) Symmetric Datalog; L-complete.
(A) (Affine) not Datalog; ModpL-complete for some prime p.
(C) (Central) Symmetric Datalog; first-order definable if Γ contains no biredun-
dant relation, L-complete otherwise.

278 B. Larose and P. Tesson

(R) (Regular) NP-complete.
(O) (Order) not in symmetric Datalog; NL-hard; some cases are known to be
NP-complete, some known to be NL-complete, some P -complete.

References

1. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complex-
ity of satisfiability problems: Refining Schaefer’s theorem. In: Jedrzejowicz, J., Szepi-
etowski,A.(eds.)MFCS2005.LNCS,vol.3618,pp.71–82.Springer,Heidelberg(2005)

2. Atserias, A.: On digraph coloring problems and treewidth duality. In: Proc. 21st
Conf. on Logic in Comp. Sci. (LICS ’05), pp. 106–115 (2005)

3. Bulatov, A., Krokhin, A., Jeavons, P.: Constraint satisfaction problems and finite
algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 272–282. Springer, Heidelberg (2000)

4. Cohen, D., Jeavons, P.G.: The complexity of constraint languages. In: Handbook
of Constraint Programming (2006)

5. Dalmau, V.: Linear Datalog and bounded path duality of relational structures.
Logical Methods in Computer Science 1(1) (2005)

6. Dalmau, V., Egri, L., Larose, B., Tesson, P.: On the limits of expressivity of linear
and symmetric Datalog. Document in preparation (2007)

7. Denecke, K., Wismath, S.L.: Universal Algebra and Applications in Theoretical
Computer Science. CRC/C&H, Boca Raton (2002)

8. Egri, L., Larose, B., Tesson, P.: Symmetric datalog and constraint satisfaction
problems in logspace (Submitted, 2007)

9. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM J.
on Computing 28(1), 57–104 (1999)

10. Feder, T., Vardi, M.Y.: Homomorphism closed vs. existential positive. In: Feder,
T., Vardi, M.Y. (eds.) Proc. 18th Symp. on Logic in Comp. Sci (LICS 2003), pp.
311–320 (2003)

11. Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Contemporary Math-
ematics, vol. 76. American Mathematical Society, New York (1988)

12. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science.
Springer, Heidelberg (1999)

13. Jeavons, P.: On the algebraic structure of combinatorial problems. Theor. Comput.
Sci. 200(1-2), 185–204 (1998)

14. Kolaitis, P.G., Vardi, M.Y.: On the expressive power of datalog: Tools and a case
study. J. Comput. Syst. Sci. 51(1), 110–134 (1995)

15. Larose, B., Loten, C., Tardif, C.: A characterization of first-order constraint satis-
faction problems. In: Proc. 21st Symp. on Logic in Comp, pp. 201–210 (2006)

16. Larose, B., Zádori, L.: Finite posets and topological spaces in locally finite varieties.
Algebra Universalis 52(2-3), 119–136 (2005)

17. Larose, B., Zádori, L.: Bounded width problems and algebras. Algebra Universalis
(2006)

18. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th ACM
STOC, pp. 216–226. ACM Press, New York (1978)

19. Szendrei, A.: A survey on strictly simple algebras and minimal varieties. Research
and Exposition in Mathematics, pp. 209–239. Heldermann Verlag (1992)

20. Valeriote, M.: A subalgebra intersection property for congruence distributive vari-
eties. In: Canadian J. of Math. (to appear)

On the Power of k-Consistency

Albert Atserias1, Andrei Bulatov2, and Victor Dalmau3

1 Universitat Politècnica de Catalunya, Barcelona, Spain
atserias@lsi.upc.edu

2 Simon Fraser University, Vancouver, Canada
abulatov@cs.sfu.ca

3 Universitat Pompeu Fabra, Barcelona, Spain
victor.dalmau@upf.edu

Abstract. The k-consistency algorithm for constraint-satisfaction prob-
lems proceeds, roughly, by finding all partial solutions on at most k vari-
ables and iteratively deleting those that cannot be extended to a partial
solution by one more variable. It is known that if the core of the struc-
ture encoding the scopes of the constraints has treewidth at most k,
then the k-consistency algorithm is always correct. We prove the exact
converse to this: if the core of the structure encoding the scopes of the
constraints does not have treewidth at most k, then the k-consistency
algorithm is not always correct. This characterizes the exact power of
the k-consistency algorithm in structural terms.

1 Introduction

Let A and B be two relational structures of the same type. For concreteness, we
can think of A and B as directed graphs, each consisting of a set of vertices and a
binary relation on the vertices. A homomorphism from A to B is a map from the
domain of A to the domain of B that preserves all the relations. Homomorphisms
play a prominent role in combinatorics, logic, and algebra, and also in computer
science. Consider for example the constraint-satisfaction problem, where we are
given a set of variables that range over a domain of values, and a set of constraints
between tuples of variables and tuples of values. The goal is to find an assignment
of values to the variables in such a way that all given constraints are fulfilled.
It was observed by Feder and Vardi [9] that this problem can be phrased as a
homomorphism question between a relational structure A encoding the set of
constraint variables (scopes), and a relational structure B encoding the set of
valid assignment to those variables.

The k-consistency algorithm is a well-known heuristic algorithm to decide
the existence of a homomorphism between two structures, or equivalently, to
solve constraint-satisfaction problems. In order to simplify the exposition, let us
focus again on finite directed graphs A = (A,EA) and B = (B,EB) and let
us fix k = 1. The 1-consistency algorithm is commonly referred to as the arc-
consistency algorithm. This algorithm proceeds in rounds by iteratively reducing
the set of possible places L(a) ⊆ B where a vertex a ∈ A may be mapped.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 279–290, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

280 A. Atserias, A. Bulatov, and V. Dalmau

Initially, every a ∈ A can be mapped to any b ∈ B, so we start with L(a) = B.
At each round, if there exists an arc (a, a′) ∈ EA and a b ∈ L(a) for which no
b′ ∈ L(a′) exists such that (b, b′) ∈ EB, we remove b from L(a). Similarly, if
there exists a b′ ∈ L(a′) for which no b ∈ L(a) exists such that (b, b′) ∈ EB, we
remove b′ from L(a′). This process is repeated until there are no more changes
in the L(a)’s. If at termination L(a) is empty for some a ∈ A, we can guarantee
that there exists no homomorphism from A to B. Otherwise, we say that the
instance A,B passes the arc-consistency test. In this case we know that if there
exists a homomorphism h : A→ B, we must have h(a) ∈ L(a) for every a ∈ A.
Henceforth, the arc-consistency algorithm can be used in order to narrow the
possible space of solutions, and indeed, many of the practical CSP solvers use
some form of consistency in order to prune the search tree. Furthermore, most
of the known tractable subcases of the CSP are solvable by testing some sort of
consistency.

The k-consistency test for general k is the natural generalization of this al-
gorithm to k-tuples. The main goal of this paper is to study the power of the
k-consistency test as a tool to decide the existence of a solution by itself. More
precisely, we are interested in characterizing under which circunstances we can
guarantee that every instance passing the k-consistency test has a solution.

Note, first, that the consistency test runs in time polynomial in |A| · |B|,
which is polynomial in the size of the input. Therefore, since the general homo-
morphism problem is NP-complete, we cannot expect it to be correct on every
instance. Interestingly, though, it is known that the algorithm is correct when
the underlying graph of A is acyclic [10]. This gives a large class of inputs where
the algorithm can be used to find homomorphisms in polynomial time. It was
later observed that it suffices if the core of A is acyclic [6], where the core of
a relational structure A is the smallest substructure that has homomorphisms
from and to A. It is known that such a substructure exists and is unique up to
isomorphism [13]. This widens the class of instances where the algorithm works
correctly even further. But is that all?

Main result. The main result of this paper is the complete answer to the ques-
tion above. In fact, our result answers the corresponding question for the k-
consistency test. In this context, the role of graph acyclicity is played by the
concept of treewidth, which is a measure to calibrate the similarity of a graph
with a tree.

Treewidth was introduced in the deep work on graph minors by Robertson and
Seymour, and has played an important role in algorithmic graph theory since
then. For constraint-satisfaction problems, treewidth was identified as useful by
Freuder [11], and later revisited by several others [9,19,14,6]. Freuder observed
that if the treewidth of A is at most k, then the k-consistency algorithm is
always correct. As with the acyclic case, it was later observed that it suffices
that the treewidth of the core of A be bounded by k. Thus, it was proved in
[6] that if the treewidth of the core of A is at most k, then the k-consistency
algorithm is always correct. Our main result is an exact converse to this: if the

On the Power of k-Consistency 281

treewidth of the core of A is more than k, then the k-consistency algorithm is
not always correct. Note that since treewidth at most 1 agrees with acyclicity of
the underlying undirected graph, our main result implies, in particular, that if
the core of A is not acyclic, then the arc-consistency test is not always correct.

Related work. The notion of k-consistency has proven to be very robust and,
besides being one of the central concepts in theory of constraint-satisfaction
problems, has also emerged independently in areas as diverse as finite model
theory [18], graph theory [16], and proof complexity [1].

The limits of the k-consistency algorithm as a method for finding homomor-
phisms had been studied before to some extent. First, for each fixed k, concrete
examples where the algorithm is not correct can be easily found. For example,
let A be a complete graph on k + 2 vertices, and let B be a complete graph on
k + 1 vertices. It is not hard to see that there is no homomorphism from A to
B yet this instance passes the k-consistency test.

Second, Feder and Vardi [9] proved that there exists a fixed finite structure B
for which it is possible to determine the existence of a homomorphism A→ B in
polynomial time, yet the k-consistency algorithm fails for every fixed k. In fact,
the structure B is very explicit and corresponds to the constraint-satisfaction
problem of solving systems of linear equations over the two-element field.

Third, Grohe [12] proved the following very general result. Let F be a class of
structures and consider the restricted homomorphism problem when A is taken
from F and B is an arbitrary structure. For which F ’s is this problem solvable
in polynomial time? We know already from [6] that if the class of cores of F has
bounded treewidth, then the problem is solvable in polynomial time. Assuming
a conjecture in parameterized complexity theory, Grohe proved the converse to
this result: if the problem is solvable in polynomial time, then the class of cores of
structures in F has bounded treewidth. In particular, this implies that for every
k > 1, there exists some k′ such that if the treewidth of the core of a structure A
is at least k′, then the k-consistency algorithm is not always correct. In his proof,
the k′ is an exponential function of k given by an application of the Excluded
Grid Theorem (EGT) of Robertson and Seymour. Instead, our result shows that
k′ = k + 1 with the additional important feature that our proof does not need
the EGT or any conjecture in parameterized complexity theory.

2 Preliminaries

Graphs, structures, and treewidth A vocabulary is a finite set of relation symbols
or predicates. Every relation symbol in a vocabulary has an arity associated to
it. For a vocabulary σ, a relational structure A of type σ is a pair consisting of
a set A, called the universe of A, and a sequence of relations RA, one for each
relation symbol R from σ, such that the arity of RA is equal to that of R. For
example, a graph is a structure with a single binary relation that is symmetric
and irreflexive. All structures in this paper are assumed to be finite, i.e. having
a finite universe.

282 A. Atserias, A. Bulatov, and V. Dalmau

A structure B is called an induced substructure of a structure A of type σ,
if the universe B of B is a subset of the universe A of A, and for any R ∈ σ,
RB = RA ∩Br, where r is the arity of R.

The Gaifman graph of a relational structure A = (A;R1, . . . , Rn) is the graph
with vertex set A and such that (a, b) is an edge if and only if a �= b, and a and
b belong to the same tuple from one of the relations R1, . . . , Rn. Note that loops
are never included in the Gaifman graph.

A tree decomposition of a graph G = (V ;E) is a labeled tree T such that

1. every node of T is labeled by a non-empty subset of V ,
2. for every edge (v, w) ∈ E, there is a node of T whose label contains {v, w},
3. for every v ∈ V , the set of nodes of T , whose labels contain v, is a subtree

of T .

The width of a tree decomposition T is the maximum cardinality of a label in T
minus 1. The treewidth of a graph G is the smallest number k such that G has
a tree decomposition of width k. Note that the treewidth of a tree (containing
at least one edge) is one. The treewidth of a structure is the treewidth of its
Gaifman graph.

Homomorphisms, constraint-satisfaction and cores. A homomorphism from a
structure A to a structure B of the same type is a mapping f :A→ B between
the universes of A and B such that for every r-ary R ∈ σ and every (a1, . . . , ar) ∈
RA, we have (f(a1), . . . , f(ar)) ∈ RB. The fact that there is a homomorphism
from structure A to structure B we denote by A→ B. If a homomorphism does
not exist we write A �→ B.

Let A and B be two finite relational structures over the same vocabulary
σ. We can think of the pair A,B as an instance of the constraint satisfaction
problem, where the elements of A are the variables of the problem, and the
elements of B are the values they may take. A tuple (x1, . . . , xr) ∈ RA denotes
the constraint that the variables x1, . . . , xr need to take values in B in such a
way that the resulting tuple belongs to RB. Therefore, a solution is a mapping
f : A→ B that defines a homomorphism from A to B.

If A and B are classes of finite relational structures of the same type, the
constraint-satisfaction problem CSP(A,B) asks, given a pair of structures A ∈ A
and B ∈ B, whether or not there is a homomorphism from A to B. If A is the
class of all finite structures of a certain type, then we write CSP(∗,B) instead of
CSP(A,B). Similarly, if B is the class of all finite structures, we write CSP(A, ∗).
In addition, if B is one-element, say, B = {B}, then we write CSP(∗,B), and
similarly for CSP(A, ∗).

Example 1. Let H be a (directed) graph. In the H-COLORING problem we
are asked whether there is a homomorphism from a given graph G to H . So, the
H-COLORING problem is equivalent to the problem CSP(∗, H).

Example 2. In the CLIQUE problem we are asked whether a given graph con-
tains a clique of a given size. It is not hard to see that CLIQUE is equivalent
to CSP(K, ∗), where K is the class of all finite complete graphs.

On the Power of k-Consistency 283

An endomorphism h of A is a homomorphism from a A to itself. Furthermore,
h is said to be an automorphism if it is bijective. A structure is a core if ev-
ery endomorphism is an automorphism. A core of a relational structure A is
an induced substructure B such that A → B and B is a core. All cores of a
structure are isomorphic, and therefore we can talk about the core core(A) of a
structure A. It is easy to see that a structure A and its core are homomorphically
equivalent, meaning that A → core(A) and core(A) → A. This allows one to
reduce many homomorphism properties of structures and classes of structures,
i.e. the complexity of problems CSP(∗,B), CSP(A, ∗), to the properties of their
cores. Yet, with respect to computational complexity, a structure and its core
are not always freely exchangable. In particular, it has been shown that decid-
ing whether a structure is a core is co-NP-complete [15], which implies that, in
general, it is hard to compute the core of a structure.

3 The k-Consistency Test

Fix some k ≥ 1. The k-consistency test is a simple algorithm that, given a pair of
structures A and B, either provides a certificate that there is no homomorphism
from A to B, or narrows the set of elements of B to which each element of A
may be mapped.

Recall that a solution is a mapping f : A→ B that defines a homomorphism
from A to B. A partial solution, also called a partial homomorphism, is a map-
ping f : A′ → B, where A′ ⊆ A, such that f defines a homomorphism from the
substructure of A with universe A′ to the structure B. In other words, f is a
function such that for every r-ary relation symbol R ∈ σ and a1, . . . , ar ∈ A′,
if (a1, . . . , ar) ∈ RA then (f(a1), . . . , f(ar)) ∈ RB. If f and g are partial so-
lutions we say that g extends f , denoted by f ⊆ g, if Dom(f) ⊆ Dom(g) and
f(a) = g(a) for every a ∈ Dom(f). If f ⊆ g we also say that f is the projection
of g to Dom(f).

Now we can state the k-consistency algorithm.

1. Given structures A and B;
2. Let H be the collection of all partial solutions f with |Dom(f)| ≤ k + 1;
3. For every f in H with |Dom(f)| ≤ k and every a ∈ A, if there is no g in H

such that f ⊆ g and a ∈ Dom(g), remove f and all its extensions from H ;
4. Repeat step 3 until H is unchanged;
5. If H is empty reject, else accept.

There are several different but equivalent ways of defining the k-consistency
algorithm. Our formulation is inspired by the existential (k + 1)-pebble game
of Kolaitis and Vardi [19]. The connection between the two concepts is due to
Kolaitis and Vardi [19].

It is possible to run the algorithm in time polynomial in |A|k+1|B|k+1 because
the size of H in step 2 is bounded by that number, and each iteration removes
at least one partial solution. Note that for fixed k, this is time polynomial in the
size of the input. However, if k is part of the input, the problem of deciding if
the k-consistency test accepts on a given instance is EXP-complete (see [17]).

284 A. Atserias, A. Bulatov, and V. Dalmau

It is obvious that for any satisfiable instance A,B and any k ≥ 1, the k-
consistency test accepts. The converse is not necessarily true. It holds, for ex-
ample, if k is as large as the cardinality of the universe of A but it might fail for
smaller values of k (a counterexample easy to verify is given by fixing A = Kk+2

and B = Kk+1, where Kn is the clique with n vertices). The identification of
those cases for which the converse is also true is of great interest as it would
allow to use the k-consistency test alone in order to decide the existence of a
solution.

Definition 1. Let A and B be families of relational structures and let k ≥ 1.
We say that k-consistency solves CSP(A,B) if for every A ∈ A and B ∈ B
on which the k-consistency test accepts, there exists a homomorphism from A
to B.

The vast majority of the CSP literature assumes that either A or B is the set of
all structures. Although some rather limited results have been obtained in the
most general case, a serious attack of this problem seems rather challenging and
out of reach by the known techniques.

Observe that k-consistency solves CSP(∗,B) if and only if it solves CSP(∗,B)
for every B ∈ B. A similar observation can be made for every A. Consequently,
the two main open problems in this research direction can be formulated in the
following way:

Problem 1. (k-width problem) Characterize all structures A for which k-
consistency solves CSP(A, ∗). Any such structure is called a k-width structure.
We also say that A has k-width.

Problem 2. (width-k problem) Characterize all structures B for which k-
consistency solves CSP(∗,B). Any such structure is called a width-k structure.
We also say that B has width-k.

For some particular cases, having width-k for some k > 1 is the only reason
for polynomial time decidability of a problem. For example, a celebrated result
of Hell and Nesetril [14] asserts that, for a graph H , if H is bipartite then
H-COLORING is tractable via the 2-consistency algorithm, and if H is non-
bipartite then H-COLORING is NP-complete. Later, Nesetril and Zhu proved,
without assuming P �= NP, that a finite graph H has width-2 if and only if H is
bipartite,

A similar statement is not true in the general case of CSP(∗,B) [9], and even
in the case of H-COLORING where H is a digraph [2]: there are constraint-
satisfaction problems that are solvable in polynomial time, but not by establish-
ing consistency at any level. An example of this is the problem of checking the
consistency of systems of linear equations.

Characterizing those structures having width-k, is a long standing open prob-
lem [8], whose solution is only known in a few particular cases of classes of 2-
and 3-element structures [21,4], and of conservative structures [5].

On the Power of k-Consistency 285

4 Main Result

This paper addresses and solves completely, in conjunction with [6], the k-width
problem. The following sufficient condition for a structure to have k-width was
identified in [6]:

Theorem 1 ([6]). Let A be a structure and let k ≥ 1. If core(A) has treewidth
at most k then A has k-width.

Here we prove the exact converse.

Theorem 2. Let A be a structure and let k ≥ 1. If A has k-width then core(A)
has treewidth at most k.

Before we prove this, it will be convenient to define the existential pebble game
and state the connection with the k-consistency test first pointed out by Kolaitis
and Vardi [19].

The existential k-pebble game is played between two players, the Spoiler and
the Duplicator, on two relational structures A and B in accordance with the
following rules: on the first round of the game the Spoiler places pebbles on
some elements a1, . . . , ak of A, and the Duplicator responds by placing pebbles
on elements b1, . . . , bk of B; on every further round the Spoiler removes a pebble
and places it on another element of A, the Duplicator responds by moving the
corresponding pebble on B. The Spoiler wins if at the end of some round the
mapping ai �→ bi, 1 ≤ i ≤ k, is not a partial homomorphism from A to B. The
Duplicator wins if he has a winning strategy, i.e. a systematic way that allows
him to sustain playing “forever”.

Although this presentation of the existential k-pebble game is certainly very
intuitive, it is customary and generally simpler to work with an equivalent “al-
gebraic” definition of the game. The key notion here is that of winning strategy
for the Duplicator.

Definition 2. A winning strategy for the Duplicator in the existential k-pebble
game between A and B is a nonempty collection H of partial homomorphisms
from A to B satisfying the following conditions: (a) (restriction condition) if
f ∈ H and g ⊆ f , then g ∈ H; (b) (extension condition) if f ∈ F , |Dom(f)| < k,
and a ∈ A, there is g ∈ H such that f ⊆ g and a ∈ Dom(g).

Such a set can be found by starting with the collection of all partial homomor-
phisms on subsets of at most k elements, and then removing homomorphisms
that do not satisfy one of conditions (a) or (b). Note that this is exactly what the
algorithm of the (k − 1)-consistency test does. Now, it is not difficult to see [19]
that the k-consistency algorithm constructs the most general, i.e., largest, win-
ning strategy for the Duplicator when it exists and reports unsatisfiable when
there is no winning strategy. Now we are ready for the proof of the main result:

Proof of Theorem 2: Let A = (A;RA
1 , . . . , R

A
n) be a relational structure, and

G = G(A) its Gaifman graph. Let G = (A,E).

286 A. Atserias, A. Bulatov, and V. Dalmau

Since A has k-width if and only if core(A) has k-width, we may assume that
A = core(A).
E is a symmetric and irreflexive binary relation on A. We denote edges of

G by unordered pairs e = {a, a′}. Let a0 ∈ A be a distinguished point of A to
be defined later. For every a ∈ A, let da denote the degree of a in G, and let
ea1 , . . . , e

a
da

be a fixed enumeration of all the edges that are incident on a.
Let B = B(A) be the relational structure defined as follows. The set of vertices

of B is the set of all tuples of the form (a, (b1, . . . , bda)), where

1. a ∈ A and b1, . . . , bda ∈ {0, 1},
2. b1 + · · ·+ bda ≡ 0 (mod 2) if a �= a0,
3. b1 + · · ·+ bda ≡ 1 (mod 2) if a = a0.

A tuple ((a1, (b11, . . . , b
1
da1

)), . . . , (an, (bn1 , . . . , b
n
dan

)) belongs to the (n-ary) rela-
tion RB

i if and only if

1. the tuple (a1, . . . , an) belongs to RA
i ,

2. if �,m, i and j are such that {a�, am} = ea
�

i = ea
m

j , then b�i = bmj .

Intuitively, each vertex of B is an assignment of 0/1-values to the edges of G(A)
incident to a given point a ∈ A, and the tuples from relations of B encode the
constraints that the assignments of values to the edges of two adjacent points
a, a′ ∈ A must be consistent.

Example 3. Let A be a clique with vertices a, b, and c. If we choose the distin-
guish vertex a0 to be a, the structure B(A) is the graph with the vertex set
{(a, (0, 1)), (a, (1, 0)), (b, (0, 0)), (b, (1, 1)), (c, (0, 0)), (c, (1, 1))} shown in the pic-
ture.

a

b c

a,01 a,10

b,00
b,11

c,00
c,11

1

1

2

2 1

2

Fig. 1. A and B(A)

Note that the first projection π : B → A, defined by π((a, (b1, . . . , bda))) = a is
a homomorphism from B to A.

Lemma 1. If A is a core, then there is no homomorphism from A to B.

Proof. Suppose that A is a core, and suppose for contradiction that h : A→ B
is a homomorphism from A to B. Let π : B → A be the first projection.
Composing, f = h ◦ π is a homomorphism from A to A, and since A is a
core, it must be an automorphism. Now, let g = h ◦ f−1 and note that g is

On the Power of k-Consistency 287

still a homomorphism from A to B with the additional property that g(a) =
(a, (ba1 , . . . , b

a
da

)) for some ba1 , . . . , b
a
d ∈ {0, 1} and every a ∈ A.

Now, for every edge e = {a, a′} of G(A), define xe = bai = ba
′

j , where i and
j are such that eai = e and ea

′

j = e. The equality bai = ba
′

j follows from the fact
that g is a homomorphism. Now, we have

xea
1

+ · · ·+ xea
da
≡ 0 (mod 2)

for every a �= a0, and

xea
1

+ · · ·+ xea
da
≡ 1 (mod 2)

for a = a0. Since every edge of G(A) has exactly two end-points, adding up all
equations we get

2
∑

e

xe ≡ 1 (mod 2);

a contradiction.

We need an alternative definition of treewidth. Let G = (V,E) be a graph. We
say that two sets B,C ⊆ V touch if either they intersect or there is an edge of G
with an end-point in B and the other in C. A bramble is a collection B1, . . . , Br
of pairwise touching connected subsets of G. A cover of this bramble is a set of
points that intersects every Bi. The order of a bramble is the minimum size of its
covers. Seymour and Thomas [22] proved that a connected graph has treewidth
at least k if and only if it has a bramble of order at least k + 1.

Lemma 2. If the treewidth of A is at least k + 1, then the Duplicator wins the
existential k + 1-pebble game on A and B.

Proof. We start with some definitions. For every walk P = (a0, a1 . . . , ar) in
G(A) that starts at a0 and for every edge e of G(A), we define

1. xPe = 1 if e appears an odd number of times in P ,
2. xPe = 0 if e appears an even number of times in P .

Now we define hP (a) = (a, (xPea
1
, . . . , xPea

da
)) for every a ∈ A.

Claim. If P = (a0, a1, . . . , ar) is a walk in G(A) that starts at a0 and a �= ar,
then hP (a) belongs to B.

Proof. Suppose that P = (a0, a1, . . . , ar) is a walk in G(A) that starts at a0,
and let a �= ar. We need to check that

xPea
1

+ · · ·+ xPea
da
≡ 0 (mod 2) (1)

if a �= a0, and
xPea

1
+ · · ·+ xPea

da
≡ 1 (mod 2) (2)

288 A. Atserias, A. Bulatov, and V. Dalmau

if a = a0. Suppose first that a �= a0. Let i1 < · · · < is be the enumeration of all
positions i in the walk P = (a0, a1, . . . , ar) with ai = a. Since the walk does not
start or end at a, we have 0 < i1 < · · · < is < r. It follows immediately that the
total number of occurrences of edges in the walk that are incident on a is even
(we are using the fact that G(A) has no self-loops so for every 1 ≤ j ≤ r − 1
there exists l such that ij < l < ij+1). Thus, equation (1) holds. Suppose now
that a = a0. Again, let i1 < · · · < is be the enumeration of all positions i in the
walk such that ai = a. Since the walk starts at a0 = a and does not end at a,
we have 0 = i1 < · · · < is < r. It follows immediately that the total number of
occurrences of edges in the walk that are incident on a is odd. Thus, equation
(2) holds.

Claim. Let S ⊆ A, and let P = (a0, a1, . . . , ar) be a walk in G(A) that starts at
a0 and does not end in a point in S. Then, the restriction hP S of hP to S is a
partial homomorphism from A to B.

Proof. The previous claim guarantees that hP (a) belongs to B for every a ∈
S. We need to check now that for every (n-ary) relation RA

i and any tuple
(b1, . . . , bn) ∈ RA

i such that b1, . . . , bn ∈ S, the tuple (hP (b1), . . . , hP (bn)) is also
a tuple from RB

i . But this is obvious because for any j and � if s and t are such
that ebj

s = eb�
t = {bj, b�}, then trivially xP

e
bj
s

= xP
e

b�
t

= xP{bj ,b�}.

Now we can define the winning strategy for the Duplicator in the existential
k + 1-pebble game between A and B. Suppose that the treewidth of A is at
least k + 1. Let {B1, . . . , Br} be a bramble of A of order at least k + 2. It is
finally the time to define a0. Let us fix a0 to be any point of A connected to
the bramble. We define a collection of partial homomorphisms H as follows: for
any walk P in G(A) that starts with a0 and any S ⊆ A such that |S| ≤ k + 1
and the last vertex of P belongs to a bag of the bramble that does not contain
any element of S, we include hP S into H. By the claims above, each such hP |S
is indeed a partial homomorphism. The election of a0 guarantees that H is
nonempty. Conditions (a),(b) from the definition of a winning strategy can be
easily checked. Condition (a) holds trivially. For (b), let hPS be any function with
|S| ≤ k in H. Hence P is a walk that starts at a0 and ends at a point, say ar,
that sits in a bag Bi that does not contain any point in S. Now let a ∈ A. Let
Bj be a bag of the bramble that does not contain any point in S′ = S ∪ {a}.
Such a bag also exists because |S′| ≤ k + 1 and the bramble cannot be covered
with less than k + 2 points. Since all pairs of bags of the bramble touch, and
since bags are connected, there must be a walk Q from ar to a point in Bj that
runs entirely inside Bi except for the last point, which lands in Bj . Now we let
P ′ be the concatenation of P with Q. The walk P ′ has the properties we need:
it starts at a0 and it ends in a point that belongs to a bag Bj of the bramble
that does not contain any point in S′. Thus hP

′

S′ belongs to H. Finally, since
the only edges that P ′ adds to P are edges that are entirely inside Bi except
for the last that may land inside Bj , none of these edges has an end-point in S
because both Bi and Bj are S-free. It follows that xPe = xP

′

e for every edge e
with an end-point in S, so hP

′
(a) = hP (a) for every a ∈ S.

On the Power of k-Consistency 289

5 Further Comments and Remarks

If we put Theorem 1 and Theorem 2 together we obtain that A has k-width if
and only if core(A) has treewidth at most k. In turn, it was proved in [6] that for
every fixed k ≥ 1, it is an NP-complete problem to decide if a given structure has
a core of treewidth at most k. This implies that it is an NP-complete problem to
decide if a given structure has k-width. Before our result, it was not even known
whether this problem was decidable. Dually, it is an important open problem
whether it is decidable if a given structure has width-k.

The second remark is about an application of our result to preservation the-
orems in finite model theory. Let us first note that, for a core A of treewidth
at least k, the proof of our main result provides a structure B with the follow-
ing three properties: B → A, A �→ B, and the Duplicator wins the existential
k-pebble game on A and B. Using these three properties, it is possible to solve
an open problem in [3]. The problem asked whether every sentence of first-
order logic that can be written equivalently as an existential-positive infinitary
sentence with k variables on finite structures is also equivalent to a existential-
positive finite sentence with k variables on finite structures. The construction
above, in combination with Rossman’s Theorem [20], provides the right tool to
establish this preservation theorem. We will provide the details of the proof in
the journal version of this paper.

It would be interesting to see if the construction we give has more applications
in finite model theory. Interestingly, up to now we have used it to establish both
a negative result (limits on the k-consistency algorithm), and a positive result
(a preservation theorem in finite model theory).

Acknowledgements

Part of this work was done when all authors visited the Isaac Newton Institute for
Mathematical Sciences, Cambridge under the Logic and Algorithms program. The
first author is supported in part by CICYT TIN-2004-04343. The second author
is supported by a NSERC Discovery grant. The third author is supported by the
MEC under the program ”Ramon y Cajal”, grants TIN 2005-09312-C03-03, TIN
2004-04343, the EU PASCAL Network of Excellence IST-2002-506778, and the
MODNET Marie Curie Research Training Network MRTN-CT-2004-512234.

References

1. Atserias, A., Dalmau, V.: A Combinatorial Characterization of ResolutionWidth.
In: Proceedings of the 18th Annual IEEE Conference on Computational Complex-
ity, Aarhus, Denmark, July 2003, pp. 239–247 (2003)

2. Atserias, A.: On digraph coloring problems and treewidth duality. In: Proceedings
of the 20th Annual IEEE Simposium on Logic in Computer Science, Chicago, June
2005, pp. 106–115 (2005)

3. Atserias, A., Dawar, A., Kolaitis, P.: On Preservation under Homomorphisms and
Unions of Conjunctive Queries. Journal of the ACM 53(2), 208–237 (2006)

290 A. Atserias, A. Bulatov, and V. Dalmau

4. Bulatov, A.: A dichotomy theorem for constraints on a three-element set. J. of the
ACM 53(1), 66–120 (2006)

5. spaceskip=.28em plus .1em minus .1emBulatov, A.A.: Tractable conservative con-
straint satisfaction problems. In: Proceedings of the 18th Annual IEEE Simposium
on Logic in Computer Science, Ottawa, Canada, June 2003, pp. 321–330. IEEE
Computer Society Press, Los Alamitos (2003)

6. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded
treewidth, and finite variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 311–326. Springer, Heidelberg (2002)

7. Dechter, R.: From local to global consistency. Artificial Intelligence 55(1), 87–107
(1992)

8. Feder, T., Vardi, M.Y.: Monotone monadic SNP and constraint satisfaction. In:
Proceedings of 25th ACM Symposium on the Theory of Computing (STOC), pp.
612–622. ACM Press, New York (1993)

9. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM Jour-
nal of Computing 28, 57–104 (1998)

10. Freuder, E.: A Sufficient Condition for Backtrack-Free Search. Jouranl of the
ACM 29(1), 24–32 (1982)

11. Freuder, E.: Complexity of k-tree structured constraint satisfaction problems. In:
Proceedings of the 8th National Conference on Artificial Intelligence AAAI-90, pp.
4–9 (1990)

12. Grohe, M.: The complexity of homomorphism and constraint satisfaction prob-
lems seen from the other side. In: Proceedings of the 44th Annual Simposium on
Foundations of Computer Science, Cambridge, Massachusets, October 2003, pp.
552–561. IEEE Computer Society Press, Los Alamitos (2003)

13. Hell, P., Nešetřil,: Graphs and homomorphisms. Oxford Lecture Series in Mathe-
matics and its Applications, vol. 28. Oxford University Press, Oxford (2004)

14. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial
Theory, Ser.B 48, 92–110 (1990)

15. Hell, P., Nešetřil, J.: The core of a graph. Discrete Mathematics 109(1-3), 117–126
(1992)

16. Hell, P., Nešetřil, J., Zhu, X.: Duality and polynomial testing of tree homomor-
phisms. Trans. of the AMS 348(4), 1281–1297 (1996)

17. Kolaitis, Ph.G., Panttaja, J.: On the Complexity of Existential Pebble Games. In:
Proceeding of the 17th International Workshop on Computer Science Logic, pp.
314–329 (2003)

18. Kolaitis, Ph.G., Vardi, M.Y.: On the expressive power of Datalog: tools and case
study. Journal of Computer and System Sciences 51(1), 110–134 (1995)

19. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction.
In: Proceedings of the 17th National (US) Conference on Artificial Intelligence,
AAAI’00, pp. 175–181 (2000)

20. Rossman, B.: Existential Positive Types and Preservation under Homomorphisms.
In: Proceedings of the 20th IEEE Symposium on Logic in Computer Science, pp.
467–476. IEEE Computer Society Press, Los Alamitos (2005)

21. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
10th ACM Symposium on Theory of Computing (STOC’78), pp. 216–226. ACM
Press, New York (1978)

22. Seymour, P., Thomas, R.: Graph searching, and a min-max theorem for treewidth.
Journal of Combinatorial Theory, Series B 58, 22–23 (1993)

Complexity of Propositional Proofs

Under a Promise�

Nachum Dershowitz1,2 and Iddo Tzameret1

1 School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel
2 Microsoft Research, Redmond, WA 98052, USA

{nachumd,tzameret}@post.tau.ac.il

“Goods Satisfactory or Money Refunded” – The Eaton Promise

Abstract. We study – within the framework of propositional proof com-
plexity – the problem of certifying unsatisfiability of CNF formulas under
the promise that any satisfiable formula has many satisfying assignments,
where “many” stands for an explicitly specified function Λ in the number
of variables n. To this end, we develop propositional proof systems under
different measures of promises (that is, different Λ) as extensions of reso-
lution. This is done by augmenting resolution with axioms that, roughly,
can eliminate sets of truth assignments defined by Boolean circuits. We
then investigate the complexity of such systems, obtaining an exponen-
tial separation in the average-case between resolution under different size
promises:
(i) Resolution has polynomial-size refutations for all unsatisfiable 3CNF

formulas when the promise is ε·2n, for any constant 0 < ε < 1.
(ii) There are no sub-exponential size resolution refutations for random

3CNF formulas, when the promise is 2δn (and the number of clauses
is o(n3/2)), for any constant 0 < δ < 1.

Keywords: proof complexity, resolution, random 3CNF, promise
problems.

1 Introduction

Demonstrating unsatisfiability of propositional formulas is one of the most fun-
damental problems in complexity theory, as well as in hardware and software
validation. Any standard sound and complete propositional proof system has
the ability to separate the set of unsatisfiable formulas in conjunctive normal
form (CNF) from the set of CNF formulas having at least one satisfying assign-
ment, in the sense that every unsatisfiable CNF has a refutation in the system,
while no satisfiable CNF has one. Our goal is to develop and study, within the
framework of propositional proof complexity, systems that are “sound and com-
plete” in a relaxed sense: they can separate the set of unsatisfiable CNF formulas
� This work was carried out in partial fulfillment of the requirements for the Ph.D. de-

gree of the second author and was supported in part by the Israel Science Foundation
(grant no. 250/05).

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 291–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

292 N. Dershowitz and I. Tzameret

from the set of CNF formulas having sufficiently many satisfying assignments
(where the term “sufficiently many” stands for an explicitly given function of the
number of variables in the CNF). We call such proof systems promise refutation
systems, as they are complete and sound for the set of CNF formulas promised
to be either unsatisfiable or to have many satisfying assignments.

As the proof systems we develop here intend to prove the unsatisfiability of
CNF formulas (in other words, to refute them, which is to validate their nega-
tion), we will work solely with refutation systems, and shall speak about refuta-
tions and proofs interchangeably, always intending refutations, unless otherwise
stated. In particular, we work with refutation systems that extend the widely
studied resolution refutation system.

Our first task is to introduce a natural model for promise propositional refuta-
tion systems. This is accomplished by augmenting the standard resolution refu-
tation system (or any other propositional proof system extending resolution)
with an additional collection of axioms, the promise axioms. Each refutation in
a promise refutation system can make use of at most one promise axiom. The
promise axioms are meant to capture the idea that we can “ignore” or “discard”
a certain number of truth assignments from the space of all truth assignments,
and still be able to certify (due to the promise) whether the given CNF is un-
satisfiable or not. The number of assignments that a promise axiom is allowed
to discard depends on the promise we are given, and specifically it needs to be
less than the number of assignments promised to satisfy a given CNF (unless it
is unsatisfiable).

Assuming we have a promise that a satisfiable CNF has more than Λ satis-
fying assignments then we can discard up to Λ assignments. We refer to Λ as
the promise. This way the refutation system is guaranteed not to contain refu-
tations of CNF formulas having more than Λ satisfying assignments, as even
after discarding (at most Λ) assignments we still have at least one satisfying
assignment left, and on the other hand, any unsatisfiable CNF formula has a
refutation in the system, as resolution already has a refutation of it. We now
explain (somewhat informally) what it means to discard assignments and how
promise axioms formulate the notion of discarding the correct number of truth
assignments.

Essentially, we say that a truth assignment a is discarded by some Boolean
formula if a falsifies the formula. More formally, let X := {x1, ..., xn} be the set
of the underlying variables of a given CNF, called the original variables. Let A be
some CNF formula in the X variables, and assume that A also contains variables
not from X called extension variables. Let a ∈ {0, 1}n be a truth assignment to
the X variables, and assume that there is no extension of a (to the extension
variables) that satisfies A. Thus, any assignment satisfying A must satisfy also
X �≡ a (that is, A |= X �≡ a), and so any (implicationally) complete proof
system can prove X �≡ a from A, or, in the case of a refutation system, can
refute X ≡ a, given A. In this case, we say that the assignment a is discarded
by A.

Complexity of Propositional Proofs Under a Promise 293

The promise axioms we present have two main properties:

(I) They discard assignments from the space of possible assignments to the
variables X .

(II) They express the fact that not too many assignments to the variables X are
being discarded (in a manner made precise).

The first property is achieved as follows: Let C be any Boolean circuit with
n output bits. Then we can formulate a CNF formula denoted by A (using
extension variables) expressing the statement that the (vector of) variables X
is equal to the output of C. This enables A to discard every truth assignment
to the X variables outside the image of the Boolean map defined by C (as if an
assignment a to the X variables is not in the image of C then no extension of a
can satisfy A, assuming the formulation of A is correct). (The actual definition
is a bit different than described here, due to technical reasons; see Sect. 3).

The second property is achieved as follows: Assume we can make the statement
that the domain of the map defined by the Boolean circuit C above is of size
at least 2n − Λ explicit (see Sect. 3 for more details on this). Then, in order
for the second property to hold it is sufficient that the axiom formulates the
statement that the circuit C defines an injective map (and thus the image of the
map contains enough truth assignments), which can be done quite naturally.

Given a certain promise and its associated promise axiom, we call a refutation
of resolution augmented with the promise axiom a resolution refutation under
the (given) promise.

Our second task, besides introducing the model of promise refutation systems,
is to investigate the basic properties of this model and in particular to determine
its average-case proof complexity with respect to different size of promises (see
below for a summery of our findings in this respect).

1.1 Background and Motivation

In propositional proof complexity theory, it is standard to consider an abstract or
formal propositional proof system (usually called a Cook-Reckhow proof system,
following [3]) as a polynomial-time algorithm A that receives a Boolean formula
F (usually in CNF) and a string π over some finite alphabet (“the (proposed)
refutation” of F), such that there exists a π with A(F, π) = 1 if and only if F
is unsatisfiable. (A string π for which A(F, π) = 1 is also called a witness for
the unsatisfiability of F .) Equipped with this abstract definition of propositional
proof systems, showing that for every abstract proof system there exists some
family of formulas F for which there is no polynomially-bounded family of proofs
π of F is equivalent to showing NP�=coNP.

For this reason (among others), it is customary in proof complexity theory
to concentrate on specific (sometimes provably weaker) proof systems for which
proofs have a simple structure. This makes the complexity analysis of such proof
systems simpler. Prominent examples of such systems are Frege systems and
weaker subsystems of Frege, the most notable of which is the resolution refutation
system, which also plays an important rôle in many automated theorem provers.

294 N. Dershowitz and I. Tzameret

In accordance with this, we shall be interested not with abstract promise proof
systems (that is, not with finding general witnesses for unsatisfiability, possibly
under a promise), but rather with specific and more structured proof systems,
and specifically with refutation systems built-up as extensions of resolution.

A natural relaxation of the problem of unsatisfiability certification is to require
that, if a CNF is satisfiable, then it actually have many satisfying assignments.
As mentioned above, we call the specific number of assignments (as a function
of the number of variables n) required to satisfy a satisfiable CNF formula,
the promise. Accordingly, one can define an abstract promise proof system in
an analogous manner to the definition of an abstract proof system. It is thus
natural to ask whether giving such a promise can help in obtaining shorter
proofs of unsatisfiability.

In the case of a big promise, that is, a constant fraction of the space of all
truth assignments (Λ = ε · 2n, for a constant 0 < ε < 1), there is already
a deterministic polynomial-time algorithm for any fixed natural number k that
certifies the unsatisfiability of all unsatisfiable kCNF formulas under the promise:
The algorithm receives a kCNF that is either unsatisfiable or has more than Λ
satisfying assignments and answers whether the formula is unsatisfiable (in case
the formula is satisfiable, the algorithm provides a satisfying assignment); see the
papers by Hirsch [6] and Trevisan [7] for such efficient algorithms. This trivially
implies the existence of polynomial-size witnesses for any unsatisfiable kCNF
under the promise ε · 2n. But does already resolution admit such short witnesses
of unsatisfiability (that is, resolution refutations) under a big promise? We show
that the answer is positive (for all unsatisfiable 3CNF formulas).

In the case of a smaller promise, by which we mean Λ = 2δn for a constant
0 < δ < 1, it is possible to efficiently transform any CNF over n variables to a
new CNF with n′ = �n/(1 − δ)� variables such that the original CNF is satis-
fiable if and only if the new CNF has at least 2δn

′
satisfying assignments. This

can be achieved by adding “dummy variables” (e.g. variables that do not oc-
cur at all in the formula or by adding any satisfiable CNF consisting of these
dummy variables to the original CNF). Thus, the worst-case complexity of cer-
tifying CNF unsatisfiability under such a promise is polynomially equivalent to
the worst-case complexity of certifying CNF unsatisfiability without a promise.
However, it is still possible that a promise of 2δn might give some advantage
(that is, a super-polynomial speedup over refutations without a promise) in cer-
tifying the unsatisfiability of certain (but not all) CNF formulas; for instance, in
the average-case.1

Feige, Kim and Ofek [5] showed that when the number of clauses is Ω(n7/5)
there exist polynomial-size witnesses that witness the unsatisfiability of 3CNF

1 Note that if we add dummy variables to a 3CNF then we obtain an “atypical in-
stance” of a 3CNF. Thus, assuming we have polynomial-size witnesses of unsatis-
fiability of 3CNF formulas under a small promise in the average-case (the “typical
case”), the reduction alone (that is, adding dummy variables) does not automati-
cally yield polynomial-size witnesses for 3CNF formulas in the average-case without
a promise as well.

Complexity of Propositional Proofs Under a Promise 295

formulas in the average-case. On the other hand, Beame et al. [1] and Ben-Sasson
and Wigderson [2] showed that resolution does not provide sub-exponential refu-
tations for 3CNF formulas in the average-case when the number of clauses is at
most n(3/2)−ε, for any constant 0 < ε < 1/2. This shows that general witnessing
of 3CNF unsatisfiability is strictly stronger than resolution refutations. But is it
possible that under a promise of 2δn resolution can do better in the average-case?
We show that the answer is negative.

There are two main motivations for studying propositional proofs under a
given promise and their complexity. The first is to answer the natural question
whether CNF unsatisfiability certification enjoys any advantage given a certain
promise. As already mentioned, the answer is positive when the promise is a
constant fraction of all the truth assignments, and our results imply that this
phenomenon already occurs for resolution. For a smaller promise of 2δn, we can
show that at least in the case of resolution refutations of most 3CNF formulas
(of certain clause-to-variable density) the answer is negative. In fact, we can
show that the answer stays negative even when the promise is bigger than 2δn,
and specifically when Λ = 2n/2n

ξ

for some constant 0 < ξ < 1. Overall, our
results establish the first unsatisfiability certification model in which a promise
of a certain size is known to help (i.e., allows for more efficient certifications) in
the average-case, while a promise of smaller size does not help.

The second motivation, is more intrinsic to proof complexity theory. It is a
general goal to develop natural frameworks for propositional proofs that are not
sound in the strict sense, but rather possess an approximate notion of sound-
ness (like showing that certain “approximations” give speed-ups). For this pur-
pose, the proof systems we propose formalize – in a natural way – the notion
of separating unsatisfiable CNF formulas from those that have many satisfying
assignments. The promise axioms we present also allow for a natural way of
controlling the size of the promise, which in addition leads to an exponential
separation between different size promises.

This paper introduces the concept of propositional proofs under a promise,
analyzes the proof complexity of these proof systems with respect to different
promise sizes, giving a separation between promises of different sizes, and also
illustrates several new facts about the widely studied resolution proof system.

1.2 Results

We show that resolution refutations are already enough to efficiently separate
unsatisfiable 3CNF formulas from those 3CNF formulas with an arbitrarily small
constant fraction of satisfying assignments. In particular, in Section 4, we show
the following:

First Main Result: Let 0 < ε < 1 be some constant and let Λ = ε · 2n
be the given promise. Then every unsatisfiable 3CNF with n variables has a
polynomial-size (in n) resolution refutation under the promise Λ.

The proof resembles a deterministic algorithm of Trevisan [7] for approximat-
ing the number of satisfying assignments of kCNF formulas.

296 N. Dershowitz and I. Tzameret

In contrast to the case of a big promise, we also show that, at least for resolu-
tion, a small promise of Λ = 2δn (for any constant 0 < δ < 1) does not give any
advantage over standard resolution (resolution without the promise axioms) in
most cases (that is, in the average-case). Specifically, in Section 5, we show the
following:

Second Main Result: Let 0 < δ < 1 be any constant and let Λ = 2δn be
the given promise. Then, there is an exponential lower bound on the size of
resolution refutations of random 3CNF formulas under the promise Λ, when the
number of clauses is o(n3/2).

This lower bound actually applies to a more general model of promise proofs: It
remains valid even if we allow (somehow) the promise proofs to discard arbitrarily
chosen sets of truth assignments (of Λ = 2δn size), and not necessarily those sets
that are definable by (small) Boolean circuits. In fact, the lower bound applies
even to a bigger promise of Λ = 2n−n

ξ

, for some constant 0 < ξ < 1.
The proof strategy of this lower bound follows that of Ben-Sasson and Wigder-

son [2] (the size-width tradeoff approach), and so the rate of the lower bound
matches the one in that paper. The main novel observation is that under the
appropriate modifications this strategy also works when one restricts the set of
all truth assignments to a smaller set (that is, from 2n down to 2n − 2δn for a
constant 0 < δ < 1, and in fact down to 2n−2n−n

ξ

, for some constant 0 < ξ < 1).
It is important to note that the two main results above show that the decision

to discard sets of truth assignments defined by Boolean circuits does not effect
the results in any way, and thus should not be regarded as a restriction of the
model of promise refutations (at least not for resolution). To see this, note that
we could allow a promise refutation to discard arbitrarily chosen sets of truth
assignments (of the appropriate size determined by the given promise); that is,
sets of truth assignments that are not necessarily definable by (small) Boolean
circuits. However, although this modification strengthens the model it is not
really necessary for the upper bound in the First Main Result, as this upper
bound is already valid when one discards sets of truth assignments by (small)
Boolean circuits. On the other hand, as mentioned above, the lower bound in
the Second Main Result is already valid when one allows a promise refutation to
discard any arbitrarily chosen set of truth assignments (of the appropriate size).

The exact model of promise propositional proof systems is developed in
Sect. 3. It is preceded by preliminaries and terminological conventions.

2 Preliminaries

Resolution refutation system. Resolution is a complete and sound proof
system for unsatisfiable CNF formulas. Let C and D be two clauses containing
neither xi nor ¬xi, the resolution rule allows one to derive C ∨ D from C ∨ xi
and D∨¬xi. The clause C ∨D is the resolvent of the clauses C ∨xi and D∨¬xi
on the variable xi. The weakening rule allows to derive the clause C ∨ D from
the clause C, for any two clauses C,D.

Complexity of Propositional Proofs Under a Promise 297

Definition 1 (Resolution). A resolution proof of the clause D from a CNF
formula K is a sequence of clauses D1, D2, . . . , D� , such that: (1) each clause
Dj is either a clause of K or a resolvent of two previous clauses in the sequence
or derived by the weakening rule from a previous clause in the sequence; (2) the
last clause D� = D. The size of a resolution proof is the total number of clauses
in it. A resolution refutation of a CNF formula K is a resolution proof of the
empty clause � from K (the empty clause stands for false).

LetK be an unsatisfiable CNF formula. The resolution refutation size of K is the
minimal size of a resolution refutation ofK. If K has a polynomial-size resolution
refutation we say that resolution can efficiently certify the unsatisfiability of K.
Similarly, if the clause D has a polynomial-size resolution proof from K we say
that D is efficiently provable from K.

Boolean circuit encoding. The promise axioms we introduce use Boolean
circuits to define the set of assignments to be discarded (see Sect. 3). Therefore,
as resolution operates only with clauses, we need to encode Boolean circuits as
collections of clauses (CNF formulas). For most purposes, we will not need an
explicit description of how this encoding is done. Nevertheless, in Sect. 4 we
need to ensure that resolution can efficiently prove several basic facts about the
encoded circuits. For this reason, and for the sake of concreteness of the promise
axioms (see Definition 4), we provide the precise definition of the encoding in
the full version of this paper [4], in addition to proving some of the encoding’s
basic (proof theoretical) properties.

3 Promise Proof Systems

In this section, we define precisely the model of refutations under a promise. As
discussed in the introduction, we work with the resolution refutation system as
our underlying system and augment it with a new set of axioms that we call
the promise axioms. We call this proof system promise resolution. The promise
axioms are meant to express the fact that we can discard a certain number of
truth assignments from the space of all truth assignments and still be able to
certify (due to the promise) whether the input CNF is unsatisfiable or not. Each
promise resolution refutation can use at most one promise axiom.

From now on, we assume that the underlying variables of the CNF formulas
that are meant to be refuted are taken from the set X := {x1, . . . , xn}. The X
variables are called the original variables. Any other variable that appears in a
(promise resolution) refutation is an extension variable.

Definition 2 (CNF formulas under a promise). Let Λ be a fixed function
in n (the number of X variables) such that 0 ≤ Λ(n) ≤ 2n. The function Λ is
called the promise. The set of CNF formulas under the promise Λ consists of
all CNF formulas in the X variables that are either unsatisfiable or have more
then Λ(n) satisfying assignments (for n = |X |).

298 N. Dershowitz and I. Tzameret

The refutation systems we build are sound and complete for the set of CNF
formulas under a (given) promise. That is, every unsatisfiable CNF formula has
a refutation in the system (this corresponds to completeness), while no CNF
having n variables and more than Λ(n) satisfying assignments has a refutation
in it (this corresponds to soundness under the promise). The soundness (under
the promise) is achieved by requiring that resolution should prove the fact that
we discard the right number of assignments (see Sect. 3.1 for details).

Definition 3 (Assignment discarding). Let A be a CNF in the X variables
that can contain (but not necessarily does) extension variables (that is, variables
not from X). We say that an assignment to the X variables a is discarded by
A if there is no extension of a (to the extension variables in A) that satisfies A.

3.1 Promise Axioms

Big promise. We first concentrate on a promise of a constant fraction of assign-
ments. Let the promise (see Definition 2) be Λ = ε · 2n, for a constant 0 < ε < 1
(we fix this Λ throughout this subsection), and let r = �log(1/ε)� and t = 2r−1.
Let C be a sequence of Boolean circuits C := (C(1), . . . , C(t)). Assume that each
C(i) has n − r input bits and n output bits and computes the Boolean map
fi : {0, 1}n−r → {0, 1}n. Assume further that the fi’s are all injective maps and
that the images of all these maps are pairwise disjoint. Denote by Im(fi) the
image of the map fi. For simplicity, we call the union

⋃t
i=1 Im(fi) the image of

C and denote it by Im(C). By the definition of r, we have 2n−r ≤ ε ·2n = Λ, and
by the injectivity and pairwise disjointness of the images of the fi’s we have:

|Im(C)| = t · 2n−r = (2r − 1) · 2n−r = 2n − 2n−r ≥ 2n − Λ . (1)

Therefore, we can treat Im(C) as the set of all possible truth assignments for the
original variables X, without loosing soundness : If K is unsatisfiable then there
is no assignment in Im(C) that satisfies K; and if K is satisfiable then according
to the promise it has more than Λ satisfying assignments, which means that there
is at least one assignment in Im(C) that satisfies K. This idea is formulated as
a propositional formula, as follows:

Definition 4 (Promise Axiom for Λ = ε · 2n). Let the promise be Λ = ε · 2n,
for a constant 0 < ε < 1, and let r = �log(1/ε)� and t = 2r − 1. Let C be a
sequence of Boolean circuits C := (C(1), . . . , C(t)). Assume that each C(i) has
n − r input bits and n output bits and let W1 and W2 be two disjoint sets of
n−r extension variables each. The promise axiom PRMC,Λ is the CNF encoding
of the following Boolean formula (see the encoding in the full version [4]):
(

t∧

i=1

(
C(i)(W1) ≡ C(i)(W2)→W1 ≡W2

)
∧

∧

1≤i<j≤t
C(i)(W1) �≡ C(j)(W2)

)

−→
t∨

i=1

C(i)(W1) ≡ X.

Complexity of Propositional Proofs Under a Promise 299

(The notation W 1 ≡W 2 means that the ith variable in W 1 is logically equiv-
alent to the ith variable in W 2, and similarly for C(i)(W1) ≡ C(i)(W2); see
the full version of this paper for more details.) The promise axiom PRMC,Λ

expresses the fact that if each circuit in C computes an injective map (this is
formulated as

∧t
i=1(C(i)(W1) ≡ C(i)(W2)→W1 ≡W2)), and if the images of

the maps computed by each pair of circuits in C are disjoint (this is formulated
as

∧
1≤i<j≤t C

(i)(W1) �≡ C(j)(W2)), then we can assume that the assignments
to the original variables X are taken from the image of C (this is formulated as∨t
i=1 C

(i)(W1) ≡ X). The fact that the image of C is of size at least 2n − Λ is
expressed (due to Eq. (1)) by the number of input bits (i.e., n−r) of each circuit
in C and the number of circuits in C (i.e., t). Also note that the promise axiom
is of polynomial-size as long as the circuits in C are (since 1/ε is a constant).

The following claim states that the promise axioms are sound with respect to
the promise Λ in the sense that they do not discard too many truth assignments
(see the full version [4] for the proof):

Claim. The promise axiom PRMC,Λ discards at most Λ truth assignments. That
is, there are at most Λ distinct assignments a to the X variables such that
PRMC,Λ |= X �≡ a.

Smaller promise. We are also interested in formulating promise axioms for
promises smaller than ε·2n. Specifically, we are interested in the promise Λ = 2δn

for a constant 0 < δ < 1. For such a promise, the promise axiom is essentially
similar to Definition 4, except that the number of input bits of each circuit in C
needs to be modified accordingly. Due to space limitations, we do not describe
the formulation of this kind of promise axiom (and refer the interested reader to
the full version [4]).

3.2 Promise Resolution

Definition 5 (Promise resolution). Let Λ be the promise (see Definition
2) and let K be a CNF in the X variables. A promise resolution (under the
promise Λ) proof of the clause D from a CNF formula K is a sequence of clauses
D1, D2, . . . , D� such that: (1) Each clause Dj is either a clause of K or a clause
of a promise axiom PRMC,Λ (where PRMC,Λ is either a big or a smaller promise
axiom as defined, for instance, in Definitions 4, and C is an arbitrary sequence
of circuits with the prescribed input and output number of bits) or a resolvent
of two previous clauses in the sequence or a weakening of a previous clause; (2)
The sequence contains (the clauses of) at most one promise axiom; (3) The last
clause D� = D. The size and refutations of promise resolution is defined the
same as for resolution.

Note that promise resolution is a Cook-Reckhow proof system (see the introduc-
tion for a definition), in the sense that it is possible to efficiently verify whether
a given CNF is an instance of the promise axiom, and hence to verify whether a
sequence of clauses constitute a legitimate promise refutation. This can be done
by “decoding” the CNF that encodes the promise axiom PRMC,Λ and then
checking that each circuit in C has the right number of input and output bits.

300 N. Dershowitz and I. Tzameret

Proposition 1. Let Λ be the promise (where Λ is either ε ·2n or 2δn, for 0 <
ε, δ < 1). Then, promise resolution under promise Λ is a sound and complete
proof system for the set of CNF formulas under the promise Λ. In other words,
every unsatisfiable CNF has a promise resolution refutation, and every CNF
that has more than Λ satisfying assignments does not have promise resolution
refutations.

Proof. Completeness stems from completeness of resolution. Soundness under
the promise Λ stems from Claim 3.1. (This claim refers to the big promise, but
a similar argument holds also for the smaller promise axiom.)

The full paper [4] contains a brief discussion of the definition of promise proofs
and the choice made in formulating the above promise axioms.

4 Big Promise – The Upper Bound

We sketch a proof showing that under the promise Λ = ε · 2n , for any constant
0 < ε < 1, resolution can efficiently certify the unsatisfiability of all unsatisfiable
3CNF formulas. The method resembles the algorithm presented by Trevisan [7]
for approximating the number of satisfying assignments of a kCNF formula.

The idea behind the refutations in this section is based on the following obser-
vation: Given an unsatisfiable 3CNF formula K and a constant c, either there are
3(c− 1) variables that hit2 all the clauses in K or there are at least c clauses in
K over 3c distinct variables denoted by K ′ (that is, each variable in K ′ appears
only once). In the first case, we can consider all the possible truth assignments
to the 3c variables inside resolution: If K is unsatisfiable then any such truth
assignment yields an unsatisfiable 2CNF formula, which can be efficiently re-
futed in resolution. In the second case, we can make use of a promise axiom to
efficiently refute K ′ (this set of clauses has less then Λ satisfying assignments,
for sufficiently large c). Specifically, in the second case, we construct a sequence
of small circuits C for which any satisfying assignment for K ′ is provably in
resolution (with polynomial-size proofs) outside the image of C. The following
is the main result of this section:

Theorem 1. Let 0 < ε < 1 be a constant and let Λ = ε · 2n be the given
promise. Then every unsatisfiable 3CNF with n variables has a polynomial-size
(in n) resolution refutation under the promise Λ.

This theorem is a consequence of the three lemmas that follow (their proofs
appear in the full version [4]):

Lemma 1. Let K be a 3CNF formula. For every integer c one of the following
holds: (i) there is a set of at most 3(c − 1) variables that hit all the clauses in
K; or (ii) there is a sub-collection of clauses from K, denoted K ′, with at least
c clauses and where each variable appears only once in K ′.
2 A set of variables S that hit all the clauses in a CNF formula K is a set of variables

for which every clause in K contains some variable from S.

Complexity of Propositional Proofs Under a Promise 301

If case (i) of the prior lemma holds, then the following lemma suffices to efficiently
refute the 3CNF:

Lemma 2. Let c be constant and K be an unsatisfiable 3CNF formula in the X
variables (where n = |X |). Assume that there is a set S ⊆ X of at most 3(c− 1)
variables that hit all the clauses in K. Then, there is a polynomial-size (in n)
resolution refutation of K.

If case (ii) in Lemma 1 holds, then it suffices to show that resolution under a
big promise can efficiently refute any 3CNF formula T with a constant number
of clauses (for a sufficiently large constant), where each variable in T occurs
only once (such a T is of course satisfiable, but it has less than an ε fraction of
satisfying assignments for a sufficiently large number of clauses):

Lemma 3. Fix the constant c = 3�log7/8(ε/2)�. Let Λ = ε ·2n, where 0 < ε < 1
is a constant and n is sufficiently large. Assume that T is a 3CNF with c/3
clauses (and c variables) over the X variables, where each variable in T occurs
only once inside T . Then, there is a polynomial-size resolution refutation of T
under the promise Λ.

The proof of Lemma 3 consists of constructing a sequence of polynomial-size
circuits C (where the parameters of the circuits in C are taken from Definition
4; that is, r = �log(1/ε)� and t = 2r− 1), such that: (i) resolution can efficiently
prove the injectivity and the pairwise disjointness of the images of the circuits
in C; and (ii) there is a polynomial-size refutation of T and PRMΛ,C . In other
words, there is a polynomial-size derivation of the empty clause from the clauses
of both T and PRMΛ,C .

5 Smaller Promise – The Lower Bound

In this section, we state an exponential lower bound on the size of resolution
refutations under the promise 2δn, for any constant 0 ≤ δ ≤ 1. The lower bound
applies to random 3CNF formulas with o(n3/2) number of clauses (where n is
the number of variables in the 3CNF). This lower bound matches the known
lower bound on resolution refutation-size for random 3CNF formulas (without
any promise). Basically, the proof strategy of our lower bound is similar to that
of [2], except that we need to take care that every step in the proof works with
the augmented (smaller) promise axiom.

The lower bound is somewhat stronger than described above in two respects.
First, we show that restricting the set of all 2n truth assignments to any smaller
set (not just those sets defined by small circuits) that consists of 2n − 2δn as-
signments (for any constant 0 ≤ δ ≤ 1), does not give resolution any advantage
in the average-case. One can think of such a restriction as modifying the se-
mantic implication relation |= to take into account only assignments from some
prescribed set of assignments S, such that |S| = 2n − 2δn (in other words, for
two formulas A,B, we have that A |= B under the restriction to S iff any truth

302 N. Dershowitz and I. Tzameret

assignment from S that satisfies A also satisfies B). Formally, this means that
the lower bound does not use the fact that the restricted domain of size 2n−2δn

is defined by a sequence C of polynomial-size circuits (nor the fact that the
circuits in C ought to have polynomial-size resolution proofs of their injectivity
and pairwise disjointness). Second, we could allow for a promise that is bigger
than 2δn, and in particular for a promise of 2n(1−1/n1−ξ) = 2n/2n

ξ

, for some
constant 0 < ξ < 1.

The following defines the usual average-case setting of 3CNF formulas:

Definition 6 (Random 3CNF formulas). For a 3CNF formula K with n
variables X and β ·n clauses, we say that β is the density of K. A random 3CNF
formula on n variables and density β is defined by picking β ·n clauses from the
set of all 23 ·

(
n
3

)
clauses, independently and indistinguishably distributed, with

repetitions.

Finally, the next theorem gives our lower bound. A complete proof appears in
the full version [4].

Theorem 2. Let 0 < δ < 1 and 0 < ε < 1/2. With high probability a random
3CNF formula with β = n1/2−ε requires a size exp(Ω(β−4/(1−ε) · n)) resolution
refutation under the promise Λ = 2δn.

Acknowledgments

The second author is indebted to Ran Raz for very helpful conversations that
led to the present paper. We also wish to thank Jan Kra j́ıček for commenting
on an earlier version of this paper and Eli Ben-Sasson and Amnon Ta-Shma for
useful correspondence and conversations.

References

1. Beame, P., Karp, R., Pitassi, T., Saks, M.: The efficiency of resolution and Davis-
Putnam procedures. SIAM J. Comput. 31(4), 1048–1075 (2002)

2. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
J. ACM 48(2), 149–169 (2001)

3. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

4. Dershowitz, N., Tzameret, I.,: Complexity of propositional proofs under a promise
(full version) (2007) http://www.cs.tau.ac.il/∼tzameret/PromiseProofs.pdf

5. Feige, U., Kim, J., Ofek, E.: Witnesses for non-satisfiability of dense random 3CNF
formulas. In: Proc. 47th Annual IEEE Symposium on Foundations of Computer
Science, pp. 497–508 (October 2006)

6. Hirsch, E.: A fast deterministic algorithm for formulas that have many satisfying
assignments. Logic Journal of the IGPL 6(1), 59–71 (1998)

7. Trevisan, L.: A note on approximate counting for k-DNF. In: Jansen, K., Khanna, S.,
Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122,
pp. 417–426. Springer, Heidelberg (2004)

http://www.cs.tau.ac.il/~tzameret/PromiseProofs.pdf

Deterministic History-Independent Strategies for

Storing Information on Write-Once Memories�

Tal Moran, Moni Naor��, and Gil Segev

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel
{tal.moran, moni.naor, gil.segev}@weizmann.ac.il

Abstract. Motivated by the challenging task of designing “secure” vote
storage mechanisms, we deal with information storage mechanisms that
operate in extremely hostile environments. In such environments, the ma-
jority of existing techniques for information storage and for security are
susceptible to powerful adversarial attacks. In this setting, we propose
a mechanism for storing a set of at most K elements from a large uni-
verse of size N on write-once memories in a manner that does not reveal
the insertion order of the elements. Whereas previously known construc-
tions were either inefficient (required Θ(K2) memory), randomized, or
employed cryptographic techniques which are unlikely to be available in
hostile environments, we eliminate each of these undesirable properties.
The total amount of memory used by the mechanism is linear in the num-
ber of stored elements and poly-logarithmic in the size of the universe of
elements.

In addition, we consider one of the classical distributed computing
problems: Conflict resolution in multiple-access channels. By establish-
ing a tight connection with the basic building block of our mechanism,
we construct the first deterministic and non-adaptive conflict resolution
algorithm whose running time is optimal up to poly-logarithmic factors.

1 Introduction

We consider the abstract problem of storing a set of at most K elements taken
from a large universe of size N , while minimizing the total amount of allo-
cated memory. We design a storage mechanism which is deterministic, history-
independent, and tamper-evident. Our mechanism supports insert operations,
membership queries, and enumeration of all stored elements. Whereas previ-
ously known constructions were either inefficient, randomized, or employed cryp-
tographic techniques that require secure key storage, we make a concentrated
effort to eliminate these undesirable properties.

� Due to space limitations we refer the reader to a longer version available at
http://www.wisdom.weizmann.ac.il/∼naor. Research supported in part by a grant
from the Israel Science Foundation.

�� Incumbent of the Judith Kleeman Professorial Chair.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 303–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

304 T. Moran, M. Naor, and G. Segev

Our motivation emerges from the task of designing vote storage mechanisms1,
recently studied by Molnar, Kohno, Sastry and Wagner [8]. They described the
desirable security goals of such mechanisms and suggested simple constructions.
Without a “secure” vote storage mechanism, an adversary may be able to unde-
tectably tamper with the voting records or compromise voter privacy. A typical
threat is a corrupt poll worker who has complete access to the vote storage
mechanism at some point during or after the election process. In order to pre-
vent the adversary from modifying the stored votes, a vote storage mechanism
should be tamper-evident. Moreover, as the order in which votes are cast must
be hidden to protect the privacy of the voters, a vote storage mechanism should
be history-independent as well. We refer the reader to [8] for a detailed list of
the security goals of vote storage mechanisms.

In this paper we deal with the design of information storage mechanisms that
operate in extremely hostile environments. In such environments, the majority
of existing techniques for information storage and for security are susceptible to
powerful adversarial attacks. In order to prevent such attacks, we study storage
mechanisms with special properties.

Deterministic strategies. Randomization is an important ingredient in the
design of efficient systems. However, for systems that operate in hostile environ-
ments, randomization can assist the adversary in attacking the system. First, as
sources of random bits are typically obtained from the environment, it is quite
possible that the adversary can corrupt these sources. In such cases, we usually
have no guarantees on the expected behavior of the system. Second, even when
truly random bits are available, these bits may be revealed to the adversary in
advance, and serve as a crucial tool in the attack. Third, a randomized storage
strategy may enable a subliminal channel: As multiple valid representations for
the same abstract state exist, a malicious storage mechanism can secretly embed
information into the stored data by choosing one of these representations. Appli-
cations such as voting protocols may run in completely untrusted environments.
In such cases, deterministic strategies have invaluable security benefits.

History-independence. Many systems give away much more information than
they were intended to. When designing a data structure whose memory represen-
tation may be revealed, we would like to ensure that an adversary will not be able
to infer information that is not available through the system’s legitimate inter-
face. Computer science is rich with tales of cases where this was not done, such
as files containing information whose creators assumed had been erased, only to
be revealed later in embarrassing circumstances. Very informally, we consider a
period of activity after which an adversary gains complete control over the data
structure. In particular, the memory representation of the data is revealed to the
adversary. The data structure is history-independent if the adversary will not be

1 We note that for vote storage mechanisms it is sufficient to support only insert op-
erations and enumeration of all stored elements. Our mechanism supports (efficient)
membership queries as well, although we did not set out to implement this property.

Deterministic History-Independent Strategies for Storing Information 305

able to deduce any more about the sequence of operations that led to the current
content than the content itself yields.

Tamper-evident write-once storage. A data structure is tamper-evident if
any unauthorized modification of its content can be detected. Tamper-evidence
is usually provided by a mixture of physical assumptions (such as secure pro-
cessors) and cryptographic tools (such as signature schemes). Unfortunately, the
majority of cryptographic tools require secure key storage, which is unlikely to
be available in a hostile environment. Our construction follows the approach of
Molnar et al. [8], who exploited the properties of write-once memories to provide
tamper-evident storage. They introduced an encoding scheme in which flipping
some of the bits of any valid codeword from 0 to 1 will never lead to another
valid codeword2. In the voting scenario, this prevents any modification to the
stored ballots after the polls close, and prevents poll workers from tampering
with the content of the data structure while the storage device is in transit. This
approach does not require any cryptographic tools or computational assump-
tions, which makes it very suitable for the setting of hostile environments. The
additional memory allocation required by the encoding is only logarithmic in the
size of the stored data, and can be handled independently of the storage strategy.
For simplicity of presentation, we ignore the encoding procedure, and refer the
reader’s attention to the fact that our storage strategy is indeed write-once (i.e.,
the memory is initialized to the all 0’s state, and the only operation allowed is
flipping bits from 0 to 1).

Conflict resolution. In this paper we also address a seemingly unrelated prob-
lem: conflict resolution in multiple-access channels. A fundamental problem of
distributed computing is to resolve conflicts that arise when several stations
transmit simultaneously over a single channel. A conflict resolution algorithm
schedules retransmissions, such that each of the conflicting stations eventually
transmits singly to the channel. Such an algorithm is non-adaptive if the choice of
the transmitting stations in each step does not depend on information gathered
from previous steps. The efficiency measure for conflict resolution algorithms is
the total number of steps it takes to resolve conflicts in the worst case3.

We consider the standard model in which N stations are tapped into a sin-
gle channel, and there are at most K conflicting stations. In 1985, Komlós and
Greenberg [6] provided a non-constructive proof for the existence of a determin-
istic and non-adaptive algorithm that resolves conflicts in O(K log(N/K)) steps.
However, no explicit algorithm with a similar performance guarantee was known.
By establishing a tight connection between this problem and the basic building
block of our storage mechanism, we construct the first efficient deterministic and
non-adaptive conflict resolution algorithm.

2 Consider the encoding E(x) = x || wt(x̄)2, obtained by concatenating the string x
with the binary representation of the Hamming weight of its complement. Flipping
any bit of x from 0 to 1 decreases wt(x̄)2, and requires flipping at least one bit of
wt(x̄)2 from 1 to 0.

3 Worst case refers to the maximum over all possible sets of conflicting stations.

306 T. Moran, M. Naor, and G. Segev

1.1 Our Contributions

We construct a deterministic mechanism for storing a set of at most K elements
on write-once memories. The elements are given one at a time, and stored in a
manner that does not reveal the insertion order. Our mechanism is immune to a
large class of attacks that made previous constructions unsuitable for extremely
hostile environments. Whereas previous constructions were either inefficient (re-
quired Θ(K2) memory), randomized, or employed cryptographic techniques that
require secure key storage, we eliminate each of these undesirable properties. Our
main result is the following4:

Theorem 1. There exists an explicit, deterministic, history-independent, and
write-once mechanism for storing a set of at most K elements from a universe
of size N , such that:

1. The total amount of allocated memory is O(K · polylog(N)).
2. The amortized insertion time is O(polylog(N)).
3. The worst-case look-up time is O(polylog(N)).

In addition, our construction yields a non-constructive proof for the existence of
the following storage mechanism:

Theorem 2. There exists a deterministic, history-independent, and write-once
mechanism for storing a set of at most K elements from a universe of size N ,
such that:

1. The total amount of allocated memory is O(K log(N/K)).
2. The amortized insertion time is O(log(N/K)).
3. The worst-case look-up time is O(logN · logK).

Finally, by adapting our technique to the setting of conflict resolution, we devise
the first efficient deterministic and non-adaptive algorithm for this problem.
The number of steps required by our algorithm to resolve conflicts matches the
non-explicit upper bound of Komlós and Greenberg [6] up to poly-logarithmic
factors. In the full version of this paper we prove the following theorem:

Theorem 3. For every N and K there exists an explicit, deterministic, and
non-adaptive algorithm that resolves any K conflicts among N stations in O(K ·
polylog(N)) steps.

Paper organization. The rest of the paper is organized as follows. In the
remainder of this section we review related work and essential definitions. In
Section 2 we present our security goals and threat model. In Section 3 we present
an overview of our storage mechanism, which is then described in Section 4.

4 For simplicity, throughout the paper we refer to the amount of allocated memory as
the number of allocated memory words, each of length log N bits. We assume that
the mechanism can read and write a memory word in constant time.

Deterministic History-Independent Strategies for Storing Information 307

1.2 Related Work

The problem of constructing history-independent data structures was first for-
mally considered by Micciancio [7], who devised a variant of 2–3 trees that
satisfies a property of this nature. Micciancio considered a rather weak notion of
history-independence, which required only that the shape of the trees does not
leak information. We follow Naor and Teague [9] and consider a stronger notion
– data structures whose memory representation does not leak information. Naor
and Teague focused on dictionaries, and constructed very efficient hash tables
in which the cost of each operation is constant.

In the context of write-once memories, Rivest and Shamir [10] initiated the
study of codes for write-once memory, by demonstrating that such memories can
be “rewritten” to a surprising degree. Irani, Naor and Rubinfeld [5] explored
the time and space complexity of computation using write-once memories, i.e.,
whether “a pen is much worse than a pencil”. They proved that a Turing machine
with write-once polynomial space decides exactly the class of languages P.

History-independence on write-once memories. Molnar et al. [8] studied
the task of designing a vote storage mechanism, and suggested constructions of
history-independent storage mechanisms on write-once memories. Among their
suggestions is a deterministic mechanism based on an observation of Naor and
Teague [9], stating that one possible way of ensuring that the memory represen-
tation is determined by the content of a data structure is to store the elements
in lexicographical order. This way, any set of elements has a single canonical
representation, regardless of the insertion order of its elements. When dealing
with write-once media, however, we cannot sort in-place when a new element is
inserted. Instead, on every insertion, we compute the sorted list that includes
the new element, copy the contents of this list to the next available memory
position, and erase the previous list. We refer to this solution as a copy-over list,
as suggested by Molnar et al. [8]. The main disadvantage of copy-over lists is
that any insertion requires copying the entire list. Therefore, storing K elements
requires Θ(K2) memory5.

In an attempt to improve the amount of allocated memory, Molnar et al.
suggested using a hash table in which each entry is stored as a separate copy-
over list. The copy-over lists are necessary when several elements are mapped
to the same entry. However, with a fixed hash function the worst-case behavior
of the table is very poor, and therefore the hash function must be randomly
chosen and hidden from the adversary. Given the hash function, the mechanism
is deterministic and we refer to such a strategy as an off-line randomized strategy.
For instance, the mechanism may choose a pseudo-random function as its hash
function. However, this approach is not suitable for hostile environments, where
secure storage for the key of the hash function is not available.

5 When dealing with a small universe, a better solution is to pre-allocate memory to
store a bounded unary counter for each element. However, this may not be suitable
for vote storage in cases where write-in candidates are allowed (as common in the
U.S.) or when votes are subsets or rankings (as common in many countries).

308 T. Moran, M. Naor, and G. Segev

Molnar et al. also showed that an on-line randomized strategy can signifi-
cantly improve the amount of allocated memory. A simple solution is to allocate
an array of 2K entries, and insert an element by randomly probing the array
until an empty entry is found. However, as mentioned earlier, such a strategy
may enable subliminal channels: a malicious storage mechanism can secretly
embed information into the stored data by choosing among the multiple valid
representations of the same data.

Tamper-evidence without write-once memories. Whereas the construc-
tions of Molnar et al. achieved tamper-evidence by exploiting the properties of
write-once memories, a different approach was taken by Bethencourt, Boneh and
Waters [2]. They designed a history-independent tamper-evident storage mech-
anism by constructing a signature scheme which signs sets of elements such that
the order in which elements were added cannot be determined, and elements
cannot be deleted from the set. Even though their solution uses only O(K)
memory to store K elements, it is randomized and requires secure storage for
cryptographic keys (as well as computational assumptions).

1.3 Formal Definitions

A data structure is defined by a list of operations. We construct a data structure
that supports the following operations:

1. Insert(x) - stores the element x.
2. Seal() - finalizes the data structure (after this operation no Insert opera-

tions are allowed).
3. LookUp(x) - outputs FOUND if and only if x has already been stored.
4. RetrieveAll() - outputs all stored elements.

We say that two sequences of operations, S1 and S2, yield the same content
if for all suffixes T , the results returned by T when the prefix is S1 are identical
to those returned by T when the prefix is S2.

Definition 4. A deterministic data structure is history-independent if any two
sequences of operations that yield the same content induce the same memory
representation.

In our scenario, two sequences of operations yield the same content if and only
if the corresponding sets of stored elements are identical. The above definition is
a simplification of the one suggested by Naor and Teague [9], when dealing only
with deterministic data structures. Naor and Teague also considered a stronger
definition, in which the adversary gains control periodically, and obtains the cur-
rent memory representation at several points along the sequence of operations.
This definition has also been studied by Hartline et al. [4] and by Buchbinder
and Petrank [3]. Since we deal only with deterministic data structures, in our
setting the definitions are equivalent.

Deterministic History-Independent Strategies for Storing Information 309

2 Security Goals and Threat Model

Our approach in defining the security goals and threat model is motivated by
the possible attacks on an electronic voting system. To make the discussion
clearer, we frame the threat model in terms of a vote storage mechanism. In an
actual voting scenario, we think of ballot casting as an Insert operation. In the
most trivial case, the element inserted is simply the chosen candidate’s name.
In more complex voting schemes, the inserted element may be a ranking of the
candidates, an encrypted form of the ballot, or a combination of multiple choices.
These possibilities are the reason for viewing the “universe of elements” as large,
while the actual number of elements inserted is small (at most the number of
voters). Once the voting is complete (e.g., the polls close), the Seal operation
is performed. The purpose is to safeguard the ballots during transport (and for
possible auditing). Finally, to count the votes, the RetrieveAll operation is
performed. Note that in a standard voting scenario, Lookup is not needed – we
provide it here only for completeness. The main security goals we would like our
storage mechanism to achieve are the following6:

1. Tamper-evidence: Any modification or deletion of votes after they were
cast must be detected.

2. Privacy: No information about the order in which votes were cast should
be revealed.

3. Robustness: No adversary should be able to cause the election process to
fail.

We consider extremely powerful adversaries: Computationally unbounded ad-
versaries that can adaptively corrupt any number of voters (i.e., the adversary
can choose to perform arbitrary Insert operations at arbitrary points in time).
In addition, we assume the adversary can modify the mechanism’s program code
before the election process begins, as long as the resulting code creates a “correct-
looking” data structure (so that for any sequence of operations, a tester cannot
distinguish between the memory representation output by the adversary’s pro-
gram and the memory representation output by a correct program). In our case,
since our mechanism is deterministic, “correct-looking” is equivalent to actually
being correct (whereas a randomized mechanism can enable in such a case a
subliminal channel, as mentioned earlier).

The extent to which each of the above goals can be achieved depends on the
assumed access that the adversary has to the mechanism. More specifically, we
consider differing levels of adversarial access:

The full-access adversary. In the worst case, the adversary gains complete
control of the mechanism at some point in time. After this point, the adversary
has full read-write access both to the stored data and to the program code.
The only limitation on the adversary’s capabilities is our physical write-once

6 For simplicity we focus on the main and most relevant security goals. We refer the
reader to [8] for a more detailed list.

310 T. Moran, M. Naor, and G. Segev

assumption: The adversary cannot flip bits from 1 to 0 in the stored data. Such
an adversary can always erase existing information (by setting all bits to 1),
thus causing the election to fail. Such an adversary can also change the program
code, so it can both record and change any votes cast. The best we can hope for
in this case is a guarantee about operations that took place before the attack.
The adversary should not be able to undetectably modify or delete votes that
were previously cast, or to gain information about the order in which these votes
were cast (beyond the order of the votes cast by corrupt voters).

The limited-access adversary. A slightly more optimistic case is when the
adversary has write access only to the stored data, but not to the program
code. Such an assumption may be plausible if the program code is stored in a
read-only memory, or if the adversary gains access to the machine only after
the election process has concluded. In this case, the adversary can still cause
the election to fail (e.g., by erasing all stored data). However, the adversary
should not be able to undetectably modify or delete any vote cast (except by
corrupt voters). Moreover, the adversary should not gain any information about
the order in which votes were cast beyond what would be gained by executing
RetrieveAll() at any point in which the adversary has access to the mechanism.

The read-only adversary. In a best case scenario, the adversary has read-
only access to the mechanism. This may occur if the adversary’s access to the
machine is through a programming bug, for instance. In this case, in addition
to the security guarantees that we expect from the limited-access adversary, we
would like to guarantee robustness as well: The adversary should not be able
to cause the election to fail. This guarantee is not trivial, since the read-only
adversary can still adaptively corrupt any number of voters.

Maliciously adding votes. An adversary with write access to the storage mem-
ory can always add votes (by simply executing the Insert operation). To detect
such tampering, we combine two strategies: The first is adding a Seal operation
to the mechanism, after which the Insert operation is no longer allowed. This
will detect any tampering that occurs after the election process has concluded
(as suggested by Molnar et al. [8]). The second is maintaining an independent
count of the number of votes cast (e.g., voter lists maintained by election of-
ficials). Since our construction guarantees that votes cannot be deleted, if an
adversary adds bogus votes then the counts will not match up. Note that an in-
dependent count prevents adversaries from adding votes even if they gain access
to the mechanism during the election process.

3 Overview of the Construction

Our construction relies on the fundamental technique of storing elements in a
hash table and resolving collisions separately in each entry of the table. More
specifically, our storage mechanism incorporates two “strategies”: a global strat-
egy that maps elements to the entries of the table, and a local strategy that re-
solves collisions that occur when several elements are mapped to the same entry.

Deterministic History-Independent Strategies for Storing Information 311

As long as both strategies are deterministic, history-independent and write-once,
the entire storage mechanism will also share these properties.

The local strategy. We resolve collisions by storing the elements mapped to
each entry of the table in a separate copy-over list. Copy-over lists were intro-
duced by Molnar et al. [8], and are based on an observation by Naor and Teague
[9], stating that one possible way of ensuring that the memory representation is
determined by the content of a data structure is to store the elements in lexico-
graphical order. When dealing with write-once media, however, we cannot sort
in-place when a new element is inserted. Instead, on every insertion, we compute
the sorted list that includes the new element, copy the contents of this list to
the next available memory position, and erase the previous list (by setting all
the bits to 1). Note that storing K elements in a copy-over list requires Θ(K2)
memory, and therefore is reasonable only for small values of K.

The global strategy. Our goal is to establish a deterministic strategy for map-
ping elements to the entries of the table. However, for any fixed hash function,
the inserted elements can be chosen such that the load in at least one of the
entries will be too high to be efficiently handled by our local strategy. Therefore,
in order to ensure that the number of elements mapped to each entry remains
relatively small (in the worst case), we must apply a more sophisticated strategy.

Our global strategy stores the elements in a sequence of tables, where each
table enables us to store a fraction of the elements. Each element is first inserted
into several entries of the first table. When an entry overflows (i.e., more than
some pre-determined number of elements are inserted into it), the entry is “per-
manently deleted”. In this case, any elements that were stored in this entry and
are not stored elsewhere in the table are inserted into the next table in a similar
manner. Thus, we are interested in finding a sequence of functions that map the
universe of elements to the entries of the tables, such that the total number of
tables, the size of each table, and the number of collisions are minimized. We
view such functions as bipartite graphs G = (L,R,E), where the set of vertices
on the left, L, is identified with the universe of elements, and the vertices on
the right, R, are identified with the entries of a table. Given a set of elements
S ⊆ L to store, the number of elements mapped to each table entry y ∈ R is the
number of neighbors that y has from the set S. We would like the set S ⊆ L to
have as few as possible overflowing entries, i.e., as few as possible vertices y ∈ R
with many neighbors in S.

More specifically, we are interested in bipartite graphs G = (L,R,E) with
the following property: Every set S ⊆ L of size at most K contains “many”
vertices with low-degree neighbors. We refer to such graphs as bounded-neighbor
expanders7. Our global strategy will map all the elements in S which have a low-
degree neighbor to those neighbors, and this guarantees that the table entries
corresponding to those neighbors will not overflow at any stage. However, not
every element in S will have a low-degree neighbor. For this reason, we use a

7 The definition is motivated by the notion of bipartite unique-neighbor expanders
presented by Alon and Capalbo [1].

312 T. Moran, M. Naor, and G. Segev

sequence of bipartite graphs, all sharing the same left set L. Each graph will
enable us to store a fraction of the elements in S. Formally, we define:

Definition 5. Let G = (L,R,E) be a bipartite graph. We say that a vertex
x ∈ L has an �-degree neighbor with respect to S ⊆ L, if it has a neighbor y ∈ R
with no more than � incoming edges from S.

Definition 6. A bipartite graph G = (L,R,E) is a (K,α, �)-bounded-neighbor
expander, if every S ⊆ L of size K contains at least α|S| vertices that have an
�-degree neighbor with respect to S.

4 The Construction

Let G0, . . . , Gt denote a sequence of bounded-neighbor expanders Gi = (L =
[N], Ri, Ei) with left-degree Di (we assume that all the vertices on the left side
have the same degree). The graphs are constructed such that:

– G0 is a (K0 = K,α0, �0)-bounded-neighbor expander, for some α0 and �0.
– For every 1 ≤ i ≤ t, Gi is a (Ki, αi, �i)-bounded-neighbor expander, for some
αi and �i, where Ki = (1− αi−1)Ki−1.

As described in Section 3, the elements are stored in a sequence of tables,
T0, . . . , Tt. Each table Ti is identified with the right set Ri of the bipartite graph
Gi, and contains |Ri| entries denoted by Ti[1], . . . , Ti[|Ri|]. The elements are
mapped to the entries of the tables and are stored there using a separate copy-
over list at each entry. The copy-over list at each entry of table Ti will store
at most �i elements. We denote by |Ti[y]| the number of elements stored in the
copy-over list Ti[y], and use the notation Ti[y] = ∗ to indicate that the copy-over
list Ti[y] overflowed and was permanently deleted.

In order to insert or look-up an element x, we execute Insert(x, T0) or
LookUp(x, T0), respectively. The Seal() operation is performed as in [8] by us-
ing the encoding discussed in the introduction. The operations Insert(x, Ti),
LookUp(x, Ti), and RetrieveAll() are described in Figure 1.

Lemma 7. For every set S ⊆ [N] of size at most K, any insertion order of its
elements induces the same memory representation.

Lemma 8. For every set S ⊆ [N] of size at most K, for every insertion order
of its elements, and for every 0 ≤ i ≤ t, the number of Insert(·, Ti) calls is at
most Ki.

Lemma 9. The storage mechanism has the following properties:

1. The total amount of allocated memory is at most
∑t

i=0 |Ri| · �2i .
2. The amortized insertion time is at most 1

K ·
(∑t

i=0 |Ri| · �2i
)

.

3. The worst-case look-up time is at most
∑t

i=0Di · �2i .

Deterministic History-Independent Strategies for Storing Information 313

Insert(x, Ti):
1: for all neighbors y of x in the graph Gi do
2: if Ti[y] = ∗ then
3: Continue to the next neighbor of x
4: else if |Ti[y]| < �i then
5: Store x in the copy-over list Ti[y]
6: else
7: for all x′ in Ti[y] such that x′ does not appear in any other list in Ti do
8: Execute Insert(x′, Ti+1)
9: Set Ti[y] ← ∗ // erase the memory blocks of Ti[y]

10: if x was not stored in any copy-over list in the previous step then
11: Execute Insert(x, Ti+1)

LookUp(x, Ti):
1: for all neighbors y of x in the graph Gi do
2: if x is stored in the copy-over list Ti[y] then
3: return FOUND and halt
4: if x was not found in a previous step and i = t then
5: return NOT FOUND
6: else
7: return LookUp(x, Ti+1)

RetrieveAll():
1: for all tables Ti do
2: for all copy-over lists Ti[y] do
3: if Ti[y] �= ∗ then
4: Output all elements of Ti[y] that have not yet been output

Fig. 1. The Insert, LookUp, and RetrieveAll operations

Theorems 1 and 2 now follow by instantiating the mechanism with the con-
structions of bounded-neighbor expanders stated below in Theorems 10 and 11,
respectively. Due to space limitations, the proofs of these theorems appear in
the full version of this paper.

Theorem 10. For every n, k and constant ε > 0, there exists an efficiently
computable (K = 2k, α, 1/α)-bounded-neighbor expander G = (L,R,E), with
|L| = N = 2n, |R| = Θ(K/ log3(N)), left-degree D = polylog(N), and α =
(1−ε)|R|

2DK .

Theorem 11. For every N and K, there exists a (K, 1/2, 1)-bounded-neighbor
expander G = (L,R,E), with |L| = N , |R| = O(K log(N/K)) and left-degree
D = O(log(N/K)).

5 Concluding Remarks

Non-amortized insertion time. The amortized insertion time of our storage
mechanism is at most poly-logarithmic. However, the worst-case insertion time

314 T. Moran, M. Naor, and G. Segev

may be larger, since an insertion may have a cascading effect. In some cases,
this might enable a side-channel attack in which the adversary exploits the in-
sertion times in order to obtain information on the order in which elements were
inserted. We note that if multiple writes are allowed, then by combining our
global strategy with the hashing method of Naor and Teague [9], we can achieve
a poly-logarithmic worst-case insertion time, as well as linear memory allocation.
Whether this is possible using write-once memory remains an open problem.

Bounded-neighbor expanders. The explicit bounded-neighbor expander con-
struction stated in Theorem 10 does not achieve the parameters that one can
hope for according to Theorem 11. It would be interesting to improve our ex-
plicit construction, as any such improvement will in turn lead to a more efficient
instantiation of our storage mechanism.

Memory lower bound. The total amount of allocated bits required by our
storage mechanism stated in Theorem 2 is O(K log(N) log(N/K)). This leaves a
gap between the optimal construction using multiple-writes (that requires only
O(K log(N/K)) bits) and our construction using write-once memory. An inter-
esting open question is whether this gap is an unavoidable consequence of using
write-once memory. This can be alternatively formulated as follows: Find the
minimal integer m such that any set S of size at most K can be mapped to a
binary vector VS ∈ {0, 1}m, with the property that VS1 ⊆ VS2 whenever S1 ⊆ S2.

Acknowledgment

We thank Ronen Gradwohl for many useful discussions and suggestions.

References

1. Alon, N., Capalbo, M.R.: Explicit unique-neighbor expanders. In: 43rd FOCS, pp.
73–79 (2002)

2. Bethencourt, J., Boneh, D., Waters, B.: Cryptographic methods for storing ballots
on a voting machine. In: 14th NDSS, pp. 209–222 (2007)

3. Buchbinder, N., Petrank, E.: Lower and upper bounds on obtaining history-
independence. Information and Computation 204(2), 291–337 (2006)

4. Hartline, J.D., Hong, E.S., Mohr, A.E., Pentney, W.R., Rocke, E.: Characterizing
history independent data structures. Algorithmica 42(1), 57–74 (2005)

5. Irani, S., Naor, M., Rubinfeld, R.: On the time and space complexity of computa-
tion using write-once memory -or- Is pen really much worse than pencil? Mathe-
matical Systems Theory 25(2), 141–159 (1992)

6. Komlós, J., Greenberg, A.G.: An asymptotically fast nonadaptive algorithm for
conflict resolution in multiple-access channels. IEEE Transactions on Information
Theory 31(2), 302–306 (1985)

7. Micciancio, D.: Oblivious data structures: Applications to cryptography. In: 29th
STOC, pp. 456–464 (1997)

Deterministic History-Independent Strategies for Storing Information 315

8. Molnar, D., Kohno, T., Sastry, N., Wagner, D.: Tamper-evident, history-
independent, subliminal-free data structures on PROM storage -or- How to store
ballots on a voting machine. In: IEEE S&P, pp. 365–370. IEEE Computer Society
Press, Los Alamitos (2006)

9. Naor, M., Teague, V.: Anti-persistence: History independent data structures. In:
33rd STOC, pp. 492–501 (2001)

10. Rivest, R.L., Shamir, A.: How to reuse a write-once memory. Information and
Control 55(1-3), 1–19 (1982)

Trading Static for Adaptive Security in

Universally Composable Zero-Knowledge

Aggelos Kiayias� and Hong-Sheng Zhou�

Computer Science and Engineering
University of Connecticut

Storrs, CT, USA
{aggelos,hszhou}@cse.uconn.edu

Abstract. Adaptive security, while more realistic as an adversarial
model, is typically much harder to achieve compared to static security
in cryptographic protocol design. Universal composition (UC) provides a
very attractive framework for the modular design of cryptographic proto-
cols that captures both static and adaptive security formulations. In the
UC framework, one can design protocols in hybrid worlds that allow ac-
cess to idealized functionalities and then apply the universal composition
theorem to obtain more concrete protocol instances. The zero-knowledge
(ZK) ideal functionality is one of the most useful sub-protocols in modu-
lar cryptographic design. Given an adaptively secure protocol in the ideal
ZK-hybrid-world do we always need an adaptively secure realization of
the ZK functionality in order to preserve adaptive security under com-
position? In this work, perhaps surprisingly, we find that this is not so
and in fact there are useful protocol instances that we can “trade static
security for adaptive security.”

We investigate the above setting, by introducing a weakened ZK ideal
functionality, called the ideal leaking-zero-knowledge functionality (LZK)
that leaks some information about the witness to the adversary in a cer-
tain prescribed way. We show that while LZK is interchangeable to ZK
against static adversaries, ZK is more stringent when adaptive adver-
saries are considered. We then proceed to characterize a class of protocols
in the hybrid-ZK-world that can be “transported” to the LZK-hybrid-
world without forfeiting their security against adaptive adversaries. Our
results demonstrate that in such settings a static protocol realization of
ZK is sufficient for ensuring adaptive security for the parent hybrid pro-
tocol something that enables simplified and substantially more efficient
UC realizations of such protocols.

1 Introduction

When analyzing the security of cryptographic protocols there typically exists a
divide between adaptive and static security, cf. [6]. In an adaptive security setting

� Research partly supported by NSF CAREER Award CNS-0447808.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 316–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Trading Static for Adaptive Security in Universally Composable 317

the adversary is allowed to corrupt parties dynamically and this makes simula-
tion based proofs difficult: in particular without assuming erasures [2] the sim-
ulator would be forced to reconstruct the internal state of a corrupted machine
that has been simulated. In fact, depending on the arguments used to prove the
indistinguishability of simulated protocol transcripts, state reconstruction can
be impossible. In contrast, in the static security setting, state reconstruction
is not needed since the adversary is forced to decide a-priori on which parties
are to be corrupted; this gives the leeway to the simulator to communicate to
the adversary simulated transcripts that even though they substantially deviate
from real protocol transcripts they are still indistinguishable from the point of
view of a static adversary.

The divide between static and adaptive security in simulation based security
proofs naturally impacts the complexity of attaining these levels of security for
many cryptographic functionalities (both in terms of protocol efficiency as well
as in terms of necessary idealized setup assumptions). In particular, for a given
functionality, an adaptively secure protocol realizing it, is typically much more
complicated compared to a protocol that only realizes it in the static sense. In
the Universal Composition (UC) setting most interesting functionalities can be
realized much more easily in the static security sense; (a notable exception is
the ideal functionality of a digital signature [4,5]). This holds true also for the
Zero-Knowledge ideal functionality FZK that idealizes the operation of a zero-
knowledge protocol [5]. Realizing FZK in the UC-setting is based on the notion of
UC-commitment [7]. Obtaining UC-commitments in the adaptive security sense
is a rather arduous task [9,10].

The functionality FZK is arguably one of the most useful sub-component func-
tionalities in the design of complex cryptographic protocols (cf. [12,11]). The UC
setting gives us the flexibility to focus on how to realize FZK with some protocol
ρ individually; then, given such realization, the universal composition theorem
[3,5] enables us to focus on protocol design in the FZK-hybrid world.

While the design of protocols within the FZK-hybrid world is particularly at-
tractive (given the power of the included ideal functionality that is supplied “for
free” in the hybrid world) one cannot undervalue the substantial cost that will
be incurred when FZK will be substituted with some protocol ρ that realizes the
ideal functionality in the adaptive security sense. This brings forth the following
fundamental question that is the central theme of the present work: Are there
useful FZK-like functionalities that are (1) substantially cheaper to realize than
FZK against adaptive adversaries and (2) still sufficiently powerful to be useful
as FZK substitutes within a certain UC modular design scenario? Or, to pose
this question more specifically, is it always necessary to use an adaptively secure
realization of the ZK functionality in order to preserve the adaptive security of
an FZK hybrid protocol under composition?

Contributions. In this work we answer the question posed above. In particular
we define the ideal functionality of “leaking zero-knowledge” FLZK that has the
following characteristics:

318 A. Kiayias and H.-S. Zhou

(1) The leaking zero-knowledge functionality FLZK is based on FZK with
the difference that it leaks to the adversary some information about the
witness in a controlled way: in particular FLZK encompasses a special-
ized commitment scheme (that we call R-commitment where R is the ZK-
relationship and we formalize herein) and when the prover issues a “prove”
command to the functionality FLZK, the functionality leaks a commitment
to w to the adversary. If the prover is corrupted at any moment after the
commitment has been released, the commitment is opened to the adversary.
(2) We prove that FLZK is interchangeable with FZK against static adver-
saries. Thus in some sense, one can say, that FLZK is a “static version” of
the FZK zero-knowledge functionality. This also immediately implies that
as long as one is interested in static security, FLZK can be used in place
of FZK. Moreover, it hints that FLZK may be “cheaper” to realize against
adaptive adversaries when compared to FZK. Indeed we present a simple
protocol that realizes FLZK in the (FPRS,FZKPM)-hybrid world against
adaptive adversaries (and thus automatically also FZK against static ad-
versaries); it seems difficult to obtain a protocol of similar complexity that
realizes FZK against adaptive adversaries in the (FPRS,FZKPM)-hybrid
world.
(3) It is possible to construct an environment that uses adaptive corrup-
tions and separates the two functionalities FLZK and FZK, unless the
involved ZK-relation is a trivial relationship (to be clarified further in
section 3.3). Moreover, we show that FZK emulates FLZK against any ad-
versary something that is indicative of the fact that FZK is more powerful
as a functionality.
(4) In the adaptive adversary setting, we characterize a family of protocols
(using a sufficient condition cf. section 5.2) that operate in the FZK- hy-
brid world and have the property that they retain adaptive security when
transported to the FLZK-hybrid world. To put it simply, for such protocols
using FZK is an “overkill” and it would be sufficient to consider them as
protocols in the FLZK-hybrid world.

Interpreting the above in the context of the FZK-hybrid world leads to the some-
what surprising result that there exist protocols where a certain static security
realization of FZK (which is an adaptive realization of FLZK) is still sufficient to
achieve adaptive security in the UC setting. In such settings we can say that we
have traded static for adaptive security!

As expected the family of protocols we characterize in item (4) above excludes
many functionalities that apparently require the adaptive security properties of a
realization of FZK. Still, many useful protocols fall into the class of protocols that
we can trade static for adaptive security. In fact, the class, intuitively, contains
all protocols that employ FZK for “consistency purposes” (rather than say for
witness hiding purposes).

A simple example of a protocol that belongs to the class is the usage of the FZK

functionality that is part of the adaptive commit-and-prove protocol ACP of [9]:

Trading Static for Adaptive Security in Universally Composable 319

the ACP protocol involves three different instances of the FZK functionality where
one of them (the one employed by the verifier to ensure that his commitment
key is valid) can in fact be substituted by FLZK without affecting the protocol’s
adaptive security (cf. FT

ZK in Figure 10, page 57 in [9]; we note that the FT
ZK

functionality can also be simulated by an FCRS box — a fact remarked in [9]). A
more complex example of usage of FZK within a protocol that can be substituted
by FLZK is exhibited in [13] for the design of UC blind signatures: in this type
of signatures it turns out that the signer requires only FLZK (as opposed to FZK

that is required for the user side).

Other related work. Relaxations of ideal functionalities were also seen in the
context of the “monitored functionalities” of [15]; note that the goal there was
to relax w.r.t. correctness rather than security as we do here. A relaxation w.r.t.
security for the key-exchange ideal functionality was performed in [8]; in their
setting the ideal-functionality leaks a function of the exchanged key (by including
the so called “non-information” oracle).

Notations. a r← RND denotes randomly selecting a in its domain; negl() denotes
negligible function.

2 Preliminaries

The Universal Composability Framework [5]. Defining security in the uni-
versal composibility framework involves the following steps: we first specify an
ideal functionality F , which describes the desired behavior of the protocol by us-
ing a trusted party; this functionality F communicates also with an ideal world
adversary. Then, we prove that a particular protocol π operating in the real
world securely realizes this ideal functionality. Here, securely realizing means
that for any adversary A in the real world, there exists a simulator S in the
ideal world, and no environment Z can distinguish its interaction with the real
protocol π and A, or with the functionality F and S. Once this is established, we
can take advantage of the UC composition theorem and “plug in” the protocol
π as a sub-routine in any arbitrary environment in place of the functionality F .
For a complete definition of UC framework please refer to [5].

Functionality Fgen
PRS. Next we describe functionality Fgen

PRS, which is similar to
the KS, KR, PRS functionalities employed respectively in [5,1,14]. Here we only
consider the case for two parties, P and V (and thus we modify it accordingly).

Functionality FRZK. A zero-knowledge proof is a two-party protocol parame-
terized by a binary relation R; the two parties called the prover and the verifier
share a common input, the statement x. The prover has an additional input, the
witness w. If (x,w) ∈ R, the verifier accepts; if not, the verifier will reject. Fur-
thermore the verifier learn nothing from the protocol with the prover except of
whether the prover knows the witness w s.t. (x,w) ∈ R or not. The functionality
in figure 2 is taken from [5] which captures properly the security properties of a
zero-knowledge proof.

320 A. Kiayias and H.-S. Zhou

Functionality Fgen
PRS

Fgen
PRS proceeds as follows, running with two parties P , V , and an adversary S ,

and parameterized with a function gen.

Register: Upon receiving (RegisterPRS, sid) from party P , verify that sid =
(P, V, sid ′) for some sid ′. If not, then ignore the input. Else, randomly select dk and
produce ek ← gen(dk), record (P, ek) in history, and send (ReturnPRS, sid , ek) to
S . If (ReturnPRS, sid , ek , ok) is received from S , then return (ReturnPRS, sid , ek)
to P .
Upon receiving (RegisterPRS, sid , dk , P) from a corrupted party P , produce ek ←
gen(dk). Record (P, ek) in history.
Retrieve: Upon receiving (RetrievePRS, sid , P) from some party V , send
(RetrievePRS, sid , P, V) to S and obtain a value ek in return. If (P, ek) has
been recorded in history then return (ReturnPRS, sid , ek , P) to V . Else, return
(ReturnPRS, sid ,⊥, P) to V .
Corrupt: Upon receiving (CorruptPRS, sid , P) from S , record the fact that party
P has been corrupted.

Fig. 1. Private reference string functionality Fgen
PRS for two parties

3 The Leaking Zero-Knowledge Functionality

3.1 R-Commitment

An R-commitment scheme is a special non-interactive commitment scheme that
is bound to a given relation R. It is an extractable commitment where the hiding
property is only required to hold with respect to the witnesses of the relation
R. In particular, if the witness is computationally hidden by the statement,
then an R-commitment can be at most computationally hiding. Formally, an R-
commitment scheme E is a tuple 〈genE , comE , verE , decE〉. The key generation
algorithm genE produces a public parameter ek based on a randomly selected
dk ∈ K. The procedures comE , verE correspond to the commitment algorithm
and the testing algorithm for the decommit information for a given commitment;
they satisfy the correctness property verE(x, ek , comE(ek , x, w, γ), w, γ) = 1 for
any ek ← genE(dk) with dk ∈ K. The procedure decE always extracts the
witness given the trapdoor key dk ; in particular, we require ∀E ∃w, γ such that
E = comE(ek , x, w, γ) and decE(x, ek , E, dk) = w. Note that we may generalize
these requirements to allow for partial correctness and extractability but this
would not have any significant impact on our results.

We say that E is an R-commitment for a given relation R if additionally to
the above, it satisfies the R-hiding property:

Definition 1 (R-hiding). We say a commitment E is R-hiding, if for all PPT
adversaries A = (A1,A2), the advantage AdvR,Ehiding(λ) def= |2Prob[ExpR,Ehiding(λ)]−
1| = negl(λ), where the experiment ExpR,Ehiding(λ) is defined below.

Trading Static for Adaptive Security in Universally Composable 321

Additionally, we say that E is R-unequivocal for some sampleR if it satisfies:

Functionality FR
ZK

FR
ZK proceeds as follows, running with a prover P , a verifier V and an adversary
S , and parameterized with a binary relation R.

Prove: Upon receiving (ProveZK, sid , x,w) from party P , verify that sid =
(P, V, sid ′) for some sid ′. If not, then ignore the input. Else, forward
(ProveZK, sid , x) to S .
Upon receiving (ProveZK, sid , ok) from the adversary S , if (x,w) ∈ R then record
〈x,w〉 into history and output (VerifiedZK, sid , x) to party V , else do nothing.
From now on, ignore future (ProveZK, sid , ...) input.
Corrupt: Upon receiving (CorruptProverZK, sid) from S , return S
(CorruptedProverZK, sid , history). Record the fact that party P has been cor-
rupted. After the corruption has occurred, upon receiving (PatchZK, sid , x′, w′),
if (x′, w′) ∈ R and no output (VerifiedZK, sid , ...) was returned to party V yet,
then output (VerifiedZK, sid , x′) to party V .

Fig. 2. Zero-knowledge functionality FR
ZK

Definition 2 (R-unequivocal). We say a commitment E is R-unequivocal
for some PPT sampleR that returns (x,w) in R, if for all PPT adversaries

A = (A1,A2), the advantage AdvR,Eunequivocal(λ) def= Prob[ExpR,Eunequivocal(λ) = 1] =
negl(λ), where the experiment ExpR,Eunequivocal(λ) is defined below.

ExpR,E
unequivocal(λ)

(x, w)← sampleR(1λ);

(ek , Ê, state)← A1(x);
γ ← A2(state,w);

if verE(x, ek , Ê, w, γ) = 1
then output 1
else output 0.

ExpR,E
hiding(λ)

(x, w)← A1(1
λ); if verifyR(x,w) �= 1 then abort;

dk r← K; ek ← genE(dk); b
r← {0, 1};

if b = 0 then E ← comE(x, ek , ŵ, γ̂); ŵ, γ̂
r← RND;

else E ← comE(x, ek , w, γ); γ
r← RND;

b∗ ← A2(x, w, E);
if b∗ = b then return 1 else return 0.

3.2 Functionality FR,E
LZK

In this subsection we introduce our new ZK functionality, called the leaking zero-
knowledge functionality, FR,ELZK, in figure 3; it is parameterized by a relation R as
well as an R-commitment E . The design of FR,ELZK is based on FRZK. Recall that
in the “prove” stage of FRZK, upon receiving the statement-witness pair 〈x,w〉,
FRZK is supposed to communicate the statement x to the adversary (but not
the witness). In our case, during the “prove” stage of FR,ELZK, we allow FR,ELZK to
leak more information about the witness that includes the parameter ek and a
commitment E of the witness w, that is based on the parameter ek .

Note that we still anticipate FR,ELZK to capture some level of the zero-knowledge
property, and a computationally bounded adversary still would not obtain any

322 A. Kiayias and H.-S. Zhou

useful information about the witness w from reading the extra information ek
and E that is leaked together with the statement (this is based on the R-hiding
property of the commitment as described above). Still, the “quality” of zero-
knowledge offered by FR,ELZK is substantially impaired compared to FRZK. Note that
whenever the prover is corrupted the commitment that was issued for proof’s
witness will be opened (i.e., the adversary will not only receive the witness but
also the decommitment information of the released commitment).

Functionality FR,E
LZK

FR,E
LZK proceeds as follows, running with a prover P , a verifier V and an adver-

sary S , and parameterized with a binary relation R and an R-commitment E ; it
incorporates FgenE

PRS and furthermore it has the additional functions as below.

Prove: Upon receiving (ProveLZK, sid , x,w) from party P , verify that sid =
(P, V, sid ′) for some sid ′. If not, then ignore the input. Else, randomly select
γ and compute E = comE(x, ek , w, γ), and forward (ProveLZK, sid , x, ek , E) to S .
Upon receiving (ProveLZK, sid , ok) from the adversary S , if (x,w) ∈ R then record
〈x,E, w, γ〉 in history and output (VerifiedLZK, sid , x) to party V , else do noth-
ing. From now on, ignore future (ProveLZK, sid , ...) input.
Corrupt: Upon receiving (CorruptProverLZK, sid) from S , return S
(CorruptedProverLZK, sid , history, ek). Record this fact that party P
has been corrupted. After the corruption has occurred, upon receiving
(PatchLZK, sid , x′, w′), if (x′, w′) ∈ R and no output (VerifiedLZK, sid , ...)
was returned to party V yet, then output (VerifiedLZK, sid , x′) to party V .

Fig. 3. Leaking zero-knowledge functionality FR,E
LZK

3.3 Relation Between FR,E
LZK and FR

ZK

In this subsection we explore the essential relation between FR,ELZK and FRZK.
First, we show that the functionality FRZK can UC-emulate FR,ELZK; on the other
hand, the other direction can only hold against static adversaries. Please refer
to figure 4 below.

Adaptive Adversaries

×−−−−−−−−−−−⇀FR,E
LZK ↽−−−−−−−−−−− FR

ZK

Static Adversaries

−−−−−−−−−−−⇀FR,E
LZK ↽−−−−−−−−−−− FR

ZK

Fig. 4. Relation between FR,E
LZK and FR

ZK. F1 −⇀ F2 stands for “F1 UC-emulates F2.”

To establish the emulation result we show that a dummy protocol in the
FRZK-hybrid world realizes FR,ELZK. It is easy to see that a simulator interacting
with FR,ELZK can perfectly simulate transcripts to an environment that operates
with dummy parties in the FRZK-hybrid world by simply suppressing the extra
information provided by FR,ELZK.

Trading Static for Adaptive Security in Universally Composable 323

Theorem 1. Let FRZK be the ideal ZK functionality, and FR,ELZK be the leaking
version of FRZK. Let ρd be a dummy ZK protocol. Then for any adversary A
there exists an adversary S such that for any adaptive environment machine Z
we have: EXEC

FR
ZK

ρd,A,Z = EXEC
FR,E

LZK
ρd,S,Z .

We then investigate the other direction of theorem 1; we prove that a dummy
protocol in FR,ELZK-hybrid world can statically realize functionality FRZK as de-
scribed in theorem 2. The simulation is not perfect as it relies on the hiding
properties of the R-commitment E .

Theorem 2. Let FRZK be the ideal ZK functionality, FR,ELZK the leaking version
of FRZK, and ρd a dummy ZK protocol. If E is an R-hiding commitment, then for
any adversary A there exists an adversary S such that for any static environment

machine Z we have: |EXEC
FR,E

LZK
ρd,A,Z −EXEC

FR
ZK

ρd,S,Z | ≤ AdvR,Ehiding(λ).

Regarding adaptive adversaries, we cannot extend the result of the previous
theorem. We establish this in theorem 3. The basic reason is that in the simu-
lation of theorem 2 the simulator for FRZK has to simulate the extra information
〈ek , E〉. The simulator can easily simulate ek by just using the key-generator
genE . However the simulator gets in trouble when it needs to simulate E for an
adaptive environment Z. Note that the simulator does not know the witness w,
which is “blocked” inside the functionality FRZK. The simulator may produce E
based on a fake witness or simulate E in some other way; but when the adaptive
Z corrupts the prover after the simulated commitment has been released, the
simulator must explain E to Z for the real witness (that is now released from
the ideal functionality). This would require that the underlying R-commitment
scheme to be “equivocal” (which it is not).

Given the inflexibility of the R-commitment the simulator may still succeed
if the relation R is somewhat trivial, and an adversary can obtain the correct
witness by observing the statement x. In such case, the simulator now has chance
to develop a successful simulation even if the environment is adaptive. The R-
unequivocal property was designed appropriately so that it captures all these
scenarios; based on this, we obtain the following theorem that demonstrates
that the functionality FR,ELZK is weaker as a security notion compared to FRZK.

Theorem 3. Let FRZK be the ideal ZK functionality, FR,ELZK the leaking version of
FRZK, and ρd a dummy ZK protocol. If E is R-unequivocal for some sampleR, then
there exists an adversary A and an adaptive environment machine Z such that for

any adversary S, we have: |EXEC
FR,E

LZK
ρd,A,Z −EXEC

FR
ZK

ρd,S,Z | ≥ 1−AdvR,Eunequivocal(λ).

4 Implementation of FR,E
LZK in the (FgenE

PRS, FR′
ZKPM)-Hybrid

World

In this section we show that FR,ELZK can be realized with the protocol πLZK in the
(FgenE

PRS ,FR
′

ZKPM)-hybrid world presented in figure 5. Note that based on Nielsen’s

324 A. Kiayias and H.-S. Zhou

result (refer to theorem 5.1 in page 180 in Nielsen’s PhD thesis [14]), FZKPM

can be very efficiently implemented in the FPRS-hybrid world as FZKPM does
not require witness extraction. So πLZK can be implemented in the FPRS-hybrid
world without requiring UC commitments. Next we prove that the protocol πLZK

from figure 5 realizes FR,ELZK.

Protocol πLZK in the (FgenE
PRS ,FR′

ZKPM)-Hybrid World

On input (ProveLZK, sid , x,w) from Z, party P sends (RegisterPRS, sid) to FgenE
PRS .

Whenever Party P receives (ReturnPRS, sid , ek) from FgenE
PRS , it randomly se-

lects γ and computes E = comE(x, ek , w, γ), and sends FR′
ZKPM the message

(ProveZKPM, sid , (x, ek , E), (w, γ)).

Whenever Party V receives (VerifiedZKPM, sid , (x, ek , E)) from FR′
ZKPM, it sends

(GetPRS, sid) to FgenE
PRS and get ek from FgenE

PRS ; if the ek is same as the one from

FR′
ZKPM then returns (VerifiedLZK, sid , x) to Z.

Fig. 5. A protocol realizing FR,E
LZK in the (FgenE

PRS ,FR′
ZKPM)-hybrid world. Here E is an

R-commitment, and relation R′ is based on relation R and key generator gen, i.e.
R′ = {(x, ek , E), (w, γ) | (x, w) ∈ R ∧ E = comE(x, ek , w, γ)}.

Theorem 4. Consider protocol πLZK in the (FgenE
PRS ,FR

′

ZKPM)-hybrid world in fig-
ure 5, where E is an R-commitment. Let πd be a dummy ZK protocol. Then for
any adversary A there exists an adversary S such that for any adaptive environ-

ment machine Z we have: EXEC
FgenE

PRS ,F
R′
ZKPM

πLZK,A,Z = EXEC
FR,E

LZK
πd,S,Z .

Based on theorem 2 and theorem 4, we obtain immediately that the protocol of
figure 5 statically realizes FRZK (with an AdvR,Ehiding(λ) distance).

In general, we can design a protocol πZK to realize FZK in the (FCOM,FZKPM)-
hybrid world by committing the witness and then using ZKPM to bind the com-
mitment and the ZK statement as in the figure 5 where E is computed based on
FCOM. Note that in πLZK we compute E based on the R-commitment, but in πZK

we need the commitment to be both extractable and equivocal: in the case that
the prover is corrupted, FZK only supplies the witness and the simulator needs to
figure out the random coins involved; on the contrary FLZK supplies all witness
and coins for E. Combining equivocality and extractability seems that it requires
more work (more rounds or more communication), cf. [9,10].

5 Using FLZK in Place of FZK

5.1 A Protocol Transformation

We describe a useful transformation which allows a protocol π in the FRZK-
hybrid world to be modified into a slightly different protocol π̃ based on an
R-commitment E . The protocol π̃ operates in the (FgenE

PRS ,FR
′

ZK)-hybrid world for

Trading Static for Adaptive Security in Universally Composable 325

a relation R′ defined as follows: R′ = {(x, ek , E), (w, γ) | (x,w) ∈ R ∧ E =
comE(x, ek , w, γ)}, where ek is obtained from FgenE

PRS , γ is randomly selected.
In section 5.2 we will use such transformation to explore the application of the
functionality FR,ELZK.

Transformation from π into π̃

Each time in protocol π, party Pπ sends (ProveZK, sid , x,w) to FR
ZK, in protocol π̃

party Pπ̃ sends (RegisterPRS, sid) to FgenE
PRS ; when it receives (ReturnPRS, sid , ek)

from FgenE
PRS , party Pπ̃ randomly selects γ, it computes E = comE(x, ek , w, γ) and

sends (ProveZK, sid , (x, ek , E), (w, γ)) to FR′
ZK.

Each time in protocol π̃, party Vπ̃ receives (VerifiedZK, sid , (x, ek , E)) from FR′
ZK,

it sends (RetrievePRS, sid , Pπ) to FgenE
PRS , and obtains ek from FgenE

PRS ; if ek is same

as the one from FR′
ZK, then party Vπ̃ sends (Verified, sid , x) to Z.

Fig. 6. A transformation from π in the FR
ZK-hybrid world into π̃ in the (FgenE

PRS ,FR′
ZK)-

hybrid world

Note that functionally the protocols π and π̃ are identical; nevertheless, the
protocol π̃ is possibly exposing some more information to the adversary as com-
pared to π with respect to the witnesses that are employed within the FZK

version. If an adversary can see little difference between π̃ and π then we can
use FLZK in place of FZK. We elaborate on this in the next subsection.

5.2 A Sufficient Condition

The goal of this section is to characterize the protocols for which we can substi-
tute an FRZK implementation with a (potentially cheaper) FR,ELZK implementation
in the setting of adaptive adversaries. The protocol transformation of the pre-
vious subsection serves as a “bridge” between the protocol in the FZK-hybrid
world and the protocol in the FLZK-hybrid world. We show in theorem 5 that if
π realizes some F and the transformed protocol π̃ maintains this functionality,
this implies that the original protocol π can be transported into the FR,ELZK-hybrid
world without any impact.

Theorem 5. (Sufficient Condition) Let π be a protocol in the FRZK-hybrid-world,
π̃ the transformation of π as described in section 5.1. If π̃ in the (FR′

ZK,F
genE
PRS)-

hybrid world realizes functionality F , then π in the FR,ELZK-hybrid world also re-
alizes F .

The theorem is illustrated in figure 7. The sufficient condition for transporting
a protocol π from the FRZK hybrid world into the FLZK-hybrid world is marked
with “?”.

In the remaining of the section we investigate the setting where the sufficient
condition can be satisfied. Assume a protocol π in the FRZK-hybrid-world that

326 A. Kiayias and H.-S. Zhou

Adaptive UC-emulation

? theorem 5
=====⇒ =====⇒πFR

ZK ↪→ F π̃FR′
ZK,FgenE

PRS ↪→ F πFR,E
LZK ↪→ F

Fig. 7. Trading FLZK for FZK. Note that πF1 ↪→ F2 stands for “π realizes F2 in the
F1-hybrid world.”

Fig. 8. In constructing S̃ the witness used for FR
ZK would be necessary for a simu-

lation against adaptive adversaries; S̃ may recover such witness if it appears in the
communication lines 1 , 2 or can be inferred from the coins of S .

realizes F . This means there exists a simulator S that can simulate π-protocol-
transcripts for any adaptive Z. In particular S simulates FRZK to produce the
statement x and also the direct transcripts between the π parties.

In order to show that the transformed protocol π̃ in the (FR′

ZK,F
genE
PRS)-hybrid

world also realizes F , we need to construct a simulator S̃ for the adaptive envi-
ronment. We may build S̃ based on S which is given above by the assumption
that πF

R
ZK realizes F ; the statement x and the direct transcripts between the π

parties can be simulated verbatim from S. Still S̃ needs to simulate the extra
〈ek , E〉 information since S does not supply this. Recall that our environment
Z may involve adaptive corruptions. So S̃ may not be able to produce the extra
〈ek , E〉 based on a “fake” witness w̃ (because when the prover is corrupted and
a real witness w is supplied, S̃ cannot explain E to the real w, cf. theorem 3).
Excluding the case of a non R-unequivocal commitment (which is rather trivial),
it follows that the only way for the proof to work would be if there are circum-
stances for which S̃ is capable of inferring the witness from either the coins used
by S and or the “communication lines” of S with Z or F as shown in 1 or/and
2 in figure 8. For example consider F to be a functionality extending FSIG [4,5]

where the signer wishes to prove knowledge and correct application of his secret
key to other parties (e.g., his signing key is involved in some more complex com-
putation for meeting a certain goal of F). This is the case for example for the
signer side in the UC blind signatures of [13]; in this protocol, the signer would
require only FLZK (as opposed to FZK) as the key is known to the simulator.

Trading Static for Adaptive Security in Universally Composable 327

Acknowledgements. We thank Jesper Nielsen for his kind clarifications on
[1,14]. We also thank the anonymous referees for their constructive comments.

References

1. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS 2004, pp. 186–195 (2004)

2. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–
323. Springer, Heidelberg (1993)

3. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145 (2001)

4. Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW 2004, pp. 219–235 (2004), http://eprint.iacr.org/2003/239/

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Cryptology ePrint Archive: Report 2000/067 (December 2005), Lat-
est version at http://eprint.iacr.org/2000/067/

6. Canetti, R., Damg̊ard, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262–279. Springer, Heidelberg (2001)

7. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

8. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002)

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: STOC 2002, pp. 494–503,
http://www.cs.biu.ac.il/∼lindell/PAPERS/uc-comp.ps

10. Damg̊ard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002),
http://www.brics.dk/RS/01/41/BRICS-RS-01-41.pdf

11. Goldreich, O.: Foundations of Cryptography- Basic Tools. Cambridge University
Press, Cambridge (2001)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC 1987, pp.
218–229 (1987)

13. Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC-security. In:
Cryptology ePrint Archive: Report 2007/132 (2007)

14. Nielsen, J.B.: On protocol security in the cryptographic model. Dissertation Series
DS-03-8, BRICS (2003), http://www.brics.dk/DS/03/8/BRICS-DS-03-8.pdf

15. Prabhakaran, M., Sahai, A.: Relaxing environmental security: Monitored func-
tionalities and client-server computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 104–127. Springer, Heidelberg (2005)

http://eprint.iacr.org/2003/239/
http://eprint.iacr.org/2000/067/
http://www.cs.biu.ac.il/~lindell/PAPERS/uc-comp.ps
http://www.brics.dk/RS/01/41/BRICS-RS-01-41.pdf
http://www.brics.dk/DS/03/8/BRICS-DS-03-8.pdf

A Characterization of Non-interactive
Instance-Dependent Commitment-Schemes (NIC)

Bruce Kapron, Lior Malka, and Venkatesh Srinivasan

Department of Computer Science
University of Victoria, BC, Canada

bmkapron,liorma,venkat@cs.uvic.ca

Abstract. We provide a new characterization of certain zero-knowledge proto-
cols as non-interactive instance-dependent commitment-schemes (NIC). To ob-
tain this result we consider the notion of V-bit protocols, which are very com-
mon, and found many applications in zero-knowledge. Our characterization re-
sult states that a protocol has a V-bit zero-knowledge protocol if and only if it has
a NIC. The NIC inherits its hiding property from the zero-knowledge property
of the protocol, and vice versa.

Our characterization result yields a framework that strengthens and simplifies
many zero-knowledge protocols in various settings. For example, applying this
framework to the result of Micciancio et al. [18] (who showed that some prob-
lems, including GRAPH-NONISOMORPHISM and QUADRATIC-RESIDUOUSITY,
unconditionally have a concurrent zero-knowledge proof) we easily get that arbi-
trary, monotone boolean formulae over a large class of problems (which contains,
e.g., the complement of any random self-reducible problem) unconditionally have
a concurrent zero-knowledge proof.

Keywords: zero-knowledge, commitment-schemes, random self-reducibility.

1 Introduction

Zero-knowledge protocols are two party protocols that enable one party (the prover) to
convince another party (the verifier) of an assertion, with the guarantee that the verifier
learns nothing but the truth of the assertion [14]. These protocols play a central role in
the theory of cryptography, and they are also interesting from a complexity theoretic
perspective because they facilitate the study of NP through interaction and randomness.

Zero-knowledge protocols and cryptography heavily rely on commitment-schemes.
For example, every language in NP has a computational zero-knowledge (CZK) pro-
tocol [13,5] if bit commitment-schemes (equivalently, one-way functions [15,20]) exit.
Consequently, many results about zero-knowledge protocols, and cryptography in gen-
eral, are based on unproven assumptions.

Recently, Vadhan [27] gave a characterization of CZK, called the SZK/OWF-
CHARACTERIZATION, which leads to the construction of a special scheme from any
zero-knowledge protocol. Utilizing this scheme and the techniques already known from
the conditional study of zero-knowledge, Vadhan was able to prove many results about
CZK without relying on any unproven assumptions. A similar approach was applied
by Nguyen and Vadhan [21] in the context of zero-knowledge proofs with efficient

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 328–339, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Characterization of Non-interactive Instance-Dependent Commitment-Schemes 329

provers1, and by Ong and Vadhan [22] in the context of zero-knowledge arguments.
The works of [27,21,22] demonstrate that we can prove unconditional results about
zero-knowledge protocols. This can be done by characterizing zero-knowledge proto-
cols as special bit commitment-schemes, and then using these special schemes instead
of bit commitment-schemes2.

We continue this line of research. That is, we construct special schemes from a spe-
cific class of zero-knowledge protocols, and then we use the special schemes instead
of bit commitment-schemes. Our schemes are simply functions. That is, by restrict-
ing ourselves to a specific class of zero-knowledge protocols we are able to construct
very simple non-interactive schemes. In contrast, the schemes of Vadhan [27] can be
constructed from any zero-knowledge protocol, but they are interactive, and have an in-
volved definition (similar in flavor to that of zero-knowledge protocols). We stress that
although our schemes are constructed from specific zero-knowledge protocols, they can
be used in other zero-knowledge protocols, and in various settings. That is, our charac-
terization result yields a framework with wide applicability.

Our Results. We provide a new characterization of certain zero-knowledge protocols
as special bit commitment-schemes. To obtain this result we consider the notion of V-
bit protocols. Informally, in such protocols the prover sends the first message m1, the
verifier sends back a random bit b, the prover replies with a messagem2, and the verifier
accepts or rejects. These protocols are very common in zero-knowledge. Examples in-
clude the perfect zero-knowledge (PZK) proof of [4] for GRAPH-ISOMORPHISM, the
statistical zero-knowledge (SZK) proof of [19] for certain lattice problems, the SZK
and PZK proofs of [24] for variants of STATISTICAL-DISTANCE (SD), and more.

We construct an efficient function f(x, b; r) from any V-bit zero-knowledge protocol
for a promise-problem Π def= 〈ΠY ,ΠN〉. The inputs to f are a string x, a bit b, and
randomness r. The output y of f hides b when x is a YES instance, and binds to b when
x is a NO instance. More precisely, given y = f(x, b; r), if x ∈ ΠY, then b cannot be
determined from y, and if x ∈ ΠN, then y can be a commitment to either 0 or 1, but not
both (i.e., y �= f(x, 1−b; r′) for all r′). Notice that unlike bit commitment-schemes, the
hiding and the binding properties of f may not hold simultaneously. Since f is a non-
interactive commitment-scheme for Π, we call f a non-interactive instance-dependent
commitment-scheme (NIC). Using the techniques of [10,16] we get the following:

Main result (informal). A problem Π has a V-bit zero-knowledge protocol if and only
if Π has a NIC.

The NIC f inherits its hiding property from the zero-knowledge property of the V-
bit protocol, and vice versa. For example, the SZK protocols for the lattice problems
of Micciancio and Vadhan [19] yield a statistically hiding NIC for these problems, and
vice versa.

The notion of V-bit protocols is related to Cramer’s notion of Σ-protocols [7]. These
protocols are similar to V-bit protocols in that they are also 3-round public-coin

1 A prover is efficient if given witness for input x it runs in time polynomial in |x|.
2 The idea of replacing a bit commitment-scheme with a special scheme is due to Itoh et al. [16].

However, [16] construct a special scheme (different from that of [27,21]) for specific lan-
guages, whereas [27,21] provide a characterization result.

330 B. Kapron, L. Malka, and V. Srinivasan

protocols, but instead of sending a bit b, the verifier sends a string e. However, if we
consider V-bit zero-knowledge protocols, then the two notions are equivalent (the idea
is to let e be the bit b, followed by zeroes [11]). Thus, our characterization result applies
to Σ-protocols as well.

An immediate corollary to the characterization result is a transformation from V-
bit honest-verifier zero-knowledge protocols to dishonest-verifier V-bit zero-knowledge
protocols with efficient provers. The transformation preserves the zero-knowledge prop-
erty of the original protocol. When we apply it to, .e.g., the protocol of [24] for variants
of SD we immediately get a zero-knowledge protocol with an efficient prover for these
variants, a result previously proved in [19] using similar ideas.

To show that our characterization result yields a useful framework we prove that
NIC can be combined in a monotone boolean formula fashion (i.e., with AND and OR
connectors). For example, if f is a NIC for GRAPH-ISOMORPHISM, and g is a NIC for
the lattice problems of [19], then our lemma states that, e.g., f ∧ g and f ∨ g are also
NIC for the corresponding problems.

Second result (informal). The class of problems possessing NIC is closed under arbi-
trary monotone boolean formulae.

In addition, we prove that any random self-reducible (RSR) problem [2] has a per-
fectly hiding NIC. This folklore lemma follows from [26,25], but here we provide the
proof for completeness. Let us see how combining these lemmas with our characteriza-
tion result yields a very useful framework.

Removing computational assumptions. Our framework allows replacing the bit
commitment-scheme in the protocol of Barak [3] with a NIC. The protocol inherits its
zero-knowledge property from the hiding property of the NIC. For example, we get that
if a problem has a perfectly hiding NIC, then it has a public-coin, round-efficient proto-
col (i.e., constant-round, with a negligible soundness error, and perfect completeness).
The protocol is a PZK argument with a strict, polynomial-time non-black-box simula-
tor. Notice that our protocol applies to problems that have a NIC, whereas the protocol
of [3] applies to all of NP. As in [3], our protocol assumes the existence of collision-
resistent hash functions. However, our result yields PZK protocols (as opposed to CZK
in [3]), and it does not use bit commitment-schemes.

Abstraction and closure. Our framework strengthens and simplifies the result of Mic-
ciancio, Ong, Sahai, and Vadhan [18], who showed that a NIC with reversed properties3

can replace the bit commitment-scheme in the protocol of [23]. Unlike [18], since we
already have a characterization result, we do not need to construct such a NIC for
specific problems (e.g., GRAPH-NONISOMORPHISM) or to be familiar with their defi-
nition (e.g., the lattice problems of [19]). Also, our framework shows that such NIC are
closed under monotone boolean formulae. Thus, when we apply our framework to the
theorem of [18] we get that arbitrary, monotone boolean formulae over a large class of
problems (which contains, e.g., the complement of any random self-reducible problem)

3 By ”reversed” we mean that the hiding property holds on NO instances of the problem (instead
of YES instances), and the binding property holds on YES instances (instead of NO instances).

A Characterization of Non-interactive Instance-Dependent Commitment-Schemes 331

unconditionally have a concurrent zero-knowledge proof. Similar improvements apply
to local zero-knowledge [17], and quantum zero-knowledge [28].

Unifying previous works. Our framework unifies under the theme of NIC the results
of Tompa and Woll [26], De Santis, Di Crescenzo, Persiano, and Yung [25], and Itoh,
Ohta, and Shizuya [16]. Actually, these works only consider the perfect setting, and
focus mainly on RSR problems. In contrast, our framework includes problems that are
not known to be RSR, and it also considers the statistical and the computational setting.
Hence, we get stronger and more general results under one simple theme.

Related work. We use the idea of Damgård [10] to obtain a NIC from any V-bit
zero-knowledge protocol. Feige and Shamir used a similar idea to construct a trapdoor
commitment-scheme from a bit commitment-scheme. Notice that the context of the
work of Damgård [10] was to investigate whether zero-knowledge imply bit
commitment-schemes. That is, [10] constructed an interactive bit commitment-scheme
(as opposed to a non-interactive, instance-dependent commitment-scheme) from a
proof of knowledge for any NP-hard relation, provided that the proof is a Σ-protocol.
In contrast, we construct a NIC from any V-bit zero-knowledge protocol, regardless of
whether the underlying problem is NP-hard. Also, the binding property of our NIC fol-
lows from the soundness of the underlying V-bit protocol, whereas in [10] the binding
property is computational, and follows from the hardness of the underlying problem.

Our lemma on the closure of NIC under monotone boolean formulae uses the ideas
of [25]. These ideas were also used in [24,27] to show closure properties. Our lemma
is related to the closure results of Damgård and Cramer [9], and Cramer, Damgård, and
Mackenzie [8]. All these results are proved by modifying the original protocols to obtain
the closure. In contrast, we prove our closure result in a simple combinatorial setting
(using NIC), and we always use the same underlying protocol of Blum [5] for NP. In
addition, the results of [9,8] change the properties of the original protocol. For example,
in [9] the protocol becomes a private-coin protocol, and in [8] the protocol becomes a
4-round protocol. In contrast, since we work with NIC, our underlying protocol does
not change.

Our NIC is related to versions of SD, a complete problem for SZK [24]. That is, a
problem has a perfectly (respectively, statistically) hiding NIC if and only if it Karp-

reduces to SD1,0 (respectively, SD1,1/2). The notion of a perfectly hiding NIC is im-
plicit in [4], and formalized in [16]. The notion of a statistically hiding NIC was for-
malized by [19]. Here we provide the computational analogue.

2 Non-interactive, Instance-Dependent Commitment-Schemes

We define non-interactive, instance-dependent commitment-schemes (NIC). Using the
technique of [16] we show that if a problem has a NIC, then it has a V-bit zero-
knowledge protocol (this holds for computationally hiding NIC if, in addition, the
problem is in NP). The protocol is also a proof of knowledge, and it inherits its zero-
knowledge property from the hiding property of the NIC.

Intuitively, a bit commitment-scheme allows a sender to commit to a bit b such that the
receiver cannot learn the value of b, yet the sender cannot change b. Informally, a NIC

332 B. Kapron, L. Malka, and V. Srinivasan

is a bit commitment-scheme in which the hiding and the binding properties depend on
a string x, and thus may not hold simultaneously. That is, instead of f(b; r) we consider
f(x, b; r), and the hiding and binding properties depend on whether x is a YES on a NO
instance of some problem Π. Formally,

Definition 2.1 (NIC). Let Π = 〈ΠY,ΠN〉 be a promise-problem, and let f(x, b; r) be
a probabilistic, polynomial-time Turing machine on inputs x and b ∈ {0, 1}. The string
r denotes the randomness of f .

We say that f is binding on ΠN if for any x ∈ ΠN, and for any r and r′ it holds
that f(x, 0; r) �= f(x, 1; r′). We say that f is perfectly (respectively, statistically, com-
putationally) hiding on ΠY if for any x ∈ ΠY and each b ∈ {0, 1} the ensembles
{f(x, 0)}x∈ΠY and {f(x, 1)}x∈ΠY are statistically identical (respectively, statistically
indistinguishable, computationally indistinguishable).

We say that f is a perfectly (respectively, statistically, computationally) hiding NIC
for Π if f is binding on ΠN, and perfectly (respectively, statistically, computationally)
hiding on ΠY.

When appropriate we will omit the random input r to f . Notice that if f is a perfectly
or a statistically hiding NIC for Π, then as a class of problems NP contains Π. This is
so because if x ∈ ΠY, then there is a pair 〈r, r′〉 such that f(x, 0; r) = f(x, 1; r), and if
x ∈ ΠN, then no such pair exists. However, Π may not be in NP if f is computationally
hiding . We give an example of a perfectly hiding NIC.

Example 2.1. NIC for the language GRAPH-ISOMORPHISM [4,16]. Let f(x, b; r) be
a function that given a pair of graphs x = 〈G0, G1〉 on n vertices uses r to define
a random permutation π over {1, . . . , n}, and outputs y = π(Gb). If the graphs are
isomorphic, then y is isomorphic to both G0 and G1, and b cannot be determined from
y. Conversely, if the graphs are not isomorphic, then y cannot be isomorphic to bothG0

and G1. Thus, f is a perfectly hiding NIC for GRAPH-ISOMORPHISM.

Our protocol follows the idea of [16], which uses the protocol of Blum [5] for the NP-
complete problem HAMILTONIAN-CIRUIT (HC). In the protocol of [16] the prover and
the verifier initially reduce the input x of the problem possessing a NIC to an instance
G of HC, and then execute the zero-knowledge protocol of [5] using the NIC as a
bit commitment-scheme. Notice that the prover can transform its witness for x into a
witness for G, and thus it is efficient. When x ∈ ΠY the scheme is hiding, and thus the
protocol is zero-knowledge. When x ∈ ΠN the scheme is binding, and thus the protocol
is sound. Our lemma follows. The proof is very similar to that of [16].

Lemma 2.1. If a problem Π has a perfectly (respectively, statistically) hiding NIC,
then Π has a public-coin PZK (respectively, SZK) proof with an efficient prover. If
Π ∈ NP, and Π has a computationally hiding NIC, then Π has a public-coin CZK
proof with an efficient prover.

Itoh, Ohta, and Shizuya [16] observed that if Π has a statistically hiding NIC, then
Π cannot be NP-complete, unless the polynomial hierarchy collapses [12,1,6]. In the
next section we show that V-bit zero-knowledge protocols and NIC are equivalent.
Thus, NP-complete languages cannot have V-bit SZK proofs, unless the polynomial
hierarchy collapses.

A Characterization of Non-interactive Instance-Dependent Commitment-Schemes 333

3 Characterizing V-Bit Zero-Knowledge Protocols

We introduce the notion of V-bit protocols, and then show how to construct a NIC
from a simulator of any V-bit zero-knowledge protocol. Since the zero-knowledge pro-
tocols constructed in Section 2 for problems possessing NIC are V-bit zero-knowledge
protocols, we get our main theorem.

Theorem 3.1. A promise-problem Π has a V-bit PZK (respectively, SZK) proof if and
only if Π has a perfectly (respectively, statistically) hiding NIC. Similarly, Π has a
V-bit CZK proof if and only if Π ∈ NP and Π has a computationally hiding NIC.

We present the definition of V-bit protocols.

Definition 3.1 (V-bit protocol). Let Π = 〈ΠY,ΠN〉 be a problem, and let 〈P, V 〉 be a
protocol for Π with perfect completeness. We say that 〈P, V 〉 is V-bit if for any x ∈ ΠY

the interaction between P and V is as follows: P sends m1 to V , and V replies with a
uniformly chosen bit b. P replies by sendingm2 to V , and V accepts or rejects x based
on 〈x,m1, b,m2〉.

Using the idea of [10] we show how to construct a NIC from a simulator S for any V-bit
zero-knowledge protocol 〈P, V 〉. The NIC will be hiding on YES instances, and binding
on NO instances. We start with the following idea to commit to a bit b: use randomness r
to execute S on input x, obtain a transcript 〈m1, b

′,m2〉 such that b = b′ and V accepts,
and output m1 as a commitment. If x is a YES instance, then the perfect completeness
property guarantees that we always obtain transcripts where V accepts, and since b
cannot be determined from such m1, the commitment is hiding. Conversely, by the
soundness of 〈P, V 〉, if x is a NO instance, then there are no transcripts 〈m1, 0,m2〉 and
〈m1, 1,m′

2〉 such that V accepts in both. The problem with this idea is that b′ may not
be equal to b. To overcome this issue we redefine the commitment to be 〈m1, b

′ ⊕ b〉.
That is, we execute S(x), obtain 〈m1, b

′,m2〉, and output 〈m1, b
′⊕b〉. Intuitively, since

b′ is hidden, the bit b′⊕b is also hidden. Thus, the scheme is hiding. Our lemma follows.

Lemma 3.1. Let Π = 〈ΠY,ΠN〉 be a promise-problem. If Π has a V-bit, public-coin
HVPZK (respectively, HVSZK, HVCZK) proof, then Π has a NIC that is perfectly
(respectively, statistically, computationally) hiding on ΠY and perfectly binding on ΠN.

Proof. Fix a public-coin, V-bit HVPZK (respectively, HVSZK,HVCZK) proof 〈P, V 〉
for Π, and fix a simulator S for 〈P, V 〉. Without loss of generality we can assume that S
either outputs transcripts in which V accepts, or it outputs fail. Using S we define a
NIC f for Π as follows. Let f(x, b; r) be the function that executes S(x) with random-
ness r. If f obtains a transcript 〈x,m′

1, b
′,m′

2〉 such that V (x,m′
1, b

′,m′
2) = accept,

then f outputs 〈m′
1, b

′ ⊕ b〉. Otherwise, f outputs b.
We show that f is binding on ΠN. Let x ∈ ΠN. Notice that for any r and b it

holds that f(x, b; r) outputs one bit if and only if f(x, b; r) = b. Thus, if f outputs
one bit, then there are no r and r′ such that f(x, 0; r) = f(x, 1; r′). For the case
where f(x, b; r) outputs a pair 〈m̃1, b̃〉, recall that b̃ = b′ ⊕ b, where b′ is taken from
some transcript 〈x,m′

1, b
′,m′

2〉. Thus, by the definition of f , for any m̃1, b̃, r and r′ it
holds that f(x, 0; r) = f(x, 1; r′) = 〈m̃1, b̃〉 if and only if there are m2 and m′

2 and

334 B. Kapron, L. Malka, and V. Srinivasan

such that V (x,m1, 0,m2) = V (x,m1, 1,m′
2) = accept. However, 〈P, V 〉 is public

coin, and by the soundness property of 〈P, V 〉 there are no m1,m2 and m′
2 such that

V (x,m1, 0,m2) = V (x,m1, 1,m′
2) = accept. Hence, if f does not output one bit,

then there are no r and r′ such that f(x, 0; r) = f(x, 1; r′). We conclude that f is
perfectly binding on ΠN.

The rest of the proof shows that f is hiding on ΠY. Starting with the statistical set-
ting, we calculate the statistical distance between commitments to 0 and commitments
to 1 over x ∈ ΠY. The following probabilities are over the randomness r for f .

Δ(f(x, 0), f(x, 1)) =
1
2

∑

α

|Pr[f(x, 0) = α]− Pr[f(x, 1) = α]|

=
1
2

∑

m1

|Pr[f(x, 0) = 〈m1, 0〉]− Pr[f(x, 1) = 〈m1, 0〉]|+

1
2

∑

m1

|Pr[f(x, 0) = 〈m1, 1〉]− Pr[f(x, 1) = 〈m1, 1〉]|+

1
2

∑

b

|Pr[f(x, 0) = b]− Pr[f(x, 1) = b]| .

For any x we define px
def= Pr[S(x) = fail], where the probability is over the random-

ness to S. In addition, when S is a HVPZK simulator we are assuming that px = 0. By
the definition of f , the above sum over b equals px. It remains to deal with the sums over
m1. We show that the first sum is upper bounded by Δ(〈P, V 〉(x), S(x)) − px/2, and
since a symmetric argument applies to the second sum, the total will be upper bounded
by 2 ·Δ(〈P, V 〉(x), S(x)). The following probabilities for 〈P, V 〉(x) and S(x) are over
the randomness to P, V and S, respectively.

1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 0〉]− Pr[f(x, 1) = 〈m1, 0〉]| =
1
2

∑
m1

|
∑

m2

Pr[S(x) = 〈m1, 0,m2〉]−
∑

m2

Pr[S(x) = 〈m1, 1,m2〉]| =

1
2

∑
m1

|
∑

m2

Pr[S(x) = 〈m1, 0,m2〉]−
∑

m2

Pr[〈P, V 〉(x) = 〈m1, 0,m2〉]

−(
∑

m2

Pr[S(x) = 〈m1, 1,m2〉]−
∑

m2

Pr[〈P, V 〉(x) = 〈m1, 1,m2〉])| ≤

1
2

∑
m1,m2

(|Pr[S(x) = 〈m1, 0,m2〉]− Pr[〈P, V 〉(x) = 〈m1, 0,m2〉]|+
|Pr[S(x) = 〈m1, 1,m2〉]− Pr[〈P, V 〉(x) = 〈m1, 1,m2〉]|) =
Δ(〈P, V 〉(x), S(x)) − px/2 .

Above we used the fact that S outputs transcripts in which V accepts, and then we
used the fact that 〈P, V 〉 is public-coin (which implies that for any m1 the proba-
bility to choose an element of 〈P, V 〉(x) whose prefix is 〈m1, 0〉 equals the proba-
bility to choose an element of 〈P, V 〉(x) whose prefix is 〈m1, 1〉). We conclude that
Δ(f(x, 0), f(x, 1)) ≤ 2 · Δ(S(x), 〈P, V 〉(x)). Hence, if S is a HVPZK (respec-
tively, HVSZK) simulator, then Δ(S(x), 〈P, V 〉(x)) is 0 for any x ∈ ΠY (respectively,

A Characterization of Non-interactive Instance-Dependent Commitment-Schemes 335

negligible on ΠY), which implies that f is perfectly (respectively, statistically) hiding
on ΠY.

It remains to deal with the case that S is a HVCZK simulator. The analysis is ana-
logues to the statistical setting, but in reverse. We define the function f ′(·, b) just like f ,
except that instead of executing the simulator, f ′ receives a transcript 〈m1, b

′,m2〉 and
outputs 〈m1, b

′ ⊕ b〉. Thus, f ′(S(x), b) and f(x, b) are identically distributed for any
b ∈ {0, 1}. Assume towards contradiction that there is a probabilistic, polynomial-time
Turing machine D that distinguishes {f(x, 0)}x∈ΠY and {f(x, 1)}x∈ΠY . Thus, D dis-
tinguishes {f ′(S(x), 0)}x∈ΠY and {f ′(S(x), 1)}x∈ΠY , and the following expression is
non-negligible:

|Pr[D(f ′(S(x), 0)) = 1]− Pr[D(f ′(S(x), 1)) = 1]| ≤
|Pr[D(f ′(S(x), 0)) = 1]− Pr[D(f ′(〈P, V 〉(x), 0)) = 1]|+
|Pr[D(f ′(S(x), 1)) = 1]− Pr[D(f ′(〈P, V 〉(x), 1)) = 1]| .

Above we used the fact that 〈P, V 〉 is V-bit, which implies that f ′(〈P, V 〉(x), 0) and
f ′(〈P, V 〉(x), 1) are identically distributed for any x ∈ ΠY. It follows that there is
b ∈ {0, 1} such that D distinguishes {f ′(〈P, V 〉, b)}x∈ΠY and {f ′(S(x), b)}x∈ΠY .
Since f ′ is efficient, this contradicts the fact that S is a HVCZK simulator. We conclude
that f is computationally hiding on ΠY. The lemma follows.

Theorem 3.1 presented in the beginning of this section immediately follows from Lem-
mas 2.1 and 3.1. Thus, we get a characterization of V-bit zero-knowledge protocols as
NIC. We remark that Theorem 3.1 can be extended to arguments, and to relaxed notions
of V -bit protocols.

4 Random Self-reducibility Implies NIC

We prove the folklore theorem that if a problem Π is random self-reducible, then Π
has a perfectly hiding NIC. Our proof uses the idea behind the construction of the
subroutine in the protocol of [25] (see Section 3.3 in [25]). Combining this theorem
with our closure result from the next section allows us to strengthen and unify the
results of [26,25,16], and achieve all the improvements claimed in the introduction. We
define random self-reducibility.

Definition 4.1 (Random self-reducible language [2]). Let N ⊂ {0, 1}∗ be a count-
able set such that Rx is an NP-relation for each x ∈ N . The domain of Rx is denoted
d(Rx) def= {z|∃w 〈z, w〉 ∈ Rx}. The language L def= {〈x, z〉|x ∈ N , ∃w 〈z, w〉 ∈ Rx} is
random self-reducible (RSR) if there are polynomial time algorithmsG,A1, A2, and S
such that S(x, z; r) = y ∈ d(Rx) for any x ∈ N , z, and r, and the following conditions
hold.

1. If z ∈ d(Rx), and r is uniformly distributed, then y is uniformly distributed in
d(Rx).

2. A witness for y yields a witness for z, and vice versa. That is, 〈z,A1(x, y, r, w′)〉 ∈
Rx for any 〈y, w′〉 ∈ Rx, and 〈y,A2(x, z, r, w′′)〉 ∈ Rx for any 〈z, w′′〉 ∈ Rx.

336 B. Kapron, L. Malka, and V. Srinivasan

3. G(x; r) = 〈z′, w′〉 ∈ Rx, and if r is uniformly distributed, then z′ is uniformly
distributed in d(Rx), and w′ is uniformly distributed in {w|〈z, w〉 ∈ Rx}.

We prove that random self-reducible problems have a perfectly hiding NIC. Given N
and Rx as in Definition 4.1 we define the problem ΠL def= 〈ΠL

Y,Π
L
N〉, where ΠL

Y
def=

{〈x, z〉|x ∈ N , ∃w 〈z, w〉 ∈ Rx}, and ΠL
N

def= {〈x, z〉|x ∈ N , ∀w 〈z, w〉 /∈ Rx}.

Lemma 4.1. If L is a random self-reducible language, then ΠL has a perfectly hiding
NIC.

Proof. Let L def= {〈x, z〉|x ∈ N , ∃w 〈z, w〉 ∈ Rx} be a random self-reducible language.
Consider the algorithms S andG from Definition 4.1. LetG′(x; r) be the algorithm that
executesG(x; r), obtains 〈z′, w′〉, and outputs z′. We use S and G′ to commit to 0 and
1, respectively. Formally, we define our NIC to be the probabilistic, polynomial-time
Turing machine f(x, z, b; r) that on input 〈x, z〉 ∈ ΠL

Y ∪ΠL
N, bit b, and randomness r

outputs S(x, z; r) if b = 0, and G′(x; r) if b = 1.
The efficiency of f follows from the efficiency of S and G. We show that f is per-

fectly hiding. By Definition 4.1, S(x, z; r) = y is uniformly distributed over d(Rx) if
r is uniformly distributed, and 〈x, z〉 ∈ ΠL

Y. Similarly, G(x; r) = 〈z′, w′〉, and z′ is
uniformly distributed over d(Rx) if r is uniformly distributed and x ∈ N . Since the
output of f is uniformly distributed over d(Rx) for any b and 〈x, z〉 ∈ ΠL

Y, the ensem-
bles {f(x, z, 0; r)}〈x,z〉∈ΠL

Y
and {f(x, z, 1; r)}〈x,z〉∈ΠL

Y
are statistically identical, and

therefore f is perfectly hiding on ΠL
Y.

We show that f is binding on ΠL
N. Let 〈x, z〉 ∈ ΠL

N. Assume towards contradic-
tion that there are r and r′ such that S(x, z; r) = f(x, z, 0; r) = f(x, z, 1; r′) =
G′(x; r). Let y = S(x, z; r). By the definition of G′, there is w′ such that G(x; r) =
〈G′(x; r), w′〉 = 〈y, w′〉 ∈ Rx. By the property of A1 from Definition 4.1, it follows
that 〈z,A1(x, y, r, w′)〉 ∈ Rx. Hence, 〈x, z〉 ∈ ΠL

Y, in contradiction to the choice of
〈x, z〉 ∈ ΠL

N. Thus, f is binding on ΠL
N.

Notice that in the above proof we did not use AlgorithmA2 from Definition 4.1. Neither
did we use the fact thatA1 runs in polynomial time, nor did we use the witness outputted
by G.

5 Closure of Problems Possessing NIC Under Monotone Boolean
Formulae

We use the technique of [25] to show that the class of problems possessing NIC is
closed under arbitrary (as opposed to fixed) monotone boolean formulae. For perfectly
hiding NIC the analysis is simple, but for statistically and computationally hiding NIC
the analysis is more complicated.

Motivation. Let f be a perfectly hiding NIC for a problem Π. Consider a prover and
a verifier who are given instances x0, . . . , xn ∈ ΠY ∪ ΠN, and suppose that the prover
wants to prove to the verifier that more than half of the xi’s are in ΠY. This statement
can be expressed using the logical connectorsAND (denoted∧) and OR (denoted∨). The

A Characterization of Non-interactive Instance-Dependent Commitment-Schemes 337

prover can prove this statement if we can construct a NIC f ′ that is hiding when more
than half of the xi are in ΠY, and binding otherwise. This is so because the statement is
an NP statement, and the prover can use f ′ in the protocol of Blum [5] (as in Section 2).
Later we will give a general construction that yields such f ′. For now we consider the
simple case where n = 2. That is, the prover proves that both x0 and x1 are in ΠY.

To formulate the fact that the statement being proved is x0 ∈ ΠY ∧ x1 ∈ ΠY

we define the common input as 〈φ, x0, x1〉, where φ = a ∧ b. Recall that we want
to use the NIC f for Π to construct a NIC f ′ which is hiding when x0 ∈ ΠY ∧
x1 ∈ ΠY, and binding otherwise. We can construct such f by defining f ′(x0, x1, b)

def=
〈f(x0, b), f(x1, b)〉. Thus, if x0, x1 ∈ ΠY, then both f(x0, b) and f(x1, b) hide b, which
implies that f ′ is hiding, and if xi ∈ ΠN (for some i ∈ {0, 1}), then f(xi, b) binds to b,
and f ′ is binding. Notice that we omitted the randomness of f ′ from the notation, but
the intention is that f ′ uses independent randomness in each execution of f .

We can formulate other statements too. For example, consider a prover and a verifier
who are given x0, x1, and the prover wants to prove that either x0 ∈ ΠY or x1 ∈ ΠY.
Again, we can formulate this statement by defining 〈φ, x0, x1〉 as the input, where φ =
a ∨ b. Recall that we want to use the NIC f for Π to construct a NIC f ′ which is
hiding when x0 ∈ ΠY ∨ x1 ∈ ΠY, and hiding otherwise. We can construct such f by
defining f ′(x0, x1, b)

def= 〈f(x0, b0), f(x1, b1)〉, where b0 is uniformly chosen, and b1 is
chosen such that b0 ⊕ b1 = b. Thus, if x0, x1 ∈ ΠN, then both f(x0, b) and f(x1, b)
bind to b, which implies that f ′ is binding, and if xi ∈ ΠY (for some i ∈ {0, 1}), then
f(xi, b) hides bi, and thus f hides b. Based on these ∧ and∨ cases we can give a general
construction of a NIC f ′ from a NIC f .

Construction 5.1. Let f be a NIC, and let b ∈ {0, 1}. Let φ be a monotone boolean
formula over the variables a1, . . . , am, and let "x = 〈x1, . . . , xn〉 be a vector of n
strings, where n ≥ m. Let r ∈ {0, 1}∗ be a uniformly distributed input to f ′.

The recursive function f ′(φ, "x, f, b; r) is defined as follows.

1. If φ = ai for some 1 ≤ i ≤ m, then return f(xi, b, r).
2. Otherwise, there are monotone boolean formulae φ0 and φ1 such that φ = φ0 ∧φ1

or φ = φ0 ∨ φ1. Partition r into r0 and r1.
3. If φ = φ0 ∧ φ1, then return 〈f ′(φ0, "x, f, b, r0), f ′(φ1, "x, f, b, r1)〉.
4. If φ = φ0 ∨ φ1, then return 〈f ′(φ0, "x, f, b0, r0), f ′(φ1, "x, f, b1, r1)〉, where b0 ∈
{0, 1} is uniformly distributed, and b1 is chosen such that b0 ⊕ b1 = b.

Our next step is define a problem that allows the prover to prove arbitrary (as opposed
to fixed) monotone, boolean formula statements. We need the following definitions. A
boolean variable is a variable that can only take the values 0 or 1. We say that φ is a
monotone boolean formula if φ is a boolean variable, or φ is φ0 ∧ φ1 or φ0 ∨ φ1, where
both φ0 and φ1 are monotone boolean formulae. Let Π = 〈ΠY,ΠN〉 be a promise-
problem, and let x ∈ ΠY ∪ ΠN. The characteristic function χΠ of Π is defined as
follows: if x ∈ ΠY, then χΠ(x) = 1, and if x ∈ ΠN, then χΠ(x) = 0. Let φ be a
boolean formula over a1, . . . , am, and let x1, . . . , xn ∈ ΠY ∪ΠN for some n ≥ m. The
evaluation of φ in "x = 〈x1, . . . , xn〉 is denoted φ("x), and equals 1 if and only if φ is
satisfied when ai is assigned χΠ(xi) for each 1 ≤ i ≤ m.

338 B. Kapron, L. Malka, and V. Srinivasan

We say that a class C of problems is closed under arbitrary, monotone boolean
formulae if Π ∈ C implies that Φ(Π) ∈ C, where Φ(Π) is defined as follows.

Definition 5.1. Let Π = 〈ΠY,ΠN〉 be a problem. The problem Φ(Π) def= 〈Φ(Π)Y ,
Φ(Π)N〉 is defined as

Φ(Π)Y
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1}

Φ(Π)N
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 0},

where φ is a monotone boolean formula over a1, . . . , am such that m ≤ n, and xi ∈
ΠY ∪ ΠN for all 1 ≤ i ≤ n. We define Φ(Π)k def= 〈Φ(Π)kY ,Φ(Π)N〉, where Φ(Π)kY is
defined as

Φ(Π)kY
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1 ∧ ∀i |xi|k ≥ |φ, x1, . . . , xn|}.

The definition of Φ(Π) allows the prover to prove arbitrary (as opposed to fixed) mono-
tone, boolean formula statements, and so does the definition of Φ(Π)k. This formulation
has the advantage that the formula does not have to be hardwired into the protocol, or
known in advance. Our theorem follows.

Theorem 5.2. Let Π = 〈ΠY ,ΠN〉 be a promise-problem with a NIC f , and let f ′ be
the function constructed from f , given in Construction 5.1. Let k ∈ N.

1. If f is a perfectly hiding NIC for Π, then f ′ is a perfectly hiding NIC for Φ(Π).
2. If f is a statistically (respectively, computationally) hiding NIC for Π, then f ′ is a

statistically (respectively, computationally) hiding NIC for Φ(Π)k.

References

1. Aiello, W., Håstad, J.: Statistical zero-knowledge languages can be recognized in two rounds.
J. of Computer and System Sciences 42(3), 327–345 (1991)

2. Angluin, D., Lichtenstein, D.: Provable security in cryptosystems: a survey. Technical Report
288, Department of Computer Science, Yale University (1983)

3. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)
4. Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds. In: 22nd

STOC, pp. 482–493 (1990)
5. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the ICM,

pp. 1444–1451 (1986)
6. Boppana, R.B., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Inf. Pro-

cess. Lett. 25(2), 127–132 (1987)
7. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis,

CWI and Uni. of Amsterdam (1996)
8. Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowledge

without intractability assumptions. In: Public Key Cryptography, pp. 354–372 (2000)
9. Dåmgard, I., Cramer, R.: On monotone function closure of perfect and statistical zero-

knowledge (1996)
10. Damgård, I.B.: On the existence of bit commitment schemes and zero-knowledge proofs. In:

Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 17–27. Springer, Heidelberg (1990)

A Characterization of Non-interactive Instance-Dependent Commitment-Schemes 339

11. Damgård, I.B.: On Σ-protocols (2005) Available online at
www.daimi.au.dk/∼ivan/Sigma.pdf

12. Fortnow, L.: The complexity of perfect zero-knowledge. In: Micali, S. (ed.) Advances in
Computing Research, vol. 5, pp. 327–343. JAC Press (1989)

13. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof sys-
tems. SIAM J. Comput. 18(1), 186–208 (1989)

15. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any
one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

16. Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic primitive. J. Cryptol-
ogy 10(1), 37–50 (1997)

17. Micali, S., Pass, R.: Local zero knowledge. In: STOC, pp. 306–315 (2006)
18. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.P.: Concurrent zero knowledge without com-

plexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 1–20.
Springer, Heidelberg (2006)

19. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient provers: Lat-
tice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298.
Springer, Heidelberg (2003)

20. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)
21. Nguyen, M.-H., Vadhan, S.: Zero knowledge with efficient provers. In: STOC ’06. Proceed-

ings of the thirty-eighth annual ACM symposium on Theory of computing, Seattle, WA,
USA, pp. 287–295. ACM Press, New York (2006)

22. Ong, S.J., Vadhan, S.: Zero knowledge and soundness are symmetric. Electronic Colloquium
on Computational Complexity (ECCC) (TR06-139) (2006)

23. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-
complexity. In: FOCS, pp. 366–375 (2002)

24. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero-knowledge. J. ACM 50(2),
196–249 (2003)

25. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula closure
of SZK. In: IEEE Symposium on Foundations of Computer Science, pp. 454–465. IEEE
Computer Society Press, Los Alamitos (1994)

26. Tompa, M., Woll, H.: Random self-reducibility and zero-knowledge interactive proofs of
possession of information. In: 28th FOCS, pp. 472–482 (1987)

27. Vadhan, S.P.: An unconditional study of computational zero knowledge. In: FOCS, pp. 176–
185 (2004)

28. Watrous, J.: Zero-knowledge against quantum attacks. In: STOC, pp. 296–305 (2006)

www.daimi.au.dk/~ivan/Sigma.pdf

Sharp Tractability Borderlines for Finding

Connected Motifs in Vertex-Colored Graphs

Michael R. Fellows1,2,�, Guillaume Fertin3,
Danny Hermelin4,��, and Stéphane Vialette5

1 The University of Newcastle, Callaghan NSW 2308 - Australia
mike.fellows@cs.newcastle.edu.au

2 Institute of Advanced Study, Durham University,
Durham DH1 3RL - United Kingdom

3 Laboratoire d’Informatique de Nantes-Atlantique (LINA), FRE CNRS 2729
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France

fertin@lina.univ-nantes.fr
4 Department of Computer Science, University of Haifa,

Mount Carmel, Haifa 31905 - Israel
danny@cri.haifa.ac.il

5 Laboratoire de Recherche en Informatique (LRI), UMR CNRS 8623
Faculté des Sciences d’Orsay - Université Paris-Sud, 91405 Orsay - France

vialette@lri.fr

Abstract. We study the problem of finding occurrences of motifs in
vertex-colored graphs, where a motif is a multiset of colors, and an oc-
currence of a motif is a subset of connected vertices whose multiset of
colors equals the motif. This problem has applications in metabolic net-
work analysis, an important area in bioinformatics. We give two positive
results and three negative results that together draw sharp borderlines
between tractable and intractable instances of the problem.

1 Introduction

Vertex-colored graph problems have numerous applications in bioinformatics.
Sandwich problems have applications in DNA physical mapping [6,13,15] and
in perfect phylogeny [8,19], while vertex-recoloring problems arise in protein-
protein interaction networks and phylogenetic analysis [7,9,20]. In this paper,
we consider another natural vertex-colored graph problem with an interesting
application in bioinformatics:
� This research has been supported by the Australian Research Council through the

Australian Center for Bioinformatics, by the University of Newcastle Parameterized
Complexity Research Unit under the auspices of the Deputy Vice-Chancellor for
Research, and by a Fellowship to the Durham University Institute for Advanced
Studies. The authors also gratefully acknowledge the support and kind hospitality
provided by a William Best Fellowship at Grey College while the paper was in
preparation.

�� Partially supported by the Caesarea Rothschild Institute (CRI).

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 340–351, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Sharp Tractability Borderlines for Finding Connected Motifs 341

Graph Motif:

Input: A vertex-colored graph G and a multiset of colors M .

Question: Does G have a connected subset of vertices whose multiset of
colors equals M?

The Graph Motif problem was introduced in a slightly more general form
by Lacroix, Fernandes, and Sagot (who allowed multiple colors per vertex) in the
context of metabolic network analysis, an important area in bioinformatics [18].
There, vertices correspond to chemical compounds or reactions, and edges cor-
respond to interactions between these compounds and reactions. The vertex col-
oring is used to distinguish between different types of chemicals and reactions.
The transmission of information in these networks can usually be described as a
chain of interacting chemicals, in which chemical interactions enable each chem-
ical in the path to modify its successor so as to transmit biological data. In this
scenario, connected motifs can correspond to relatively functional independent
modules of the network which consist of a specific set of chemical compounds
and reactions. It is argued in [18] that a method for a rational decomposition of
a metabolic network into relatively independent functional subsets is essential
for a better understanding of the modularity and organization principles in the
network. We refer the reader to [11,18] for more biological background of the
problem. We also refer to [16,17] for related work and relevant background.

In [18], Graph Motif is proved to be NP-complete even if the given vertex-
colored graph is a tree, but fixed-parameter tractable in this case when param-
eterized by the size of the given motif (i.e. |M |). However, as observed by [18],
their fixed-parameter does not apply when the vertex-colored graph is a general
graph. For this case they only provided a heuristic algorithm which works well
in practice. This motivates us to further investigate the tractability landscape of
Graph Motif, and in particular, to investigate it under different parameters
which govern the structure of its input. We give an extensive analysis for Graph

Motif, applying techniques from both classical and parameterized complexity,
that unravels sharp borderlines between tractable and intractable instances of
the problem. More specifically, we give two algorithms and three hardness results
that together imply:

1. For motifs of unbounded size, Graph Motif is NP-complete already for
trees of maximum degree 3, even if the motif is a set of colors rather than a
multiset. For motifs of logarithmic size (in the number of vertices of G), the
problem is polynomial-time solvable in any general graph.

2. Graph Motif is NP-complete for motifs with 2 colors, even if G is bi-
partite with maximum degree 4. However, it is polynomial-time solvable in
constant treewidth graphs for motifs consisting of any constant number of
colors (and arbitrary size). When the number of colors in the motif is taken
as a parameter, Graph Motif is W[1]-hard even in case G is a tree.

The rest of the paper is organized as follows. In the reminder of this section we
discuss notations that will be used throughout the paper. In Section 2, we give

342 M.R. Fellows et al.

two NP-hardness results that will motivate the rest of our discussion. Following
this, in Section 3 we present a fixed-parameter algorithm (parameterized by |M |)
that that applies for any general graph. In Section 4 we discuss the case when
G has bounded treewidth. Finally, in Section 5, we show that Graph Motif is
W[1]-hard on trees when parameterized by the number of colors in M .

Basic notation and terminology: Throughout the paper, we use G = (V (G),
E(G)) to denote our given vertex-colored graph, and n = |V (G)| to denote its
order. For a vertex v ∈ V (G), we use χ(v) to denote the color of v, and for a
vertex subset V ⊆ V (G), we let χ(V) denote the multiset of colors

⋃
v∈V χ(v).

For any vertex subset V ⊆ V (G), we let G[V] denote the subgraph of G induced
by V , i.e. the subgraph on V along with all edges of G that connect vertices in V .
We assume w.l.o.g. that G is connected.

A motif M is a multiset of colors. If M is in fact a set rather than a multiset,
we say that M is colorful. Given a subset of vertices V ⊆ V (G), |V | = |M |,
we say that V is colored by the colors of M , if χ(V) = M . For V to be an
occurrence of M , we require not only for V to be colored by the colors of M , but
also for G[V] to be connected. If this is in fact the case, we say that M occurs
at v for any vertex v ∈ V . In these terms, the Graph Motif problem is the
problem of determining whether a given motif M occurs at any vertex of a given
vertex-colored graph G. We assume w.l.o.g. that χ(v) ∈M for any v ∈ V (G).

Our analysis is based both on the classical and parameterized complexity
frameworks. Readers unfamiliar with these subjects are referred to [12,14].

2 Tight NP-Hardness Results

As mentioned previously in Section 1, Graph Motif is already known to be
NP-complete for trees in [18]. Our aim in this section is to tighten this result by
showing that Graph Motif remains hard for highly restrictive graph classes,
even if we restrict ourselves to motifs which are sets rather than multisets, or to
motifs which consist of a small number of colors.

We first consider colorful motifs. Recall that a motif M is colorful if it consists
of |M | distinct colors. At first sight, it might seem that occurrences of colorful
motifs should be easier to find, at least for certain types of graphs. Unfortunately,
the following theorem proves that this is apparently not the case.

Theorem 1. Graph Motif is NP-complete, even if M is colorful and G is a
tree of maximum degree three.

Proof. Graph Motif is clearly in NP. To prove NP-hardness, we present a
reduction from the well known NP-complete problem 3-SAT [14]. Recall that
3-SAT asks to determine whether a given 3-CNF formula is satisfiable, that is,
whether there is a truth assignment to the boolean variables of the formula, such
that the value of the formula under this assignment is 1. The problem remains
hard even if each variable appears in at most three clauses and each literal (i.e.
variable with or without negation) appears in at most two clauses [14]. Hence,
we restrict ourselves in our proof to formulas of this type.

Sharp Tractability Borderlines for Finding Connected Motifs 343

Let an instance of 3-SAT be given in the form of a 3-CNF formula Φ =
c1∧· · ·∧cm over variables x1, . . . , xn such that |{cj | xi ∈ cj}| ≤ 2 and |{cj | x̄i ∈
cj}| ≤ 2 for all 1 ≤ i ≤ n. We construct an instance for Graph Motif as follows.
The colored graph G initially consists of a path of n vertices, each colored by a
distinct color in 1, . . . , n. To a vertex colored i in this path, 1 ≤ i ≤ n, we connect
a new vertex colored i′. To a vertex colored i′, 1 ≤ i ≤ n, we connect a pair
of new non-adjacent vertices, both colored xi. Conceptually, each vertex in this
pair corresponds to a different truth assignment for xi. If a truth assignment
to variable xi satisfies clause cj, we connect a new vertex colored cj to the
vertex colored xi which corresponds to this assignment. This is done for every
xi ∈ {x1, . . . , xn} and every cj ∈ {c1, . . . , cm}. We conclude our construction by
specifying M to be the set of colors {1, . . . , n, 1′, . . . , n′, x1, . . . , xn, c1, . . . , cm}.
Note that G and M are as required by the theorem.

The construction above is clearly polynomial. Hence, to complete the proof,
we are left to show that M occurs in G if and only if Φ is satisfiable. For the
first direction, assume that there exists a truth assignment φ which satisfies
Φ. Let N ⊆ V (G) be the subset of vertices in G which are colored by the
colors in {1, . . . , n, 1′, . . . , n′}, and let X ⊆ V (G) be the subset of vertices which
correspond to assignment φ. Hence, X consists of n vertices which are colored
by the colors in {x1, . . . , xn}, and N ∪ X induces a connected subgraph. Since
φ satisfies every clause in Φ, by construction of G there is a vertex colored cj in
the neighborhood of X for every 1 ≤ j ≤ m. In other words, there exists a subset
C of neighbors of vertices in X which is colored by the colors in {c1, . . . , cm}. It
follows that V = N ∪ X ∪ C is connected and is colored by the colors of M ,
and therefore is an occurrence of M in G.

For the converse direction, assume there exists an occurrence V of M in G.
Let X ⊆ V be the vertices colored by the colors in {x1, . . . , xn}, C ⊆ V be
the vertices colored by the colors in {c1, . . . , cm}, and φ the truth assignment
corresponding to X . By construction, a vertex colored cj is connected in G to a
vertex colored xi if and only if the truth assignment corresponding to this vertex
satisfies clause cj . Since C contains all colors in {c1, . . . , cm}, and since vertices
in C are connected only to vertices in X , it follows that φ satisfies every clause
in Φ, and so it satisfies Φ itself. ��

Theorem 1 implies that for motifs of unbounded cardinality, there are not many
interesting graph classes left for which Graph Motif becomes polynomial-time
solvable. Note that if G is a tree of maximum degree two, then G is actually a
path, and Graph Motif becomes trivial (simply search through all subpaths
of length |M |). However, the motif in the construction above is not only of
unbounded size, it also consists of an unbounded number of colors. One might
hope that for motifs which consist of only a small number of colors, Graph

Motif would become polynomial-time solvable. The following theorem shows
that this is not the case in a very sharp sense.

Theorem 2. Graph Motif is NP-complete, even if M consists of two colors,
and G is bipartite with maximum degree four.

344 M.R. Fellows et al.

Proof. We reduce from the Exact Cover by 3-Sets (X3C) problem, which is
known to be NP-complete [14]. Recall that, given a set X = {x1, x2, . . . , x3q} and
a collection S = {s1, s2, . . . , sn} of 3-element subsets of X , the X3C problem
asks to determine whether there exists an exact cover of X in S, i.e. a sub-
collection C ⊆ S such that every element of X is included in exactly one subset
si ∈ C. The problem is hard even if each element of X appears in at most three
sets of S [14], so we restrict ourselves in the proof to instances of this type.

Let 〈X,S〉 be an arbitrary instance of the X3C problem with |{sj ∈ S |xi ∈
sj}| ≤ 3 for all xi ∈ X . We show how to construct a motif M and a colored
graph G in such a way that there exists an exact cover of X in S if and only
if M occurs in G. First, we define M so as it contains 2n + 3q white elements
and q black elements. Then, we define G by V (G) = X ∪ S ∪ S′ ∪ S′′

and E(G) = E1 ∪ E2 ∪ E3 ∪ E4, where S′ = {s′1, s′2, . . . , s′n} and S′′ =
{s′′1 , s′′2 , . . . , s′′n} are dummy copies of S, and E1, E2, E3, E4 are defined by: E1 =
{{xi, sj} |xi ∈ sj}, E2 = {{si, s′i} | 1 ≤ i ≤ n}, E3 = {{s′i, s′′i } | 1 ≤ i ≤ n}, and
E4 = {{s′′i , s′i+1} | 1 ≤ i ≤ n − 1}. The vertices of X ∪ S′ ∪ S′′ are colored
white and the vertices of S are colored black. It is easily seen that G and M
are as required by the theorem, and that our construction can be carried out in
polynomial time.

Let us now argue that there exists an exact cover C ⊆ S of X if and only if
M occurs in G. For the first direction, suppose that there exists an exact cover
C ⊆ S of X . Consider the subset of vertices V = X ∪ C ∪ S′ ∪ S′′. First
note that V consists of q = |C| black vertices and 2n + 3q = |X ∪ S′ ∪ S′′|
white vertices. Second, since C is a cover of X , every vertex of X is connected
to some vertex in C, and C is connected to S′ ∪ S′′, so V itself is connected. It
follows that V is an occurrence of M , and M occurs in G.

Conversely, suppose that there exists an occurrence V ⊆ V (G) of M in G.
Observe that M contains 2n + 3q white elements, and since exactly 2n + 3q
vertices of G are colored white, we must have X ∪ S′ ∪ S′′ ⊂ V . The remaining
q vertices in V are q black vertices from S. By construction, we do not have
an edge between two vertices of X , nor between a vertex of X and a vertex of
S′ ∪ S′′. Therefore, since V is connected, each vertex of X has to be adjacent
to at least one vertex in V ∩ S. But |X | = 3q and each vertex in S is connected
to exactly 3 vertices in X . Then it follows that no two vertices of V ∩ S share a
common neighbor in X , and C = V ∩ S is an exact cover of X in S. ��

3 A General Fixed-Parameter Algorithm

We now turn to show that Graph Motif is fixed-parameter tractable for
parameter k = |M | on any general graph. More specifically, we present an
O(2O(k)n2 lg n) algorithm for the problem, which implies that Graph Motif for
motifs of O(lg n) size is polynomial-time solvable. This is in striking contrast to
the sharp hardness results given in the previous section. Our algorithm is based
on the color-coding technique introduced by Alon et al. [2], whose derandomized
version crucially relies on the notion of perfect hash families:

Sharp Tractability Borderlines for Finding Connected Motifs 345

Definition 1 (Perfect Hash Family). A family F of functions from V (G) to
{1, . . . , k} is perfect if for any subset V ⊆ V (G) of k vertices there is a function
f ∈ F which is one-to-one on V .

Suppose M has an occurrence V in G, and suppose we are provided with a
perfect family F of functions from V (G) to {1, . . . , k}. Since F is perfect, we are
guaranteed that at least one function in F assigns V with k distinct labels. Let
f ∈ F be such a function. For a given L ⊆ {1, . . . , k}, we defineML(v) to be the
family of all motifs M ′ ⊆M , |M ′| = |L|, for which there exists an occurrence V ′

with v ∈ V ′, such that the set of (unique) labels that f assigns to V ′ is exactly
L. Since M occurs in G, we know that M ∈ M{1,...,k}(v) for some v ∈ V (G).
Hence, to determine whether M occurs in G, we apply dynamic programming
to compute ML(v) for all v ∈ V (G) and L ⊆ {1 . . . , k}.

Fix L to be some subset of {1, . . . , k}, and let v be any vertex of G. Our goal
is to computeML(v) assumingML′(u) has been previously computed for every
vertex u ∈ V (G) and any L′ ⊆ L \ {f(v)}. The straightforward approach is to
consider small motifs occurring at neighbors of v. However, a motif occurring at
v might be the union of motifs occurring at any number of neighbors of v, and so
this approach might require exponential running time in n. We therefore present
an alternative method for computingML(v), which we call the batch procedure,
that uses an even more naive approach, but one that requires exponential-time
only with respect to k. Notice that while the motifs computed by the batch
procedure are in general multisets of colors, the batch procedure always considers
sets of distinct labels.

Batch Procedure(L, v)

– Define M to be the family of all pairs (M ′, L′) such that M ′ ⊆M \ {χ(v)},
L′ ⊆ L \ {f(v)}, and M ′ ∈ML′(u) for some u ∈ N(v).

– Run through all pairs of (M ′, L′), (M ′′, L′′) ∈ M and determine whether
M ′ ∪M ′′ ⊆ M \ {χ(v)}, and whether L′ ∩ L′′ = ∅. If there is such a pair,
add (M ′ ∪M ′′, L′ ∪ L′′) to M and repeat this step. Otherwise, continue to
the next step.

– Set ML(v) to be all motifs M ′ ∪ {χ(v)} where (M ′, L′) ∈ M and L′ =
L \ {f(v)}.

Lemma 1. For any v ∈ V (G) and L ⊆ {1, . . . , k}, the batch procedure correctly
computes ML(v) assuming ML′(u) is given for every neighbor u of v and every
subset of labels L′ ⊆ L \ {f(v)}.

Proof. LetM be the family of pairs computed by the batch procedure. Consider
any pair (M ′, L′) ∈M with L′ = L \ {f(v)}. By construction, M ′ ⊆M \ {χ(v)}
and can be written as M ′ = M ′

1 ∪ · · · ∪M ′
�, where each M ′

i , 1 ≤ i ≤ �, is a motif
that has an occurrence V ′

i which includes a neighbor of v. Furthermore, each V ′
i

is labeled by a unique set of labels L′
i such that L′

i ∩ L′
j = ∅ for all 1 ≤ j ≤ �,

j �= i. It follows that all the V ′
i s are pairwise disjoint, and that {v}∪V ′

1 ∪· · ·∪V ′
�

is connected. Hence, M ′ ∪ {χ(v)} has an occurrence in G which is labeled by
L′ ∪ {f(v)} = L, and so M ′ ∪ {χ(v)} ∈ ML(v).

346 M.R. Fellows et al.

On the other hand, consider a motif M ′∪{χ(v)} ∈ ML(v). Then by definition,
M ′ ∪ {χ(v)} has an occurrence V ′ ∪ {v} such that the set of labels that f
assigns V ′∪{v} is L. Let V ′

1 , . . . , V
′
� be the connected components of the induced

subgraph G[V ′]. Since V ′ ∪ {v} is connected, every V ′
i , 1 ≤ i ≤ �, includes a

neighbor of v. Furthermore, letting L′
i denote the set of labels that f assigns V ′

i

for every 1 ≤ i ≤ �, we have L′ ⊆ L \ {f(v)} and L′
i ∩L′

j = ∅ for all 1 ≤ i, j ≤ �.
It is now easy to see that the batch procedure will eventually compute the pair
(M ′, L \ {f(v)}) in its second step, and hence M ′ ∪ {χ(v)} will be added to
ML(v) in its final step. ��

Lemma 2. Given a labeling function f : V (G) → {1, . . . , k}, one can use the
batch procedure iteratively in order to determine in O(25kkn2) time whether there
is an occurrence of M which is distinctly labeled by f .

Proof. To prove the lemma, let us first analyze the complexity of a single in-
vocation of the batch procedure. In its first step, the batch procedure searches
through at most 2kn motifs families, each consisting of at most 2k motifs. Hence,
this step requires O(22kkn) time. For the second step, notice that number of dis-
tinct motif and label-subset pairs is bounded by 22k, and so the number of times
the second step is repeated is also bounded by this term. Since each iteration
of this step can be computed in O(22kk) time, it follows that the second step
requires O(24kk) time. Accounting also for the third step, the total time of one
invocation of the batch procedure is therefore O(24kk + 22kkn) = O(24kkn).

It now can easily be seen that due to Lemma 1, one needs to invoke the
batch procedure at most 2kn times in order to obtain ML(v) for every vertex
v ∈ V (G) and every label subset L ⊆ {1, . . . , k}. It follows that in O(25kkn2)
time one can obtain all necessary information to determine whether M has an
occurrence which is distinctly labeled by f , and so the lemma follows. ��

Note that in case M is colorful, the vertex-coloring of G distinctly colors any
occurrence of M , and therefore, in this case we can determine whether M occurs
in G within the time complexity given in Lemma 2. For general multiset motifs,
we use the result of Alon et al. [2] who show how to efficiently construct a fam-
ily F of O(2O(k) lgn) functions from V (G) to {1, . . . , k} which is perfect. This
construction builds on an earlier slightly less efficient construction of [21] and re-
quires O(2O(k)n lg n) time. Using this and Lemma 2, we obtain a O(2O(k)n2 lg n)
algorithm for Graph Motif.

Theorem 3. Graph Motif can be solved in O(2O(k)n2 lg n) time.

4 Bounded Treewidth Graphs

The treewidth parameter of graphs [22] plays a central role in designing ex-
act algorithms for many NP-hard graph problems [3,4,5,10]. Among numerous
frameworks developed over the years, we adopt the parsing mechanism devel-
oped for bounded treewidth graphs in [1]. For motifs which consist of a constant

Sharp Tractability Borderlines for Finding Connected Motifs 347

number of colors c and graphs with treewidth smaller than some constant ω,
we present a polynomial-time algorithm with running time O(n2cω+2c+2). This
should be compared with the sharp hardness result of Theorem 2. Moreover,
our algorithm can also be analyzed as a fixed-parameter algorithm for parame-
ters ω and k which outperforms the algorithm of the previous section when the
treewidth of G is sufficiently small. Due to space limitations, we only present a
sketch of our result.

Theorem 4. Let ω be any positive constant. Then Graph Motif can be solved
in O(n2cω+2c+2) time, when G has treewidth less than ω and M consists of c
colors.

Proof (sketch). The proof is sketched as follows. We employ the parsing oper-
ator point of view on bounded treewidth. In particular, we use the notion of
ω-boundaried graphs, where an ω-boundaried graph is no more than a graph
with ω distinguished vertices, each distinctly labeled by a label in {1, . . . , ω},
which are referred to as boundary vertices. The boundary vertices, together
with ω-operators, allow the construction of ω-boundaried graphs from smaller
ω-boundaried graphs. The ω-operators are:

1. The null operator ∅ which creates the trivial boundaried graph with isolated
vertices.

2. The binary operator ⊕ that takes the disjoint union of two ω-boundaried
graphs and then identifies the ith boundary vertex of the first graph with
the ith boundary vertex of the second graph.

3. The unary operator that introduces a new isolated vertex and makes this
the new vertex 1 of the boundary. The old vertex 1 is removed from the
boundary but not from the graph.

4. The unary operator that adds an edge between vertex 1 and vertex 2 of the
boundary.

5. Unary operators that permute the labels of the boundary vertices.

A parse tree is an at-most binary rooted tree with labels corresponding to ω-
operators. The leaves are labeled with ∅, the internal unary nodes are labeled
with unary operators, and the internal binary nodes are labeled with the binary
operator ⊕. Each rooted subtree of a parse tree corresponds to an ω-boundaried
graph, where the graph at each parent is obtained by applying the corresponding
operator of the parent on the ω-boundaried graph(s) of its child(ren). We say
that a parse tree parses an ω-boundaried graph H , if H corresponds to the ω-
boundaried graph of the root. We extend this definition to any graph, by simply
assuming that the final parsing operator removes all vertices from the boundary.
Any graph of treewidth less than ω can be parsed by a parse tree with O(ωn)
nodes [1].

Define a checklist item for a w-boundaried graph to consist of the following
information: (1) A partition π of the set of boundary vertices. Let X denote the
set of boundary vertices, and write π = (X1, . . . , Xr) where r ≤ ω, and the Xi

denote the sets of the partition π. (2) A motif familyMπ = (M0,M1, . . . ,Mr) of

348 M.R. Fellows et al.

length r+1, where each Mi is non-empty except maybe M0 and Mi ⊆M . (Note
that the number of distinct checklist items is at most ωω(nc)ω+1 = wwncω+c,
where a better bound is given by replacing ww with Bell(ω), the number of
distinct partitions of an ω-element set.)

We say that a checklist item α as above is positive for a ω-boundaried graph
A if there is a set of r + 1 vertex-disjoint subsets V0, . . . , Vr ⊆ V (A) satisfying
the following conditions:

1. V0 ∩X = ∅.
2. For i = 1, . . . , r, Vi ∩X = Xi.
3. For i = 0, . . . , r, Vi is an occurrence of Mi in A

Define the inventory inv(A) of the w-boundaried graph A to be the set of all
checklist items that are positive for A.

Claim. Whether a motif occurs in a ω-boundaried graph A can be determined
from inv(A) in time linear in the size of the inventory.

Our algorithm proceeds as follows. It first computes a parse tree of G, and then
computes, from the leaves up to the root, the inventories of the ω-boundaried
graphs corresponding to the nodes of the ω parse tree. Let A be the trivial
boundary graph obtained by the null operator ∅. In this base case, inv(A) con-
sists of single checklist item with a partition π = (X1, . . . , Xr) that partitions
the boundary vertices into singletons, and motif family Mπ = (∅,M1, . . . ,Mr)
where Mi consists of the color of the single boundary vertex in Xi ∈ π, for all
i = 1, . . . , r. For boundary graphs obtained by unary operations, computing the
inventory is almost equally easy.

Claim. One can compute inv(op(A)) from inv(A).

We proceed to describe the computation for the ⊕ operator. Let A and B be
two boundaried graphs over the same boundary vertex set X . If α ∈ inv(A) and
β ∈ inv(B) then we define the checklist item α⊕β as follows. As per the definition
of a checklist item, we must give two pieces of information to describe α⊕β: (1)
a partition πα⊕β of X , and (2) a motif family Mπα⊕β

for this partition. Let πα
(πβ) denote the partition of X for the checklist item α (β). Let ≡α (≡β) be the
equivalence relation on X defined by πα (πβ). The partition πα⊕β corresponds
to the reflexive and transitive closure of the relation ≡α ∪ ≡β. The motif family
Mπα⊕β

is obtained by adding and subtracting colors of the motifs of Mπα and
Mπβ

in the natural way.

Claim. We can compute inv(A⊕B) as {α, β, α⊕ β |α ∈ inv(A), β ∈ inv(B)}.

Hence given a parse tree of G, we have to perform at most ωn such “multipli-
cations of inventories”. Since each inventory has size bounded by ωωncω+c, and
since a single multiplication between two inventories requires O(n) time, this
gives a running time of O(n2cω+2c+2) for all inventory multiplications. Since the
computation on the ⊕ operator requires more time than the computation on any
other operator, the entire algorithm runs within this time bound. ��

Sharp Tractability Borderlines for Finding Connected Motifs 349

Showing that our algorithm is a fixed-parameter algorithm for parameters ω and
k involves pretty much the same analysis. The only difference is that here we
bound the total number of distinct checklist items by ωω(2k)ω+1 = ww2kω+k.

5 On Trees and Motifs with Bounded Number of Colors

Although Theorem 4 gives a nice complementary result to the sharp hardness
result of Theorem 2, it still leaves a certain gap. In the following section we
aim to close this gap, by proving that Graph Motif, parameterized by the
number of colors c in M , is W[1]-hard for trees. Essentially, this means that
unless unlikely collapses occur in parameterized complexity theory, there is no
fixed-parameter algorithm for parameter c, even in the restricted case of trees.
We refer readers unfamiliar with the concept of parameterized reductions to [12].

Theorem 5. The Graph Motif problem, parameterized by the number of col-
ors c in the motif, is W[1]-hard for trees.

Proof. We present a reduction from Clique which is known to be W[1]-hard [12].
Recall that in Clique we are given a simple graph H and an integer κ, the
parameter, and we are asked to determine whether H has a subset of κ vertices
which are pairwise adjacent. Given an instance 〈H,κ〉 of Clique, we describe a
rooted tree G = T colored with 1 + κ+ 2κ(κ− 1) +

(
κ
2

)
colors. We let m denote

the number of edges of H , i.e. m = |E(H)|.

– The root of T is colored a.
– The root has κ · |V (H)| children organized into κ groups S(1) . . . S(κ). The

group of |V (H)| children S(i) consists of the nodes s(i, u), where u ∈ V (H).
The color of each node in S(i) is b(i).

– From each node s(i, u) hang κ− 1 groups of paths. The groups are P (i, u, j)
for every j ∈ {1 . . . , κ} \ {i}. There is one path p(i, u, j, v) ∈ P (i, u, j) for
each edge {u, v} ∈ E(H) that is incident to u in H .

The path p(i, u, j, v) begins with a vertex colored c(i, j) and ends with a vertex
colored d(i, j), and otherwise consists of some number m(i, u, j, v) of internal
vertices colored by e(i, j) = e(j, i). There is an important detail to note here. If
i < j, then c(i, j) and c(j, i) are different colors, whereas e(i, j) and e(j, i) are
the same color. We call the colors e(i, j) the edge colors. The number m(i, u, j, v)
is calculated as follows. Number the edges in E(H) from 1 to m, letting l(uv)
denote the number assigned to the edge {u, v} ∈ E(H). We define:

m(i, u, j, v) =

{
l(uv) i < j

3m− l(uv) i > j.

The motif M consists of one of each of every color other than the edge colors,
and 3m elements colored by each edge color. Thus, M consists of c = 1 + κ +
2κ(κ − 1) +

(
κ
2

)
different colors, and |M | = 1 + κ + 2κ(κ − 1) + 3m

(
κ
2

)
. This

completes the construction of our instance 〈(G,M), c〉 for Graph Motif.

350 M.R. Fellows et al.

We claim that H has a subset of κ pairwise adjacent vertices if and only if T
has a subtree T ′ which is an occurrence of M . Suppose that the vertices v1, ..., vκ
are pairwise adjacent in H . The subtree T ′ consists of:

– The root which is colored a.
– The κ children of the root s(i, vi) for all 1 ≤ i ≤ κ, where s(i, vi) is colored
b(i).

– The κ(κ − 1) paths p(i, vi, j, vj). The path p(i, vi, j, vj) begins with a node
colored c(i, j) and ends with a node colored d(i, j) for all 1 ≤ i, j ≤ κ,
i �= j. Note that the path p(i, vi, j, vj) is pendant from s(i, vi) since vi and
vj are adjacent in H . Together, the two complementary paths p(i, vi, j, vj)
and p(j, vj , i, vi) contain 3m nodes colored e(i, j).

In the other direction, suppose that the subtree T ′ of T is an occurrence
of M . Then T ′ must include the root of T , since it is the only node colored
a. Furthermore, T ′ must contain exactly one node in each of the groups S(i),
1 ≤ i ≤ κ, since nodes in each S(i) are all colored b(i). Suppose these nodes are
s(1, v1), . . . , s(κ, vκ). We argue that the vertices v1, ..., vκ are pairwise adjacent
in H .

In order for T ′ to be an occurrence of M in T , T ′ must contain exactly one
pendant path in each of the groups of paths P (i, vi, j) for any 1 ≤ i, j ≤ κ, i �= j,
and nothing further. To see this, note that T ′ must contain at least one path in
each of the groups of paths P (i, vi, j) in order for T ′ to contain a node colored
d(i, j). But containing one such path prevents T ′ from including any nodes of
other paths in P (i, vi, j), else T ′ would contain too many nodes of color c(i, j).

It follows that for any pair of indices i, j with 1 ≤ i < j ≤ κ, T ′ includes
exactly two paths p(i, vi, j, x) and p(j, vj , i, y) that contain nodes of color e(i, j) =
e(j, i). Since M contains exactly 3m elements colored by e(i, j), it follows that
x = vj and y = vi, since p(i, vi, j, vj) and p(j, vj , i, vi) are the only two paths in
T with nodes colored e(i, j) that together have exactly 3m nodes of this color.
But then, by construction of T , vi and vj must be adjacent in H . ��

References

1. Abrahamson, K.R., Fellows, M.R.: Finite automata, bounded treewidth, and well-
quasiordering. In: N. Robertson and P. Seymoued (eds.) Graph Structure Theory,
pp. 539–564 (1993)

2. Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42(4), 844–856
(1995)

3. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with
bounded decomposability. A survey. BIT Numerical Mathematics 25(1), 2–23
(1985)

4. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)

5. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23
(1993)

Sharp Tractability Borderlines for Finding Connected Motifs 351

6. Bodlaender, H.L., Fluiter, L.E.: Intervalizing k-colored graphs. In: Fülöp, Z., Gec-
seg, F. (eds.) Automata, Languages and Programming. LNCS, vol. 944, pp. 87–98.
Springer, Heidelberg (1995)

7. Bodlaender, H.L., Fellows, M.R., Langston, M.A., Ragan, M.A., Rosamond, F.A.,
Weyer, M.: Kernelization for convex recoloring. In: Proceedings of the 2nd work-
shop on Algorithms and Complexity in Durham (ACiD), pp. 23–35 (2006)

8. Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two strikes against perfect phy-
logeny. In: Kuich, W. (ed.) Automata, Languages and Programming. LNCS,
vol. 623, pp. 273–283. Springer, Heidelberg (1992)

9. Chor, B., Fellows, M.R., Ragan, M.A., Rosamond, F.A., Snir, S.: Connected color-
ing completion for general graphs: Algorithms and complexity – Manuscript (2007)

10. Corneil, D.G., Keil, J.M.: A dynamic programming approach to the dominating
set problem on k-trees. SIAM Journal on Algebraic and Discrete Methods 8(4),
535–543 (1987)

11. Deville, Y., Gilbert, D., Helden, J.V., Wodak, S.J.: An overview of data models
for the analysis of biochemical pathways. Briefings in Bioinformatics 4(3), 246–259
(2003)

12. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
13. Fellows, M.R., Hallett, M.T., Wareham, H.T.: DNA physical mapping: Three ways

difficult. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 157–168. Springer,
Heidelberg (1993)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

15. Golumbic, M., Kaplan, H., Shamir, R.: On the complexity of DNA physical map-
ping. Advances in Applied Mathematics 15, 251–261 (1994)

16. Ideker, T., Karp, R.M., Scott, J., Sharan, R.: Efficient algorithms for detecting
signaling pathways in protein interaction networks. Journal of Computational Bi-
ology 13(2), 133–144 (2006)

17. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R.,
Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proceedings of the National Academy of Sciences of
the United States of America 100(20), 11394–11399 (2003)

18. Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: Application
to metabolic networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 3(4), 360–368 (2006)

19. McMorris, F.R., Warnow, T.J., Wimer, T.: Triangulating vertex-colored graphs.
SIAM Journal on Discrete Mathematics 7(2), 296–306 (1994)

20. Moran, S., Snir, S.: Convex recolorings of strings and trees: Definitions, hardness
results and algorithms. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 218–232. Springer, Heidelberg (2005)

21. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. In: Proceedings of the 25th annual ACM Symposium on Theory Of
Computing (STOC), pp. 213–223. ACM Press, New York (1990)

22. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
SIAM Journal of Algorithms 7, 309–322 (1986)

Parameterized Algorithms for Directed

Maximum Leaf Problems

Noga Alon1, Fedor V. Fomin2, Gregory Gutin3, Michael Krivelevich1,
and Saket Saurabh2,4

1 Department of Mathematics, Tel Aviv University
Tel Aviv 69978, Israel

{nogaa,krivelev}@post.tau.ac.il
2 Department of Informatics, University of Bergen

POB 7803, 5020 Bergen, Norway
{fedor.fomin,saket}@ii.uib.no

3 Department of Computer Science
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
gutin@cs.rhul.ac.uk

4 The Institute of Mathematical Sciences
Chennai, 600 017, India
saket@imsc.res.in

Abstract. We prove that finding a rooted subtree with at least k leaves
in a digraph is a fixed parameter tractable problem. A similar result
holds for finding rooted spanning trees with many leaves in digraphs
from a wide family L that includes all strong and acyclic digraphs. This
settles completely an open question of Fellows and solves another one for
digraphs in L. Our algorithms are based on the following combinatorial
result which can be viewed as a generalization of many results for a
‘spanning tree with many leaves’ in the undirected case, and which is
interesting on its own: If a digraph D ∈ L of order n with minimum
in-degree at least 3 contains a rooted spanning tree, then D contains one
with at least (n/2)1/5 − 1 leaves.

1 Introduction

The Maximum Leaf Spanning Tree problem (finding a spanning tree with
the maximum number of leaves in a connected undirected graph) is an intensively
studied problem from an algorithmic as well as a combinatorial point of view
[5,7,10,13,17,22,30]. It fits into the broader class of spanning tree problems on
which hundreds of papers have been written; see e.g. the book by Wu and Chao
[34]. It is known to be NP-hard [18], and APX-hard [16], but can be approximated
efficiently with multiplicative factor 3 [26] and even 2 [30].

In this paper, we initiate the combinatorial and algorithmic study of two
natural generalizations of the problem to digraphs. We say that a subgraph T of
a digraph D is an out-tree if T is an oriented tree with only one vertex s of in-
degree zero (called the root). The vertices of T of out-degree zero are called leaves.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 352–362, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parameterized Algorithms for Directed Maximum Leaf Problems 353

If T is a spanning out-tree, i.e. V (T) = V (D), then T is called an out-branching
of D. Given a digraph D, the Directed Maximum Leaf Out-Branching

problem is the problem of finding an out-branching in D with the maximum
possible number of leaves. Denote this maximum by �s(D). When D has no
out-branching, we write �s(D) = 0. Similarly, the Directed Maximum Leaf

Out-tree problem is the problem of finding an out-tree inD with the maximum
possible number of leaves, which we denote by �(D). Both these problems are
equivalent for connected undirected graphs, as any maximum leaf tree can be
extended to a maximum leaf spanning tree with the same number of leaves.

Notice that �(D) ≥ �s(D) for each digraph D. Let L be the family of digraphs
D for which either �s(D) = 0 or �s(D) = �(D). It is easy to see that L contains
all strong and acyclic digraphs.

We investigate the above two problems from the parameterized complexity
point of view. Parameterized Complexity is a recent approach to deal with in-
tractable computational problems having some parameters that can be relatively
small with respect to the input size. This area has been developed extensively
during the last decade. For decision problems with input size n, and a param-
eter k, the goal is to design an algorithm with runtime f(k)nO(1) where f is a
function of k alone. Problems having such an algorithm are said to be fixed pa-
rameter tractable (FPT). The book by Downey and Fellows [11] provides a good
introduction to the topic of parameterized complexity. For recent developments
see the books by Flum and Grohe [15] and by Niedermeier [28].

The parameterized version of the Directed Maximum Leaf Out-Branc-

hing (the Directed Maximum Leaf Out-tree) problem is defined as follows:
Given a digraph D and a positive integral parameter k, is �s(D) ≥ k (�(D) ≥ k)?
We denote the parameterized versions of the Directed Maximum Leaf Out-

Branching and the Directed Maximum Leaf Out-Tree problems by k-
DMLOB and k-DMLOT respectively.

While the parameterized complexity of almost all natural problems on undi-
rected graphs is well understood, the world of digraphs is still wide open. The
main reason for this anomaly is that most of the techniques developed for undi-
rected graphs cannot be used or extended to digraphs. One of the most prominent
examples is the Feedback Vertex Set problem, which is easily proved to be
FPT for undirected graphs, while its parameterized complexity on digraphs is a
long standing open problem in the area. In what follows we briefly explain why
the standard techniques for the Maximum Leaf Spanning Tree problem on
undirected graphs cannot be used for its generalizations to digraphs.

– The Graph Minors Theory of Robertson and Seymour [31] is a powerful
(yet non-constructive) technique for establishing membership in FPT. For
example, this machinery can be used to show that the Maximum Leaf

Spanning Tree problem is FPT for undirected graphs (see [12]). However,
Graph Minors Theory for digraphs is still in a preliminary stage and at the
moment cannot be used as a tool for tackling interesting directed graph
problems.

354 N. Alon et al.

– Bodlaender [3] used the following arguments to prove that the Maximum

Leaf Spanning Tree problem is FPT: If an undirected graph G contains
a star K1,k as a minor, then it is possible to construct a spanning tree with
at least k leaves from this minor. Otherwise, there is no K1,k minor in G,
and it is possible to prove that the treewidth of G is at most f(k). Thus,
dynamic programming can be used to decide whether there is a tree with k
leaves. This approach does not work on directed graphs because containing
a big out-tree as a minor does not imply the existence of an out-branching
or out-tree with many leaves in the original graph. In short, the properties
of having no out-branching with at least k leaves or having no out-tree with
k leaves are not minor closed.

– The seemingly most efficient approach for designing FPT algorithms for
undirected graphs is based on a combination of combinatorial bounds and
preprocessing rules for handling vertices of small degrees. Kleitman and West
[22] and Linial and Sturtevant [25] showed that every connected undirected
graph G on n vertices with minimum degree at least 3 has a spanning tree
with at least n/4 + 2 leaves. Bonsma et al. [5] combined this combinatorial
result with clever preprocessing rules to obtain the fastest known algorithm
for the k-Maximum Leaf Spanning Tree problem, running in time O(n3+
9.4815kk3). It is not clear how to devise a similar approach for digraphs.

Our Contribution. We obtain a number of combinatorial and algorithmic re-
sults for the Directed Maximum Leaf Out-Branching and the Directed

Maximum Leaf Out-tree problems. Our main combinatorial result (Theo-
rem 1) is the proof that for every digraph D ∈ L of order n with minimum
in-degree at least 3, �s(D) ≥ (n/2)1/5 − 1 provided �s(D) > 0. This can be
viewed as a generalization of many combinatorial results for undirected graphs
related to the existence of spanning trees with many leaves [19,22,25].

Our main algorithmic contributions are fixed parameter tractable algorithms
for the k-DMLOB and the k-DMLOT problems for digraphs in L and for all
digraphs, respectively. The algorithms are based on a decomposition theorem
which uses ideas from the proof of the main combinatorial result. More precisely,
we show that either a digraph contains a structure that can be extended to an
out-branching with many leaves, or the pathwidth of the underlying undirected
graph is small. This settles completely an open question of Mike Fellows [6,14,21]
and solves another one for digraphs in L.

2 Preliminaries

LetD be a digraph. By V (D) and A(D) we represent the vertex set and arc set of
D, respectively. An oriented graph is a digraph with no directed 2-cycle. Given a
subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the subgraph induced on V ′.
The underlying undirected graph UN(D) of D is obtained from D by omitting all
orientations of arcs and by deleting one edge from each resulting pair of parallel
edges. The connectivity components of D are the subgraphs of D induced by the

Parameterized Algorithms for Directed Maximum Leaf Problems 355

vertices of connected components of UN(D). A vertex y of D is an in-neighbor
(out-neighbor) of a vertex x if yx ∈ A (xy ∈ A). The in-degree d−(x) (out-degree
d+(x)) of a vertex x is the number of its in-neighbors (out-neighbors). A vertex
s of a digraph D is a source if the in-degree of s is 0.

A digraph D is strong if there is a directed path from every vertex of D
to every other vertex of D. A strong component of a digraph D is a maximal
strong subgraph of D. A strong component S of a digraph D is a source strong
component if no vertex of S has an in-neighbor in V (D) \ V (S). The following
simple result gives necessary and sufficient conditions for a digraph to have an
out-branching.

Proposition 1 ([2]). A digraph D has an out-branching if and only if D has a
unique source strong component.

This assertion allows us to check whether �s(D) > 0 in time O(|V (D)|+ |A(D)|).
Thus, we will often assume, in the rest of the paper, that the digraph D under
consideration has an out-branching.

Let P = u1u2 . . . uq be a directed path in a digraph D. An arc uiuj of D is a
forward (backward) arc for P if i ≤ j − 2 (j < i, respectively). Every backward
arc of the type vi+1vi is called double.

For a natural number n, [n] denotes the set {1, 2, . . . , n}.
The notions of treewidth and pathwidth were introduced by Robertson and

Seymour in [32] and [33] (see [3] and [27] for surveys).
A tree decomposition of an (undirected) graph G is a pair (X,U) where U is a

tree whose vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection
of subsets of V (G) such that

1.
⋃
i∈V (U)Xi = V (G),

2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi|−
1}. The treewidth of a graphG is the minimum width over all tree decompositions
of G.

If in the definitions of a tree decomposition and treewidth we restrict U to
be a tree with all vertices of degree at most 2 (i.e., a path) then we have the
definitions of path decomposition and pathwidth. We use the notation tw(G)
and pw(G) to denote the treewidth and the pathwidth of a graph G.

We also need an equivalent definition of pathwidth in terms of vertex separa-
tors with respect to a linear ordering of the vertices. Let G be a graph and let
σ = (v1, v2, . . . , vn) be an ordering of V (G). For j ∈ [n] put Vj = {vi : i ∈ [j]}
and denote by ∂Vj all vertices of Vj that have neighbors in V \ Vj . Setting

vs(G, σ) = max
i∈[n]
|∂Vi|,

we define the vertex separation of G as

vs(G) = min{vs(G, σ) : σ is an ordering of V (G)}.

356 N. Alon et al.

The following assertion is well-known. It follows directly from the results of
Kirousis and Papadimitriou [24] on interval width of a graph, see also [23].

Proposition 2 ([23,24]). For any graph G, vs(G) = pw(G).

3 Combinatorial Lower Bounds on �(D) and �s(D)

Let D be a family of digraphs. Notice that if we can show that �s(D) ≥ g(n) for
every digraph D ∈ D of order n, where g(n) is tending to infinity as n tends to
infinity, then k-DMLOB is FPT on D. Indeed, g(n) < k holds only for digraphs
with less than some G(k) vertices and we can generate all out-branchings in such
a digraph in time bounded by a function of k.

Unfortunately, bounds of the type �s(D) ≥ g(n) are not valid for all strong
digraphs. Nevertheless, such bounds hold for wide classes of digraphs as we show
in the rest of this section.

The following assertion shows that L includes a large number of digraphs
including all strong and acyclic digraphs (and, also, well-studied classes of semi-
complete multipartite digraphs and quasi-transitive digraphs, see [2] for the
definitions).

Proposition 3. Suppose that a digraph D satisfies the following property: for
every pair R and Q of distinct strong components of D, if there is an arc from
R to Q then each vertex of Q has an in-neighbor in R. Then D ∈ L.

Proof. Let T be a maximal out-tree of D with �(D) leaves. We may assume that
�s(D) > 0 and V (T) �= V (D). LetH be the unique source strong component ofD
and let r be the root of T. Observe that r ∈ V (H) as otherwise we could extend
T by adding to it an arc ur, where u is some vertex outside the strong component
containing r. Let C be a strong component containing a vertex from T . Observe
that V (C) ∩ V (T) = V (C) as otherwise we could extend T by appending to
it some arc uv, where u ∈ V (C) ∩ V (T) and v ∈ V (C) \ V (T). Similarly, one
can see that T must contain vertices from all strong components of D. Thus,
V (T) = V (D), a contradiction. ��

3.1 Digraphs with Restricted In-Degree

Lemma 1. Let D be an oriented graph of order n with every vertex of in-degree
2 and let D have an out-branching. If D has no out-tree with k leaves, then
n ≤ 2k5.

Proof. Assume that D has no out-tree with k leaves. Consider an out-branching
T of D with p leaves (clearly p < k). Start from the empty collection P of
vertex-disjoint directed paths. Choose a directed path R from the root of T to a
leaf, add R to P and delete V (R) from T . Repeat this for each of the out-trees
comprising T−V (R). By induction on the number of leaves, it is easy to see that
this process provides a collection P of p vertex-disjoint directed paths covering
all vertices of D.

Parameterized Algorithms for Directed Maximum Leaf Problems 357

Let P ∈ P have q ≥ n/p vertices and let P ′ ∈ P\{P}. There are at most k−1
vertices on P with in-neighbors on P ′ since otherwise we could choose a set X of
at least k vertices on P for which there were in-neighbors on P ′. The vertices of
X would be leaves of an out-tree formed by the vertices V (P ′)∪X. Thus, there
are m ≤ (k − 1)(p− 1) ≤ (k − 1)(k − 2) vertices of P with in-neighbors outside
P and at least q − (k − 2)(k − 1) vertices of P have both in-neighbors on P .

Let P = u1u2 . . . uq. Suppose that there are 2(k − 1) indices

i1 < j1 ≤ i2 < j2 ≤ · · · ≤ ik−1 < jk−1

such that each uisujs is a forward arc for P . Then the arcs

{uisujs , ujsujs+1, . . . , uis+1−1uis+1 : 1 ≤ s ≤ k − 2} ∪
{uik−1ujk−1} ∪ {uisuis+1 : 1 ≤ s ≤ k − 1}

form an out-tree with k leaves, a contradiction.
Let f be the number of forward arcs for P . Consider the graph G whose

vertices are all the forward arcs and a pair uiuj , usur of forward arcs are adjacent
in G if the intervals [i, j− 1] and [s, r− 1] of the real line intersect. Observe that
G is an interval graph and, thus, a perfect graph. By the result of the previous
paragraph, the independence number of G is less than k−1. Thus, the chromatic
number of G and the order g of its largest clique Q is at least f/(k − 2). Let
V (Q) = {uisujs : 1 ≤ s ≤ g} and let h = min{js − 1 : 1 ≤ s ≤ g}. Observe
that each interval [is, js−1] contains h. Therefore, we can form an out-tree with
vertices

{u1, u2, . . . , uh} ∪ {ujs : 1 ≤ s ≤ g}

in which {ujs : 1 ≤ s ≤ g} are leaves. Hence we have f
k−2 ≤ k − 1 and, thus,

f ≤ (k − 2)(k − 1).
Let uv be an arc of A(D)\A(P) such that v ∈ V (P). There are three possibil-

ities: (i) u �∈ V (P), (ii) u ∈ V (P) and uv is forward for P , (iii) u ∈ V (P) and uv
is backward for P . By the inequalities above for m and f , we conclude that there
are at most 2(k − 2)(k − 1) vertices on P which are not terminal vertices (i.e.,
heads) of backward arcs. Consider a path R = v0v1 . . . vr formed by backward
arcs. Observe that the arcs {vivi+1 : 0 ≤ i ≤ r − 1} ∪ {vjv+

j : 1 ≤ j ≤ r} form
an out-tree with r leaves, where v+

j is the out-neighbor of vj on P. Thus, there
is no path of backward arcs of length more than k − 1.

If the in-degree of u1 in D[V (P)] is 2, remove one of the backward arcs termi-
nating at u1. Observe that now the backward arcs for P form a vertex-disjoint
collection of out-trees with roots at vertices that are not terminal vertices of
backward arcs. Therefore, the number of the out-trees in the collection is at
most 2(k − 2)(k − 1). Observe that each out-tree in the collection has at most
k−1 leaves and thus its arcs can be decomposed into at most k−1 paths, each of
length at most k. Hence, the original total number of backward arcs for P is at
most 2k(k−2)(k−1)2+1. On the other hand, it is at least (q−1)−2(k−2)(k−1).
Thus, (q−1)−2(k−2)(k−1) ≤ 2k(k−2)(k−1)2 +1. Combining this inequality
with q ≥ n/(k − 1), we conclude that n ≤ 2k5. ��

358 N. Alon et al.

Theorem 1. Let D be a digraph in L with �s(D) > 0.

(a) If D is an oriented graph with minimum in-degree at least 2, then �s(D) ≥
(n/2)1/5 − 1.

(b) If D is a digraph with minimum in-degree at least 3, then �s(D) ≥ (n/2)1/5−
1.

Proof. (a) Let T be an out-branching of D. Delete some arcs from A(D) \A(T),
if needed, such that the in-degree of each vertex of D becomes 2. Now the
inequality �s(D) ≥ (n/2)1/5 − 1 follows from Lemma 1 and the definition of L.

(b) Let T be an out-branching of D. Let P be the path formed in the proof
of Lemma 1. (Note that A(P) ⊆ A(T).) Delete every double arc of P , in case
there are any, and delete some more arcs from A(D) \A(T), if needed, to ensure
that the in-degree of each vertex of D becomes 2. It is not difficult to see that
the proof of Lemma 1 remains valid for the new digraph D. Now the inequality
�s(D) ≥ (n/2)1/5 − 1 follows from Lemma 1 and the definition of L. ��

It is not difficult to give examples showing that the restrictions on the minimum
in-degrees in Theorem 1 are optimal. Indeed, any directed cycle C is a strong
oriented graph with all in-degrees 1 for which �s(C) = 1 and any directed double
cycle D is a strong digraph with in-degrees 2 for which �s(D) = 2 (a directed
double cycle is a digraph obtained from an undirected cycle by replacing every
edge xy with two arcs xy and yx).

4 Parameterized Algorithms for k-DMLOB and
k-DMLOT

In the previous section, we gave lower bounds on �(D) and �s(D) for digraphs
D ∈ L with minimum in-degree at least 3. These bounds trivially imply the
fixed parameter tractability of the k-DMLOB and the k-DMLOT problems for
this class of digraphs. Here we extend these FPT results to digraphs in L for k-
DMLOB and to all digraphs for k-DMLOT. We prove a decomposition theorem
which either outputs an out-tree with k leaves or provides a path decomposition
of the underlying undirected graph of width O(k2) in polynomial time.

Theorem 2. Let D be a digraph in L with �s(D) > 0. Then either �s(D) ≥ k
or the underlying undirected graph of D is of pathwidth at most 2k2.

Proof. Let D be a digraph in L with 0 < �s(D) < k. Let us choose an out-
branching T of D with p leaves. As in the proof of Lemma 1, we obtain a
collection P of p (< k) vertex-disjoint directed paths covering all vertices of D.

For a path P ∈ P , let W (P) be the set of vertices not on P which are out-
neighbors of vertices on P . If |W (P)| ≥ k, then the vertices P and W (P) would
form an out-tree with at least k leaves, which by the definition of L, contradicts
the assumption �s(D) < k. Therefore, |W (P)| < k. We define

U1 = {v ∈W (P) : P ∈ P}.

Parameterized Algorithms for Directed Maximum Leaf Problems 359

Note that
|U1| ≤ p(k − 1) ≤ (k − 1)2.

Let D1 be the graph obtained from D after applying the following trimming
procedure around all vertices of U1: for every path P ∈ P and every vertex
v ∈ U1 ∩ V (P) we delete all arcs emanating out of v and directed into v except
those of the path P itself. Thus for every two paths P,Q ∈ P there is no arc in
D1 that goes from P to Q.

For P ∈ P let D1[P] be the subgraph of D1 induced by the vertices of P .
Observe that P is a Hamiltonian directed path in D1[P] and the connectivity
components of D1 are the induced subgraphs of D1 on the paths P for P ∈ P .

Let P ∈ P , we will show that the pw(UN(D1[P])) is bounded by k2− 2k+ 2.
We denote by S[P] the set of vertices which are heads of forward arcs in D1[P].

We claim that |S[P]| ≤ (k−2)(k−1). Indeed, for each vertex v ∈ S[P], delete
all forward arcs terminating at v but one. Observe that the procedure has not
changed the number of vertices which are heads of forward arcs. Also the number
of forward arcs in the new digraph is |S[P]|. As in the proof of Lemma 1, we can
show that the number of forward arcs in the new digraph is at most (k−2)(k−1).

Let D2[P] be the graph obtained from D1[P] after applying the trimming pro-
cedure as before around all vertices of S[P], that is, for every vertex v ∈ S[P] we
delete all arcs emanating out of v or directed into v except those of the path P .

Observe that D2[P] consists of the directed path P = v1v2 . . . vq passing
through all its vertices, together with its backward arcs. For every j ∈ [q] let Vj =
{vi : i ∈ [j]}. If for some j the set Vj contained k vertices, say {v′1, v′2, · · · , v′k},
having in-neighbors in the set {vj+1, vj+2, . . . , vq}, then D would contain an out-
tree with k leaves formed by the path vj+1vj+2 . . . vq together with a backward
arc terminating at v′i from a vertex on the path for each 1 ≤ i ≤ k, a contradic-
tion. Thus vs(UN(D2[P])) ≤ k. By Proposition 2, the pathwidth of UN(D2[P])
is at most k. Let (X1, X2, . . . , Xp) be a path decomposition of UN(D2[P]) of
width at most k. Then (X1 ∪ S[P], X2 ∪ S[P], . . . , Xp ∪ S[P]) is a path decom-
position of UN(D1[P]) of width at most k + |S[P]| ≤ k2 − 2k + 2.

The pathwidth of a graph is equal to the maximum pathwidth of its con-
nected components. Hence, there exists a path decomposition (X1, X2, . . . , Xq)
of UN(D1) of width at most k2−2k+2. Then (X1∪U1, X2∪U1, . . . , Xq∪U1) is
a path decomposition of UN(D). Thus, the pathwidth of the underlying graph
of D is at most k2 − 2k + 2 + |U1| ≤ k2 − 2k + 2 + (k − 1)2 ≤ 2k2. ��

Theorem 3. k-DMLOB is FPT for digraphs in L.

Proof. Let D be a digraph in L with �s(D) > 0 and n vertices. The proof of The-
orem 2 can be easily turned into a polynomial time algorithm to either build an
out-branching of D with at least k leaves or to show that pw(UN(D)) ≤ 2k2 and
provide the corresponding path decomposition. A simple dynamic programming
over the decomposition gives us an algorithm of running time O(kO(k2) · nO(1)).
Alternatively, the property of containing a directed out-branching with at least
k leaves can be formulated as a monadic second order formula. Thus, by the fun-
damental theorem of Courcelle [8,9], the k-DMLOB problem for all digraphs D

360 N. Alon et al.

with pw(UN(D)) ≤ 2k2 can be solved in O(f(k) ·n) time, where f is a function
depending only on k. ��

Let D be a digraph and let Rv be the set of vertices reachable from a vertex
v ∈ V (D) in D. Observe that D has an out-tree with k leaves if and only if there
exists a v ∈ V (D) such that D[Rv] has an out-tree with k leaves. Notice that
each D[Rv] has an out-branching rooted at v. Thus, we can prove the following
theorem, using the arguments in the previous proofs.

Theorem 4. For a digraph D and v ∈ V (D), let Rv be the set of vertices
reachable from a vertex v ∈ V (D) in D. Then either we have �(D[Rv]) ≥ k or
the underlying undirected graph of D[Rv] is of pathwidth at most 2k2. Moreover,
one can find, in polynomial time, either an out-tree with at least k leaves in
D[Rv], or a path decomposition of it of width at most 2k2.

To solve k-DMLOT, we apply Theorem 4 to all the vertices of D and then
either apply dynamic programming over the decomposition or apply Courcelle’s
Theorem as in the proof of Theorem 3. This gives the following:

Theorem 5. k-DMLOT is FPT for digraphs.

We can, in fact, show that the k-DMLOB problem for digraphs in L is linear
time solvable for a fixed k. To do so, given a digraph D ∈ L with �s(D) > 0 we
first apply Bodlaender’s linear time algorithm [4] to check whether the treewidth
of UN(D) is at most 2k2. If tw(UN(D)) > 2k2 then by Theorem 2 D has an
out-branching with at least k leaves. Else tw(UN(D)) ≤ 2k2 and we can use
Courcelle’s Theorem to check in linear time whether D has an out-branching
with at least k leaves. This gives the following:

Theorem 6. The k-DMLOB problem for digraphs in L is linear time solvable
for every fixed k.

5 Concluding Remarks and Open Problems

We have shown that every digraph D ∈ L with �s(D) > 0 of order n and with
minimum in-degree at least 3 contains an out-branching with at least (n/2)1/5−1
leaves. Combining the ideas in the proof of this combinatorial result with the fact
that the problem of deciding whether a given digraph in L has an out-branching
with at least k leaves can be solved efficiently for digraphs of pathwidth at most
2k2 we have shown that the k-DMLOB problem for digraphs in L as well as
the k-DMLOT problem for general digraphs are fixed parameter tractable. The
parameterized complexity of the k-DMLOB problem for all digraphs remains
open.

For some subfamilies of L, one can obtain better bounds on �s(D). An ex-
ample is the class of multipartite tournaments. A multipartite tournament is an
orientation of a complete multipartite graph. It is proved in [20,29] that every
multipartite tournament D with at most one source has an out-branching T such

Parameterized Algorithms for Directed Maximum Leaf Problems 361

that the distance from the root of T to any vertex is at most 4. This implies
that �s(D) ≥ n−1

4 . Also for a tournament D of order n, it is easy to prove that
�s(D) ≥ n− log2 n. (This bound is essentially tight, i.e., we cannot replace the
right hand side by n− log2 n+Ω(log2 log2 n) as shown by random tournaments;
see [1], pages 3-4, for more details.)

It seems that the bound �s(D) ≥ (n/2)1/5 − 1 is far from tight. It would be
interesting to obtain better bounds for digraphs D ∈ L (with �s(D) > 0) of
minimum in-degree at least 3.

Acknowledgements. We thank Bruno Courcelle, Martin Grohe, Eun Jung Kim
and Stephan Kreutzer for useful discussions of the paper. Research of Noga Alon
and Michael Krivelevich was supported in part by a USA-Israeli BSF grant and
by a grant from the Israel Science Foundation. Research of Fedor Fomin was
supported in part by the Norwegian Research Council. Research of Gregory
Gutin was supported in part by an EPSRC grant.

References

1. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley, Chichester (2000)
2. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.

Springer, Heidelberg (2000)
3. Bodlaender, H.L.: On linear time minor tests and depth-first search. Journal of

Algorithms 14, 1–23 (1993)
4. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of

Small Treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)
5. Bonsma, P.S., Brueggermann, T., Woeginger, G.J.: A faster FPT algorithm for

finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS
2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

6. Cesati, M.: Compendium of parameterized problems (September 2006),
http://bravo.ce.uniroma2.it/home/cesati/research/compendium.pdf

7. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-
Time Extremal Structure I. In: Proc. ACiD, pp. 1–41 (2005)

8. Courcelle, B.: The Monadic second-order logic of graphs I: recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

9. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions,
minor and complexity issues. Informatique Théorique et Applications (ITA) 26,
257–286 (1992)

10. Ding, G., Johnson, T., Seymour, P.: Spanning trees with many leaves. Journal of
Graph Theory 37, 189–197 (2001)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

12. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its applications to
combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics 5,
117–126 (1992)

13. Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinated kernels and
catalytic reductions: An improved FPT algorithm for max leaf spanning tree and
other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000: Foundations
of Software Technology and Theoretical Science. LNCS, vol. 1974, pp. 240–251.
Springer, Heidelberg (2000)

http://bravo.ce.uniroma2.it/home/cesati/research/compendium.pdf

362 N. Alon et al.

14. Fellows, M.: Private communications (2005-2006)
15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006)
16. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the

maximum leaves spanning tree problem. Information Processing Letters 52, 45–49
(1994)

17. Galbiati, G., Morzenti, A., Maffioli, F.: On the approximability of some maximum
spanning tree problems. Theoretical Computer Science 181, 107–118 (1997)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co,
New York (1979)

19. Griggs, J.R., Wu, M.: Spanning trees in graphs of minimum degree four or five.
Discrete Mathematics 104, 167–183 (1992)

20. Gutin, G.: The radii of n-partite tournaments. Math. Notes 40, 743–744 (1986)
21. Gutin, G., Yeo, A.: Some Parameterized Problems on Digraphs. To appear in The

Computer Journal
22. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM Journal on

Discrete Mathematics 4, 99–106 (1991)
23. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.

Complementary Definitions of Programming Language Semantics 42, 345–350
(1992)

24. Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Mes premieres
constructions de programmes 55, 181–184 (1985)

25. Linial, N., Sturtevant, D.: Unpublished result (1987)
26. Lu, H.-I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear

time. Interval Mathematics 29, 132–141 (1998)
27. Möhring, R.H.: Graph problems related to gate matrix layout and PLA folding.

Computational Graph Theory 7(Comput. Suppl.), 17–51 (1990)
28. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University

Press, oxford (2006)
29. Petrovic, V., Thomassen, C.: Kings in k-partite tournaments. Discrete Mathemat-

ics 98, 237–238 (1991)
30. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with the max-

imum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci,
G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

31. Robertson, N., Seymour, P.D.: Graph minors-a survey. In: Anderson, I. (ed.) Sur-
veys in Combinatorics, pp. 153–171. Cambridge Univ. Press, Cambridge (1985)

32. Robertson, N., Seymour, P.D.: Graph minors I: Excluding a forest. Journal of
Combinatorial Theory Series B 35, 39–61 (1983)

33. Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree-width.
Journal of Algorithms 7, 309–322 (1986)

34. Wu, B.Y., Chao, K.: Spanning Trees and Optimization Problems, CRC Press
(2003)

Parameterized Approximability of the

Disjoint Cycle Problem

Martin Grohe and Magdalena Grüber

Institut für Informatik, Humboldt-Universität, Unter den Linden 6, 10099 Berlin,
Germany

{grohe,grueber}@informatik.hu-berlin.de

Abstract. We give an fpt approximation algorithm for the directed ver-
tex disjoint cycle problem. Given a directed graph G with n vertices and
a positive integer k, the algorithm constructs a family of at least k/ρ(k)
disjoint cycles of G if the graph G has a family of at least k disjoint cy-
cles (and otherwise may still produce a solution, or just report failure).
Here ρ is a computable function such that k/ρ(k) is nondecreasing and
unbounded. The running time of our algorithm is polynomial.

The directed vertex disjoint cycle problem is hard for the parameter-
ized complexity class W[1], and to the best of our knowledge our algo-
rithm is the first fpt approximation algorithm for a natural W[1]-hard
problem.

Keywords: approximation algorithms, fixed-parameter tractability, pa-
rameterized complexity theory.

1 Introduction

Fixed-parameter tractability and approximability are two ways of dealing with
intractability. Fixed-parameter tractability is a relaxed notion of tractability
based on a “two-dimensional” complexity measure that not only depends on the
size of the input instances, but also on an additional parameter, for example, the
tree width of a graph, or the number of variables of a logical formula. Intuitively,
a problem is fixed-parameter tractable if it can be solved efficiently on instances
with a small value of the parameter. Formally, a parameterized problem is fixed
parameter tractable if there is an algorithm solving the problem with a running
time f(k)·nO(1), where f is a computable function, k denotes the parameter value
and n the size of the input. We call an algorithm achieving such a running time an
fpt algorithm. Optimization problems are often parameterized by the cost of the
solution. For example, the disjoint cycle problem1 asks for a maximum family of
vertex disjoint cycles in a given directed graph. In the parameterized version, the
objective is to find a family of at least k disjoint cycles, where k is the parameter.
Parameterized complexity theory gives evidence for the disjoint cycle problem
not being fixed-parameter tractable; the problem is hard for the complexity class
1 More precisely, we call the problem the maximum directed vertex disjoint cycle prob-

lem. It is also known as the (maximum directed) cycle packing problem.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 363–374, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

364 M. Grohe and M. Grüber

W[1] (this follows easily from the results of [20]). Now we may ask if the problem
is at least “approximately fixed parameter tractable”, that is, if there is an fpt
algorithm that finds a family of disjoint cycles of size approximately k if the input
graph has a family of k disjoint cycles. Depending on the desired approximation
ratio, “approximately k” may mean, for example, k/2 or maybe just log k.

The notion of parameterized approximability has been introduced in three
independent papers that all appeared last year [3,4,6]; also see the recent sur-
vey [14]. An fpt algorithm for a parameterized maximization problem is an fpt
approximation algorithm with approximation ratio ρ if given an instance of the
problem and a positive integer k it produces a solution of cost at least k/ρ(k)
if the instance has a solution of size at least k. (If the instance has no solution
of size k, then the output may be arbitrary.) Here ρ is a computable function
such that k/ρ(k) is nondecreasing and unbounded. An analogous definition can
be given for minimization problems. We observe that whenever a maximization
problem has an fpt approximation algorithm with approximation ratio ρ, then
it also has a polynomial time approximation algorithm, albeit with a worse ratio
ρ′ ≥ ρ (but still only depending on k). [4,6] give several examples of optimiza-
tion problems that are not fpt approximable (under standard assumptions from
parameterized complexity theory). Moreover, it was shown in [4] that every in-
tractable parameterized problem is equivalent, under suitable reductions, to an
(artificial) problem that is fpt approximable and to a problem that is fpt in-
approximable. However, there are few examples of natural problems that are
known to be fpt approximable, but not known to be fixed-parameter tractable.

The main result of this paper is an fpt approximation algorithm for the disjoint
cycle problem. To the best of our knowledge, this is the first fpt approximation
algorithm for a natural W[1]-hard problem. Our result is mainly of theoreti-
cal interest, because the approximation ratio is very close to k: We can only
lower bound the number k/ρ(k) of disjoint cycles our algorithm is guaranteed to
compute by a multiply iterated logarithm.

The disjoint cycle problem is well known to be NP-complete (see [2]) and
recently, Salavatipour and Verstraete [18] proved that this problem is hard to
approximate within a factor Ω(log1−ε n) unless NP ⊆ DTIME

(
2polylog(n)

)
. They

also proved that the problem has a polynomial time approximation algorithm
with ratio O(

√
n). Note that this approximation algorithm is incomparable with

ours, as the ratio is expressed in terms of n, which may be much larger than k.
The linear programming dual of the disjoint cycle problem is the directed feed-

back vertex set problem. It asks for a minimum set of vertices of a directed graph
such that the graph obtained by deleting these vertices is acyclic. It is one of
the most prominent open problems in parameterized complexity theory whether
the directed feedback vertex set problem is fixed-parameter tractable. Based on
a result by Seymour [19], Even et al. [8] gave a polynomial time algorithm that
approximates the minimum feedback vertex set to a factor of O(log k · log log k);
hence in particular the problem is fpt approximable. The size τ(G) of the min-
imum feedback vertex set and the size ν(G) of a maximum family of disjoint
cycles are two graph invariants that have also received considerable attention in

Parameterized Approximability of the Disjoint Cycle Problem 365

graph theory (e.g. [1,2,7,12,13,17]). Clearly, ν(G) ≤ τ(G), and inequality may
hold (for example, ν(K4) = 1 < 2 = τ(K4)). In 1996, Reed, Robertson, Seymour
and Thomas [16] proved that τ(G) can be bounded in terms of ν(G); this settled
a long standing open conjecture due to Younger [21]. As τ(G) can be approx-
imated up to a logarithmic factor in polynomial time, it follows that there is
a polynomial time algorithm that approximates ν(G) with some approximation
ratio ρ (not depending on the size of the graph; see [4] for details). However, this
algorithm just computes an approximation of the solution size and not an actual
solution, that is, a family of pairwise disjoint cycles of that size. This is what we
achieve here. Let us remark that in the last section of [16], Reed et al. studied
the algorithmic question of computing a maximum family of disjoint cycles and
gave an algorithm that computes a family of k disjoint cycles in time nf(k), for
some function f . But this algorithm is not an fpt algorithm.

Our algorithm is heavily based on [16]; indeed in large parts it may be viewed
as an algorithmic version of the construction given there. However, there is a
crucial step in the construction of [16] that cannot be made algorithmic so easily,
or more precisely, cannot be turned into an fpt algorithm: Reed et al. start their
construction by taking a minimum feedback vertex set. We do not know how
to compute such a set by an fpt algorithm. Instead, we take an approximately
minimum feedback vertex set, but then a rather straightforward argument by
Reed et al. has to be turned into a complicated recursive algorithm. We will
explain this algorithm in detail in Section 5. Due to space limitations, we have
to omit most other details and proofs.

2 Preliminaries

N denotes the set of positive integers and R the set of reals. A function f : N→ R

is nondecreasing (increasing) if for all m,n ∈ N with m < n it holds that
f(m) ≤ f(n) (f(m) < f(n), respectively). f is unbounded if for all k ∈ N there
exists an n ∈ N such that f(n) ≥ k.

For a graph G the set of vertices (edges) is denoted by V (G) (E(G)) and
the number of vertices is denoted by |G|. For a subset X ⊆ V (G), by G[X]
we denote the induced subgraph of G with vertex set X , and by G \ X the
subgraph G[V (G)\X]. Graphs are always directed. Paths are directed and have
no repeated vertices, and an (a, b)-path in a graph G is a path from a to b.
A linkage L in a directed graph G is a set of vertex disjoint paths. A linkage
L consisting of paths P1, . . . Pk, where Pi is an (ai, bi)-path (1 ≤ i ≤ k), is
said to link (a1, . . . ak) to (b1, . . . bk). For A,B ⊆ V (G) with a1, . . . ak ∈ A and
b1, . . . , bk ∈ B we say that L is a linkage from A to B of size k. A pair (X,Y)
is a separation for a directed graph G (of order |X ∩ Y |) if X,Y ⊆ V (G) with
X∪Y = V (G) and if no edge of G has tail in X \Y and head in Y \X . Menger’s
theorem states that for all directed graphs G, sets A,B ⊆ V (G), and k ≥ 1 there
is a linkage of size k from A to B if and only if there is no separation (X,Y) of
G of order < k with A ⊆ X and B ⊆ Y . We will use the following algorithmic
version, which can be proved by standard network flow techniques:

366 M. Grohe and M. Grüber

Fact 1. There exists a polynomial time algorithm that given a directed graph G,
a positive integer k and two subsets A,B ⊆ V (G) both of size ≥ k computes
either k many vertex disjoint paths from A to B or a separation (X,Y) of order
< k with A ⊆ X, B ⊆ Y .

The Ramsey number Rl(m, q) is the minimum integer such that for any set of
size ≥ Rl(m, q) if all subsets of size l are colored with q colors, then there exists
a subset of size m such that all its size-l subsets have the same color. A simple
upper bound is

Rl(m, q) ≤ exp(l)(cq ·m) (1)

for some positive constant cq, where the iterated exponential function exp(l) is
defined inductively as exp(1)(x) = x and exp(l)(x) := 2exp(�−1)(x) for l ≥ 2 [10].

3 Disjoint Cycles and Feedback Vertex Sets

Recall that the directed maximum vertex disjoint cycle problem (for short: dis-
joint cycle problem) is the maximization problem whose objective it is to find
a family of pairwise vertex disjoint cycles of maximum size in a given directed
graph. For a directed graph G, we denote the maximum size of a family of
pairwise vertex disjoint cycles by ν(G).

The linear programming dual of the disjoint cycle problem is the directed
minimum feedback vertex set problem. A feedback vertex set in a directed graph
G is a set S of vertices such that the graph G \S is acyclic. The objective of the
directed minimum feedback vertex set problem is to find a feedback vertex set
of minimum size in a given graph. We denote the minimum size of a feedback
vertex set of a directed graph G by τ(G). Obviously, we have ν(G) ≤ τ(G). For
a given graph G = (V,E), consider the following linear program with variables
xv for the vertices v ∈ V :

Minimize
∑

v∈V
xv subject to

∑

v∈C
xv ≥ 1 for every cycle C in G,

xv ≥ 0 for every vertex v ∈ V .
(2)

The {0, 1}-solutions correspond to the feedback vertex sets of G. The rational so-
lutions are called fractional feedback vertex sets, and the minimum cost

∑
v∈V xv

of a fractional feedback vertex set is denoted by τ∗(G). By standard techniques
[11], a minimum fractional feedback vertex set and the parameter τ∗(G) can be
computed in polynomial time (also see [8]). The natural linear programming for-
mulation of the disjoint cycle problem yields the dual of the linear program (2).
Hence the cost ν∗(G) of an optimal fractional solutions coincides with τ∗(G),
and we have

ν(G) ≤ ν∗(G) = τ∗(G) ≤ τ(G).

Let us state the main known results regarding the parameters τ and ν:

Theorem 2 (Seymour [19], Even et al. [8]). For every directed graph G it
holds that τ(G) = O(τ∗(G) · log(τ∗(G)) · log log(τ∗(G))). Furthermore, there is

Parameterized Approximability of the Disjoint Cycle Problem 367

a polynomial time algorithm that constructs a feedback vertex set for a directed
graph G of size at most O(τ∗(G) · log(τ∗(G)) · log log(τ∗(G))).

Theorem 3 (Reed et al. [16]). There exists a computable function f such
that for all directed graphs G it holds that τ(G) ≤ f(ν(G)).

The function f constructed by Reed at al. [16] grows very quickly. It is a multiply
iterated exponential, where the number of iterations is also a multiply iterated
exponential.

4 Fixed Parameter Tractable Approximation Algorithms

For background in parameterized complexity theory, we refer the reader to
[5,9,15]. We only define the notions needed here. Recall the definition of fpt
algorithms from the introduction. Intuitively, an fpt approximation algorithm is
an algorithm whose running time is fpt for the parameter “cost of the solution”
and whose approximation ratio only depends on the parameter and not on the
size of the input. Hence every polynomial time approximation algorithm with
constant approximation ratio is an fpt approximation algorithm, but an approx-
imation algorithm with approximation ratio logn, where n denotes the input
size, is not.

For simplicity, we only define fpt approximation algorithms for maximization
problems. The definition can easily be adapted for minimization problems.

Definition 4. Let ρ : N → N be a computable function such that k/ρ(k)
is nondecreasing and unbounded. An fpt approximation algorithm for an NP-
maximization problem O (over some alphabet Σ) with approximation ratio ρ is
an algorithm A with the following properties:

1. A expects inputs (x, k) ∈ Σ∗×N. For every input (x, k) ∈ Σ∗×N such that
there exists a solution for x of cost at least k, the algorithm A computes a
solution for x of cost at least k/ρ(k). For inputs (x, k) ∈ Σ∗ × N without
solution of cost at least k, the output of A can be arbitrary.

2. There exists a computable function f such that the running time of A on
input (x, k) is bounded by f(k) · |x|O(1).

O is fpt approximable if there exists an fpt approximation algorithm for O with
ratio ρ, for some computable function ρ : N→ N such that k/ρ(k) is nondecreas-
ing and unbounded.

The following lemma, which may be surprising at first sight, but is actually
quite simple, states that we can make the running time of an fpt approximation
algorithm polynomial at the cost of a worse approximation ratio. Note that this
is not something one would usually do in practice, but it is relevant theoretically
because it shows that the notion of fpt approximability is fairly robust.

Lemma 5. For every fpt approximable maximization problem O there exists a
polynomial time algorithm A that is an fpt approximation algorithm for O.

368 M. Grohe and M. Grüber

In other words, we can replace requirement (2) in Definition 4 by the stronger
requirement (2’) below and obtain an equivalent notion of fpt approximability:

(2’) The running time of A on input (x, k) is
(
|x|+ k

)O(1).

Let us remark that the analogue of Lemma 5 for minimization problems does
not hold.

We also need the following definition to establish a relationship between ap-
proximation algorithms that are efficient for small optima and fpt approximation
algorithms. For an instance x of an NP-optimization problem O, by opt(x) we
denote the cost of an optimal solution.

Definition 6. An NP-maximization problem O is well-behaved for parameter-
ized approximation if there exists a constant c ≥ 0 such that the following holds:

1. Given an instance x �= ε for O it is possible to construct a new instance x′

for O in time polynomial in |x| such that |x′| < |x| and opt(x) ≥ opt(x′) ≥
opt(x)− c. (Here we assume that the empty string ε is an instance for O.)

2. For every instance x �= ε it holds that a valid solution for the constructed
instance x′ is also a valid solution for x.

For example, the disjoint cycle problem is well-behaved, because given a graph
G we can delete a vertex w and obtain a graph G′ = G \ {w} such that ν(G) ≥
ν(G′) ≥ ν(G) − 1, and every family of disjoint cycles of G′ is also a family of
disjoint cycles of G.

Proposition 7 (Chen et al. [4]). Let O be an NP-maximization problem over
the alphabet Σ that is well-behaved for parameterized approximation, and let
ρ : N → N be a computable function such that k/ρ(k) is nondecreasing and
unbounded. If there exists a computable function g and an algorithm B that
given an input x ∈ Σ∗ computes a solution y for x of cost k such that k ≥
opt(x)/ρ(opt(x)) in time g(opt(x)) · |x|O(1), then O has an fpt approximation
algorithm with approximation ratio ρ.

5 The Main Theorem

Theorem 8. The directed maximum vertex disjoint cycle problem has an fpt
approximation algorithm with polynomial running time.

First, we will design an algorithm A that computes at least τ∗(G)/ρ(τ∗(G)) ver-
tex disjoint cycles for a given directed graph G and some computable function
ρ : N→ N with x

ρ(x) being nondecreasing and unbounded and such that the run-
ning time of this algorithm is bounded by g(τ∗(G)) · |G|O(1) for some computable
function g. We will then see why this also gives an fpt approximation algorithm
for the disjoint cycle problem.

The core of our algorithm A is a recursive procedure, described in Section 5.2,
that either computes sufficiently many vertex disjoint cycles in a given graph

Parameterized Approximability of the Disjoint Cycle Problem 369

G directly, or guarantees the existence of linkages between all subsets A,B of a
certain size m of some feedback vertex set T of G. It remains to give an algorithm
that computes sufficiently many vertex disjoint cycles if such linkages exist. This
is what the “Linkage Lemma” (Lemma 10) achieves. Very roughly, the existence
of the linkages guarantees the existence of a substructure of the graph called a
“fence”, together with a linkage that connects the “bottom” with the “top” of
the fence. In such a fence it is then possible to find the desired cycles.

5.1 Technical Lemmas

Lemma 9 (Splitting Lemma). Let G be a directed graph, T a feedback vertex
set for G, and m ≤ |T |/2. Then at least one of the following possibilities holds:

(i) For all A,B ⊆ T with |A| = |B| = m there exists a linkage from A to B with
no vertex in T \ (A ∪B).

(ii) There is a feedback vertex set T ′ of G with |T ′| < |T |.
(iii) There are two vertex disjoint subgraphs G1 and G2 of G, cycles C1 in G1

and C2 in G2, and feedback vertex sets T1 for G1 and T2 for G2 such that:
– |T1| = |T2| = m.
– For all feedback vertex sets T ′

1 of G1 and T ′
2 of G2 the set T ′

1 ∪ T ′
2 ∪(

V (G) \ V (G1 ∪G2)
)

is a feedback vertex set of G of size at most |T ′
1|+

|T ′
2|+ |T | − (m+ 1).

Furthermore, there is an algorithm that, given G, T , and m, either recognizes
that (i) holds or computes a feedback vertex set T ′ as in (ii) or computes G1, C1,
T1, G2, C2, T2 as in (iii). The running time of the algorithm is 3|T | · |G|O(1).

Proof. Suppose that (i) does not hold. Let A,B ⊆ T with |A| = |B| = m such
that there is no linkage from A to B in G that has no vertex in Z := T \ (A∪B).
By Menger’s theorem, there exists a separation (X,Y) of G with A ⊆ X , B ⊆ Y ,
Z ⊆ (X ∩ Y) and with |W | < m, where W := X ∩ Y \ Z. Let G1 be G \ Y and

W Z

B

X

Y

AC

C

1

2

Fig. 1. A sketch of the separation (X, Y) for G (assuming X ∩B = ∅ and Y ∩A = ∅)

G2 be G \X . Furthermore let D1 := A ∪ (X ∩ Y) and D2 := B ∪ (X ∩ Y).
Then it holds that |D1| = |D2| < |T |, because X ∩ Y = W ∪ Z, |Z| =

|T \ (A∪B)| = |T |− 2m, and |W | < m. It might happen that D1 or D2 is again

370 M. Grohe and M. Grüber

a feedback vertex set for G, in which case we succeeded at finding a smaller
feedback vertex set for G. Thus (ii) holds. Otherwise, there are cycles C1, C2

such that V (C1) ∩ D2 = ∅ and V (C2) ∩ D1 = ∅. We claim that Ci ⊆ Gi for
i = 1, 2. Let us look at C1; the proof for C2 is completely analogous. Since T is
a feedback vertex set, we have T ∩ V (C1) �= ∅ and thus A ∩ V (C1) �= ∅, because
D2 ∩ V (C1) = ∅. Since (X,Y) is a separation and X ∩ Y ∩ V (C1) = ∅, it follows
that V (C1) does not meet Y and therefore the cycle C1 is contained in G1.

Observe that A and B are feedback vertex sets for G1 and G2, respectively,
because every cycle must meet T , and T ∩V (G1) = A. Hence we can let T1 := A
and T2 := B. It is easy to check that (iii) is satisfied. It remains to prove the
algorithmic statement. Using Fact 1, we can compute sets A,B and a separation
(X,Y) with the properties above if such sets A,B exist in time 3|T | · |G|O(1).
Here we use 3|T | as an upper bound for the number of partitions of T into three
sets A,B,Z. Given A,B,X, Y , we can check in polynomial time if the sets D1,
D2 defined above are feedback vertex sets and find the cycles C1, C2 if not. ��

We define κ = κ(G) for a given graph G to be the maximum integer with

(κ− 1)2+1+exp((κ−1)2+1)(c(((κ−1)2+1)!+1)
2 ·(κ+1)·((κ− 1)2+1)) ≤ τ∗(G) (3)

and let

λ(G) := (κ(G) − 1)2 + 1 and μ(G) := (κ(G) + 1) · λ(G) . (4)

Lemma 10 (Linkage Lemma). There is a computable, nondecreasing and un-
bounded function ϕ such that the following holds: Let G be a directed graph,
m ≤ μ(G), and let T be a feedback vertex set of G such that for all A,B ⊆ T with
|A| = |B| = m there exists a linkage from A to B with no vertex in T \ (A∪B).
Then there exists a family of at least ϕ(m) vertex disjoint cycles in G. Further-
more, there is an algorithm that computes such a family in time g(|T |) · |G|O(1),
for some computable function g.

The proof of this lemma is based on algorithmic versions of Theorems 2.2., 2.3.
and 2.4. of [16]. It will appear in the full version of this paper.

5.2 The Main Algorithm

Lemma 11. There is a computable, nondecreasing, unbounded function ψ, a
computable function g, and an algorithm A such that the following holds: Given
a directed graph G, the algorithm A computes a family of at least ψ(τ∗(G)) vertex
disjoint cycles of G in time g(τ∗(G)) · |G|O(1)

Proof. Let G be a directed graph. Set mi :=
⌊
μ(G)/4i

⌋
for i ≥ 0 and let i∗ be

the minimal integer such that mi ≤ 4. Let ϕ be the function from the Linkage
Lemma (Lemma 10). We define a function χ by

χ(0) := χ(1) := min{ϕ(1), i∗}, χ(k) := min
{
χ

(⌊
k

4

⌋)
+ 1, ϕ(k), i∗

}
.

Parameterized Approximability of the Disjoint Cycle Problem 371

It is easy to see that χ is computable, nondecreasing, and unbounded. By def-
inition of μ(G) in (4), there is a computable, nondecreasing and unbounded
function ζ such that ζ(τ∗(G)) = μ(G) for all directed graphs G. We define the
function ψ by ψ(x) := χ(ζ(x)).

On input G, algorithm A first computes a feedback vertex set T of G of size
O(τ∗(G) · log τ∗(G) · log log τ∗(G)) using the algorithm of Theorem 2. Then A

builds up a binary tree B. The vertices of this tree are labelled by pairs (G′, T ′),
where G′ is a graph and T ′ a feedback vertex set of G′. The edges of the tree B
are labelled by cycles of G.

At each point during the execution, the algorithm A processes a leaf of the
tree and then either halts or modifies the tree and continues with some other
node. If we think of the algorithm A as a recursive algorithm, then B is just a
convenient way to describe the content of the stack during the execution of A.

Initially, the tree B only consists of its root, which is labelled by the pair
(G, T). The algorithm starts at this root. Now suppose at some stage during its
execution the algorithm has to process a leaf b labelled by (Gb, Tb) and of height
i. (The height of b is defined to be the length of the path from the root to b.) If
i ≥ i∗, the algorithm A halts and outputs the cycles labelling the edges of the
path from the root to b. Otherwise, it calls the algorithm of the Splitting Lemma
(Lemma 9) with input Gb, Tb, and mi. (We will prove later that the assumption
2mi ≤ Tb is satisfied.) According to the three outcomes of the Splitting Lemma,
we have to distinguish the following cases:

Linkage Step. If for all A,B ⊆ Tb with |A| = |B| = mi there exists a linkage
in Gb from A to B with no vertex in Tb \ (A∪B), then the algorithm of the
Linkage Lemma is called with input (Gb, Tb). It returns a family C of ϕ(mi)
pairwise disjoint cycles of Gb. Algorithm A halts and outputs the cycles in
C together with the cycles labelling the edges of the path from the root to b
in B.

Splitting Step. If the algorithm of the Splitting Lemma returns vertex disjoint
subgraphs G1, G2, cycles C1 ⊆ G1 and C2 ⊆ G2, and feedback vertex sets T1

of G1 and T2 of G2, then our algorithm A proceeds as follows: It creates two
new children b1, b2 of b. For i = 1, 2, child bi is labelled (Gi, Ti), and the edge
from b to bi is labelled by the cycle C2−i (so that the cycle labelling the edge
to bi is disjoint from the graph labelling the node bi). Now the processing of
b is completed, and algorithm A continues with child b1.

Shrinking Step. If the algorithm of the Splitting Lemma returns a feedback
vertex set T ′

b of Gb with |T ′
b| < |Tb|, then our algorithm A relabels the current

leaf b by (Gb, T
′
b). Then it calls the following subroutine S at leaf b.

Subroutine SSS. The subroutine S proceeds as follows. Suppose it is at a leaf
b1 of B labelled (G1, T1). If b1 is the root, the subroutine returns b1.
Otherwise, let b′ be the parent and b2 the sibling of b1. Suppose that
b′ is labelled (G′, T ′) and b2 is labelled (G2, T2). Let T ′′ = T1 ∪ T2 ∪(
V (G′) \ (V (G1 ∪G2)

)
. S distinguishes between three cases:

– If |T ′′| < |T ′|, then S deletes b1 and b2. Then it relabels b′ by (G′, T ′′)
and continues at node b′.

372 M. Grohe and M. Grüber

– If |T ′′| ≥ |T ′| and |T2| > |T1|, then S returns b2.
– Otherwise, S returns b1.

Now A continues with the leaf returned by S.

It is easy to check that the node b processed by the algorithm is always a leaf
(as required). To see this, note that whenever the algorithm processes a node b,
the sibling of every node on the path from the root to b is a leaf. (Hence actually
the tree B is always quite degenerate.)

Furthermore, using the Splitting Lemma, it is easy to show that the following
invariants are maintained throughout the execution of the algorithm:

(1) Let b be a node of the tree labelled (Gb, Tb). Then the cycles labelling the
edges on a path from the root to b are pairwise disjoint, and they are all
disjoint from the graph Gb.

(2) Let b be a node of the tree labelled (Gb, Tb). Then Tb is a feedback vertex
set of Gb.

(3) Let b1 be a node labelled (G1, T1) of height i + 1, for some i ≥ 0. Suppose
that the parent b′ is labelled (G′, T ′) and that the sibling b2 of b is labelled
(G2, T2). ThenG1 andG2 are vertex disjoint subgraphs of G. For all feedback
vertex sets T ′

1 of G1 and T ′
2 of G2 the set T ′

1 ∪ T ′
2 ∪

(
V (G) \ V (G1 ∪ G2)

)

is a feedback vertex set of G of size at most |T ′
1| + |T ′

2| + |T ′| − (mi + 1).
Furthermore, it holds that mi < |T1|+ |T2| ≤ 2mi.

For the lower boundmi < |T1|+|T2| in (3) note that as soon as |T1|+|T2| ≤ mi for
some children b1, b2 of b′ labelled (G1, T1) and (G2, T2) it holds that |T ′′| < |T ′|
for T ′′ := T ′

1 ∪T ′
2 ∪

(
V (G) \V (G1 ∪G2)

)
and the subroutine S deletes b1 and b2.

(4) Suppose that at some point during the execution a leaf b1 labelled (G1, T1)
is processed while the sibling b2 of b is labelled (G2, T2). Then |T1| ≥ |T2|.

(3) and (4) imply:

(5) Suppose that at some point during the execution of A a leaf b1 labelled
(G1, T1) and of height i+ 1, for some i ≥ 0, is processed. Then mi/2 ≤ |T1|.

Finally, note that throughout the execution:

(6) The root is labelled (G, T0) for some feedback vertex set T0 of size 2m0 ≤
|T0| = O(τ∗(G) · log τ∗(G) · log log τ∗(G)).

The first inequality in (6) holds as 2m0 = 2μ(G) ≤ τ∗(G) ≤ τ(G) by the
definition of μ. Since mi+1 ≤ mi/4, it follows that throughout the execution:

(7) Whenever a node b of height i labelled (Gb, Tb) is processed, we have 2mi ≤
|Tb|.

This justifies the application of the Splitting Lemma in the algorithm.
Observe that (1) implies that whenever the algorithm halts, its output is a

family of disjoint cycles. The size of this family is i∗ if the algorithm halts at a
leaf of height i∗, or i+ ϕ(mi), if the algorithm halts at a leaf of height i < i∗ in

Parameterized Approximability of the Disjoint Cycle Problem 373

a Linkage Step. As χ(μ(G)) = χ(m0) ≤ min{i∗, i+ϕ(mi)} for 0 ≤ i < i∗ and as
μ(G) = ζ(τ∗(G)), these families of cycles are sufficiently large.

It remains to prove that the execution always terminates within the desired
running time bounds. To do this, we upperbound the number N of shrinking
steps that might occur while building the tree. For the root of the tree at most
|T |− τ∗(G) shrinking steps can occur before we end up with a minimal feedback
vertex set for the given graph G. For all nodes b′ of height i ≥ 1 we claim that at
most mi ≤ μ(G) shrinking steps on children of b′ can occur before the feedback
vertex set for b′ is shrunk and the children are deleted in subroutine S. To see this,
let b′ be a node labelled (G′, T ′) and of height i that has children b1, b2 labelled
(G1, T1) and (G2, T2). Recall that by (3), the set T ′′ := T1∪T2∪

(
V (G)\V (G1∪

G2)
)

is a feedback vertex set of G′ of size at most |T1|+ |T2|+ |T ′| − (mi + 1).
Furthermore, it holds that |T1|+ |T2| ≤ 2mi. So after at most mi shrinking steps
for the children of b it holds that b1, b2 are labelled with (G1, T1) and (G2, T2)
such that |T1|+|T2| ≤ mi and hence |T ′′| < |T ′|. This implies that b′ is relabelled
by (G′, T ′′) for this smaller feedback vertex set T ′′ in subroutine S after at most
mi shrinking steps on b1, b2.

As the tree B always contains at most two nodes with height i for 1 ≤ i ≤ i∗
and as mi ≤ m0 = μ(G) for all 1 ≤ i ≤ i∗, there occur at most (|T | − τ∗(G)) ·
μ(G)i

∗
shrinking steps in total. So by the definition of μ(G) and i∗ and as

|T | = O(τ∗(G)·log (τ∗(G))·log log (τ∗(G)), the number N can be upper bounded
by a function of τ∗(G). This implies that we can execute the algorithm by using
the Splitting Lemma at most 2i∗ ·(N+1) times and the Linkage Lemma at most
once. In total, this results in a running time that is bounded by g(τ∗(G))· |G|O(1)

for some computable function g. ��

Proof (Proof of Theorem 8). The fpt approximability of the disjoint cycle prob-
lem follows from Lemma 11, Theorem 3, and Proposition 7, using the observation
that the disjoint cycle problem is well-behaved for parameterized approximation.
The polynomial running time can be obtained by Lemma 5. ��

6 Concluding Remarks

We give an fpt approximation algorithm for the directed vertex disjoint cycle
problem. We mainly see this result as a contribution to the evolving theory of
parameterized approximability [3,4,6,14], as it provides the first natural example
of a parameterized problem that is fpt approximable, but known to be hard to
be solved exactly (W[1]-hard, to be precise).

Our algorithm is based on the connection between disjoint cycles and feedback
vertex sets and a structure theory for directed graphs developed in this context
by Reed et al. [16]. To establish our result, we had to make large parts of this
structure theory algorithmic. This may turn out to be useful in other contexts.
In particular, it may help to find an fpt algorithm for the directed feedback
vertex set problem and hence solve one of the most prominent open problems in
parameterized complexity theory.

374 M. Grohe and M. Grüber

References

1. Alon, N.: Disjoint directed cycles. Journal of Combinatorial Theory Series B 68(2),
167–178 (1996)

2. Bang-Jensen, J., Gutin, G.: Digraphs. Springer, Heidelberg (2002)
3. Cai, L., Huang, X.: Fixed-parameter approximation: Conceptual framework and

approximability results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006.
LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)

4. Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120.
Springer, Heidelberg (2006)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

6. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation algo-
rithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 121–129. Springer, Heidelberg (2006)

7. Erdös, P., Pósa, L.: On the independent circuits contained in a graph. Canadian
Journal of Mathematics 17, 347–352 (1965)

8. Even, G., Naor, J.S., Schieber, B., Sudan, M.: Approximating minimum feedback
sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

10. Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics (vol-
ume II, chapter Ramsey theory), pp. 1331–1403. Elsevier Science, Amsterdam
(1995)

11. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, 2nd edn. Springer, Heidelberg (1993)

12. Guenin, B., Thomas, R.: Packing directed circuits exactly. To appear in Combina-
torica (2006)

13. Gutin, G., Yeo, A.: Some parameterized problems on digraphs (Submitted 2006)
14. Marx, D.: Parameterized complexity and approximation algorithms. To appear in

The Computer Journal (2006)
15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University

Press, Oxford (2006)
16. Reed, B., Robertson, N., Seymour, P., Thomas, R.: Packing directed circuits. Com-

binatorica 16(4), 535–554 (1996)
17. Reed, B., Shepherd, F.: The gallai-younger conjecture for planar graphs. Combi-

natorica 16(4), 555–566 (1996)
18. Salavatipour, M., Verstraete, J.: Disjoint cycles: Integrality gap, hardness, and

approximation. In: Jünger, M., Kaibel, V. (eds.) Integer Programming and Com-
binatorial Optimization. LNCS, vol. 3509, pp. 51–65. Springer, Heidelberg (2005)

19. Seymour, P.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288
(1995)

20. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 482–
493. Springer, Heidelberg (2003)

21. Younger, D.: Graphs with interlinked directed circuits. In: Proceedings of the Mid-
west Symposium on Circuit Theory 2, pages XVI 2.1–XVI 2.7 (1973)

Linear Problem Kernels

for NP-Hard Problems on Planar Graphs

Jiong Guo� and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{guo,niedermr}@minet.uni-jena.de

Abstract. We develop a generic framework for deriving linear-size prob-
lem kernels for NP-hard problems on planar graphs. We demonstrate the
usefulness of our framework in several concrete case studies, giving new
kernelization results for Connected Vertex Cover, Minimum Edge

Dominating Set, Maximum Triangle Packing, and Efficient Dom-

inating Set on planar graphs. On the route to these results, we present
effective, problem-specific data reduction rules that are useful in any
approach attacking the computational intractability of these problems.

1 Introduction

Data reduction together with problem kernelization has been recognized as one
of the primary contributions of parameterized complexity to practical algorithm
design [9,15,21]. For instance, the NP-hard Vertex Cover problem, where one
asks for a set of at most k vertices such that all edges of a given graph have
at least one endpoint in this set, has a problem kernel of 2k vertices. That is,
given a graph G and the parameter k, one can construct in polynomial time a
graph G′ consisting of only 2k vertices and with a new parameter k′ ≤ k such
that (G, k) is a yes-instance iff (G′, k′) is a yes-instance [20,8]. In particular, this
means that Vertex Cover can be efficiently preprocessed with a guaranteed
quality of data reduction—the practical usefulness is confirmed by experimental
work [1]. Note that a 2k-vertex problem kernel is the best one may probably
hope for because a (2− ε)k-vertex kernel with ε > 0 would imply a factor-(2− ε)
polynomial-time approximation algorithm for Vertex Cover, solving a long
standing open problem. Clearly, a k-vertex problem kernel for Vertex Cover

would imply P=NP. That is why so-called linear-size problem kernels (a linear
function in the parameter k) usually are considered as the “holy grail” in the
field of kernelization and parameterized complexity analysis.

Unfortunately, so far there are not too many problems known with a problem
kernel size as small as we have for Vertex Cover. Moreover, strictly speaking,
the 2k-vertex problem kernel for Vertex Cover is not really a linear-size prob-
lem kernel because the number of graph edges still may be O(k2). Apparently, the
� Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research

group PIAF (fixed-parameter algorithms), NI 369/4.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 375–386, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

376 J. Guo and R. Niedermeier

situation changes when focussing attention on planar graphs where the number
of vertices and the number of edges are linearly related. Although most NP-hard
graph problems remain NP-hard when restricted to planar graphs, it has been
observed that they behave much better in terms of approximability (see [5]) as
well as in terms of fixed-parameter tractability (see [4]). In her seminal work,
Baker [5] showed that a whole class of problems (including Vertex Cover, In-

dependent Set, Dominating Set) possesses polynomial-time approximation
schemes (PTAS), all derived from a general framework.

Concerning problem kernelization results on planar graphs where, in a sense,
linear-size problem kernels can be seen as the parameterized counterpart of ap-
proximation schemes, so far only few isolated results are known [4,7,17,19]. In
particular, it has been shown that the Dominating Set problem—which is
W[2]-complete on general graphs, meaning that there is no hope for a problem
kernel at all [9,21]—has a linear-size problem kernel when restricted to planar
graphs [4]. This result goes along with the development of simple but effec-
tive data reduction rules whose practical usefulness has been empirically con-
firmed [2].1 In this work, “in the spirit of Baker”, we develop a general framework
that allows for a systematic approach to derive linear-size problem kernels for
planar graph problems. In particular, our methodology offers concrete starting-
points for developing effective data reduction rules, the central part of any form
of problem kernelization. Inspired by the work of Alber et al. [4], which focuses on
the Dominating Set problem, we show what the common features are that lie
at the heart of linear-size problem kernels for planar graph problems. In partic-
ular, we provide a concrete route of attack which serves as a tool for developing
data reduction rules. Doing so, we provide a number of case studies together
with new results, including the problems Connected Vertex Cover, Edge

Dominating Set, Maximum Triangle Packing, and Efficient Dominat-

ing Set, all of which are shown to have linear-size problem kernels with concrete
upper bounds. Note that, although based on the general framework, all corre-
sponding data reduction rules that had to be newly developed are—of course—
problem-specific. The development of these rules still needs novel ideas in each
specific case and is far from being routine. Still, our framework offers a guiding
star to find them.

Most proofs are deferred to the full version of this paper.

2 Preliminaries

Parameterized algorithmics is a two-dimensional framework for studying the
computational complexity of problems [9,21]. A core tool in the development of
fixed-parameter algorithms is polynomial-time preprocessing by data reduction
rules, often yielding a reduction to a problem kernel (kernelization). Herein, the
goal is, given any problem instance x with parameter k, to transform it in poly-
nomial time into a new instance x′ with parameter k′ such that the size of x′ is
1 Indeed, the data reduction rules can be applied to all sorts of graphs and not only

to planar ones—the rules are particularly effective for sparse graphs.

Linear Problem Kernels for NP-Hard Problems on Planar Graphs 377

bounded from above by some function only depending on k, k′ ≤ k, and (x, k) is
a yes-instance iff (x′, k′) is a yes-instance. Then, the problem kernel is called to
be linear if |x′| = O(k). This transformation is accomplished by applying data
reduction rules. A data reduction rule is correct if the new instance after an ap-
plication of this rule is a yes-instance iff the original instance is a yes-instance.
Throughout this paper, we call a problem instance reduced if the corresponding
data reduction rules cannot be applied any more.

We only consider undirected graphs G = (V,E), where V is the set of vertices
and E is the set of edges. We use n to denote the number of vertices and m
to denote the number of edges of a given graph. The neighborhood N(v) of a
vertex v ∈ V is the set of vertices that are adjacent to v. The degree of a vertex v
is the size of N(v). We use N [v] to denote the closed neighborhood of v, that
is, N [v] := N(v)∪ {v}. For a set of vertices V ′ ⊆ V , the induced subgraph G[V ′]
is the graph with the vertex set V ′ and the edge set {{v, w} ∈ E | v, w ∈ V ′}.
A subset I of vertices is called an independent set if G[I] has no edge. We
implicitly assume that all paths that we deal with here are simple, that is, every
vertex is contained at most once in a path. The length of a path is defined as the
number of edges used by the path. The distance d(u, v) between two vertices u, v
is the length of a shortest path between u, v. The distance d(e, w) between an
edge e = {u, v} and a vertex w is the minimum of d(u,w) and d(v, w). If a
graph can be drawn in the plane without edge crossings then it is called a planar
graph. A plane graph is a planar graph with a fixed embedding in the plane.
Throughout this paper, we assume that we are working with an arbitrary but
fixed embedding of G in the plane; whenever this embedding is of relevance, we
refer to G as being plane instead of planar.

3 General Framework

In this section, we describe a general framework for systematically deriving linear
problem kernels for NP-hard problems on planar graphs. Although in this (single)
case not improving on previous results, for reason of simplicity, we use Vertex

Cover as a running example. The problem is, given a graph G = (V,E) and k ≥
0, to find a subset C ⊆ V of at most k vertices such that every edge has at least
one endpoint in C. The remainder of this section is structured by exhibiting the
four basic components of our methodology.

Component 1: Problem-specific distance property. The problems amenable to
our framework have to admit a distance property defined as follows:

Definition 1. A graph problem on input G = (V,E) is said to admit a distance
property with constants cV and cE if, for every solution set S with the vertex
set V (S), it holds that, for every vertex u ∈ V , there exists a vertex v ∈ V (S)
with d(u, v) ≤ cV , and, for every edge e ∈ E, there exists a vertex v ∈ V (S)
with d(e, v) ≤ cE.

Note that cV − 1 ≤ cE ≤ cV . The distance property is the only prerequisite for
applying our framework to a specific graph problem.

378 J. Guo and R. Niedermeier

Example: The distance property is valid for Vertex Cover with cV = 1
and cE = 0, since every edge of E has to be incident to a covering vertex.

Component 2: Region decomposition. We divide the vertices not in V (S) into two
categories based on whether they lie in the vicinity of either at least two vertices
of V (S) or only one vertex of V (S). The former vertices will build so-called
regions leading to a decomposition of the planar graph.

Definition 2. A region R(u, v) between two distinct vertices u, v ∈ V (S) is a
closed subset of the plane with the following properties:

1. The boundary of R(u, v) is formed by two length-at-most-(cV +cE +1) paths
between u and v. (These two paths do not need to be disjoint or simple.)

2. All vertices which lie on the boundary or strictly inside of the region R(u, v)
have distance at most cV to at least one of the vertices u and v and all
edges whose both endpoints lie on the boundary or strictly inside of the re-
gion R(u, v) have distance at most cE to at least one of the vertices u and v.

3. With the exception of u and v, none of the vertices which lie inside of the
region R(u, v) are from V (S).

The vertices u and v are called the anchor vertices of R(u, v). A vertex is said to
lie inside of R(u, v) if it is either a boundary vertex of R(u, v) or if it lies strictly
inside of R(u, v). We use V (R(u, v)) to denote the set of vertices that lie inside
of a region R(u, v).

Using Definition 2, the graph can be partitioned by a so-called region decompo-
sition.

Definition 3. An S-region decomposition of a graph is a set R of regions such
that there is no vertex that lies strictly inside of more than one region from R
(the boundaries of regions may touch each other, however).

For an S-region decomposition R, let V (R) :=
⋃
R∈R V (R). An S-region

decomposition R is called maximal if there is no region R /∈ R such that R′ :=
R∪ {R} is an S-region decomposition with V (R) � V (R′).

As a basis for linear kernelization results, our framework makes use of the fact
that the number of regions in a maximal region decomposition R for a given
solution S can be upper-bounded by cV · (3|V (S)| − 6). This generalizes a result
of Alber et al. [4].

Lemma 1. Let P be a graph problem admitting the distance property with cV
and cE and let S be a solution of P on a plane graph G = (V,E). Then, there
is a maximal S-region decomposition R for the input graph G that consists of at
most cV · (3|V (S)| − 6) regions.

Example: Since Vertex Cover admits the distance property with cV = 1
and cE = 0, the maximal region decomposition consists of regions with boundary
paths of length at most two. By Lemma 1, we know that for a Vertex Cover

solution C of size at most k we have at most 3k− 6 regions in a maximal region
decomposition.

Linear Problem Kernels for NP-Hard Problems on Planar Graphs 379

Component 3: Local neighborhoods for data reduction rule design. The core al-
gorithmic part of our methodology is based on the following two definitions that
serve for developing data reduction rules yielding linear-size problem kernels.

Definition 4. Given a problem admitting the distance property with constants
cV and cE, the private neighborhood Np(u) of a vertex u consists of the vertices
that have distance at most cV to u, that are not adjacent to the vertices with
distance at least cV + 1 to u, and that are not incident to any edge with distance
more than cE to u.

Example: For Vertex Cover, the private neighborhood Np(u) of a vertex u
consists only of the degree-one vertices from N(u). Therefore, the corresponding
private neighborhood rule deals with degree-one vertices:

Private neighborhood rule for Vertex Cover: If Np(u) �= ∅, then add u
to C and remove Np(u) from the graph. Decrease the parameter k by one.

Definition 5. Given a problem admitting the distance property with constants
cV and cE , the joint private neighborhood Np(u, v) of two vertices u, v ∈ V
consists of the vertices that have distance at most cV to u or v, that are not
adjacent to the vertices which have distance at least cV + 1 to both u and v, and
that are not incident to any edge with distance more than cE to both u and v.

Example: In Vertex Cover, the joint private neighborhood of u and v consists
of their common neighbors and their degree-one neighbors. Since the private
neighborhood rule deals with the degree-one neighbors, for the corresponding
data reduction rule we only consider the common neighbors of u and v:

Joint private neighborhood rule for Vertex Cover: If two vertices u, v
have at least two common degree-two neighbors, then add u and v to C and
remove u, v and their common degree-two neighbors from the graph. Decrease
the parameter k by two.

Generally speaking, if Np(v) of a vertex v (or Np(u, v) of vertices u and v)
contains too many vertices, then any solution of a minimization problem has
to include v (or at least one of u and v). For maximization problems, we can
conclude that including only v fromNp(v) (or only u and v fromNp(u, v)) cannot
lead to a solution. This provides a useful argument for showing upper bounds
on the region sizes in the problem kernel size analysis.

Component 4: Mathematical analysis of problem kernel size. Having derived
problem-specific data reduction rules, the next step in our method is to prove
that there are only constantly many vertices inside of a region. Together with
Lemma 1, this implies the upper bound O(|V (S)|) for all vertices inside of all
regions of the reduced graph.

Example: For Vertex Cover, the constant size for every region follows almost
directly from the given two rules:

380 J. Guo and R. Niedermeier

Lemma 2. Given a vertex cover C of a reduced planar graph G = (V,E), every
region of a maximal region decomposition contains at most three vertices which
are not from C.

Proof. Consider a maximal region decomposition and let R denote an arbitrary
region with boundary paths of length at most two. Let u, v be the two vertices
in V (R) that are from C. Clearly, at most two vertices on the boundary paths
can be from V \ C. We claim that there is at most one vertex lying strictly
inside of R. To show this, suppose that there are two vertices x, y strictly inside
of R. Then, by the definition of regions, x, y ∈ N(u) ∪N(v). Due to the private
neighborhood rule, each of x and y has at least two neighbors in V (R)∩C. Since u
and v are the only C-vertices in R, the vertices x, y are common neighbors of u
and v and have degree two. This implies that the joint private neighborhood
rule can be applied, a contradiction to the fact that G is reduced. Therefore, at
most one vertex lies strictly inside of R and the lemma follows. ��

Note that, if, in addition to the above two rules, the “folding” rule introduced
by Chen et al. [8] is applied, one can show that every region contains at most
two vertices from V \ C.

To complete the proof for a linear-size problem kernel, our method requires
to upper-bound the number of vertices not contained in any region. To do so,
the private neighborhood rule is crucial.
Example: In the case of Vertex Cover, the private neighborhood rule guar-
antees that there is no vertex lying outside of the regions of a maximal region
decomposition:

Lemma 3. Let R be a maximal region decomposition of a reduced planar graph
for Vertex Cover. Then, there is no vertex lying outside of the regions in R.

Proof. Suppose that there is such a vertex x. It cannot be a degree-one vertex
and it cannot be adjacent to a vertex not from C. Thus, N(x) ⊆ C. Then, we
can arbitrarily pick two from x’s neighbors and have a region R that is a path
consisting of x and these two neighbors. By adding R to R we get a new region
decomposition R′ with V (R) � V (R′), a contradiction to the fact that R is
maximal. ��

Finally, to give an overall kernel size bound, we only need to add up the number
of vertices inside of regions and the number of vertices outside of regions.

Example: With the two upper bounds given in Lemmas 2 and 3, we arrive at
our linear kernelization result for Vertex Cover on planar graphs:

Proposition 1. Vertex Cover on planar graphs admits a 10k-vertex problem
kernel.

Proof. By Lemma 1, there are at most 3k − 6 regions in a maximal region
decomposition. Together with Lemma 2, there can be at most 9k − 18 vertices
from V \ C lying inside of regions. By Lemma 3, no vertex can be outside of
regions. Thus, altogether, we have 10k − 18 vertices in the reduced graph. ��

Linear Problem Kernels for NP-Hard Problems on Planar Graphs 381

4 Case Studies

Now, we exhibit the versatility of our general methodology.

Connected Vertex Cover. Given a graphG = (V,E) and a non-negative integer k,
the Connected Vertex Cover problem asks for a set C of at most k vertices
such that G[C] is connected and C is a vertex cover of G. This problem is NP-
complete on planar graphs [13]. Until now only an exponential-size kernel in
general graphs is known [16].

Since a connected vertex cover is also a vertex cover, the distance property
holds for this problem with cV = 1 and cE = 0. Thus, the regions in a maxi-
mal region decomposition for Connected Vertex Cover have also boundary
paths of length at most two and we have at most 3k − 6 regions in a maximal
region decomposition. Moreover, the private neighborhood and the joint private
neighborhood are defined in the same way as for Vertex Cover.

The data reduction rules are similar to the ones for Vertex Cover. However,
to guarantee the resulting vertex cover being connected, we use gadgets:

Private neighborhood rule: If a vertex has more than one degree-one neigh-
bor, then except for one remove all of these neighbors.

Joint private neighborhood rule: If two vertices have more than two common
degree-two neighbors, then remove all of these neighbors except for two.

Theorem 1. Connected Vertex Cover on planar graphs admits a 14k-
vertex problem kernel.

Proof. First, consider a region R in a maximal C-region decomposition R for
a connected vertex cover C with |C| ≤ k. Note that strictly inside of a region
there cannot be vertices of degree more than two because this would imply
uncovered edges. Due to the joint private neighborhood rule, there can be at
most two degree-two vertices lying strictly inside of R. Since there can be at
most two vertices from V \ C lying on the boundary of a region, each region
can contain at most four vertices from V \ C. Since the graph is reduced with
respect to the private neighborhood rule, each vertex in C can have at most one
degree-one neighbor not lying in a region of R. Therefore, we altogether have at
most 4 · (3k − 6) vertices from V \ C which lie inside of regions and at most k
vertices outside of regions. Together with |C| ≤ k, the size bound follows. ��

Edge Domination Set. Given a graph G = (V,E) and a non-negative integer k,
the Edge Dominating Set problem asks for a set E′ of at most k edges such
that all edges inE share at least one endpoint with some edge in E′. This problem
is NP-complete on planar graphs [14]. Based on its equivalence to the Minimum

Maximal Matching problem, a problem kernel with O(k2) vertices for general
graphs has been derived [22]. It is easy to observe that Edge Dominating Set

has the same distance parameters as Vertex Cover. Therefore, the same two
data reduction rules for Connected Vertex Cover apply.

382 J. Guo and R. Niedermeier

Theorem 2. Edge Dominating Set on planar graphs admits a 14k-vertex
problem kernel.

Maximum Triangle Packing. Given a graph G = (V,E) and a non-negative
integer k, the Maximum Triangle Packing problem asks for a set P of at
least k vertex-disjoint triangles in G. The set P is called a triangle packing of G.
This problem is NP-complete on planar graphs [14]. A problem kernel with O(k3)
vertices is known for general graphs [10].

At first glance, Maximum Triangle Packing does not admit the required
distance property. However, the following data reduction rule can be applied.

Cleaning rule: Remove all vertices and edges that are not in a triangle.
In an instance where the cleaning rule does not apply, every vertex and every

edge has a distance at most cV = 1 and cE = 1, respectively, to some vertex
occurring in a triangle packing that cannot be extended by a triangle. Then, the
regions in a maximal region decomposition for Maximum Triangle Packing

have boundary paths of length at most three.
Consider the private neighborhood Np(u) of a vertex u. According to Defini-

tion 4, all vertices v ∈ Np(u) have to satisfy N [v] ⊆ N [u]. We apply the following
data reduction rule dealing with private neighborhoods.

Private neighborhood rule: If a vertex u has two neighbors v, w that form a
triangle with u but are not involved in any other triangles that do not contain u,
then remove u, v, w and decrease the parameter k by one.

Next, we consider the joint private neighborhood Np(u, v) of two vertices u, v.
According to Definition 5, every vertex x ∈ Np(u, v) has to satisfy N [x] ⊆
N [u] ∪N [v].

Joint private neighborhood rule: If two vertices u, v have more than two
common neighbors, then consider the following cases.

– Case 1: If u and v have two common neighbors w1 and w2 such that w1 has
degree two and w2 is only contained in triangles that also contain u or v,
then remove w1.

– Case 2: If u and v have three common neighbors w1, w2, w3 such thatN(w1)=
{u, v, w2} and N(w2) = {u, v, w1, w3}, then remove edge {w2, w3}.

– Case 3: If there are four vertices w1, w2, w3, w4 such that u,w1, w2 form a
triangle, v, w3, w4 form another one, and there is no other triangle that con-
tains one of w1, w2, w3, w4 but none of u, v, then remove u, v, w1, w2, w3, w4

and decrease the parameter k by two.

Note that, after the application of the cleaning rule, every vertex has to be in
a triangle. Therefore, in Case 1, there has to be an edge between u and v. The
three cases of the joint private neighborhood rule are illustrated in Fig. 1.

In order to give a linear-size problem kernel, we need only the first and the
third case of the joint private neighborhood rule. However, including the second
case allows us to give a better bound on the maximum size of regions in a
maximal region decomposition of the reduced graphs as stated in the following,
allowing for a smaller upper bound on the problem kernel size.

Linear Problem Kernels for NP-Hard Problems on Planar Graphs 383

An example for Case 3
Case 2

Case 1 u

uu

uu

v v

vv

v

w1w1

w1

w1

w2

w2w2

w2 w2

w3

w3w3

w4

y
y

xx

Fig. 1. Illustration of the three cases of the joint private neighborhood rule for Maxi-

mum Triangle Packing. A dashed line means a possibly existing edge.

To prove that there is only a constant number of vertices inside of each region,
graph structures that we call diamonds2 are of great importance.

Definition 6. Let u and v be two vertices in a plane graph G. A diamond D(u, v)
is a closed area of the plane that is bounded by two length-2 paths between u and v
such that every vertex that lies inside this area is a neighbor of both u and v. If i
vertices lie strictly inside a diamond, then it is said to have (i+ 1) facets.

Lemma 4. In a reduced planar graph, a diamond can have at most five facets.

Now, we state upper bounds on the number of vertices in a region and on the
number of vertices outside of all regions.

Lemma 5. Consider a planar graph G = (V,E) for which any triangle pack-
ing contains at most k triangles. If G is reduced, then, in a maximal region
decomposition of G,

1. every region can contain at most 71 vertices, and
2. there are less than 108k vertices lying outside of regions.

Theorem 3. Maximum Triangle Packing on planar graphs admits a 732k-
vertex problem kernel.

Efficient Dominating Set. Given a graph G = (V,E) and a non-negative in-
teger k, the Efficient Dominating Set problem is to decide whether there
exists an independent set I such that every vertex in V \I has exactly one neigh-
bor in I. A solution set of this problem is called an efficient dominating set. This
2 Note that standard graph theory uses the term “diamond” to denote a 4-cycle with

exactly one chord. We abuse this term here for obvious reasons. We remark that
diamonds also played a decisive role in proving a linear-size problem kernel for Dom-

inating Set on planar graphs [4].

384 J. Guo and R. Niedermeier

problem is NP-complete on planar graphs of maximum degree three [11]. In the
literature, Efficient Dominating Set also appears under the names Perfect

Code, Independent Perfect Dominating set, and Perfect Dominating

Set. Lu and Tang [18] provided an overview of complexity results for Efficient

Dominating Set.
Bange et al. [6] showed that if a graph G has an efficient dominating set,

then all efficient dominating sets of G have the same cardinality, and this is
the same as the domination number of G, where the domination number is the
cardinality of a minimum dominating set of G. Hence, the parameterized ver-
sion of Efficient Dominating Set additionally has a non-negative integer k
as input and asks for an efficient dominating set of size exactly k. Efficient

Dominating Set is W[1]-hard in general graphs [9]. To our knowledge, there
is no kernelization result known for this problem on planar graphs. Note that
the linear-size problem kernel for Dominating Set on planar graphs does not
imply a linear-size problem kernel for Efficient Dominating Set on planar
graphs since the data reduction rules applied by Alber et al. [4] for deriving the
problem kernel apparently do not work for Efficient Dominating Set.

Since every efficient dominating set also is a dominating set, the distance
property holds for Efficient Dominating Set with cV = 1 and cE = 1. The
boundary paths of the regions in a maximal region decomposition have length
at most three. Note that Efficient Dominating Set has the same distance
parameters cV and cE as Maximum Triangle Packing. Therefore, the private
neighborhood and the joint private neighborhood are the same in both cases.

In the following we describe two data reduction rules for Efficient Domi-

nating Set. Actually, the reduction rules apply to a more general setting where
we are additionally given a subset of vertices F ⊆ V which may not be added to
the efficient dominating set. In the following rules, whenever we would be forced
to add a vertex in F to a solution set I, we report that the given instance has
no efficient dominating set.

Private neighborhood rule: Consider the following two cases for a vertex v
with Np(u) �= ∅:
– Case 1. If there is no vertex v ∈ N(u) such that v dominates all vertices

in Np(u), then add u to the efficient dominating set I, remove all vertices
in N [u] from the graph, add to F all vertices which are not in N [u] but
adjacent to some vertex in N(u), and decrease the parameter k by one.

– Case 2. If there is exactly one vertex v ∈ N(u) dominating all vertices
in Np(u), then remove all vertices in Np(u) \ {v} and add two new non-
adjacent vertices x, y and connect them to both u and v.

Joint private neighborhood rule: Consider the following two cases for two
vertices u, v with Np(u, v) �= ∅:
– Case 1. If u, v have two common neighbors x, y such that {x, y} /∈ E, N(x) �

N(u)∩N(v), N(y) � N(u)∩N(v), and N(x) ∩N(y) = {u, v}, then remove
(N(u)∩N(v))\{x, y} and add those vertices to F that are not in N(u)∩N(v)
but adjacent to some vertex in N(u) ∩N(v).

Linear Problem Kernels for NP-Hard Problems on Planar Graphs 385

– Case 2. Enumerate all subsets of N [u, v] := N [u]∪N [v] that induce indepen-
dent sets of size at most two and whose vertices are adjacent to all vertices
in Np(u, v). If there is a vertex w occurring in all of these sets, then add w
to the efficient dominating set, remove N [w] from the graph, add to F all
vertices which are not in N [w] but adjacent to some vertex in N(w), and
decrease the parameter k by one.

Lemma 6. (1) In a reduced planar graph, a diamond can have at most four
facets.

(2) In a maximal region decomposition of a reduced planar graph, every region
contains at most 28 vertices.

(3) In a maximal region decomposition of a reduced planar graph, there are at
most 5k vertices lying outside of regions.

Theorem 4. Efficient Dominating Set on planar graphs admits a 84k-
vertex problem kernel.

5 Outlook

There are numerous avenues for future research. First, it is promising to look
into further improving the constant factors of our kernel bounds, similarly as
Chen et al. [7] did for Dominating Set [4]. Second, again referring to Chen
et al. [7] and the lower bounds on (linear) kernel sizes derived there for Ver-

tex Cover and Dominating Set on planar graphs, based on our framework,
similar lower bound investigations may now be undertaken for other problems.
Third, it appears natural to further extend the list of concrete problem kernel
bounds for problems we did not touch here—further domination problems be-
ing obvious candidates. Observe that we can extend the list of linear problem
kernel results using other further problems studied by Baker [5]. Fourth, as the
linear-size problem kernel results for Dominating Set on planar graphs have
been extended to graphs of bounded genus [12], it is tempting to generalize our
whole framework in the same style. Fifth, for Dominating Set, a generic set
of data reduction rules has been designed [3]—analogous studies now may be
fruitful for all problems fitting into our framework.

References

1. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H.,
Symons, C.T.: Kernelization algorithms for the Vertex Cover problem: theory and
experiments. In: Proc. 6th ACM-SIAM ALENEX, pp. 62–69. ACM Press, New
York (2004)

2. Alber, J., Betzler, N., Niedermeier, R.: Experiments on data reduction for optimal
domination in networks. Annals of Operations Research 146(1), 105–117 (2006)

3. Alber, J., Dorn, B., Niedermeier, R.: A general data reduction scheme for domina-
tion in graphs. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J.
(eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 137–147. Springer, Heidelberg (2006)

386 J. Guo and R. Niedermeier

4. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial time data reduction for Dom-
inating Set. Journal of the ACM 51(3), 363–384 (2004)

5. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM 41(1), 153–180 (1994)

6. Bange, D.W., Barkauskas, A.E., Slater, P.J.: Efficient dominating sets in graphs. In:
Proc. 3rd Conference on Discrete Mathematics. SIAM, pp. 189–199 (1988) SIAM

7. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size. In: Diekert, V., Durand, B. (eds.)
STACS 2005. LNCS, vol. 3404, pp. 269–280. Springer, Heidelberg (2005)

8. Chen, J., Kanj, I.A., Jia, W.: Vertex Cover: Further observations and further im-
provements. Journal of Algorithms 41, 280–301 (2001)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

10. Fellows, M.R., Heggernes, P., Rosamond, F.A., Sloper, C., Telle, J.A.: Finding k
disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel,
B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)

11. Fellows, M.R., Hoover, M.: Perfect domination. Australian Journal of Combina-
torics 3, 141–150 (1991)

12. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces:
Linear kernel and exponential speed-up. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidel-
berg (2004)

13. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics 32, 826–834 (1977)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

15. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38(1), 31–45 (2007)

16. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized
Vertex Cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005) Long version to
appear under the title Parameterized complexity of Vertex Cover variants in Theory
of Computing Systems

17. Guo, J., Niedermeier, R., Wernicke, S.: Fixed-parameter tractability results for full-
degree spanning tree and its dual. In: Fischer, K., Timm, I.J., André, E., Zhong, N.
(eds.) MATES 2006. LNCS (LNAI), vol. 4196, pp. 203–214. Springer, Heidelberg
(2006)

18. Lu, C.L., Tang, C.Y.: Weighted efficient domination problem on some perfect
graphs. Discrete Applied Mathematics 117, 163–182 (2002)

19. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching prob-
lem in planar graphs. In: Proc. 1st International Frontiers of Algorithmics Work-
shop (FAW 2007). LNCS, Springer, Heidelberg (2007)

20. Nemhauser, G.L., Trotter, L.E.: Vertex packing: structural properties and algo-
rithms. Mathematical Programming 8, 232–248 (1975)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

22. Prieto, E.: Systematic Kernelization in FPT Algorithm Design. PhD thesis, De-
partment of Computer Science, University of Newcastle, Australia (2005)

Private Locally Decodable Codes�

Rafail Ostrovsky, Omkant Pandey, and Amit Sahai

Department of Computer Science
University of California, Los Angeles 90095
{rafail,omkant,sahai}@cs.ucla.edu

Abstract. We consider the problem of constructing efficient locally de-
codable codes in the presence of a computationally bounded adversary.
Assuming the existence of one-way functions, we construct efficient lo-
cally decodable codes with positive information rate and low (almost
optimal) query complexity which can correctly decode any given bit of
the message from constant channel error rate ρ. This compares favor-
ably to our state of knowledge locally-decodable codes without crypto-
graphic assumptions. For all our constructions, the probability for any
polynomial-time adversary, that the decoding algorithm incorrectly de-
codes any bit of the message is negligible in the security parameter.

1 Introduction

When a message x is sent over a channel C, the channel might introduce some
errors so that the received message differs from the original message x. To deal
with this, the sender typically encodes the given message to obtain a codeword
y so that x can be recovered even if the received codeword y′ differs from the
original encoding y in some of the places.

The message is represented by a sequence of k symbols from alphabet Σ. The
codeword is also represented as a sequence of K symbols from the same alphabet
Σ. The encoding function is denoted by S : Σk → ΣK and the decoding function
is denoted by R : ΣK → Σk. The information rate (or simply rate) of the code
is k/K and measures the amount of extra information needed by the code for
correctly decoding from errors. Such a coding scheme is called a (K, k)q-coding
scheme, where q = |Σ|.

When the whole message x should be recovered from the corrupted codeword
y′, the decoding algorithm reads y′ entirely. If one is interested in reading only
one bit of x, more efficient coding schemes are possible. In particular, it is possible

� Part of this work was done when all the authors were at IPAM. The first author is
supported in part by NSF Cybertrust grant No. 0430254, Xerox Innovation group
Award and IBM Faculty Award. The second and third authors were supported in
part from grants from the NSF ITR and Cybertrust programs (including grants
0627781, 0456717, and 0205594), a subgrant from SRI as part of the Army Cyber-
TA program, an equipment grant from Intel, and an Alfred P. Sloan Foundation
Research Fellowship.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 387–398, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

388 R. Ostrovsky, O. Pandey, and A. Sahai

to construct codes which can decode a single bit of x by reading only a few bits
of y′. Such codes are called locally decodable codes (LDCs) [1,22,11].

Informally, a locally decodable code with query complexity �, error rate ρ,
and error correction probability p is a pair of algorithms (S,R), where S is the
encoding algorithm and R is the decoding algorithm, such that the decoding
algorithm makes at most � queries into the corrupted codeword y′ and recovers
any given bit j of x with probability p or more if y′ differs from y in at most a ρ
fraction of alphabets. For brevity, such a code is sometimes written as (�, ρ, p)-
LDC and we require that p > 0.5. An LDC is called adaptive if the queries of
R depend upon the answers of previous queries. It is called non-adaptive if they
depend only on the random coins of R.

Of course, locally decodable codes with high information rate, high error rate,
high error correction probability, and low query complexity are most desirable.
Low alphabet sizes (q = |Σ|) are desirable too as most channels are best at
transmitting only bits.

Locally decodable codes have found several notable applications. In complex-
ity theory [6], PCPs [1], and so on. In cryptography they have been useful due to
their interesting connection with private information retrieval protocols [4,13,2].
Their interesting properties make them applicable in several database applica-
tions such as fault-tolerant data storage [11]. It is tempting to say that construc-
tions of good locally decodable codes can yield benefits to several related fields
of computer science.

Modeling the Noisy Channel. The nature of channel errors plays an impor-
tant role in the design of good error correcting codes. Historically, there are two
popular ways of modeling a noisy channel: Shannon’s model and Hamming’s
model. In Shannon’s symmetric channel model, each symbol is changed to a
random different one independently with some fixed probability. In Hamming’s
adversarial channel model, symbols get changed in the worst possible manner
subject to an upper bound on the number of errors (such as a constant frac-
tion of the size of the codeword). It should be noted that Hamming’s channel
are computationally unbounded. As a consequence, good error-correcting codes in
Hamming’s model ensure robustness of the coding scheme. But at the same time,
constructing error correcting codes becomes more challenging in this model. In
particular, good1 locally decodable codes are not known to exist in this model.

An interesting idea due to Lipton [15], models the noisy channel as a com-
putationally bounded adversarial channel. That is, the channel C is modeled
as a probabilistic polynomial time algorithm which can change symbols in the
worst possible manner subject to an upper bound on the number of errors.
Thus, Lipton’s channels are essentially Hamming channels restricted to feasible
computation. Modeling channels in this way makes a lot of sense as all real
world channels are actually computationally bounded. The codes designed in
this model guarantee that if a channel can cause incorrect decoding with high
probability, it can also be used to break standard hardness assumptions.
1 By good LDCs we mean LDCs with high information rate and high probability of

error correction with small query size and constant error rate).

Private Locally Decodable Codes 389

Working with such computationally bounded channels has led to several in-
teresting results of late. In particular, Gopalan, Lipton, and Ding [9] develop a
technique called code scrambling which recovers from high error rates by using
few shared random bits. Similarly, Micali, Peikert, Sudan, and Wilson construct
codes that can uniquely decode from error-rates beyond the classical bounds.
Other notable results that use the idea of shared randomness in particular, are
the results of Langberg [14] and Smith [21]. We remark that all these results are
for standard error correcting codes and not for locally decodable codes. In this
paper we continue in this important direction and construct good LDCs against
computationally bounded noisy channels. We shall summarize our results shortly.

Previous Work On Locally Decodable Codes. In order to understand
the significance of our results, it is important that we shed some light on previous
work related to locally decodable codes. Mainly, there has been two important
research directions in this area: proving lower bounds on the size of LDCs and
constructing good LDCs. All prior work in this area deals with computationally
unbounded channels.

The first direction investigates the relation between the code length K and
the message length k for (�, ρ, p)-LDCs. Katz and Trevisan [11] first started
investigating this direction and showed that for non-adaptive LDCs, K is at least
k1+ 1

�−1 (suppressing the dependence on ρ and p). Deshpande et al [5] showed
that this bound holds even for adaptive LDCs. Currently, the best known lower
bounds for general locally decodable codes are due to Woodruff [24] who shows

that K = Ω

(
k
1+ 2

�−1

log k

)
. A series of papers [8,17,19,12,23] concentrated on LDCs

with � = 2 (or 3) and established exponential lower bounds. In particular for
2-query LDCs K = exp(Ω(ρ

2−2pk)).
The other direction focussed on constructing the locally decodable codes.

Important constructions in this direction for constant query length appeared
in [2,3]. Unfortunately, all these constructions yield codes that are exponentially
long in ki. Currently, the best known construction is due to Yekhanin [25] who
achieves locally decodable codes of sub-exponential length. For super-constant
number of queries, however, better constructions are known. In particular, for
� = (log k)O(1

p−0.5) Babai et al [1] constructed LDCs of size K = k1+(p−0.5).
We derive following important conclusions from these results: all known con-

structions in the literature are either exponential in k or the query complexity
is a huge polynomial in log k. Furthermore, most of these constructions are able
to provide only a constant probability of error correction which does not vanish
with the size of the message.

Our Results. We consider the construction of locally decodable codes against
computationally bounded channel. Under the minimal cryptographic assump-
tion that one-way functions exist, we show how to construct asymptotically good
locally decodable codes over a binary alphabet. Notice that small alphabet size is
usually a requirement as most channels are best at transmitting only bits. Thus
we have achieved locally decodable codes over binary alphabets with constant

390 R. Ostrovsky, O. Pandey, and A. Sahai

information rate. This is already much better than all the known constructions
in the literature. Our constructions require that the encoding and decoding al-
gorithms share a secret key that is not known to the channel. For this reason we
call our codes private locally decodable codes.

By reading at most � = ω(log2 κ) bits in the codeword, our codes can correctly
recover any given bit with probability p ≥ 1 − κ−ω(1), where κ is the security
parameter, as long as the number of errors are less than a suitably chosen (con-
stant) fraction. Thus, the probability of incorrect decoding is κ−ω(1) which is
negligible in the security parameter.2 Furthermore, if we allow the sender and
the receiver to share a (synchronized) shared (such as a public counter), then our
codes can have query complexity only ω(log κ). We also show that � = ω(log κ) is
necessary in order to achieve negligibly small probability of incorrect decoding.
Thus, our codes have (almost) optimal query complexity.

Our codes are non-adaptive in nature. That is, the decoding procedure can
make all its � queries at once without any dependence on the answers received
from the corrupted word. This is a feature that might be desirable in some
applications.

In some sense our results are incomparable to previous work because we work
only against a computationally bounded adversary. But, a series of lower bound
results and the poor information rate of best known constructions from previ-
ous work provide good motivation to study the problem in this new (weak yet
reasonable) model.

Organization. The rest of this article is organized as follows. The next section
presents relevant background from coding theory and cryptography. We then
describe our model which is followed by our constructions. Several details and
discussions that have been omitted from this version because of space limitations
can be found in the full version [18].

2 Definitions

In this section we will present relevant coding theory and cryptography. When
dealing with codes, small alphabet size is usually preferred. Thus, unless speci-
fied otherwise, from now onwards we describe our constructions only for binary
alphabets. It is straightforward to see their general version that has larger al-
phabet size. First we present some notations.

Notation. Vectors over {0, 1} will be represented in bold, e.g., x,y. Because
we are working over binary alphabets, occasionally we may refer to vectors over
{0, 1} as (bit) strings. Concatenation of two vectors x,y is denoted by x ◦ y. By
[n] we denote the set of positive integers smaller than or equal to n: {1, 2, . . . , n}.
A function ν(n) is negligible in n if it vanishes faster than the inverse of every
polynomial P (n) for a sufficiently large choice of n. Notation Δ(x,y) represents
the hamming distance between vectors x and y which is the number of alphabet
2 We can also choose the length of the input instead of the security parameter and

then the error probability will be negligible in the length of the input.

Private Locally Decodable Codes 391

positions in which they differ. By x[j] we denote the jth bit of x. If S is a set then
the process of selecting an element e from S uniformly at random, is denoted
by: e $← S. By π we denote a permutation (or a map) which permutes the bits
of a given string x by sending its jth bit to the position π(j). We will abuse the
notation and denote by π(x) the string obtained by applying π to x as above.

We now present some standard definitions, mostly taken from existing litera-
ture, e.g. [16].

Definition 1 (Coding Scheme). An (K, k)q-coding scheme C = (S,R) over
the alphabet Σ is a pair of encoding and decoding functions S : Σk → ΣK and
R : ΣK → Σk for some positive integers K > k, q = |Σ| ≥ 2. The (information)
rate of the scheme, denoted R, is defined as R = k

K . The (minimum) distance
of the coding scheme, denoted δ, is defined as δ = minx1,x2∈Σk Δ(S(x1),S(x2))

In this paper we will be interested in asymptotic behavior of our codes. This
requires us to consider infinite families of codes. Thus, we augment our current
notation by indexing them and redefine the parameters such as the rate of the
code.

Definition 2 (Family of Coding Schemes). Let C = {Ci}∞i=1 be an infinite
family of coding schemes where Ci is a (Ki, ki)qi -coding scheme and limi→∞
Ki =∞. The asymptotic information rate and minimum distance of C, denoted
R(C) and δ(C) respectively, are defined as R(C) = lim infi→∞ ki/Ki and δ(C) =
lim infi→∞ δi/Ki. If {Si} and {Ri} can be computed by two uniform probabilistic
polynomial time algorithms, we say that the coding scheme is efficient.

In our constructions, as the encoding and decoding function do not change with
i and only the parameters such as message length, code length etc. vary with i,
we will drop the index i from S,R. Now we turn to the definition of standard
locally decodable codes:

Definition 3 (Locally Decodable Code). An �-locally decodable code over
a binary alphabet for error rate ρ and error-correction probability p > 1

2 , ab-
breviated as (�, ρ, p)-LDC, is a pair of probabilistic algorithms (S,R), where
S : {0, 1}ki → {0, 1}Ki and R are the encoding and decoding algorithms re-
spectively. If x ∈ {0, 1}ki is the message and y ← S(x) is its encoding then
we require that on input j ∈ [ki], the algorithm R reads at most � bits from
a given word y′ and outputs a bit b such that Pr[b = x[j]] ≥ p provided that
Δ(y,y′) ≤ ρKi for some constant ρ.

Notice that locally decodable code is also a coding scheme as defined above
but with the exception that the decoding algorithm does not have the whole
codeword as input. It rather takes a single bit-position as input and is given
oracular access to the codeword. Thus, terms such as a family of locally decodable
coding schemes and asymptotic information rate are also defined analogously for
locally decodable codes.

392 R. Ostrovsky, O. Pandey, and A. Sahai

3 Our Model

We work in a shared key model where the encoding and decoding algorithms
share some small secret information not known to the channel. In particular, this
information will be the secret key to the pseudorandom permutation generator.

Deviating from traditional goals, we focus on constructing codes with high
probability of recovering any given bit rather than some constant probability
larger than 1/2. In particular, we require the probability of incorrect decoding to
be negligible in the message length. Of course small query complexity is desirable
too along with negligible probability of incorrect decoding.

Because the encoding and decoding algorithms must share a key in our model,
our codes are named private locally decodable codes. We present the definition
of a private locally decodable code below.

Definition 4 (Private �-Locally Decodable Code). Let κ be the security pa-
rameter. A private �-locally decodable code for a family of parameters {(Ki, ki)}∞i=1

is a triplet of probabilistic polynomial time algorithms (K,S,R) such that:

– K(1κ) is the key generation algorithm that takes as input the security param-
eter κ and outputs a secret key sk.

– S(x, sk) is the encoding algorithm that takes as input the message x of length
ki = poly(κ) and the secret key sk. The algorithm outputs y ∈ {0, 1}Ki that
denotes an encoding of x.

– R(j, sk) denotes the decoding algorithm, which takes as input a bit position
j ∈ [ki] and the secret key sk. It outputs a single bit b denoting the decoding
of x[j] by making at most � (adaptive) queries into a given a codeword y′

possibly different from y.

The information rate of the scheme is lim infi→∞ ki/Ki.

Parameter � is called the query complexity of the code. Notice that in our def-
inition, the decoding algorithm is supposed to have the same secret key sk as
was used to encode the message. Obviously this definition does not make sense
until we introduce the probability of correctly obtaining x[j] using the decoding
procedure. But before that, we need to explain the game between the channel
and the encoding and decoding algorithms.

A computationally bounded adversarial channel C with error rate ρ is a proba-
bilistic polynomial time algorithm which repeatedly interacts with the encoding
algorithm S and the decoding algorithm R polynomially many times until it
terminates. Each iteration takes place as follows:

1. Given a security parameter κ, the key generation algorithm outputs a secret
key sk ← K(1κ). The secret is given to both S,R but not to the channel.
The channel is given κ.

2. In hth iteration, the channel C chooses a message x(h) ∈ {0, 1}ki and hands
it to the sender.

3. The sender computes y(h) ← S(x(h), sk) and hands the codeword y(h) ∈
{0, 1}Ki back to the channel.

Private Locally Decodable Codes 393

4. The channel corrupts at most a fraction ρ of all Ki bits in y(h) to output
the corrupted codeword y

′(h), i.e., Δ(y(h),y
′(h)) ≤ ρKi. It gives y

′(h) and a
challenge bit j to the receiver R.

5. The receiver makes at most � (possibly adaptive) queries into the new code-
word y

′(h) and outputs b←R(j, sk).

We say that a code (K,S,R) correctly decodes from error rate ρ with high
probability if for all probabilistic polynomial time algorithms C in the above
experiment, for all messages x ∈ {0, 1}ki, and for all j ∈ [ki] we have that
Pr

[
b �= x(h)[j]

]
= ν(κ), where the probability is taken over the random coins of

K,S,R, and C.
In above definition, we have that maximum value of h is bounded from above

by a value polynomial in the length of the input. If we have a code that only
works (i.e., correctly decodes from error rate ρ with high probability) once (i.e.,
only for h = 1) and guarantees nothing for repeated executions, we call such a
private locally decode to be one time.

In the above definition, we assume that the adversary always sends messages
of the same length known a priori both to the sender and receiver. We stress
that it is merely a technicality. If one wants that the adversary be given the
flexibility to choose the message lengths, then also our constructions work but
with a slight technical modification3.

4 Our Constructions

In this section we provide our constructions. We do this in two stages. First we
provide two constructions which work only once, i.e., they are one-time. First
such construction is a simple repetition code with log2 κ query complexity4 and
the second one is based on any asymptotically good code and has the same query
complexity but a better (i.e., asymptotically positive) information rate. In the
second stage, we show how to uplift our construction so that we get a code that
works for polynomially many invocations, i.e., satisfies our actual definition.

Although we describe our construction for log2 κ query complexity, they actu-
ally work for any query complexity that grows faster than log κ, (i.e., ω(log κ)).
We also show that ω(log κ) query complexity is essential if we want decoding
error to be negligible in κ. Thus our constructions have optimal query length.

4.1 Constructions for One-Time Codes

A Simple Repetition Code. Our first code is a very simple repetition code.
Let x be the string we want to encode. Our repetition code (KREP,SREP,RREP)
is as follows.
3 See full version [18].
4 Technically, the query complexity is actually �log2 κ, but in order to avoid the

cluttering in presentation, we shall drop floors and ceiling in formulas. This does not
affect our analysis.

394 R. Ostrovsky, O. Pandey, and A. Sahai

Algorithm KREP(1κ). This is a randomized algorithm which simply outputs
a truly random permutation π and a truly random mask r both of size Ki

(the code length, to be stated later)Thus, sk ← (π, r).
Algorithm SREP(x, sk). The algorithm works as follows:

– Compute x′ by repeating each bit of x for log2 κ times.
– Compute y1 ← π(x′) and output y = y1 ⊕ r.

Notice that the size of codeword y is Ki = ki log2 κ.
Algorithm RREP(j, sk). To decode, the algorithm simply reads all � = log2 κ

bit positions of corrupted word y′ that correspond to bit position j of the
original message x, and decides by majority after unmasking them with r.
Note that computing these bit positions requires reading only � entries from
the stored permutation π and hence has polylogarithmic running time. The
algorithm works as follows:
– Let j1, j2, . . . , j� denote the � bit positions of x′ that have the copies of

x[j]. Compute ih ← π(jh) for h = 1, 2, . . . , �.
– Compute y′[i1]⊕ r[i1],y′[i2]⊕ r[i2], . . . ,y′[i�]⊕ r[i�] and output the ma-

jority bit.
Notice that the query complexity is � = log2 κ.

In the above, instead of � = log2 κ we can choose any � = ω(log κ).

Theorem 1. There exists a constant ρ such that (KREP,SREP,RREP) is a one-
time private ω(log κ)-locally decodable code that correctly decodes from error rate
ρ with high probability.

Proof. It is easy to see that a bit is decoded incorrectly if and only if at least
λ = �/2 of its � copies were corrupted. From Lipton’s theorem [15], it follows
that if the permutation π and the mask r are truly random, then the adversarial
channel C behaves like a binary symmetric channel which corrupts at most a
fraction ρ of all bits. Thus, the probability p of incorrect decoding for a given
bit position j can be calculated by a simple combinatorial analysis:

p <

(
�
λ

)(
n−λ
m−λ

)

(
n
m

) <

(
256

�

λ
· eb+1ρ

)λ
(see full version)

which is less than 2−� = ν(k) for ρ = 1
211eb+1 and � = ω(log κ). Because probabil-

ity of incorrectly decoding a given bit is negligible and there are only ki = poly(κ)
bits, we conclude that probability of incorrectly decoding any bit is negligible
given that the permutation π and r are truly random (which is the case). �
Construction based on Any Asymptotically Good Code. In this section
we present the construction of a locally decodable code based on any asymptoti-
cally good code. We will present a general construction and its analysis without
setting the parameters explicitly. Later on, we will set the parameters suitably
so as to obtain a locally decodable code satisfying our goals. We start with the
definition of asymptotically good codes.

Definition 5 (Asymptotically Good Codes). A family of codes C={Ci}∞i=1

is said to be asymptotically good if R(C), δ(C) > 0.

Private Locally Decodable Codes 395

We remark that efficient asymptotically good codes are known [10,20]. Some-
times we may simply use R and δ and drop the argument C when it is clear
from the context. Also, from now on, in our constructions we will only refer to
C = (S,R) which is a (A, a)q coding scheme from the family of asymptotically
good codes. Let 1

β be the rate of the code so that A ≤ βa, where β is a constant.
Let γ denote the constant fraction such that C can recover from error rate γ (i.e.
the number of errors allowed is equal to γA symbols). Because we are working
over an alphabet of size q, let c = log q, and we will sometimes say that the
message x is a sequence of c · a bits and the codeword y is a sequence of c · A
bits. A symbol is considered corrupted if any of its c bits gets corrupted and
hence number of bit -errors e from which C can recover is still at most γA.

Our Construction. On a high level, we visualize the message x as a series
of ni messages each of which will contain a symbols from Σ, or in other words
each message will contain a blocks of c = log q bits each. That is,

x =

1
︷ ︸︸ ︷
(x1 ◦ . . . ◦ xa) ◦

2
︷ ︸︸ ︷
(xa+1 ◦ . . . ◦ x2a) ◦ . . . ◦

ni︷ ︸︸ ︷
(x(ni−1)a+1 ◦ . . . ◦ xnia)

Now each message (contained in parentheses) will be encoded using the encoding
function S of the asymptotically good coding scheme C and all such encodings
will be concatenated together. The resulting string will be permuted according
to a pseudo-random permutation π and XORed with a pseudorandom string r to
yield the final code. Notice that the message length for our locally decodable code
is: ki = |x| = c ·a ·ni. We will choose the parameters A, a for the asymptotically
good code C in such a way that we will achieve locally decodable codes with
desirable properties. Following is the formal description of our code.

Let C be the asymptotically good (aG) code with a = log2 κ where κ is the
security parameter. Let the rate of the code be 1/β and error-tolerance γ so that
code length A = βa and it can correct up to γA errors. Following is the set of
algorithms.

Algorithm KaG(1κ). Same as for the repetition code: sk ← (π, r)
Algorithm SaG(x, sk). The algorithm works as follows:

– Let x = w1 ◦w2 ◦ . . . ◦wni , where ws = x(s−1)a+1 ◦ x(s−1)a+2 ◦ . . . ◦ xsa
for s = 1, 2, . . . , ni. Notice that ki = ca · ni.

– Each ws is a sequence of a symbols from Σ. Encode each ws using the
encoding function S of C to get encoded words w′

s. That is, for each s,
compute: w′

s ← S(ws)
– Let x′ = w′

1 ◦w′
2 ◦ . . . ◦w′

ni
. Compute y1 ← π(x′) and output y1 ⊕ r.

Notice that the size of codeword y is Ki = cAni = A
a ki = βki.

Algorithm RaG(j, sk). The jth bit of message x lies in ws where s = � jac�.
The decoding algorithm simply reads all the cA bits (corresponding to w′

s)
from the (possibly) corrupted encoding y′ using � = cA queries, unmasks
them using r and then decodes using the decoding algorithmR to obtain the
complete subsequence ws. Notice that positions of all cA bits corresponding
to w′

s can be computed using π in sublinear time.

396 R. Ostrovsky, O. Pandey, and A. Sahai

– Let j1, j2, . . . , j� be the bit positions corresponding to the bits of w′
s.

Then for all h = 1, 2, . . . , � compute ih ← π(jh).
– Compute y′[i1] ⊕ r[i1],y′[i2] ⊕ r[i2], . . . ,y′[i�] ⊕ r[i�] and obtain points

w′
s (possibly corrupted).

– Apply the decoding algorithm R instance on possibly corrupted w′
s to

obtain ws. Output that bit of ws which corresponds to the jth bit of x.
Notice that the query complexity is � = cA.

Above code is a private locally decodable code with positive information rate
lim infi→∞

ki

Ki
= 1

β and query complexity � = cA = log q · β log2 κ = O(log2 κ).
Notice that we can use a = ω(log κ) and achieve � = ω(log κ). Let us now prove
the following.

Theorem 2. There exists a constant ρ such that (KaG,SaG,RaG) is a one-
time private ω(log κ)-locally decodable code with constant information rate that
correctly decodes from error rate ρ with high probability.

Proof. We have already proved the claims about information rate and query
complexity. We only need to show that the code indeed correctly recovers from
some constant error rate ρ with high probability.

Notice that the algorithm may decode a given bit j incorrectly only if w′
s

is corrupted in at least λ = γA bit positions. This is because C can correctly
recover from error rate γ. We thus need to bound the probability that more
than λ bits of w′

s are flipped by any adversary. As π and r are truly random we
can use Lipton’s theorem, and bound this probability just by analyzing the code
represented by x′ in the presence of a binary symmetric channel5 which only
corrupts at most a ρ fraction of all Ki bits. Now the probability p of incorrectly
decoding bit j can be bounded as before for the repetition code and comes out
to be (see full version) ν(κ). �

4.2 Final Construction

In this section, we now show how to uplift our one-time constructions so that
they work for polynomially many times. The idea is to divide the codeword
obtained from one-time code into small chunks and then encrypt each chunk
using a suitable encryption scheme. This way, we hide the permutation π behind
the encryption scheme and hence can use just that permutation every time we
encode. Notice that encryption can blow up the size of the chunk by a factor of
the security parameter κ. Thus, we instead encrypt the chunk by a pseudorandom
one-time pad obtained from a pseudorandom function [7]. In order to tolerate
the errors in these ciphertexts, we encode each ciphertext using an off the shelf
asymptotically good error-correcting code. Details follow.

Let fkey denote a pseudorandom function with the key key. Let (KaG,SaG,
RaG) be the one-time coding scheme that we will use as our base. Let log2 κ
where κ is the security parameter.6 Our final private locally decodable code
(KFIN,SFIN,RFIN) is as follows:
5 Recall that BSC introduces errors randomly with some fixed error probability.
6 Any a=ω(log κ) would also work for our constructions.

Private Locally Decodable Codes 397

Algorithm KFIN(1κ). This algorithm first runs KaG((1κ)) to obtain sk′ and
then chooses a truly random seed key of size log2 κ for the pseudorandom
function f . It sets sk ← (sk′,key).

Algorithm SFIN(x, sk). The algorithm works as follows:
– Obtain y′←SaG(x, sk′). LetK ′

i= |y′|. Divide y′ into chunks B1, B2. . ., Bz
of size a each where z = K ′

i/a. Now, encrypt each Bh as Eh = (rh, fkey

(rh)⊕Bh) where h ∈ [z] and rh is a string of length a chosen uniformly
at random.

– Now, encode each ciphertext Eh using an asymptotically good code of
information rate 1/β1: Fh ← S(Eh). Let y = F1 ◦ F2 ◦ . . . ◦ Fz . Notice
that |y| = 2β1K

′
i. Output y.

Notice that the size of codeword y is Ki = 2β1K
′
i = 2ββ1ki.

Algorithm RFIN(j, sk). The decoding algorithm will first run the RaG(j, sk)
and let j1, j2, . . . , j′� denote the indexes queried by RaG (where �′ is query
length of the one-time code). From the construction, these queries are actu-
ally queries into the intermediate code y′. Let Bjh , 0 ≤ h ≤ �, denote that
chunk of y′ in which the jthh bit of y′ lies. Then, RFIN reads all bits of y′

corresponding to each block Fjh , for j1, j2, . . . , j�. Thus the query length is
� = a�′. Note that these blocks may be corrupted. Now algorithm proceeds
as follows:
– Decode each block Fjh using the decoding algorithm R to obtain (pos-

sibly incorrect) blocks Ejh = (rjh , E
′
jh

). Now compute Bjh = E′
jh
⊕

fkey(rjh). Notice that Bjh may be totally different from what it was
originally when encoded. Read that bit of Bjh that corresponds to jthh
bit of y′ and give it to RaG when asked.

– Return whatever is returned by RaG.
Notice that the query complexity is � = a�′.

Above code is a private locally decodable code with positive information rate
1

2ββ1
and query complexity � = a�′. As, �′ = ω(log κ) we could have used any

a = ω(log κ), we have a code with query complexity ω(log2 κ). We have (see full
version for proofs & discussions):

Theorem 3. There exists a constant ρ such that (KFIN,SFIN,RFIN) is a pri-
vate ω(log2 κ)-locally decodable code with constant information rate that correctly
decodes from error rate ρ with high probability.

Lemma 1. Private locally decodable codes with query complexity O(log κi) (or
smaller) that decode from constant error rate with high probability do not exist.

References

1. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: STOC, pp. 21–31 (1991)

2. Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: A unified
construction. In: ICALP, pp. 912–926 (2001)

398 R. Ostrovsky, O. Pandey, and A. Sahai

3. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.-F.: Breaking the o(n1/(2k-1))
barrier for information-theoretic private information retrieval. In: FOCS, pp. 261–
270 (2002)

4. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

5. Deshpande, A., Jain, R., Kavitha, T., Radhakrishnan, J., Lokam, S.V.: Better
lower bounds for locally decodable codes. In: IEEE Conference on Computational
Complexity, pp. 184–193. IEEE Computer Society Press, Los Alamitos (2002)

6. Gemmell, P., Lipton, R.J., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-
testing/correcting for polynomials and for approximate functions. In: STOC, pp.
32–42 (1991)

7. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

8. Goldreich, O., Karloff, H.J., Schulman, L.J., Trevisan, L.: Lower bounds for linear
locally decodable codes and private information retrieval. In: IEEE Conference
on Computational Complexity, pp. 175–183. IEEE Computer Society Press, Los
Alamitos (2002)

9. Gopalana, P., Lipton, R.J., Ding, Y.Z.: Error correction against computationally
bounded adversaries. In Manuscript (2004)

10. Justesen, J.: A class of constructive asymptotically good algebraic codes. IEEE
Transactions on Information Theory 18, 652–656 (1972)

11. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: STOC, pp. 80–86 (2000)

12. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable
codes via a quantum argument. In: STOC, pp. 106–115 (2003)

13. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

14. Langberg, M.: Private codes or succinct random codes that are (almost) perfect.
In: FOCS, pp. 325–334 (2004)

15. Lipton, R.J.: A new approach to information theory. In: STACS, pp. 699–708 (1994)
16. Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal Error Correction Against

Computationally Bounded Noise. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, Springer, Heidelberg (2006)

17. Obata, K.: Optimal lower bounds for 2-query locally decodable linear codes. In:
Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 39–50.
Springer, Heidelberg (2002)

18. Ostrovsky, R., Pandey, O., Sahai, A.: Private Locally Decodable Codes. Available
at http://eprint.iacr.org/2007/025/

19. Shiowattana, D., Lokam, S.V.: An optimal lower bound for 2-query locally decod-
able linear codes. Inf. Process. Lett. 97(6), 244–250 (2006)

20. Sipser, M., Spielman, D.A.: Expander codes. In: FOCS, pp. 566–576 (1994)
21. Smith, A.: Scrambling adversarial errors using few random bits. In: SODA (2007)
22. Sudan, M.: Efficient Checking of Polynomials and Proofs and the Hardness of

Approximation Problems, PhD Thesis, University of California at Berkley (1992)
23. Wehner, S., de Wolf, R.: Improved lower bounds for locally decodable codes and

private information retrieval. In: ICALP, pp. 1424–1436 (2005)
24. Woodruff, D.: New lower bounds for general locally decodable codes. In: ECCC

TR07-006 (2007)
25. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.

In: STOC (2007) Also appears on ECCC as TR06-127 under a different title.

http://eprint.iacr.org/2007/025/

Hash Functions in the Dedicated-Key Setting:

Design Choices and MPP Transforms

Mihir Bellare and Thomas Ristenpart

Dept. of Computer Science & Engineering 0404, University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404, USA

{mihir,tristenp}@cs.ucsd.edu
http://www-cse.ucsd.edu/users/{mihir,tristenp}

Abstract. In the dedicated-key setting, one uses a compression func-
tion f : {0, 1}k ×{0, 1}n+d → {0, 1}n to build a family of hash functions
Hf : K ×M→ {0, 1}n indexed by a key space K. This is different from
the more traditional design approach used to build hash functions such
as MD5 or SHA-1, in which compression functions and hash functions do
not have dedicated key inputs. We explore the benefits and drawbacks of
building hash functions in the dedicated-key setting (as compared to the
more traditional approach), highlighting several unique features of the
former. Should one choose to build hash functions in the dedicated-key
setting, we suggest utilizing multi-property-preserving (MPP) domain
extension transforms. We analyze seven existing dedicated-key trans-
forms with regard to the MPP goal and propose two simple new MPP
transforms.

1 Introduction

Two settings. A popular method for designing hash functions proceeds as fol-
lows. First, one designs a compression function f : {0, 1}d+n → {0, 1}n, where d
is the length of a data block and n is the length of the chaining variable. Then
one specifies a domain extension transform H that utilizes f as a black box to
implement the hash function Hf : M → {0, 1}n associated to f , where M is
some large message space. Most in-use hash functions, for example the MD-x
family [21] and SHA-1 [19], were constructed using this approach.

There also exists a second setting for hash function design and analysis, in
which compression functions and hash functions both have a dedicated key input.
A dedicated-key compression function has signature f : {0, 1}k × {0, 1}d+n →
{0, 1}n. A transform H now uses f(·, ·) as a black-box to implement a family of
hash functions Hf : K ×M → {0, 1}n indexed by a key space K. We call this
the dedicated-key setting. Note that although we use the term “key”, this does
not mean that a key K ∈ K is necessarily private. Indeed, hash functions often
need to be publicly computable (e.g., for verifying digital signatures) and so in
these settings every party must have access to the key.

This paper. Due to recent collision-finding attacks against in-use hash functions
such as MD5 and SHA-1 [26,27], new hash functions are going to be designed

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 399–410, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

400 M. Bellare and T. Ristenpart

and standardized. A crucial choice for designers will be whether one should
build hash functions in the first setting (continuing in the current tradition of
in-use hash functions) or in the dedicated-key setting. Our first contribution is to
present relative merits of the two settings described above, pointing out several
important benefits of the dedicated-key setting, but also its most significant
drawbacks.

Should one choose to work in the dedicated-key setting, the natural next ques-
tion is how to best build hash functions in it. Because hash functions are currently
used in a wide variety of applications with disjoint security requirements, we sug-
gest building hash functions using multi-property-preserving (MPP) transforms,
introduced for the non-dedicated-key setting in [6]. An MPP transform H si-
multaneously preserves numerous properties of interest: if the compression func-
tion f has security property P, then Hf has P also. Our second contribution is an
MPP-orientated analysis of several dedicated-key transforms and the proposal
of two new transforms that better meet the MPP goal.

We now briefly summarize our results in more detail.

The dedicated-key setting. In Section 3, we discuss the dedicated-key set-
ting, pointing out several features which are distinct from the more traditional
setting. We describe two important benefits of the dedicated-key setting: hash
function heterogeneity (allowing users to specify independent instances of the
hash function) and improved security guarantees (particularly for message au-
thentication, a wide-spread application of hash functions). On the other hand,
a significant downside of dedicated keys is a decrease in efficiency.

Dedicated-key transforms. In Section 5, we provide an MPP-orientated
treatment of transforms in the dedicated-key setting, analyzing seven previously
proposed Merkle-Damg̊ard-like transforms: plain Merkle-Damg̊ard (MD) [16,12],
strengthened MD (sMD) [12], prefix-free MD (Pre) [15], Shoup’s transform
(Sh) [24], the strengthened Nested Iteration transform (sNI) [1], the Nested It-
eration transform (NI) [15], and the Chain-Shift transform (CS) [15]. Figure 1
summarizes our results for the existing seven transforms. For each transform
we determine if it is collision-resistance preserving (CR-Pr), message authenti-
cation code preserving (MAC-Pr), pseudorandom function preserving (PRF-Pr),
and pseudorandom oracle preserving (PRO-Pr). A “Yes” in the P-Pr column for
transform T means that, if a compression function f has property P, then Tf

provably has property P. A “No” means that there exists a compression func-
tion f with property P, but for which Tf does not have P. Only one of the seven
transforms preserves the first four properties (though requiring two keys to do
so), and so we suggest a new MPP transform, called Strengthened Chain-Shift,
which is efficient and requires just one key.

We also investigate the property of being a universal one-way hash func-
tion [18], which we’ll call target-collision resistance (following [10]). The practical
value of TCR-Pr transforms is limited by the significant amount of key material
they require; see Section 5.5 for a discussion. That said, none of the transforms
thus far preserve it along with the other four properties, and so we suggest a
new transform, Enveloped Shoup, which preserves all five properties.

Hash Functions in the Dedicated-Key Setting 401

CR-Pr MAC-Pr PRF-Pr PRO-Pr TCR-Pr Efficiency τ (L) Key bits

MD No [16,12] No Yes No [11] No [10] �(L + 1)/d k

sMD Yes [16,12] No Yes No [11] No [10] �(L + 65)/d k

Pre No Yes [15] Yes Yes [11] No �(L + 1)/(d − 1) k

Sh Yes [24] No Yes No Yes [24] �(L + 65)/d k + n�log2 τ (L)
sNI Yes Yes [1] Yes Yes [6] No �(L + 65)/d 2k

NI No Yes [15] Yes Yes [6] No �(L + 1)/d 2k

CS No Yes [15] Yes Yes [6] No �(L + 1 + n)/d k

sCS Yes Yes [15] Yes Yes [6] No �(L + 65 + n)/d k

ESh Yes Yes Yes Yes Yes �(L + 65 + n)/d k + n�log2 τ (L)

Fig. 1. Summary of transforms in the dedicated-key setting when applied to a compres-
sion function f : {0, 1}k × {0, 1}n+d → {0, 1}n. Bold-faced claims are novel. Efficiency
is measured by τ (L), the number of compression function applications used to hash an
L-bit string.

2 Notation and Definitions

Notation. We denote pairwise concatenation by || , e.g. M ||M ′, and write
M1 · · ·Mk to mean M1 ||M2 || . . . ||Mk. For brevity, we define the following
semantics for the notation M1 · · ·Mk

d←M where M is a string of bits: 1) define
k = �|M |/d� and 2) if |M | mod d = 0 then parse M into M1, M2, . . ., Mk where
|Mi| = d for 1 ≤ i ≤ k, otherwise parse M into M1, M2, . . ., Mk−1, Mk where
|Mi| = d for 1 ≤ i ≤ k − 1 and |Mk| = |M | mod d. For any finite set S we
write s $← S to signify uniformly choosing a value s ∈ S. A random oracle is
an algorithm RFDom,Rng that, on input X ∈ Dom, returns a value Y $← Rng.
Repeat queries are, however, answered consistently. We sometimes write RFd,r
when Dom = {0, 1}d and Rng = {0, 1}r.
Security notions. Let F : K × Dom → Rng be a function with non-empty
key space K and define FK(·) = F (K, ·). Then we define the following security
experiments:

• tcr: ε = Pr
[

(X,S) $← A1,K
$← K, X ′ $← A2(S,K) :

X �= X ′∧
FK(X) = FK(X ′)

]

• cr: ε = Pr
[
K

$← K, (X,X ′) $← A(K) : X �= X ′ ∧ FK(X) = FK(X ′)
]

• mac: ε = Pr
[
K

$← K, (X,T) $← AF (K,·) : FK(X) = T ∧X not queried
]

• prf: ε = Pr
[
K

$← K : AF (K,·) ⇒ 1
]
−Pr

[
ρ

$← Func(Dom ,Rng) : Aρ(·) ⇒ 1
]

where the probabilities are over the specified random choices and the coins used
by A. In the tcr game A is actually a pair of algorithms A1 and A2. Now
letting F be an algorithm given oracle access to an ideal compression function
f = RFk+n+d,n we define the last security experiment:

• pro: ε = Pr
[
K

$← K : AF
f
K ,f (K)⇒ 1

]
− Pr

[
K

$← K : AF ,SF
K (K)⇒ 1

]

402 M. Bellare and T. Ristenpart

where the probabilities are over the specified random choices, the coins used
by A and S, and the coins used by F = RFDom,Rng and f = RFn+d,n. The
simulator S maintains state across queries and has oracle access to F . For more
details on the pseudorandom oracle definition see [6,11,13].

We say that F is (t, L, ε)-xxx for xxx ∈ {tcr, cr} if any adversary A running
in time at most t and outputting messages of length less than or equal to L bits
has at most ε probability of success in the xxx game. Similarly we say that F
is a (t, q, L, ε)-xxx for xxx ∈ {mac, prf} if any adversary A running in time at
most t and making at most q queries each of which has length at most L has
at most ε probability of success in the xxx game. Lastly we say that F is a
(tA, tS , q1, q2, L, ε)-pro if there exists a simulator S running in time tS such that
the following is true. Any adversary A running in time at most tA and asking
at most q1 (q2) queries to its first (second) oracle, with maximal query length L
bits, has probability at most ε of success in the pro game.

3 Hash Functions in the Dedicated Key Setting

Hash function heterogeneity. The first major benefit of dedicated-key hash
functions is the enablement of hash function heterogeneity, which allows for the
utilization of numerous different hash function instances. To understand why
this is useful for security, we discuss (as an example) an important applica-
tion of publicly-computable, collision-resistant hash functions: digital signature
schemes. Recall that in such a scheme each party i picks a public key pki and
publishes it. To verify a message, one hashes it and then applies some verifi-
cation algorithm that utilizes pki. In current practice, all users utilize a single
hash function Hh, for example SHA-1. Now that Wang, Yin, and Yu discovered
a collision-outputting algorithm A against Hh = SHA-1 [26], simply running A
a single time compromises the security of every user’s digital signature scheme.

If we instead utilize a dedicated-key hash function Hh: K ×M → {0, 1}n
within our scheme, then each user i can pick a key Ki ∈ K and publish it as
part of their public key. In this way each user has his or her own hash function
instance, exemplifying hash function heterogeneity. Now, attackers are faced
with a significantly more difficult task, from a practical perspective. If they can
construct a categorical attack algorithm A (i.e., one that works equally well
on any key), and if A executes in w operations, then to attack a single user i
requires (as before) w work. But attacking two users requires 2w work, and in
general attacking a group of p users requires pw work. If w ≈ 269, as is the case
for Wang, Yin, and Yu’s SHA-1 attack [26], then even doubling the amount of
work is a significant hurdle to mounting attacks in practice. The situation is even
worse for the attackers if their attack algorithm is key-specific (i.e., it only works
well on a particular key), because then they might have to adapt their attack
to each user’s key, which could require more cryptanalytic effort. In either case,
hash function heterogeneity is a significant benefit of the dedicated-key setting,
particularly when attacks are found that are just on the cusp of practicality.

Hash Functions in the Dedicated-Key Setting 403

Improved security guarantees. An important and wide-spread application
of hash functions is for message authentication code (MAC) schemes, where we
require hash functions to be unforgeable. To utilize a traditional hash function
Hh: M→ {0, 1}n as a MAC scheme, Hh must be keyed, which means some of
the input is set aside (a posteriori) for key bits. The canonical construct in this
domain is HMAC [3,2], which is widely standardized and used. (NIST FIPS 198,
ANSI X9.71, IETF RFC 2104, SSL, SSH, IPSEC, TLS, IEEE 802.11i, and IEEE
802.16e are only some instances.) Note that in these applications keys are secret
and never revealed publicly.

In the traditional setting, the unforgeability of MACs built from hash func-
tions requires the compression function to be a pseudorandom function (PRF),
when keyed appropriately, and the transform to be PRF-Pr. However, unforge-
ability is a weaker security goal than being a PRF: any PRF is a good MAC but
not vice versa. The reason we have to rely on PRFs for message authentication is
that building transforms that preserve the unforgeability of a compression func-
tion h: {0, 1}n+d→ {0, 1}n is inherently difficult and, in fact, no unforgeability
preserving (which we’ll call MAC-Pr) transforms are known in this setting.

On the other hand, if we work in the dedicated-key setting, then there are
straightforward MAC-Pr transforms [1,15,14]. This allows us to utilize hash func-
tions as MACs under just the assumption that h: {0, 1}k × {0, 1}n+d → {0, 1}n
is a good MAC, which provides a better security guarantee. To see why, note
that an attack showing that h is not a PRF does not immediately imply that h
can be forged against and therefore we can still have a guarantee that Hh is a
secure MAC — but this is only true in the dedicated-key setting. In the prior
setting we would lose all security guarantees.

Another benefit of the dedicated-key setting is that building transforms which
are provably PRF-Pr becomes much easier. As we show in Section 5.3, all the
transforms we consider are PRF-Pr, and the proofs of this are straightforward.

Keying and collision-resistance. Hash functions with dedicated key inputs
are an easy solution for the foundations-of-hashing dilemma [22], which is a prob-
lem of theoretical interest. The dilemma refers to the fact that h: {0, 1}n+d →
{0, 1}n, for d �= 0, can not be collision-resistant: by the pigeonhole principle
there are two distinct strings X,X ′ ∈ {0, 1}n+d such that h(X) = h(X ′). Thus
there always exists an efficient collision-outputting algorithm A, namely the one
that outputs (X,X ′). However, as Rogaway discusses at length in [22], rigor-
ous provable security for keyless hash functions is still meaningful, since we
can give explicit reductions (though at the cost of slightly more complex theo-
rem statements). So while the dedicated-key setting enables formally meaningful
collision-resistance and thus simpler theoretical treatments of CR hashing, the
practical impact of this benefit is small.

Efficiency. A significant downside of dedicated keys is efficiency loss. For every
message block hashed using a dedicated-key compression function h: {0, 1}k ×
{0, 1}n+d → {0, 1}n, a total of k + n + d bits must be processed. Compare this
to the situation of current popular hash functions, which only have to process
n+ d bits per block. The efficiency of the hash function therefore goes down by

404 M. Bellare and T. Ristenpart

about k
n+d , which could be an issue in settings where speed is paramount (e.g.,

message authentication of network traffic).

Backwards-compatibility. In many settings it will be desirable to utilize a
hash function that does not reveal a dedicated-key input. This will be partic-
ularly true for backwards-compatibility with existing applications that utilize
a standard hash function H : {0, 1}∗ → {0, 1}n. We point out that it is easy
to allow such compatibility when starting with a dedicated-key hash function
H ′: K×{0, 1}∗→ {0, 1}n. Simply fix an honestly generated and publicly-known
keyK (chosen, for example, by some trusted entity), and define the unkeyed hash
function as H(M) = H ′(K,M).

Adversarially-chosen keys. Most current cryptographically-sanctified ap-
plications of hash functions (e.g., digital signature schemes, message authenti-
cation codes, key derivation, and standard uses of random oracles) only require
security for honestly generated dedicated keys. However, given the wide-spread
use of hash functions in non-standard settings, one should be aware of the po-
tential for abuse in applications that would require security even in the face of
adversarially-chosen keys. A simple solution for such settings could be to require
a fixed, honestly-generated key as mentioned above.

4 Dedicated Key Transforms

Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be a dedicated-key compression function
with d ≥ n ≥ 64. We now describe the various transforms treated in this paper.
A transform H describes how to utilize f (as a black box) in order to generate
a hash function Hf : K ×M → {0, 1}n. A transform is defined in two separate
steps. We first specify an injective padding function that maps from {0, 1}∗ or
{0, 1}≤264

to either D+ = ∪i≥1{0, 1}id or D◦ = ∪i≥1{0, 1}id+d−n. Then we
specify an iteration function which describes how to hash strings in either D+

or D◦. We define the following padding functions:
• pad: {0, 1}∗ → D+ is defined by pad(M) = M || 10r

• pads: D → D+ is defined by pads(M) = M || 10r || 〈|M |〉64
• padPF: {0, 1}∗ → D+ is a prefix-free padding function: for any M,M ′ ∈
{0, 1}∗ where |M |< |M ′| we have that padPF(M) is not a prefix of padPF(M ′).
(For example: pad to make the length a multiple of d − 1, parse the result
into blocks of d− 1 bits, append a zero to each block except the final block,
and append one to the final block.)

• padCS: {0, 1}∗ → D◦ is defined by padCS(M) = M || 10r

• padCSs: D → D◦ is defined by padCSs(M) = M || 10r || 〈|M |〉64 || 0p

where for pad, pads, and padCS the value r is the minimal number of zeros so
that the returned string is in the range of the padding function. For padCSs we
define p in two potential ways. If d ≥ n+64 (there is room for the strengthening
in the envelope), then p = 0. If d < n + 64 (there is not enough room for the
strengthening in the envelope), then p = d − n. Then r is the number of zeros

Hash Functions in the Dedicated-Key Setting 405

Algorithm f+(K, M):

M1 · · ·Mm
d←M ; Y0 ← IV

for i = 1 to m do
Yi ← fK(Yi−1 || Mi)

ret Ym

d

M1

f
IV

M2

f
· · ·

n

f

K K K

Mm

Ym
n

Algorithm fSh((K, {Ki}t
1), M):

M1 · · ·Mm
d←M ; Y0 ← IV

for i = 1 to m do
Yi ← fK((Yi−1 ⊕Kν(i)) || Mi)

ret Ym

d

M1

f
IV

M2

f
· · ·

n

f

K1K0 K0
K K K

Mm

Ym

Kν(m)

Algorithm fNI((K1, K2), M):

M1 · · ·Mm
d←M

Ym−1 ← f+(K1, M1 · · ·Mm−1)
ret Ym ← fK2(Ym−1 || Mm)

d

M1

n

f
IV

K1

M2

n

f

K1

· · ·
n

Yk

f

K2

Mm

Algorithm fCS(K, M):

M1 · · ·Mm
d←M

Ym−1 ← f+(K, M1 · · ·Mm−1)
ret fK(IV 2 || Ym−1 || Mm)

d

M1

f

n

K

IV 1 · · ·
f

Mk−1

n

f
Yk

Mk

K

K

n

d− n

IV 2

Algorithm fESh((K, {Ki}t
1), M):

M1 · · ·Mm
d←M

Y ← fSh((K, {Ki}t
1), M1 · · ·Mm−1)

I ← IV 2⊕K0; Y ′ ← Y ⊕Kν(m)
ret fK(I || Y ′ || Mm)

d

M1

f

K

· · ·
f

K

Mm−1
Mm

f

K0 K1 Kν(m−1) K

IV 2

Kν(m) K0

d− n

n
Ym

IV 1

Fig. 2. The algorithms and diagrams detailing the iteration functions we consider.
Transforms are the composition of an iteration function and a padding function.

needed to make the returned string in D◦. Note that we restrict our attention
to padding functions g such that for any messages M,M ′ for which |M | = |M ′|
we have that |g(M)| = |g(M ′)|.

The iteration functions we consider are specified in Figure 2, and we use them
to now define the seven previously proposed transforms. The basic Merkle-
Damg̊ard (MD) iteration f+: {0, 1}k × D+ → {0, 1}n repeatedly applies f .
The plain MD transform [16,12] is MD[f] = f+(k, pad(m)). The strength-
ened MD transform [12] is sMD[f] = f+(k, pads(m)). The prefix-free MD

406 M. Bellare and T. Ristenpart

transform [15] is Pre[f] = f+(k, padPF(m)). The placeholders k and m designate
how to handle the key and message inputs. The Shoup iteration fSh: ({0, 1}k×
{0, 1}tn)×D+ → {0, 1}n utilizes t = �log2(σ)� key masks where σ the maximal
number of iterations of f allowed. Also we define ν(i) to be the largest value x
such that 2x divides i. The key masks {Ki}t1 ∈ {0, 1}tn are t n-bit keys that
are used to ‘mask’ chaining variables with secret key material. Then the Shoup
transform [24] is Sh[f] = fSh(k, pads(m)). The nested iteration fNI: ({0, 1}k ×
{0, 1}k) × D+ → {0, 1}n just envelopes an f+ iteration with an application
of f using a second key. The strengthened Nested Iteration transform [1]
is sNI[f] = fNI(k, pads(m)). The Nested Iteration transform [15] is NI[f] =
fNI(k, pad(m)). The chain shift iteration fCS: {0, 1}k×D◦ → {0, 1}n, envelopes
an internal f+ iteration with an application of f(IV 2 || ·). We require that IV 2 �=
IV 1. The chain shift transform [15] is CS[f] = fCS(k, padCS(m)).

Now we define two new transforms. The strengthened Chain Shift trans-
form sCS[f] = fCS(k, padCSs(m)) adds strengthening to the CS transform. The
enveloped Shoup iteration fESh: ({0, 1}k × {0, 1}tn)×D◦ → {0, 1}n uses an in-
ternal fSh iteration and then an envelope like the one used in fCS. Note that the
output of fSh is xor’d with a key mask and IV 2 is xor’d with K0 (which serves
to preserve that IV 1 �= IV 2 across the masking). Then the Enveloped Shoup
transform is ESh[f] = fESh(k, padCSs(m)).

For a fixed compression function f each transform defines a hash function,
e.g. MDf = MD[f] is the hash function with signature MDf : {0, 1}k×{0, 1}∗ →
{0, 1}n defined by MDf (K,M) = f+(K, pad(M)).

For each padding function g (and therefore each transform) we define an
efficiency function τg: N → N defined as τg(L) = �|g(M)|/d� for any M ∈
{0, 1}L. For brevity we will often just write τ(L) where the padding function of
interest is clear from context. Note that efficiency functions are called application
functions in [15]. The efficiency functions are given in Figure 1, where for padPF
we utilize the concrete example outlined above.

5 Security Analysis of the Transforms

We now analyze the security of the nine transforms in terms of the five different
security goals. The summary of our analysis is given in Figure 1. Some of the
results are already established by prior work; we omit discussion of these and
refer the reader to the given citations. We discuss each security property in turn.
Due to a lack of space, we cannot include any proofs here. A complete treatment,
including proofs, is given in the full version of the paper [5].

5.1 Collision Resistance Preservation

Collision-resistance preservation is typically achieved via strengthening: append-
ing the length of a message to it before processing. Not surprisingly, transforms
that omit strengthening are not CR-Pr: we show this for Pre, NI, and CS. On
the other hand, those that include strengthening are CR-Pr, as we show for sNI,
sCS, and ESh.

Hash Functions in the Dedicated-Key Setting 407

Theorem 1. [Negative results: Pre, NI, CS] Let f : {0, 1}k × {0, 1}n+d →
{0, 1}n−1 be a (t, n+ d, ε)-cr function. Then there exists a function g: {0, 1}k×
{0, 1}n+d → {0, 1}n that is (t− c1, n+ d, ε)-cr but Pre[g],NI[g],CS[g] are at most
(c2, 3d, 1)-cr where c1, c2 are small constants. �
Theorem 2. [Positive results: sNI, sCS, ESh] Let f : {0, 1}k × {0, 1}n+d →
{0, 1}n be a (t, n+ d, ε)-cr function. Then T[f] is (t′, L, ε′)-cr where for
(1) T = sNI we have t′ = t− c1τ(L) and ε′ = ε/2
(2) T ∈ {sCS,ESh} we have t′ = t− c2τ(L) and ε′ = ε
where c1, c2 are small constants. �

5.2 MAC (Unforgeability) Preservation

We show that MD, sMD, and Sh do not preserve unforgeability. Recall that in this
setting, the key material (including the key masks of Sh) is secret and therefore
unknown to the adversary. While it may not be surprising that MD and sMD are
not MAC-Pr, one might be tempted to think that the large amount of secret key
material used in Sh could assist in preserving unforgeability. Unfortunately this
is not the case, though the counter-example is involved [5]. On the positive side,
we have that ESh is MAC-Pr, which can be shown using the proof techniques
in [15].

Theorem 3. [Negative results: MD, sMD, Sh] If there exists a function
f : {0, 1}k×{0, 1}n+d→ {0, 1}n−1 that is a (t, q, n+ d, ε)-mac, then there exists
a function g: {0, 1}k×{0, 1}n+d → {0, 1}n that is a (t−c1q, q, n+d, ε)-mac but
(1) MD[g], sMD[f ′] are at most (c2, n− 1, 3d, 1/2)-mac
(2) Sh[g] is at most a (c3, 2(n− 1), 3d, 1/4)-mac
where c1, c2, and c3 are small constants. �
Theorem 4. [Positive results: ESh] Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be
a (t, q, ε)-mac. Then ESh[f] is a (t− c(q′ + 1)τ(L), q′, L, ε′)-mac where

q′ = (q − τ(L) + 1)/τ(L) and ε′ = (q2/2 + 3q/2 + 1)ε

for c a small constant and any {Ki}t1 ∈ {0, 1}tn with t = log2(τ(L)). �

5.3 Pseudorandom Function Preservation

In the non-dedicated-key setting, building PRF preserving transforms is non-
trivial and the proofs of security are complex. In stark contrast to this, we show
that all of the dedicated-key transforms considered here are PRF-Pr, and the
proofs establishing this are relatively straightforward (see [5]).

Theorem 5. [Positive results: MD, sMD, Pre, Sh, sNI, NI, CS, sCS, ESh]
Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be a (t, q, n + d, ε)-prf. Then T[f] is a
(t′, q′, L, ε′)-prf where for
(1) T ∈ {MD, sMD,Pre, Sh,CS, sCS,ESh}, t′ = t − cqτ(L), q′ = q/τ(L), ε′ =

ε+ q2τ(L)2/2n,
(2) T ∈ {sNI,NI}, t′ = t− cqτ(L), q′ = q/τ(L), ε′ = 2ε+ q2(τ(L)− 1)2/2n

where c is a small constant and {Ki}t1 ∈ {0, 1}tn for t = log2(τ(L)). �

408 M. Bellare and T. Ristenpart

5.4 Pseudorandom Oracle Preservation

Establishing that a transform is PRO-Pr ensures that a hash function constructed
with it “behaves like a random oracle” under the assumption that the compres-
sion function is ideal. This is important for usage of hash functions to instantiate
random oracles, as discussed at length in [11]. To reason about dedicated-key
transforms, we model a compression function f : {0, 1}k × {0, 1}n+d → {0, 1}n
as a family of random oracles, one for each key in {0, 1}k. However, since we only
ever use one or two fixed keys from {0, 1}k, we will (without loss of generality)
simply utilize two separate random oracles f = RFn+d,n and g = RFn+d,n from
the family. This simplifies our analysis, and, in particular, means that many
results from the keyless setting carry over directly to the dedicated-key setting
(see Figure 1). For example, the negative results that MDf and sMDf are not
PROs follows from simple length-extension attacks (see [11]). The security of CS,
and sCS is implied by the security of EMD [6] and the security of sNI and NI is
implied by results in [11].

We point out that Shf is not a PRO. Since the key masks are public, simple
length extension attacks enable an adversary to differentiate between it and a
true variable-input-length random oracle. On the other hand EShf is a PRO.

Theorem 6. [Negative result: Sh] Let f = RFn+d,n be a random oracle.
Then there exists an (c, tS , 2, 1, 2d, 1−2−n)-pro adversary A against Shf for any
simulator S with arbitrary running time tS . The running time of A is a small
constant c. �

Theorem 7. [Positive result: ESh] Let f = RFn+d,n be a random oracle.
Then EShf is a (tA, tS , q1, (q2 + q3), L, ε)-pro where

ε ≤ (l2q21 + (lq1 + q2)(q2 + q3))/2n + lq1/2n

for l = τ(L). The running time tA is arbitrary while tS = O(q22 + q2q3). �

5.5 Target Collision Resistance Preservation

Universal one-way hash functions (UOWHF) were first introduced by Naor and
Reingold [18] and later went by the term target collision resistance (TCR) [10].
The best TCR-Pr transforms known require a logarithmic (in the size of the
messages allowed) amount of key material. Mironov has given strong evidence
that one cannot do better [17]. Due to this and because any CR function is
also TCR [23], it might be sufficient in most settings to utilize a dedicated-
key transform that preserves the four previous properties. Still, target-collision
resistant functions are useful in some settings [10] and establishing their security
based only on the compression function being TCR results in a stronger guarantee
of security (this is analogous to the discussion of MAC-Pr versus PRF-Pr in
Section 3). Thus, we extend our analysis to this property.

In light of Mironov’s result, it is not surprising that Pre, sNI, NI, CS, and sCS
are not TCR-Pr, though we establish these facts directly. On the other hand, a

Hash Functions in the Dedicated-Key Setting 409

proof that ESh is TCR-Pr can be straightforwardly derived from the proof that
Sh is TCR (see [17] or [24]).

Theorem 8. [Negative results: Pre, sNI, NI, CS, sCS] If there exists a func-
tion f : {0, 1}k × {0, 1}n+d → {0, 1}n−1 that is (t, n+ d, ε)-tcr, then there exists
a function g: {0, 1}k × {0, 1}(n+d→ {0, 1}n that is (t− c1, n+ d, ε+ 2−k+1)-tcr
but Pre[g], sNI[g],NI[g],CS[g], sCS[g] are at most (c2, 3d, 1− 2−k)-tcr where c1, c2

are small constants. �

Theorem 9. [Positive result: ESh] Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be
(t, n+d, ε)-tcr. Then ESh[f] is (t− ct2fτ(L)2, L, ετ(L))-tcr for a small constant c
and where Tf is the time to execute f . �

Acknowledgments

The authors are supported in part by NSF grants CNS 0524765, CNS 0627779,
and a gift from Intel Corporation.

References

1. An, J., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message authenti-
cation under weakened assumptions. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

2. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 113–120.
Springer, Heidelberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

4. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: Proceedings of the 37th Annual
Symposium on Foundations of Computer Science – FOCS ’96, IEEE Computer
Society, pp. 514–523. IEEE Computer Society Press, Los Alamitos (1996)

5. Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting:
Design Choices and MPP Transforms (2007), Full version of current paper,
http://www.cse.ucsd.edu/users/mihir/

6. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. First ACM Conference on Computer and Communications
Security – CCS ’93, pp. 62–73. ACM Press, New York (1993)

8. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

9. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign
with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

http://www.cse.ucsd.edu/users/mihir/

410 M. Bellare and T. Ristenpart

10. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

11. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 21–39. Springer, Heidelberg (2005)

12. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

13. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

14. Maurer, U., Sjödin, J.: Domain Expansion of MACs: Alternative Uses of the FIL-
MAC. In: Smart, N.P. (ed.) Cryptography and Coding. LNCS, vol. 3796, pp. 168–
185. Springer, Heidelberg (2005)

15. Maurer, U., Sjödin, J.: Single-key AIL-MACs from any FIL-MAC. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 472–484. Springer, Heidelberg (2005)

16. Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

17. Mironov, I.: Hash functions: from Merkle-Damg̊ard to Shoup. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 166–181. Springer, Heidelberg
(2001)

18. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing – STOC’89, pp. 33–43. ACM Press, New York (1989)

19. National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash
Standard. Supersedes FIPS PUB 180 1993 May 11 (1995)

20. RSA Laboratories. RSA PKCS #1 v2.1: RSA Cryptography Standards (2002)
21. Rivest, R.: The MD4 Message Digest Algorithm. In: Menezes, A.J., Vanstone, S.A.

(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)
22. Rogaway, P.: Formalizing Human Ignorance: Collision-Resistant Hashing without

the Keys. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 221–228.
Springer, Heidelberg (2006)

23. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

24. Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer,
Heidelberg (2000)

25. Tsudik, G.: Message Authentication with One-way Hash Functions. SIGCOMM
Comp. Commun. Rev. 22(5), 29–38 (1992)

26. Wang, X., Yin, Y., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

27. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

Unrestricted Aggregate Signatures

Mihir Bellare1, Chanathip Namprempre2, and Gregory Neven3

1 Department of Computer Science & Engineering,
University of California San Diego, La Jolla, CA 92093, USA

mihir@cs.ucsd.edu
http://www-cse.ucsd.edu/users/mihir

2 Electrical Engineering Department, Faculty of Engineering,
Thammasat University, Klong Lueng, Patumtani 12120, Thailand

nchanath@engr.tu.ac.th
http://chanathip.ee.engr.tu.ac.th

3 Department of Electrical Engineering, Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, B-3001 Heverlee-Leuven, Belgium

Gregory.Neven@esat.kuleuven.be
http://www.neven.org

Abstract. Secure use of the BGLS [1] aggregate signature schemes is re-
stricted to the aggregation of distinct messages (for the basic scheme) or
per-signer distinct messages (for the enhanced, prepend-public-key ver-
sion of the scheme). We argue that these restrictions preclude interesting
applications, make usage of the schemes error-prone and are generally
undesirable in practice. Via a new analysis and proof, we show how the
restrictions can be lifted, yielding the first truly unrestricted aggregate
signature scheme. Via another new analysis and proof, we show that the
distinct signer restriction on the sequential aggregate signature schemes
of [2] can also be dropped, yielding an unrestricted sequential aggregate
signature scheme.

1 Introduction

Aggregate signatures. An aggregate signature (AS) scheme [1] is a digital
signature scheme with the additional property that a sequence σ1, . . . , σn of indi-
vidual signatures —here σi is the signature, under the underlying base signature
scheme, of some message mi under some public key pk i— can be condensed into
a single, compact aggregate signature σ that simultaneously validates the fact
that mi has been signed under pk i for all i = 1, . . . , n. There is a corresponding
aggregate verification process that takes input (pk1,m1), . . . , (pkn,mn), σ and
accepts or rejects. Aggregation is useful to reduce bandwidth and storage, and is
especially attractive for mobile devices like sensors, cell phones, and PDAs where
communication is more power-expensive than computation and contributes sig-
nificantly to reducing battery life.

Schemes. Boneh, Gentry, Lynn, and Shacham [1] present an aggregate signature
scheme based on the BLS signature scheme [3]. We call it AS -1 and represent

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 411–422, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

412 M. Bellare, C. Namprempre, and G. Neven

it succinctly in the first row of Table 1. AS -1, however, has some limitations.
As the table shows, the aggregate verification process, on inputs (pk1,m1), . . . ,
(pkn,mn), σ, rejects if the messages m1, . . . ,mn are not distinct. The restriction
is crucial because, without it, as shown in [1], the scheme is subject to a forgery
attack. The consequence, however, is to restrict the ability to aggregate to set-
tings where the messages signed by the signers are all different. BGLS recognize
this limitation and suggest a workaround. Specifically, they say: “It is easy to
ensure the messages are distinct: The signer simply prepends her public key to ev-
ery message she signs ...” [1, Section 3.2]. They stop short of specifying a scheme
in full, but since it is clearly their intention to “reduce to the previous case,”
our understanding is that they are advocating the modified scheme in which the
signature of a message m under pk is the BLS signature of the enhanced message
M = pk‖m under pk while aggregate verification is done by applying the ag-
gregate verification procedure of AS -1 to (pk1, pk1‖m1), . . . , (pkn, pkn‖mn), σ.
However, if so, in this scheme, which we call AS -2, the aggregate verification
process will reject unless the enhanced messages pk1‖m1, . . . , pkn‖mn are dis-
tinct. (Why? Because the aggregate verification process of AS -1 rejects unless
the messages are distinct, and the role of the messages is now played by the en-
hanced messages.) The consequence is that the ability to aggregate is restricted
to settings where the enhanced messages signed by the signers are all different.
That is, the limitations have been reduced, but not eliminated.

Our result. We ask whether there exists a truly unrestricted proven-secure
aggregate signature scheme. Namely, there should be no distinctness-based re-
striction of any kind, whether on messages or enhanced messages. We show that
the answer is yes. Our result is a new, direct analysis of the security of enhanced-
message signature aggregation which shows that the distinctness condition in the
aggregate verification process of AS -2 —namely that this process rejects if any
two enhanced messages are the same— can be dropped without compromising
security. In other words, an unrestricted scheme can be obtained by the natu-
ral adaptation of AS -2 in which the distinctness condition in the verification is
simply removed and all else is the same. This scheme, which we denote AS -3, is
summarized in the last row of Table 1. The fact that AS -3 is very close to AS -2
is a plus because it means existing implementations can be easily patched.

We clarify that the security of AS -3 is not proved in [1]. They prove secure
only AS -1. The security of AS -2 is a consequence, but the security of AS -3 is
not. What we do instead is to directly analyze security in the case that signatures
are on enhanced messages. Our analysis explicitly uses and exploits the presence
of the prepended public keys to obtain the stronger conclusion that AS -3 (not
just AS -2) is secure.

Motivation. The limitation of AS -2 —namely that aggregation is restricted
to settings where no two enhanced messages are the same— may seem minor,
because all it says is that a set of signatures to be aggregated should not contain
duplicates, meaning multiple signatures by a particular signer of a particular
message. However, as we now explain, there are several motivations for schemes
like AS -3 where aggregation is possible even in the presence of duplicates.

Unrestricted Aggregate Signatures 413

Table 1. The aggregate signature schemes we discuss. Here e: G1 × G2 → GT is a
bilinear map, g is a generator of G2 known to all parties, and H: {0, 1}∗ → G1 is a
hash function. The second column shows the signature of a message m under public
key gx, generated using secret key x. In all cases, a sequence of signatures is aggregated
by simply multiplying them in G1. The third column shows under what conditions the
aggregate verification algorithm accepts σ as a valid aggregate signature of messages
m1, . . . , mn under public keys gx1 , . . . , gxn respectively.

Scheme Sign Aggregate verification process accepts iff

AS -1 [1] H(m)x e(σ, g) =
�n

i=1 e(H(mi), g
xi) and m1, . . . , mn all distinct

AS -2 [1] H(gx‖m)x e(σ, g) =
�n

i=1 e(H(gxi‖mi), g
xi) and

gx1‖m1, . . . , g
xn‖mn all distinct

AS -3 H(gx‖m)x e(σ, g) =
�n

i=1 e(H(gxi‖mi), g
xi)

Consider a sensor network deployed in a remote area, for example, an environ-
ment monitoring network such as the tsunami early warning system already in
operation in the Indian Ocean [4]. The sensors periodically record measurements
from the environment and send them to a monitoring center. In applications
where integrity is important (say, to prevent attackers from raising a false alarm
that a tsunami is coming), each sensor node must sign its data. The center aggre-
gates these data and the signatures to save storage. (The schemes discussed here
permit on-line aggregation in which one can maintain a current aggregate and
aggregate into it a received signature.) However, environmental measurements
can certainly repeat over time! Indeed, especially in stable conditions, we would
expect frequent repeats. Thus, a single signer (sensor) may sign the same data
(measurement) many times. In general, whenever the data being signed is drawn
from a small space, not just messages, but even enhanced messages can repeat
and an unrestricted aggregate signature scheme is necessary.

Perhaps an even more important reason to prefer unrestricted schemes is
that they are less likely to be misused or to result in unexpected errors. An
application designer contemplating using AS -2 must ask herself whether, in her
application, enhanced messages might repeat. This may not only be hard to
know in advance, but might also change with time. (Experience has repeatedly
shown that once a piece of cryptography is deployed, it is used for purposes or
applications beyond those originally envisaged.) With an unrestricted scheme,
the application designer is freed from the need to worry about whether the
setting of her application meets the restrictions, reducing the chance of error. In
general, application designers and programmers have a hard enough time as it
is to make error-free use of cryptography. Asking them to understand message
distinctness restrictions and anticipate whether their application meets them is
an added burden and one more place where things can go wrong.

Possible workarounds. Various ways to get around message distinctness re-
strictions may come to mind, but these workarounds either do not work or tend

414 M. Bellare, C. Namprempre, and G. Neven

to be more complex or restrictive than direct use of an unrestricted scheme. For
example, one could have the verifier drop from its input list (pk1,m1), . . . , (pkn,
mn), σ any pair pk i,mi that occured previously in the list, but then, assuming
σ was a correct aggregate signature of the given list, it will not be a correct
aggregate signature for the truncated list, and verification will fail. Another
possibility is that the aggregator refrain from including in the aggregate any
signature corresponding to a public key and message whose signature is already
in the aggregate. But aggregation may be done on-line, and the aggregator may
know only the current aggregate and the incoming signature, and have no way to
tell whether or not it is a duplicate. Nonces (timestamps or sequence numbers)
could be added to messages to render them unique, but this would complicate
the application and increase cost.1 Being able to use AS -3 without any worries
about signature or message replication is simpler, easier, and more practical.

Results for SASs. A sequential aggregate signature (SAS) scheme [2] permits
a more restrictive kind of aggregation in which the signers must participate in
the process and use their secret keys. Imagine the signers forming a chain. In
step i, the i-th signer receives from the previous one a current aggregate, and,
using its secret key, it aggregates into this its own signature, passing the new
aggregate on to the next signer in the chain. The output of the final signer is
the aggregate signature. Although clearly less powerful than general aggregate
signature (GAS) schemes —following [5] we now use this term for the BGLS-
type aggregate signatures discussed above in order to distinguish them from
SASs— the argument of [2] is that sequential aggregation is possible for base
signature schemes other than BLS or may be done more cheaply. Specifically,
Lysyanskaya, Micali, Reyzin, and Shacham [2] present a SAS scheme based on
certified [6] claw-free trapdoor permutations.

However, the model and schemes of [2] also have some limitations. They re-
quire that no public key can appear more than once in a chain. That is, the
signers who are part of a signing chain must be distinct. But in practice there
are many reasons to prefer to allow aggregation even when a particular signer
signs multiple messages, meaning when there are loops in the chain and public
keys can repeat. Certainly, the previously discussed motivations are still true.
Namely, in applications like signing in sensor nets or ad hoc networks, a particu-
lar signer (sensor) will be producing many signatures and it would be convenient
to allow these to be aggregated. More importantly, an unrestricted SAS scheme
is more misuse resistant because it does not require the application designer
to try to predict in advance whether or not there will be repeated signers in a
prospective chain. But in fact the restrictions in [2] are even greater than the
ones for AS -2, for they say not only that one cannot aggregate when a particular
signer signs a particular message twice, but that one cannot aggregate even when

1 Nonces might be added anyway to prevent replay attacks. If so, well and good. But
replay attacks are not always a concern. In some settings, an adversary might be
able to inject bogus data, yet be unable to eavesdrop. Without eavesdropping, the
adversary clearly cannot replay data. This could be true for the ocean sensor scenario
we discussed above.

Unrestricted Aggregate Signatures 415

a particular signer signs two or more messages that are distinct. This makes the
number of excluded applications even larger, for it is common that a particular
signer needs to sign multiple messages.

Our result —analogous to the GAS case— is a new analysis and proof that
shows that the restrictions imposed by [2] on their schemes can be lifted with-
out impacting security (that is, verification can just drop the condition that one
reject if there are repeated public keys, and security is preserved), yielding unre-
stricted schemes. Again, that only a minor modification to the scheme is needed
is convenient if existing implementations need to be updated. The precise result
statement and the accompanying proof are in the full version of this paper [7].

Tight reduction results. The security of AS -1,AS -2, and AS -3 is based on
the coCDH problem. However, none of the security reductions —namely, those
of [1] in the first two cases and ours in the last— are tight. By applying the
technique of Katz and Wang [8], we obtain an alternative scheme AS -4 with
a tight security reduction to coCDH. When implemented over the same group,
AS -1,AS -2,AS -3, and AS -4 all have about the same computational cost, the
price for AS -4 being a slightly larger aggregate signature. (Specifically, one needs
one extra bit per constituent signature.) However, due to the tight reduction,
AS -4 is actually more efficient than the other schemes when one compares them
at the same (provable) security level. (Because to achieve a given level of security,
AS -4 needs a smaller group than the other schemes.) We also obtain an analogous
result for the SAS case. The statements and the proofs of our tight reduction
results are in the full version of this paper [7].

Related work. Lu, Ostrovsky, Sahai, Shacham, and Waters [9] present a SAS
scheme for which they can lift the distinct signer restriction, as follows. If a signer
wishes to add its signature of a message Mnew to an aggregate S which already
contains its signature Sold on some message Mold, then it removes Sold from S
and then adds back in a signature on the message Mnew‖Mold. However, their
scheme is weaker than the others we have discussed —ours or those of [1,2]— with
regard to some security properties and also with regard to efficiency. Specifically,
[9] uses the certified public key model [10,11], which reflects the assumption
that signers provide strong ZK proofs of knowledge of secret keys to the CA
at key-registration, an assumption that we, following [1,2], do not make. Also,
in the scheme of [9], public keys are very large, namely 162 group elements,
which is particularly expensive if public keys have to be transmitted along with
signatures. In contrast, other schemes have short public keys. On the other hand,
the proofs of [9] are in the standard model, while ours, following [1,2], are in the
random oracle model of [12].

Interestingly, in a survey paper, Boneh, Gentry, Lynn, and Shacham [5]
present AS -3, claiming that the results of [1] prove it secure. However, this
appears to be an oversight because, as we have seen, the results of [1] prove
AS -2 secure, not AS -3. By proving AS -3 secure via our direct analysis, we are
filling the gap and validating the claim of [5]. Shacham’s Ph.D thesis [13] notes
that the concrete security of the reduction of [1] can be slightly improved by
replacing messages with enhanced ones, but he does not claim security of AS -3.

416 M. Bellare, C. Namprempre, and G. Neven

2 Notation and Basic Definitions

Notation and conventions. If x is a string, then |x| is the length of x. We
denote by x1‖ · · · ‖xn an encoding of objects x1, . . . , xn as a binary string from
which the constituent objects are uniquely recoverable. When the objects can be
encoded as strings whose length is known from the context, simple concatenation
will serve the purpose. If S is a finite set, then |S| is its size, and s $← S means
that s is chosen at random from S. We let e denote the base of the natural
logarithm. An algorithm may be randomized unless otherwise indicated. An
adversary is an algorithm. If A is an algorithm then y

$← A(x1, x2, . . .) means
that y is the result of executing A on fresh random coins and inputs x1, x2,
We denote by [A(x1, x2, . . .)] the set of all possible outputs of A on the indicated
inputs, meaning the set of all strings that have a positive probability of being
output by A on inputs x1, x2, We let Maps(D) denote the set of all functions
with domain {0, 1}∗ and range D.

Digital signature schemes. We recall definitions for (standard) signature
schemes [14] in the random-oracle (RO) model [12]. A signature scheme DS =
(Kg, Sign,Vf) is specified by three algorithms, the last deterministic. Via (pk ,
sk) $← Kg, a signer generates its public key pk and matching secret key sk ,
where H: {0, 1}∗ → D is a random oracle whose range D is a parameter of the
scheme. Via σ $← SignH(sk ,m) the signer can generate a signature σ on a message
m. A verifier can run VfH(pk ,m, σ) to obtain a bit, with 1 indicating accept
and 0 reject. The consistency (or correctness) condition is that the probability
that VfH(pk ,m, σ) = 1 must equal one for all messages m ∈ {0, 1}∗, where the
probability is over the following experiment:

(pk , sk) $← Kg ; H
$← Maps(D) ; σ $← SignH(sk ,m) .

To capture security (unforgeability under chosen-message attack), we define the
advantage of an adversary B, denoted by Advuf-cma

DS (B), as the probability that
VfH(pk ,m, σ) = 1, where the probability is over the following experiment:

(pk , sk) $← Kg ; H
$← Maps(D) ; (m,σ) $← BSignH(sk ,·),H .

To make this meaningful, we only consider adversaries that are legitimate in the
sense that they never queried the message in their output to their sign oracle.
We say that DS is (t, qS, qH, ε)-secure if no adversary B running in time at most
t, invoking the signature oracle at most qS times and the random oracle at most
qH times, has advantage more than ε.

3 Unrestricted General Aggregate Signatures

GAS schemes. A general aggregate signature (GAS) scheme [1] AS = (Kg,
Sign,Agg,AVf) consists of four algorithms, the last deterministic. The key gen-
eration and signing algorithms are exactly as for standard digital signatures. Via

Unrestricted Aggregate Signatures 417

σ
$← AggH((pk 1,m1, σ1), . . . , (pkn,mn, σn)), anyone can aggregate a sequence of

public key, message, and signature triples to yield an aggregate signature σ. A
verifier can run AVfH((pk1,m1), . . . , (pkn,mn), σ) to obtain a bit, with 1 indi-
cating accept and 0 reject.

Security. The security requirement of [1] is strong, namely that an adversary
find it computationally infeasible to produce an aggregate forgery involving an
honest signer, even when it can play the role of all other signers, in particular
choosing their public keys, and can mount a chosen-message attack on the honest
signer. To capture this, we define the advantage of an adversary A as

Advagg-uf
AS (A) = Pr

[
AVfH((pk 1,m1), . . . , (pkn,mn), σ) = 1

]

where the probability is over the experiment

(pk , sk) $← Kg ; H
$← Maps(D) ;

((pk1,m1), . . . , (pkn,mn), σ) $← ASignH(sk ,·),H(pk) .

To make this meaningful, we only consider adversaries that are legitimate in the
sense that there must exist i ∈ {1, . . . , n} such that pk i = pk but A never queried
mi to its signing oracle. Thus, the honest signer here is the one whose keys are
pk , sk , and we are asking that the aggregate forgery include some message and
signature corresponding to this honest signer, but the adversary never legiti-
mately obtained a signature of this message. We say that A (t, qS, nmax, qH, ε)-
breaks AS if it runs in time at most t, invokes the signature oracle at most
qS times, invokes the hash oracle at most qH times, outputs a forgery contain-
ing at most nmax public-key-message pairs, and has advantage strictly greater
than ε. We say that AS is (t, qS, nmax, qH, ε)-secure if there is no adversary that
(t, qS, nmax, qH, ε)-breaks AS .

A significant feature of this definition, highlighted in [1], is that A can choose
pk1, . . . , pkn as it wishes, in particular as a function of pk . Unlike [10,11,9], there
is no requirement that the adversary “know” the secret key corresponding to a
public key it produces, and this makes the system more practical since it avoids
the need for strong zero-knowledge proofs of knowledge [15] of secret keys done
to the CA during key-registration. Our results continue to achieve this strong
notion of security.

Bilinear maps and coCDH. Let G1,G2,GT be groups, all of the same prime
order p. Let e: G1 × G2 → GT be a non-degenerate, efficiently computable bi-
linear map, also called a pairing. Let g be a generator of G2. For the rest of
the paper, we regard G1,G2,GT , e, g as fixed, globally known parameters, and
also let texp denote the time to perform an exponentiation in G1. Note that
following [3,1] we use the asymmetric setting (G1,G2 are not necessarily equal)
and must also assume there exists an isomorphism ψ: G2 → G1. (The first is
in order to make signatures as short as possible, and the second is required for

418 M. Bellare, C. Namprempre, and G. Neven

the security proofs.) We define the advantage of an adversary A in solving the
coCDH problem as

Advco-cdh(A) = Pr
[

A(g, ga, h) = ha : h $← G1 ; a $← Zp

]
.

We say that the coCDH problem is (t′, ε′)-hard if no algorithm A running in
time at most t′ has advantage strictly more than ε′ in solving it. Note that
when G1 = G2, the coCDH problem becomes the standard CDH problem in G1,
whence the name.

The BLS scheme. We recall the BLS standard signature scheme of [3]. The
signer chooses a secret key x $← Zp and computes the corresponding public key
X ← gx. Let H : {0, 1}∗ → G1 be a random oracle. The signature of message
m is σ = H(m)x, which can be verified by checking that e(σ, g) = e(H(m), X).
Regarding security, we have the following:

Theorem 1 [3]. If the coCDH problem is (t′, ε′)-hard, then the BLS standard
signature scheme is (t, qS, qH, ε)-secure for any t, qS, qH, ε satisfying ε ≥ e(qS +
1) · ε′ and t ≤ t′ − texp(qH + 2qS) .

The GAS schemes we consider. We consider four closely related aggregate
signature schemes that we denote AS -0 ,AS -1,AS -2,AS -3. These schemes share
common key generation and aggregation algorithms, but differ in their sign-
ing and verification algorithms. All use a random oracle H : {0, 1}∗ → G1.
Key generation is exactly as in the BLS scheme: the secret key is an exponent
x

$← Zp and the corresponding public key is X = gx. For AS -0 and AS -1,
the signing algorithm is the BLS one, namely the signature on message m is
σ = H(m)x. For AS -2 and AS -3, a signature on m under public key X is
σ = H(X‖m)x. For all schemes, aggregation is done by simply multiplying the
signatures, i.e. σ =

∏n
i=1 σi in G1. Verification is different for each scheme. On

inputs (X1,m1), . . . , (Xn,mn), σ, the verification algorithm of AS -0 accepts iff
e(σ, g) =

∏n
i=1 e(H(mi), Xi). The verification algorithms of the other schemes

are depicted in Table 1. In particular, AS -1 rejects if m1, . . . ,mn are not all
distinct, AS -2 rejects if X1‖m1, . . . , Xn‖mn are not all distinct, while AS -3 per-
forms no such checks.

Consistency conditions. The consistency condition (under what conditions
correctly generated aggregates are accepted by the verifier) differs from scheme
to scheme, and is in fact the place where the restrictions they make surface in
a formal sense. AS -0 and AS -3 meet the natural, strongest possible consistency
requirement, namely that

Pr
[
AVfH((pk 1,m1), . . . , (pkn,mn), σ) = 1

]
= 1

for all positive integers n, all messages m1, . . . ,mn ∈ {0, 1}∗ and all (pk1,

sk1), . . . , (pkn, skn) ∈ [Kg], where the probability is over the experiment H
$←

Maps(D); σ1
$← SignH(sk1,m1); · · · ; σn

$← SignH(skn,mn); σ $← AggH((pk1,m1,

Unrestricted Aggregate Signatures 419

σ1), . . . , (pkn,mn, σn)). However, AS -1 meets this condition only when m1, . . . ,
mn are distinct and AS -2 when pk1‖m1, . . . , pkn‖mn are distinct.

Discussion of security. An attack provided in [1] shows that AS -0 is in-
secure. In this attack, however, the forgery output by the adversary contains
repeated messages. To exclude the attack, [1] defines AS -1, where the aggregate
verification process rejects when messages repeat. They are able to show that
this suffices to guarantee security, meaning that they prove AS -1 is secure if the
coCDH problem is hard. This is their main result. Then they suggest to alleviate
the message-distinctness restriction of AS -1 by having each signer prepend its
public key to the message before signing. However, they appear to want to argue
the security of the resulting aggregate signature scheme as a corollary of their
main result on the security of AS -1. If so, verification still needs to check that
X1‖m1, . . . , Xn‖mn are all distinct (otherwise, the result about AS -1 does not
apply), leading to the AS -2 scheme.

As we have discussed, however, for practical reasons, AS -3 is a preferable
scheme. But the results of [1] do not prove it secure. Here is an example that
helps to see what the problem is. Suppose there was an adversary A that, on
input pk = X and without making oracle query m, produced a forgery of the
form (X,m), (X ′,m′), (X ′,m′), σ, for some m′ �= m and X ′ �= X , that was
accepted by the verification procedure of AS -3. Since the output of A contains
repeated enhanced messages, the results of [1] do not allow us to rule out the
existence of A. Yet, showing that AS -3 meets the notion of security that we have
defined does require ruling out the existence of such an A.

Theorem 2. If the coCDH problem is (t′, ε′)-hard, then the AS -3 aggregate
signature scheme is (t, qS, nmax, qH, ε)-secure for any t, qS, nmax, qH, ε satisfying
ε ≥ e(qS + 1) · ε′ and t ≤ t′ − texp(2qH + 2qS + 3nmax + 1) .

Our approach to the proof is different from the one used by [1] to prove that AS -1
is secure if coCDH is hard. They gave a direct reduction to coCDH, meaning,
given an adversary attacking AS -1 they construct and analyze an adversary
attacking coCDH. But, in so doing, they end up duplicating a lot of the proof of
the security of the BLS scheme as given in [3]. Instead, we reduce the security
of AS -3 to the security of BLS . That is, we prove the following:

Lemma 3. If the BLS standard signature scheme is (t′, q′S, q
′
H
, ε′)-secure then

the AS -3 aggregate signature scheme is (t, qS, nmax, qH, ε)-secure for any t, qS,
nmax, qH, ε satisfying ε ≥ ε′, qS ≤ q′S − nmax, qH ≤ q′H and t ≤ t′ − texp · (qH +
nmax + 1) .

Theorem 2 follows easily from Lemma 3 and Theorem 1. Our modular approach
yields a simple proof even though we obtain a somewhat stronger result.

An interesting element of the proof of Lemma 3 is that it involves reducing
the security of one random oracle model scheme to another one. Given a forger
A against AS -3 that queries a random oracle, we must build a forger B against
BLS . But B is itself given a random oracle. The idea is that B will answer some
of A’s queries via its own random oracle and directly simulate the others.

420 M. Bellare, C. Namprempre, and G. Neven

Subroutine H-sim(M)
If (∃m : M = X∗‖m) then return HBLS (M)

Else If HT[M] = ⊥ then y[M]
$← Zp ; HT[M] ← ψ(g)y[M]

Return HT[M]

Subroutine Sign-sim(m)
Return SignBLS (x∗, X∗‖m)

Fig. 1. The subroutines for B to simulate the random oracle HAS-3(·) and the sign
oracle SignAS-3(x

∗, ·). Above, HT and y are associative arrays assumed initially to have
value ⊥ everywhere.

Proof (Lemma 3). Given a forger A that (t, qS, nmax, qH, ε)-breaks AS -3, consider
the following forger B against the BLS standard signature scheme. B is given
public key X∗ = gx

∗
as input, and has access to a random oracle HBLS(·) and a

signing oracle SignBLS(x∗, ·) = HBLS(·)x∗
. It runs A on input X∗ and responds to

its HAS-3(·) and SignAS-3(x∗, ·) oracle queries using the subroutines in Fig. 1.
When A submits a query M to its random oracle HAS-3(·), the forger B exe-

cutes H-sim(M). We note here that in some cases the subroutine H-sim can in
turn submit queries to B’s random oracle HBLS(·). When A submits a query m
to its sign oracle SignAS-3(x∗, ·), the forger B executes Sign-sim(m). Eventually,
A halts and outputs a forgery (X1,m1), . . . , (Xn,mn), σ. Since A is legitimate,
we know that there exists i ∈ {1, . . . , n} such that Xi = X∗ and mi has never
been queried to SignAS-3(x∗, ·). We let i∗ denote the smallest integer i for which
this happens. Now B defines the sets:

I = { i | Xi = X∗ and mi = mi∗ }
J = { i | Xi = X∗ and mi �= mi∗ }
K = { i | Xi �= X∗ } .

Note that I is non-empty since i∗ ∈ I. Clearly, we have that I∪J∪K = {1, . . . , n}
and that I, J,K are disjoint. Now, we can assume without loss of generality that
n < p, because otherwise B can trivially forge and output a BLS signature under
X∗ in time O(ntexp) via exhaustive search for x∗. This means that |I| ∈ Z∗

p, and
hence has an inverse modulo p that we denote by l. Now, for each i ∈ J , our
adversary B executes Sign-sim(mi) to obtain σi ← SignBLS (x∗, X∗‖mi). For each
i ∈ K, it calls its subroutine H-sim(Xi‖mi), thereby ensuring that y[Xi‖mi] is
defined, lets yi ← y[Xi‖mi], and then lets σi ← ψ(Xi)yi , which we note is the
BLS signature of Xi‖mi under public key Xi. Finally, B lets

M∗ ← X∗‖mi∗ and σ∗ ←
(
σ ·

∏
i∈ J∪K σ

−1
i

)l
, (1)

and outputs (M∗, σ∗) as its forgery.
For the analysis, we first argue that if A’s forgery is valid then B’s forgery is

valid too. Assuming the former, the verification equation of AS -3 tells us that

e(σ, g) =
n∏

i=1

e
(
HAS-3(Xi‖mi) , Xi

)

Unrestricted Aggregate Signatures 421

=
∏

i∈I
e
(
HBLS(X∗‖mi∗) , X∗) ·

∏

i∈J
e
(
HBLS(X∗‖mi) , X∗) ·

∏

i∈K
e
(
HAS-3(Xi‖mi) , Xi

)

= e
(
HBLS(X∗‖mi∗) , X∗)|I| ·

∏

i∈J∪K
e(σi , g) . (2)

Above, (2) is true because σi, as computed above by B, is the BLS signature of
Xi‖mi under public key Xi, for all i ∈ J ∪K. We then applied the verification
equation of the BLS scheme. Now we see that if σ∗ is defined by (1) then, from
the above and the fact that |I| · l ≡ 1 (mod p) we have

e(σ∗, g) = e(σ, g)l ·
∏

i∈J∪K
e(σi, g)−l

= e
(
HBLS(X∗‖mi∗) , X∗)|I|·l mod p ·

∏

i∈J∪K
e(σi , g)l ·

∏

i∈J∪K
e(σi, g)−l

= e
(
HBLS(M∗) , X∗) ,

which means that σ∗ is a valid BLS signature of M∗ under public key X∗.
Furthermore, it is easy to see that the answers that B provided to the oracle

queries of A are distributed identically to the ones that A would have obtained
from its oracles in the game defining its advantage. The last thing we need
to check is that B is legitimate, meaning did not query M∗ = X∗‖mi∗ to its
SignBLS (x∗, ·) oracle. But it did not do so while answering SignAS-3(x∗, ·) or-
acle queries of A because A, being legitimate itself, did not query mi∗ to its
SignAS-3(x∗, ·) oracle. Now B also called SignBLS(x∗, ·) on X∗‖mi for all i ∈ J ,
but by definition of J , we know that mi �= mi∗ . Putting everything together, we
get Advuf-cma

BLS (B) ≥ Advagg-uf
AS-3 (A).

Finally, we analyze the resource usage of B. For qS, we note that B makes sign
queries in only two situations: (1) whenever A makes a sign query, so does B, and
(2) once A outputs a forgery, B makes |J | ≤ nmax additional sign queries. For qH,
it is easy to see that B makes at most the same number of random oracle queries
to HBLS as A makes to HAS-3 . For t, notice that B (1) answers qH random oracle
queries, each of which results in a call to H-sim, (2) possibly makes nmax more
calls to H-sim after A outputs its forgery, and (3) computes one exponentiation
in the last step to convert A’s forgery into its own. Thus, the claimed running
time bound follows, and the proof is complete.

Acknowledgments

Mihir Bellare was supported by NSF grants CNS-0524765, CNS-0627779, and a
gift from Intel Corporation. Chanathip Namprempre was supported by the Thai-
land Research Fund. Gregory Neven is a Postdoctoral Fellow of the Research

422 M. Bellare, C. Namprempre, and G. Neven

Foundation Flanders, and was supported in part by the Concerted Research Ac-
tion Ambiorics 2005/11 of the Flemish Government and the European Commis-
sion through the IST Programme under Contract IST-2002-507932 ECRYPT.
We thank the ICALP 2007 anonymous referees for their valuable comments.

References

1. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) Advances in Cryptology – EU-
ROCRPYT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

2. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

3. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

4. Intergovernmental Oceanographic Commission of UNESCO: Towards the estab-
lishment of a tsunami warning and mitigation system for the Indian Ocean (Last
accessed, April 13, 2007) Available at http://ioc3.unesco.org/indotsunami/

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: A survey of two signature aggrega-
tion techniques. RSA’s CryptoBytes 6(2) (2003)

6. Bellare, M., Yung, M.: Certifying permutations: Noninteractive zero-knowledge
based on any trapdoor permutation. Journal of Cryptology 9(3), 149–166 (1996)

7. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. Full
version of this paper (2006) Available from http://eprint.iacr.org/2006/285

8. Katz, J., Wáng, N.: Efficiency improvements for signature schemes with tight se-
curity reductions. In: ACM CCS 03, pp. 155–164. ACM Press, New York (2003)

9. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EU-
ROCRYPT 2006. LNCS, vol. 4004, Springer, Heidelberg (2006)

10. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient en-
cryption schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99.
Springer, Heidelberg (2002)

11. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

12. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 93, pp. 62–73. ACM Press, New York (1993)

13. Shacham, H.: New Paradigms in Signature Schemes. PhD thesis, Stanford Univer-
sity (2005)

14. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

15. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

http://ioc3.unesco.org/indotsunami/
http://eprint.iacr.org/2006/285

Ring Signatures of Sub-linear Size Without Random
Oracles

Nishanth Chandran, Jens Groth�, and Amit Sahai��

UCLA Computer Science Department
4732 Boelter Hall, Los Angeles CA 90095, USA
{nishanth,jg,sahai}@cs.ucla.edu

Abstract. Ring signatures, introduced by Rivest, Shamir and Tauman, enable a
user to sign a message anonymously on behalf of a “ring”. A ring is a group of
users, which includes the signer. We propose a ring signature scheme that has size
O(
√

N) where N is the number of users in the ring. An additional feature of our
scheme is that it has perfect anonymity.

Our ring signature like most other schemes uses the common reference string
model. We offer a variation of our scheme, where the signer is guaranteed anony-
mity even if the common reference string is maliciously generated.

1 Introduction

Ring signatures, introduced by Rivest, Shamir and Tauman [RST06], enable a user to
sign a message anonymously on behalf of a “ring” with the only condition that the user
is a member of the ring. A ring is a collection of users chosen by the signer. The signer
has to be a member of the ring but the other users do not need to cooperate and may be
unaware that they are included in a ring signature.

A variety of applications have been suggested for ring signatures in previous works
(see for example [RST06,Nao02,DKNS04]). The original application given was the
anonymous leaking of secrets. For example, a high-ranking official in the government
wishes to leak some important information to the media. The media want to verify
that the source of information is valid, at the same time the official leaking it desires
anonymity. Ring signatures give us a way to achieve this task, wherein the media can
verify that some high-ranking government official signed the message but cannot ascer-
tain which member actually leaked the secret. Another application is that of designated-
verifier signatures [JSI96]. Ring signatures enable Alice to sign an email and send it to
Bob with the property that Bob cannot convince a third party that Alice actually sent
him this message.

The description of the ring itself is in general linear in the number of members be-
cause it is necessary to specify the users included in the ring. Yet, one might face a
situation wherein we would like to verify many different signatures on the same ring.

� Supported by NSF ITR/Cybertrust grant No. 0456717.
�� Supported by grant No. 0456717 from the NSF ITR and Cybertrust programs, an equipment

grant from Intel, and an Alfred P. Sloan Foundation Research Fellowship.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 423–434, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

424 N. Chandran, J. Groth, and A. Sahai

In this case, the size of the ring-signature being sub-linear is quite useful.1 Most ring
signature schemes known today are of linear size in the number of ring members, the
only exception being the scheme in [DKNS04], which is independent of the size of the
ring. Apart from [CWLY06,BKM06,SW06,Boy07], to the best of our knowledge, all
other constructions (including [DKNS04]) are in the random oracle model. The scheme
in [CWLY06] is based on a strong new assumption, while in [BKM06], the scheme uses
generic ZAPs for NP, thus making it impractical. Shacham and Waters [SW06] give a
construction of linear size that is secure under the computational setting of the defi-
nitions in [BKM06]. Boyen [Boy07] gives a linear size ring signature in the common
random string model with perfect anonymity. Our goal is to construct a sub-linear size
ring-signature scheme with perfect anonymity without random oracles.

1.1 Our Contribution

We give the first ring signature of sub-linear size without random oracles. Our scheme
is based on composite order groups with a bilinear map. Security is based on the strong
Diffie-Hellman assumption [BB04] and the subgroup decision assumption [BGN05].
Our scheme has perfect anonymity in the common reference string model. To reduce
the amount of trust in the common reference string, we also offer a variant of our scheme
that gives an unconditional guarantee of anonymity even if the common reference string
is generated maliciously. Both schemes have ring signatures of size O(k

√
N) bits,

whereN is the number of users in the ring and k is a security parameter.

TECHNIQUE. The broad idea behind the scheme is as follows: Let the number of mem-
bers in the ring be N . To compute a ring signature, the signer first chooses a random
one-time signature key and issues a signature on the message using this one-time sign-
ing key. Both the public key of the one-time signature and the signature are published.
Next, the signer validates the one-time signature key. In other words, she signs the
one-time signature key with her own signing key. This validation signature has to be
hidden for anonymity. The signer, hence makes two perfectly hiding commitments to
her verification key and the validation signature and publishes these values. She then
makes non-interactive witness-indistinguishable (NIWI) proofs using techniques from
[GOS06,BW06,GS06] that the commitments indeed contain a verification key and a
signature on the one-time signature verification key respectively. Finally, the signer will
prove that the committed verification key belongs to the ring. The main novelty in our
scheme is a sub-linear size proof for a commitment containing one out ofN verification
keys. This proof relies on a technique akin to one-round private information retrieval
(PIR) with O(

√
N) communication complexity, which is used to get a commitment to

the verification key.

2 Ring Signatures – Definitions

[BKM06] contains a comprehensive classification of ring signature definitions. We
achieve security under the strongest of these definitions. In the following, we will

1 Generally speaking, sub-linear size ring signatures are useful when we can amortize the cost
of describing the ring itself over many signatures.

Ring Signatures of Sub-linear Size Without Random Oracles 425

modify their definitions in order to include a common reference string and to define
information theoretical anonymity.

Definition 1 (Ring signature). A ring signature scheme consists of a quadruple of
PPT algorithms (CRSGen,Gen, Sign,Verify) that respectively, generate the common
reference string, generate keys for a user, sign a message, and verify the signature of a
message.

– CRSGen(1k), where k is a security parameter, outputs the common reference
string ρ.

– Gen(ρ) is run by the user. It outputs a public verification key vk and a private
signing key sk.

– Signρ,sk(M,R) outputs a signature σ on the message M with respect to the ring
R = (vk1, . . . , vkN). We require that (vk, sk) is a valid key-pair output by Gen
and that vk ∈ R.

– Verifyρ,R(M,σ) verifies a purported signature σ on a message M with respect to
the ring of public keys R.

The quadruple (CRSGen,Gen, Sign,Verify) is a ring signature with perfect
anonymity if it has perfect correctness, computational unforgeability and perfect
anonymity as defined below.

Definition 2 (Perfect correctness). We require that a user can sign any message on
behalf of a ring where she is a member. A ring signature (CRSGen,Gen, Sign,Verify)
has perfect correctness if for all adversaries A we have:

Pr
[
ρ← CRSGen(1k); (vk, sk)← Gen(ρ); (M,R)← A(ρ, vk, sk);

σ ← Signsk(M,R) : Verifyρ,R(M,σ) = 1 ∨ vk /∈ R
]

= 1.

Definition 3 (Unforgeability). A ring signature scheme (CRSGen,Gen, Sign,Verify)
is unforgeable (with respect to insider corruption) if it is infeasible to forge a ring sig-
nature on a message without controlling one of the members in the ring. Formally, it is
unforgeable when there is a negligible function ε so for any non-uniform polynomial time
adversariesA we have:

Pr
[
ρ← CRSGen(1k); (M,R, σ)← AVKGen,Sign,Corrupt(ρ) :

Verifyρ,R(M,σ) = 1
]
< ε(k),

– VKGen on query number i selects a randomizerwi, runs (vki, ski)← Gen(ρ;wi)
and returns vki.

– Sign(α,M,R) returns σ ← Signρ,skα
(M,R), provided (vkα, skα) has been gen-

erated by VKGen and vkα ∈ R.
– Corrupt(i) returns wi (from which ski can be computed) provided (vki, ski) has

been generated by VKGen.
– A outputs (M,R, σ) such that Sign has not been queried with (∗,M,R) and R

only contains keys vki generated by VKGen where i has not been corrupted.

426 N. Chandran, J. Groth, and A. Sahai

Definition 4 (Perfect anonymity). A ring signature scheme (CRSGen,Gen, Sign,
Verify) has perfect anonymity, if a signature on a message M under a ring R and
key vki0 looks exactly the same as a signature on the message M under the ring R and
key vki1 . This means that the signer’s key is hidden among all the honestly generated
keys in the ring. Formally, we require that for any adversary A:

Pr
[
ρ← CRSGen(1k); (M, i0, i1, R)← AGen(ρ)(ρ);

σ ← Signρ,ski0
(M,R) : A(σ) = 1

]

= Pr
[
ρ← CRSGen(1k); (M, i0, i1, R)← AGen(ρ)(ρ);

σ ← Signρ,ski1
(M,R) : A(σ) = 1

]
,

where A chooses i0, i1 such that (vki0 , ski0), (vki1 , ski1) have been generated by the
oracle Gen(ρ).

We remark that perfect anonymity implies anonymity against full key exposure which
is the strongest definition of anonymity in [BKM06].

3 Preliminaries

We make use of bilinear groups of composite order. These were introduced by Boneh,
Goh and Nissim [BGN05] and can for instance be based on elliptic curves and the
modified Weil-pairing from Boneh and Franklin [BF03]. Let GenBGN be a randomized
algorithm that outputs (p, q,G,GT , e, g) so we have:

– G is a multiplicative cyclic group of order n := pq
– g is a generator of G
– GT is a multiplicative group of order n
– e : G×G→ GT is an efficiently computable map with the following properties:
• Bilinear: ∀ u, v ∈ G and a, b ∈ Zn : e(ua, vb) = e(u, v)ab

• Non-degenerate: e(g, g) is a generator of GT whenever g is a generator of G
– The group operations on G andGT can be performed efficiently

We will write Gp and Gq for the unique subgroups of G that have respectively order p
and order q. Observe, u �→ uq maps u into the subgroupGp.

We base our ring signature scheme on two assumptions - namely, the strong Diffie-
Hellman Assumption [BB04] in Gp and the subgroup decision assumption [BGN05].

SUBGROUP DECISION ASSUMPTION. Informally, in the above setting of composite or-
der groups, the subgroup decision assumption holds if random elements fromG andGq

are computationally indistinguishable. Formally, for generator GenBGN, the subgroup
decision assumption holds if there is a negligible function ε so for any non-uniform
polynomial time adversaryA:

Pr
[
(p, q,G,GT , e, g)← GenBGN(1k);n := pq; r← Z∗

n;h := gr :

Ring Signatures of Sub-linear Size Without Random Oracles 427

A(n,G,GT , e, g, h) = 1
]

− Pr
[
(p, q,G,GT , e, g)← GenBGN(1k);n := pq; r← Z∗

q ;h := gpr :

A(n,G,GT , e, g, h) = 1
]
≤ ε(k).

STRONG DIFFIE-HELLMAN ASSUMPTION IN Gp. The strong Diffie-Hellman assump-
tion holds in Gp if there is a negligible function ε so for all non-uniform adversaries
that run in polynomial time in the security parameter:

Pr
[
(p, q,G,GT , e, g)← GenBGN(1k);x← Z∗

p :

A(p, q,G,GT , e, g
q, gqx, gqx

2
, . . .) = (c, g

q
x+c) ∈ Zp ×Gp

]
< ε(k).

UNDERLYING SIGNATURE SCHEME. Boneh and Boyen [BB04] suggest two signature
schemes. One that is secure against weak chosen message attack, see below, and one
which is secure against adaptive chosen message attack. We will use the scheme that is
secure against weak chosen message attack, since it has a shorter public key and this
leads to a simpler and more efficient ring signature.

We define the scheme to be secure against weak message attack if there is a negligible
function ε so for all non-uniform polynomial time interactive adversariesA:

Pr
[
(M1, . . . ,Mq)← A(1k); (vk, sk)← KeyGen(1k);σi ← Signsk(Mi);

(M,σ)← A(vk, σ, . . . , σq) : Verifyvk(M,σ) = 1 andM /∈ {M1, . . . ,Mq}
]
< ε(k).

The Boneh-Boyen signature scheme adapted to the composite order bilinear group
model is weak message attack secure under the strong Diffie-Hellman assumption.

– Key generation: Given a group (p, q,G,GT , e, g) we pick a random sk ← Z∗
n and

compute vk := gsk. The key pair is (vk, sk).
– Signing: Given a secret key sk ∈ Z∗

n and a message M ∈ {0, 1}�, output the
signature σ := g

1
sk+M . By convention, 1/0 is defined to be 0 so that in the unlikely

event that sk+M = 0, we have σ := 1. We require � < |p|, this is quite reasonable
since we can always use a cryptographic hash-function to shorten the message we
sign.

– Verification: Given a public key vk, a message M ∈ {0, 1}� and a signature
σ ∈ G, verify that

e(σ, vk · gM) = e(g, g).

If equality holds output “Accept”. Otherwise, output “Reject”.

Boneh and Boyen [BB04] prove that their signature scheme is existentially unforge-
able under weak chosen message attack provided the strong Diffie-Hellman assumption
holds in prime order groups. This proof translates directly to the composite group order
model. Our concern is only whether a signature is forged in the order p subgroup Gp,
i.e., an adversary that knows p and q finds (M,σ) so e(vkgM , σ)q = e(g, g)q. As in

428 N. Chandran, J. Groth, and A. Sahai

[BB04] it can be shown to be infeasible to forge a signature inGp under a weak chosen
message attack assuming the strong Diffie-Hellman assumption holds in Gp.

A COMMITMENT/ENCRYPTION SCHEME. We use a commitment/encryption scheme
based on the subgroup decision assumption from [BGN05]. The public key will be a
description of the composite order group as well as an element h. The element h is a
random element, chosen to have order n (perfect hiding commitment) or order q (en-
cryption). The subgroup decision assumption implies that perfect hiding commitment
keys and encryption keys are indistinguishable.

To commit to a message m ∈ G, we pick r ← Zn at random and compute the
commitment c := mhr. When h has order n, this is a perfectly hiding commitment to
m. However, if h has order q, the commitment uniquely determines m’s projection on
Gp. Let λ be chosen so λ = 1 mod p and λ = 0 mod q. Given the factorization of n,
we can compute

mp = cλ = mλhλr = mλ.

We can also commit to a messagem ∈ Zn by computing gmhr. If h has order n, then
this is a perfectly hiding Pedersen commitment. If h has order q, then the commitment
uniquely determinesm mod p.

NON-INTERACTIVE WITNESS-INDISTINGUISHABLE PROOFS. A non-interactive proof
enables us to prove that a statement is true. The proof should be complete, meaning that
if we know a witness for the statement being true, then we can construct a proof. The
proof should be sound, meaning that it is impossible to construct a proof for a false state-
ment. We will use non-interactive proofs that have perfect witness-indistinguishability.
This means that given two different witnesses for the statement being true, the proof
reveals no information about which witness we used when we constructed the proof.

We will use the public key for the perfectly hiding commitment scheme described
above as a common reference string for our NIWI proofs. When h has order n we
get perfect witness-indistinguishability. However, if h has order q, then the proof has
perfect soundness in Gp.

One type of statement that we will need to prove is that a commitment c is of the
form c = gmhr for m ∈ {0, 1}. Boyen and Waters [BW06], building on [GOS06],
give a non-interactive witness-indistinguishable proof for this kind of statement, π =
(g2m−1hr)r , which is verified by checking e(c, cg−1) = e(h, π). When h has order
n, this proof has perfect witness-indistinguishability, because π is uniquely determined
from the verification equation so all witnesses must give the same proof. On the other
hand, if h has order q, then the verification shows that e(c, cg−1) has order q. This
implies m = 0 mod p or m = 1 mod p.

We will also need non-interactive witness-indistinguishable proofs for more advan-
ced statements. Groth and Sahai [GS06] show that there exist very small non-interactive
witness-indistinguishable proofs for a wide range of statements. These proofs have per-
fect completeness on both types of public key for the commitment scheme, perfect
soundness in Gp, when h has order q, and perfect witness-indistinguishability when h
has order n.

Ring Signatures of Sub-linear Size Without Random Oracles 429

4 Sub-linear Size Ring Signature Scheme Construction

We will give a high level description of the ring signature. We have a signer that knows
skα corresponding to one of the verification keys in the ring R = {vk1, . . . , vkN} and
wants to sign a message M . The verification keys are for the Boneh-Boyen signature
scheme. There are three steps in creating a signature:

1. The signer picks one-time signature keys, (otvk, otsk) ← KeyGenone−time(1k).
The messageM will be signed with the one-time signature scheme. The verification
key otvk and the one-time signature will both be public. The signer will certify otvk
by signing it with a Boneh-Boyen signature under vkα.

2. The signer needs to hide vkα and the certifying signature on otvk. She will therefore
make two perfectly hiding commitments to respectively vkα and the signature. Us-
ing techniques from [GS06] she makes a non-interactive witness-indistinguishable
proof that the commitments contain a verification key and a signature on otvk.

3. Finally, the signer will prove that the committed verification key belongs to the
ring. The main novelty in our scheme is this sub-linear size proof. She arranges
R in an ν × ν matrix, where ν =

√
N . She commits to the row of the matrix

that contains vkα and makes a non-interactive witness-indistinguishable proof for
having done this. She then makes a non-interactive witness-indistinguishable proof
that the committed verification key appears in this row.

We now present a detailed description of the ring signature scheme. CRSGen gener-
ates a common reference that contains the description of a composite order group and
a public key for the perfectly hiding commitment scheme.

CRSGen(1k)

1. (p, q,G,GT , e, g)← GenBGN(1k)
2. n := pq ; x← Z∗

n ; h := gx

3. Output (n,G,GT , e, g, h) /* Perfectly hiding commitment scheme

The users’ key generation algorithm Gen takes as input a common reference string
and outputs a signing public-private key pair (vk, sk). In our case, it will output keys
for the Boneh-Boyen signature scheme that is secure against weak message attack.

Gen(n,G,GT , e, g, h)

1. sk ← Z∗
n ; vk := gsk

2. Output (vk, sk) /* Boneh-Boyen signature scheme with public key (g, vk)

A user with keys (vkα, skα) wants to sign a messageM under the ringR={vk1, . . . ,
vkN} of size N . Let i, j be values such that α = (i − 1)ν + j, where ν =

√
N .2 It is

useful to think of R as a ν× ν matrix. Then vkα = vk(i−1)ν+j is the entry in row i and
column j.

2 Without loss of generality we assume N is a square. If N is not a square, we can simply copy
vk1 sufficiently many times to make N a square.

430 N. Chandran, J. Groth, and A. Sahai

Sign(n,G,GT ,e,g,h,skα)(M,R)

1. (otvk, otsk)← KeyGenone−time(1k) ; σone−time ← Signotsk(M,R)

/* This was step 1 in the high level description: a one-time signature on the
message and the ring. The pair (otvk, σone−time) will be public.

2. r ← Zn ; C := vkαh
r ; σα := g

1
skα+otvk ; s ← Zn ; L := σαh

s ; πL :=
g

r
skα+otvk +(skα+otvk)s · hrs

/* This was step 2 in the high level description. σα is the signer’s certifying
signature on otvk. C,L are perfectly hiding commitments to respectively vkα
and σα. πL is a NIWI proof [GS06] that C,L contain respectively a verification
key and a signature on otvk. All that remains is to make a NIWI proof that C
contains some vkα ∈ R without revealing which one. The rest of the protocol is
this NIWI proof.

3. rl ← Zn ; Cl := hrl ; πCl := (g−1hrl)rl for 0 ≤ l < ν , l �= i− 1;
ri−1 := −

∑
l �=i−1 rl ; Ci−1 := ghri−1 ; πCi−1 := (ghri−1)ri−1

/* The commitments C0, . . . , Cν−1 are chosen so Ci−1 is a commitment to g,
whereas the others are commitments to 1. The proofs π0, . . . , πν−1 are NIWI
proofs [GOS06,BW06] that each C0, . . . , Cν−1 contains either 1 or g. Since the
commitments have been chosen such that

∏ν−1
l=0 Cl = g, this tells the verifier

that there is exactly one Ci−1 that contains g, while the other commitments con-
tain 1. We will use this in a PIR-like fashion to pick out row i in the ν × ν ma-
trix R. Observe, for all 1 ≤ m ≤ ν we have Am :=

∏ν−1
l=0 e(Cl, vklν+m) =

e(g, vk(i−1)ν+m)e(h,
∏ν−1
l=0

vkrl

lν+m), which is a commitment to e(g, vk(i−1)ν+m).

4. sm ← Zn ; Bm := vkν(i−1)+mh
sm ; πBm := g−sm ·

∏ν−1
l=0 vk

rl

lν+m for
1 ≤ m ≤ ν

/* B1, . . . , Bν are commitments to the verification keys in row i of R. Recall
A1,. . . ,
Aν contain row i of R paired with g. πB1 ,. . ., π

B
ν are NIWI proofs [GS06] that

B1, . . . , Bν contain elements that paired with g give the contents ofA1, . . . , Aν .
This demonstrates to the verifier that B1, . . . , Bν indeed does contain row i of
R.

5. tm ← Zn ; Dm := htm ; πDm := (g−1htm)tm for 1 ≤ m ≤ ν , m �= j
tj := −

∑
m �=j tm ; Dj := ghtj , πDj := (ghtj)tj

/* D1, . . . , Dν are commitments so Dj contains g, and the other commitments
contain 1. The NIWI proofs [GOS06,BW06] πD1 , . . . , π

D
ν convince the verifier

thatD1, . . . , Dν contain 1 or g. Combining this with
∏ν
m=1Dm = g shows that

exactly one Dj is a commitment to g, while the others contain 1.
6. πC := gsj−r∏ν

m=1 vk
tm
(i−1)ν+mh

smtm

Ring Signatures of Sub-linear Size Without Random Oracles 431

/*A :=
∏ν
m=1 e(Bm, Dm)=e(g, vk(i−1)ν+j)e(h, gsj

∏ν
m=1 vk

tm
(i−1)ν+mh

smtm)
isacommitmenttoe(g, vkα).πC isaNIWIproof[GS06]thatthecontentofCpaired
with g corresponds to the content inA.

7. Output the signatureσ :=
(
otvk,σone−time,C, L, πL, {C0, . . . , Cν−1}, {πC0 , . . . ,

πCν−1}, {B1, . . . , Bν}, {πB1 , . . . , πBν }, {D1, . . . , Dν}, {πD1 , . . . , πDν }, πC
)

.

Verify(n,G,GT ,e,g,h,R)(M,σ)

1. Verify that σone−time is a one-time signature ofM,R under otvk.
2. Verify that e(L,Cgotvk) = e(g, g)e(h, πL).
3. Verify that e(Cl, Clg−1) = e(h, πCl) for all 0 ≤ l < ν and

∏ν
l=1 Cl = g.

4. ComputeAm :=
∏ν
l=1 e(Cl, vk(l−1)ν+m) and verifyAm = e(g,Bm)e(h, πBm) for

all 1 ≤ m ≤ ν.
5. Verify that e(Dm, Dmg

−1) = e(h, πDm) for all 1 ≤ m ≤ ν and
∏ν
m=1Dm = g.

6. Compute A :=
∏ν
m=1 e(Bm, Dm) and verify A = e(C, g)e(h, πC).

7. “Accept” if all the above steps verify correctly, otherwise “Reject”.

Theorem 1. The scheme presented in the previous section is a ring signature scheme
with perfect correctness, perfect anonymity and computational unforgeability under the
subgroup decision assumption, the strong Diffie-Hellman assumption and the assump-
tion that the one-time signature is unforgeable.

Sketch of Proof. Perfect correctness follows by inspection. Perfect anonymity follows
from the fact thatotvk andσone−time are generated the same way, no matter which signing
key we use, and the fact that when h has order n, then all the commitments are perfectly
hiding and the proofs are perfectly witness-indistinguishable [GOS06,BW06,GS06].

Computational unforgeability can be proven in three steps. By the subgroup decision
assumption it is possible to switch from using h of order n in the common reference
string to use h of order q with only negligible change in the probability of a forgery
happening. The commitments are now perfectly binding inGp and the NIWI proofs are
perfectly sound in Gp [GOS06,BW06,GS06], so C contains some uncorrupt vkα ∈ R
and L contains a signature σα on otvk under vkα. By the properties of the one-time
signature scheme, otvk has not been used in any other signature, and thus σα is a
forged Boneh-Boyen signature on otvk. By the strong Diffie-Hellman assumption this
probability is negligible. �

5 Untrusted Common Reference String Model

Suppose we do not trust the common reference string. There are two possible prob-
lems: maybe it is possible to forge signatures, or maybe the ring signatures are not
anonymous. The possibility of forgery can in many cases be viewed as an extended ring
signature, we know that one of the N ring-members or the key generator signed the
message. This may not be so problematic, if for instance one of the ring members was
the key generator this is not a problem since that member can sign anyway. A breach of
anonymity seems more problematic. If we consider the example from the introduction,

432 N. Chandran, J. Groth, and A. Sahai

where a high-ranking official wants to leak a secret to the media, she needs to have
strong guarantees of her anonymity. We will modify our scheme to get a (heuristically)
unconditional guarantee of anonymity.

In the scheme presented earlier the common reference string is ρ = (n,G,GT ,
e, g, h). If we generate the groups as described in [BGN05] it is easy to verify that
we have a group of order n with a bilinear map e, where all group operations can
be computed efficiently. It is also easy to find a way to represent the group elements,
so we can check that g, h ∈ G [GOS06]. What is hard to check is how many prime
factors n has and what the order of g and h is. We make the following observation,
which follows from the proof of anonymity: If h has order n, then the ring signature
has perfect anonymity. We will therefore not include h in the common reference string
but instead provide a method for the signer to choose a full order h as she creates the
ring signature.

To get anonymity, h should have order n. If we pick a random element in G there is
overwhelming probability that it has ordern, unless n has a small prime factor. Lenstra’s

ECM factorization algorithm [Len87] heuristically takes O(e(1+o(1))
√

(ln p)(ln ln p))
steps to find the prime factor p. Therefore, it is heuristically possible to verify that
n only has superpolynomial prime factors and we can pick random elements that with
overwhelming probability have order n.

We will modify the key generation such that a user also picks a random element
hi ∈ Gwhen creating her key. The signer’s anonymity will be guaranteed if the element
she picks has order n. When she wants to issue a signature, she picks t ← Zn at
random and uses h :=

∏N
i=1 h

ti−1

i . We will argue in the proof of Theorem 2 that with
overwhelming probability over the choice of t, that element h she generates this way
has order n. Using this h she then creates the ring signature as described in the previous
section.

5.1 Ring Signature with Unconditional Anonymity

Our modified ring signature scheme (CRSGen′,Gen′, Sign′,Verify′) works as follows:

– CRSGen′(1k) outputs ρ′ := (n,G,GT , e, g, h
′)← CRSGen(1k)

– Gen′(ρ′) uses Lenstra’s ECM factorization algorithm to check that n has no poly-
nomial size prime factors. It runs (vki, ski) ← Gen(ρ′) and picks hi at random
fromG. It sets vk′i := (vki, hi) and outputs (vk′i, ski).3

– Sign′
ρ′,skα

(M,R′) setsR :=(vk1, . . . , vkN) forR′ = ((vk1, h1), . . . , (vkN , hN)).

It picks t ← Zn and sets h :=
∏N
i=1 h

ti−1

i . It sets ρ := (n,G,GT , e, g, h) and
creates a ring signature σ ← Signρ,skα

(M,R). It outputs σ′ := (t, σ).

– Verify′
ρ′,R′(M,σ′) sets R := (vk1, . . . , vkN) and h :=

∏N
i=1 h

ti−1

i as the
signing algorithm. It sets ρ := (n,G,GT , e, g, h) and outputs the response of
Verifyρ,R(M,σ).

3 For practical purposes, say with 1024-bit n and ring-size less than 10000, checking that n has
no prime factors smaller than 40 bits is sufficient to guarantee that each time the user signs a
message there is less than one in a million risk of the signature not being perfectly anonymous.
Since Lenstra’s ECM factorization algorithm is only run once during key generation and is
reasonably efficient when looking for 40-bit prime factors this cost is reasonable.

Ring Signatures of Sub-linear Size Without Random Oracles 433

Theorem 2. The quadruple (CRSGen′,Gen′, Sign′,Verify′) is a ring signature
scheme with perfect correctness, heuristic statistical anonymity and computational un-
forgeability under the subgroup decision and strong Diffie-Hellman assumptions.

Sketch of proof. To prove computational unforgeability we will modify Gen′ such that it
picks hi of order q. Using the groups suggested in [BGN05] we can construct convinc-
ing randomness that would lead Gen′ to pick such an hi. We can therefore answer any
corruption queries the adversary makes. By the subgroup decision assumption, no non-
uniform polynomial time adversary can distinguish between seeing correctly generated
hi’s of order n and hi’s of order q. It must therefore have at most negligibly smaller
chance of producing a forgery after our modification. Now h =

∏N
i=1 h

ti−1

i has order q
for any t ∈ Zn. The proof of Theorem 1 shows that a polynomial time adversary with
has negligible chance of producing a forgery on h of order q.

We will now prove heuristic statistical anonymity, even when the common refer-
ence string is maliciously generated by the adversary. Consider an honest signer with
keys (vkα, hα), skα. From the run of Lenstra’s ECM factorization algorithm we know
heuristically that n has no polynomial size prime factors. Therefore, with overwhelming
probability the randomly chosen hα has order n. We will argue that with overwhelming
probability over the choice of t, the signer picks h that has order n. When h has order
n all commitments will be perfectly hiding and all proofs will be perfectly witness-
indistinguishable [GS06], so we will get perfect anonymity.

It remains to argue that with overwhelming probability over t the element h =∏N
i=1 h

ti−1

i has order n. Consider a generator γ forG and let x1, . . . , xN be the discrete
logarithms of h1, . . . , hN with respect to γ. We wish to argue that for any prime factor
p|n we have

∑N
i=1 t

i−1xi �= 0 mod p.
Given a prime p|n we will show that there is at most N − 1 choices of t mod p so∑N
i=1 t

i−1xi = 0 mod p. To see this, consider the following system of linear equations:

V x =

⎛

⎜
⎜⎜
⎝

1 t1 t21 . . . t
N−1
1

1 t2 t22 . . . t
N−1
2

...
...

...
. . .

...
1 tN t2N . . . tN−1

N

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

x1

x2

...
xN

⎞

⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎝

0
0
...
0

⎞

⎟
⎟⎟
⎠
.

V is a Vandermonde matrix and has non-zero determinant if all t1, . . . , tN are dif-
ferent. Since xα �= 0 mod p this implies that we cannot find N different t1, . . . , tN
so

∑N
i=1 t

i−1
i xi = 0 mod p. When choosing t at random there is at least probability

1 − N−1
p that

∑N
i=1 t

i−1xi �= 0 mod p. Since p is superpolynomial, this probability
is negligible. The same argument holds for all other prime factors in n, so with over-
whelming probability h is a generator of G. �

References

BB04. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Hei-
delberg (2004)

434 N. Chandran, J. Groth, and A. Sahai

BF03. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J.
Comput. 32(3), 586–615 (2003)

BGN05. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Kil-
ian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

BKM06. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

Boy07. Boyen, X.: Mesh signatures. In: Advances in Cryptology—EUROCRYPT 2007.
LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007), Available at
http://www.cs.stanford.edu/∼xb/eurocrypt07b/

BW06. Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidel-
berg (2006)

CWLY06. Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring Signatures without Random Or-
acles. In: ASIACCS ’06: Proceedings of the 2006 ACM Symposium on Information,
Taipei, Taiwan. Computer and Communications Security, pp. 297–302. ACM Press,
New York (2006)

DKNS04. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 609–626. Springer, Heidelberg (2004)

GOS06. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero-knowledge for np.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

GS06. Groth, J., Sahai, A.: Efficient non-interactive proofs for bilinear groups. Manuscript
(2006)

JSI96. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their appli-
cations. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154.
Springer, Heidelberg (1996)

Len87. Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126,
649–673 (1987)

Nao02. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002)

RST06. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret: Theory and applications of
ring signatures. In: Essays in Memory of Shimon Even (2006)

SW06. Shacham, H., Waters, B.: Efficient ring signatures without random oracles (2006),
Available at http://eprint.iacr.org/2006/289.pdf

http://www.cs.stanford.edu/~xb/eurocrypt07b/
http://eprint.iacr.org/2006/289.pdf

Balanced Families of Perfect Hash Functions

and Their Applications

Noga Alon1,� and Shai Gutner2,��

1 Schools of Mathematics and Computer Science, Tel-Aviv University, Tel-Aviv,
69978, Israel

noga@math.tau.ac.il
2 School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel

gutner@tau.ac.il

Abstract. The construction of perfect hash functions is a well-studied
topic. In this paper, this concept is generalized with the following defi-
nition. We say that a family of functions from [n] to [k] is a δ-balanced
(n, k)-family of perfect hash functions if for every S ⊆ [n], |S| = k, the
number of functions that are 1-1 on S is between T/δ and δT for some
constant T > 0. The standard definition of a family of perfect hash func-
tions requires that there will be at least one function that is 1-1 on S, for
each S of size k. In the new notion of balanced families, we require the
number of 1-1 functions to be almost the same (taking δ to be close to
1) for every such S. Our main result is that for any constant δ > 1, a δ-
balanced (n, k)-family of perfect hash functions of size 2O(k log log k) log n
can be constructed in time 2O(k log log k)n log n. Using the technique of
color-coding we can apply our explicit constructions to devise approxi-
mation algorithms for various counting problems in graphs. In particular,
we exhibit a deterministic polynomial time algorithm for approximating
both the number of simple paths of length k and the number of simple
cycles of size k for any k ≤ O(log n

log log log n
) in a graph with n vertices. The

approximation is up to any fixed desirable relative error.

Keywords: approximate counting of subgraphs, color-coding, perfect
hashing.

1 Introduction

This paper deals with explicit constructions of balanced families of perfect hash
functions. The topic of perfect hash functions has been widely studied under
the more general framework of k-restriction problems (see, e.g., [3],[13]). These
problems have an existential nature of requiring a set of conditions to hold at
least once for any choice of k elements out of the problem domain. We gener-
alize the definition of perfect hash functions, and introduce a new, simple, and
� Research supported in part by a grant from the Israel Science Foundation, and by

the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.
�� This paper forms part of a Ph.D. thesis written by the author under the supervision

of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 435–446, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

436 N. Alon and S. Gutner

yet useful notion which we call balanced families of perfect hash functions. The
purpose of our new definition is to incorporate more structure into the construc-
tions. Our explicit constructions together with the method of color-coding from
[5] are applied for problems of approximating the number of times that some
fixed subgraph appears within a large graph. We focus on counting simple paths
and simple cycles. Recently, the method of color-coding has found interesting ap-
plications in computational biology ([17],[18],[19],[12]), specifically in detecting
signaling pathways within protein interaction. This problem is formalized using
an undirected edge-weighted graph, where the task is to find a minimum weight
path of length k. The application of our results in this case is for approximating
deterministically the number of minimum weight paths of length k.

Perfect Hash Functions. An (n, k)-family of perfect hash functions is a family
of functions from [n] to [k] such that for every S ⊆ [n], |S| = k, there exists a
function in the family that is 1-1 on S. There is an extensive literature dealing
with explicit constructions of perfect hash functions. The construction described
in [5] (following [11] and [16]) is of size 2O(k) logn. The best known explicit
construction is of size ekkO(log k) logn, which closely matches the known lower
bound of Ω(ek logn/

√
k) [15].

Finding and Counting Paths and Cycles. The foundations for the graph
algorithms presented in this paper have been laid in [5]. Two main randomized
algorithms are presented there, as follows. A simple directed or undirected path
of length k − 1 in a graph G = (V,E) that contains such a path can be found
in 2O(k)|E| expected time in the directed case and in 2O(k)|V | expected time in
the undirected case. A simple directed or undirected cycle of size k in a graph
G = (V,E) that contains such a cycle can be found in either 2O(k)|V ||E| or
2O(k)|V |ω expected time, where ω < 2.376 is the exponent of matrix multiplica-
tion. The derandomization of these algorithms incur an extra log |V | factor. As
for the case of even cycles, it is shown in [20] that for every fixed k ≥ 2, there is
an O(|V |2) algorithm for finding a simple cycle of size 2k in an undirected graph.
Improved algorithms for detecting given length cycles have been presented in [6]
and [21]. An interesting result from [6], related to the questions addressed in
the present paper, is an O(|V |ω) algorithm for counting the number of cycles of
size at most 7. Flum and Grohe proved that the problem of counting exactly the
number of paths and cycles of length k in both directed and undirected graphs,
parameterized by k, is #W [1]-complete [10]. Their result implies that most likely
there is no f(k) · nc-algorithm for counting the precise number of paths or cy-
cles of length k in a graph of size n for any computable function f : IN → IN
and constant c. This suggests the problem of approximating these quantities.
Arvind and Raman obtained a randomized fixed-parameter tractable algorithm
to approximately count the number of copies of a fixed subgraph with bounded
treewidth within a large graph [7]. We settle in the affirmative the open ques-
tion they raise concerning the existence of a deterministic approximate counting
algorithm for this problem. For simplicity, we give algorithms for approximately
counting paths and cycles. These results can be easily extended to the problem

Balanced Families of Perfect Hash Functions and Their Applications 437

of approximately counting bounded treewidth subgraphs, combining the same
approach with the method of [5]. The main new ingredient in our deterministic
algorithms is the application of balanced families of perfect hash functions- a
combinatorial notion introduced here which, while simple, appears to be very
useful.

Balanced Families of Perfect Hash Functions. We say that a family of
functions from [n] to [k] is a δ-balanced (n, k)-family of perfect hash functions
if for every S ⊆ [n], |S| = k, the number of functions that are 1-1 on S is
between T/δ and δT for some constant T > 0. Balanced families of perfect
hash functions are a natural generalization of the usual concept of perfect hash
functions. To assist with our explicit constructions, we define also the even more
generalized notion of balanced splitters. (See section 2 for the definition. This is
a generalization of an ordinary splitter defined in [15].)

Our Results. The main focus of the paper is on explicit constructions of bal-
anced families of perfect hash functions and their applications. First, we give
non-constructive upper bounds on the size of different types of balanced split-
ters. Then, we compare these bounds with those achieved by constructive al-
gorithms. Our main result is an explicit construction, for every 1 < δ ≤ 2,
of a δ-balanced (n, k)-family of perfect hash functions of size 2O(k log log k)(δ −
1)−O(log k) logn. The running time of the procedure that provides the construc-
tion is 2O(k log log k)(δ − 1)−O(log k)n logn+ (δ − 1)−O(k/ log k).

Constructions of balanced families of perfect hash functions can be applied
to various counting problems in graphs. In particular, we describe deterministic
algorithms that approximate the number of times that a small subgraph appears
within a large graph. The approximation is always up to some multiplicative
factor, that can be made arbitrarily close to 1. For any 1 < δ ≤ 2, the number of
simple paths of length k − 1 in a graph G = (V,E) can be approximated up to
a multiplicative factor of δ in time 2O(k log log k)(δ − 1)−O(log k)|E| log |V |+ (δ −
1)−O(k/ log k). The number of simple cycles of size k can be approximated up to a
multiplicative factor of δ in time 2O(k log log k)(δ− 1)−O(log k)|E||V | log |V |+ (δ−
1)−O(k/ log k).

Techniques. We use probabilistic arguments in order to prove the existence of
different types of small size balanced splitters (whose precise definition is given
in the next section). To construct a balanced splitter, a natural randomized al-
gorithm is to choose a large enough number of independent random functions.
We show that in some cases, the method of conditional probabilities, when ap-
plied on a proper choice of a potential function, can derandomize this process
in an efficient way. Constructions of small probability spaces that admit k-wise
independent random variables are also a natural tool for achieving good split-
ting properties. The use of error correcting codes is shown to be useful when we
want to find a family of functions from [n] to [l], where l is much bigger than
k2, such that for every S ⊆ [n], |S| = k, almost all of the functions should be
1-1 on S. Balanced splitters can be composed in different ways and our main
construction is achieved by composing three types of splitters. We apply the

438 N. Alon and S. Gutner

explicit constructions of balanced families of perfect hash functions together
with the color-coding technique to get our approximate counting algorithms.

2 Balanced Families of Perfect Hash Functions

In this section we formally define the new notions of balanced families of perfect
hash functions and balanced splitters. Here are a few basics first. Denote by [n]
the set {1, . . . , n}. For any k, 1 ≤ k ≤ n, the family of k-sized subsets of [n] is
denoted by

(
[n]
k

)
. We denote by k mod l the unique integer 0 ≤ r < l for which

k = ql + r, for some integer q. We now introduce the new notion of balanced
families of perfect hash functions.

Definition 1. Suppose that 1 ≤ k ≤ n and δ ≥ 1. We say that a family of
functions from [n] to [k] is a δ-balanced (n, k)-family of perfect hash functions
if there exists a constant real number T > 0, such that for every S ∈

(
[n]
k

)
, the

number of functions that are 1-1 on S, which we denote by inj(S), satisfies the
relation T/δ ≤ inj(S) ≤ δT .

The following definition generalizes both the last definition and the definition of
a splitter from [15].

Definition 2. Suppose that 1 ≤ k ≤ n and δ ≥ 1, and let H be a family of
functions from [n] to [l]. For a set S ∈

(
[n]
k

)
we denote by split(S) the number of

functions h ∈ H that split S into equal-sized parts h−1(j)
⋂
S, j = 1, . . . , l. In

case l does not divide k we separate between two cases. If k ≤ l, then split(S)
is defined to be the number of functions that are 1-1 on S. Otherwise, k > l
and we require the first k mod l parts to be of size �k/l� and the remaining
parts to be of size �k/l�. We say that H is a δ-balanced (n, k, l)-splitter if there
exists a constant real number T > 0, such that for every S ∈

(
[n]
k

)
we have

T/δ ≤ split(S) ≤ δT .

The definitions of balanced families of perfect hash functions and balanced split-
ters given above enable us to state the following easy composition lemmas.

Lemma 1. For any k < l, let H be an explicit δ-balanced (n, k, l)-splitter of
size N and let G be an explicit γ-balanced (l, k)-family of perfect hash functions
of size M . We can use H and G to get an explicit δγ-balanced (n, k)-family of
perfect hash functions of size NM .

Proof. We compose every function of H with every function of G and get the
needed result. ��

Lemma 2. For any k > l, let H be an explicit δ-balanced (n, k, l)-splitter of
size N . For every j, j = 1, . . . , l, let Gj be an explicit γj-balanced (n, kj)-family
of perfect hash functions of size Mj, where kj = �k/l� for every j ≤ k mod l
and kj = �k/l� otherwise. We can use these constructions to get an explicit
(δ
∏l
j=1 γj)-balanced (n, k)-family of perfect hash functions of size N

∏l
j=1Mj.

Balanced Families of Perfect Hash Functions and Their Applications 439

Proof. We divide the set [k] into l disjoint intervals I1, . . . , Il, where the size of
Ij is kj for every j = 1, . . . , l. We think of Gj as a family of functions from [n] to
Ij . For every combination of h ∈ H and gj ∈ Gj , j = 1, . . . , l, we create a new
function that maps an element x ∈ [n] to gh(x)(x). ��

3 Probabilistic Constructions

We will use the following two claims: a variant of the Chernoff bound (c.f., e.g.,
[4]) and Robbins’ formula [9] (a tight version of Stirling’s formula).

Claim. Let Y be the sum of mutually independent indicator random variables,
μ = E[Y]. For all 1 ≤ δ ≤ 2,

Pr[
μ

δ
≤ Y ≤ δμ] > 1− 2e−(δ−1)2μ/8.

Claim. For every integer n ≥ 1,
√

2πnn+1/2e−n+1/(12n+1) < n! <
√

2πnn+1/2e−n+1/(12n).

Now we state the results for δ-balanced (n, k, l)-splitters of the three types: k = l,
k < l and k > l.

Theorem 1. For any 1 < δ ≤ 2, there exists a δ-balanced (n, k)-family of perfect
hash functions of size O(e

k
√
k logn

(δ−1)2).

Proof. (sketch) Set p = k!/kk and M = � 8(k lnn+1)
p(δ−1)2 �. We choose M independent

random functions. For a specific set S ∈
(
[n]
k

)
, the expected number of functions

that are 1-1 on S is exactly pM . By the Chernoff bound, the probability that
for at least one set S ∈

(
[n]
k

)
, the number of functions that are 1-1 on S will not

be as needed is at most
(
n

k

)
2e−(δ−1)2pM/8 ≤ 2

(
n

k

)
e−(k lnn+1) < 1. ��

Theorem 2. For any k < l and 1 < δ ≤ 2, there exists a δ-balanced (n, k, l)-

splitter of size O(e
k2/lk log n
(δ−1)2).

Proof. (sketch) We set p = l!
(l−k)!lk and M = � 8(k lnn+1)

p(δ−1)2 �. Using Robbins’ for-
mula, we get

1
p
≤ ek+1/12(1− k

l
)l−k+1/2 ≤ ek+1/12e−

k
l (l−k+1/2) = e

k2−k/2
l +1/12.

We choose M independent random functions and proceed as in the proof of
Theorem 1. ��

440 N. Alon and S. Gutner

For the case k > l, the probabilistic arguments from [15] can be generalized to
prove existence of balanced (n, k, l)-splitters. Here we focus on the special case
of balanced (n, k, 2)-splitters, which will be of interest later.

Theorem 3. For any k ≥ 2 and 1 < δ ≤ 2, there exists a δ-balanced (n, k, 2)-
splitter of size O(k

√
k logn

(δ−1)2).

Proof. (sketch) Set M = � 8(k lnn+1)
p(δ−1)2 �, where p denotes the probability to get the

needed split in a random function. If follows easily from Robbins’ formula that
1/p = O(

√
k). We choose M independent random functions and proceed as in

the proof of Theorem 1. ��

4 Explicit Constructions

In this paper, we use the term explicit construction for an algorithm that lists all
the elements of the required family of functions in time which is polynomial in
the total size of the functions. For a discussion on other definitions for this term,
the reader is referred to [15]. We state our results for δ-balanced (n, k, l)-splitters
of the three types: k = l, k < l and k > l.

Theorem 4. For any 1 < δ ≤ 2, a δ-balanced (n, k)-family of perfect hash
functions of size O(e

k
√
k logn

(δ−1)2) can be constructed deterministically within time
(
n
k

)
ekkO(1)n logn

(δ−1)2 .

Proof. We set p = k!/kk and M = � 16(k lnn+1)
p(δ−1)2 �. Denote λ = (δ − 1)/4, so

obviously 0 < λ ≤ 1/4. Consider a choice of M independent random functions
from [n] to [k]. This choice will be derandomized in the course of the algorithm.
For every S ∈

(
[n]
k

)
, we define XS =

∑M
i=1XS,i, where XS,i is the indicator

random variable that is equal to 1 iff the ith function is 1-1 on S. Consider the
following potential function:

Φ =
∑

S∈([n]
k)
eλ(XS−pM) + eλ(pM−XS).

Its expectation can be calculated as follows:

E[Φ] =
(
n

k

)
(e−λpM

M∏

i=1

E[eλXS,i] + eλpM
M∏

i=1

E[e−λXS,i]) =

=
(
n

k

)
(e−λpM [peλ + (1 − p)]M + eλpM [pe−λ + (1− p)]M).

We now give an upper bound for E[Φ]. Since 1 + u ≤ eu for all u and e−u ≤
1−u+ u2/2 for all u ≥ 0, we get that pe−λ + (1− p) ≤ ep(e−λ−1) ≤ ep(−λ+λ2/2).

Balanced Families of Perfect Hash Functions and Their Applications 441

Define ε = eλ − 1, that is λ = ln(1 + ε). Thus peλ + (1− p) = 1 + εp ≤ eεp. This
implies that

E[Φ] ≤ nk((
eε

1 + ε
)pM + eλ

2pM/2).

Since eu ≤ 1 + u+ u2 for all 0 ≤ u ≤ 1, we have that eε

1+ε = ee
λ−1−λ ≤ eλ2

. We
conclude that

E[Φ] ≤ 2nkeλ
2pM ≤ e2(k lnn+1).

We now describe a deterministic algorithm for finding M functions, so that
E[Φ] will still obey the last upper bound. This is performed using the method of
conditional probabilities (c.f., e.g., [4], chapter 15). The algorithm will have M
phases, where each phase will consist of n steps. In step i of phase j the algorithm
will determine the ith value of the jth function. Out of the k possible values,
we greedily choose the value that will decrease E[Φ] as much as possible. We
note that at any specific step of the algorithm, the exact value of the conditional
expectation of the potential function can be easily computed in time

(
n
k

)
kO(1).

After all the M functions have been determined, every set S ∈
(
[n]
k

)
satisfies

the following:
eλ(XS−pM) + eλ(pM−XS) ≤ e2(k lnn+1).

This implies that

−2(k lnn+ 1) ≤ λ(XS − pM) ≤ 2(k lnn+ 1).

Recall that λ = (δ − 1)/4, and therefore

(1− 8(k lnn+ 1)
(δ − 1)pM

)pM ≤ XS ≤ (1 +
8(k lnn+ 1)
(δ − 1)pM

)pM.

Plugging in the values of M and p we get that

(1− δ − 1
2

)pM ≤ XS ≤ (1 +
δ − 1

2
)pM.

Using the fact that 1/u ≤ 1 − (u − 1)/2 for all 1 ≤ u ≤ 2, we get the desired
result

pM/δ ≤ XS ≤ δpM.

��

Theorem 5. For any 1 < δ ≤ 2, a δ-balanced (n, k, � 2k2

δ−1�)-splitter of size
kO(1) logn
(δ−1)O(1) can be constructed in time kO(1)n logn

(δ−1)O(1) .

Proof. Denote q = � 2k2

δ−1�. Consider an explicit construction of an error correcting
code with n codewords over alphabet [q] whose normalized Hamming distance is
at least 1 − 2

q . Such explicit codes of length O(q2 logn) exist [1]. Now let every
index of the code corresponds to a function from [n] to [q]. If we denote by M

442 N. Alon and S. Gutner

the length of the code, which is in fact the size of the splitter, then for every
S ∈

(
[n]
k

)
, the number of good splits is at least

(1−
(
k

2

)
2
q

)M ≥ (1− δ − 1
2

)M ≥M/δ,

where the last inequality follows from the fact that 1 − (u − 1)/2 ≥ 1/u for all
1 ≤ u ≤ 2. ��

For our next construction we use small probability spaces that support a se-
quence of almost k-size independent random variables. A sequence X1, . . . , Xn of
random Boolean variables is (ε, k)-independent if for any k positions i1 < · · · < ik
and any k bits α1, . . . , αk we have

|Pr[Xi1 = α1, . . . , Xik = αk]− 2−k| < ε.

It is known ([14],[2],[1]) that sample spaces of size 2O(k+log 1
ε) logn that sup-

port n random variables that are (ε, k)-independent can be constructed in time
2O(k+log 1

ε)n logn.

Theorem 6. For any k ≥ l and 1 < δ ≤ 2, a δ-balanced (n, k, l)-splitter of size
2O(k log l−log(δ−1)) logn can be constructed in time 2O(k log l−log(δ−1))n logn.

Proof. We use an explicit probability space of size 2O(k log l−log(δ−1)) logn that
supports n�log2 l� random variables that are (ε, k�log2 l�)-independent where
ε = 2−k
log2 l�−1(δ − 1). We attach �log2 l� random variables to each element of
[n], thereby assigning it a value from [2
log2 l�]. In case l is not a power of 2, all
elements of [2
log2 l�]− [l] can be mapped to [l] by some arbitrary fixed function.
If follows from the construction that there exists a constant T > 0 so that for
every S ∈

(
[n]
k

)
, the number of good splits satisfies

T

δ
≤ (1 − δ − 1

2
)T ≤ split(S) ≤ (1 +

δ − 1
2

)T ≤ δT.

��

Corollary 1. For any fixed c > 0, a (1 + c−k)-balanced (n, k, 2)-splitter of size
2O(k) logn can be constructed in time 2O(k)n logn.

Setting l = k in Theorem 6, we get that a δ-balanced (n, k)-family of per-
fect hash functions of size 2O(k log k−log(δ−1)) logn can be constructed in time
2O(k log k−log(δ−1))n logn. Note that if k is small enough with respect to n, say
k = O(log n/ log logn), then for any fixed 1 < δ ≤ 2, this already gives a family
of functions of size polynomial in n. We improve upon this last result in the
following Theorem, which is our main construction.

Theorem 7. For 1 < δ ≤ 2, a δ-balanced (n, k)-family of perfect hash func-
tions of size 2O(k log log k)

(δ−1)O(log k) log n can be constructed in time 2O(k log log k)

(δ−1)O(log k)n logn+(δ−
1)−O(k/ log k). In particular, for any fixed 1 < δ ≤ 2, the size is 2O(k log log k) logn
and the time is 2O(k log log k)n logn.

Balanced Families of Perfect Hash Functions and Their Applications 443

Proof. (sketch) Denote l = �log2 k� ,δ′ = δ1/3, δ′′ = δ1/(3l), and q = � 2k2

δ′−1�. Let
H be a δ′-balanced (q, k, l)-splitter of size 2O(k log log k)(δ′ − 1)−O(1) constructed
using Theorem 6. For every j, j = 1, . . . , l, let Bj be a δ′′-balanced (q, kj)-
family of perfect hash functions of size O(ek/ log kk)(δ′′ − 1)−O(1) constructed
using Theorem 4, where kj = �k/l� for every j ≤ k mod l and kj = �k/l�
otherwise. Using Lemma 2 for composing H and {Bj}lj=1, we get a δ′2-balanced
(q, k)-family D′ of perfect hash functions.

Now let D′′ be a δ′-balanced (n, k, q)-splitter of size kO(1)(δ′ − 1)−O(1) logn
constructed using Theorem 5. Using Lemma 1 for composing D′ and D′′, we
get a δ-balanced (n, k)-family of perfect hash functions, as needed. Note that for
calculating the size of each Bj , we use the fact that eu/2 ≤ 1 + u ≤ eu for all
0 ≤ u ≤ 1, and get the following:

δ′′ − 1 = (1 + (δ − 1))
1
3l − 1 ≥ e

δ−1
6l − 1 ≥ δ − 1

6l
.

The time needed to construct each Bj is 2O(k)(δ′−1)−O(k/ log k). The 2O(k) term
is omitted in the final result, as it is negligible in respect to the other terms. ��

5 Approximate Counting of Paths and Cycles

We now state what it means for an algorithm to approximate a counting problem.

Definition 3. We say that an algorithms approximates a counting problem by
a multiplicative factor δ ≥ 1 if for every input x, the output ALG(x) of the
algorithm satisfies N(x)/δ ≤ ALG(x) ≤ δN(x), where N(x) is the exact output
of the counting problem for input x.

The technique of color-coding is used for approximate counting of paths and
cycles. Let G = (V,E) be a directed or undirected graph. In our algorithms
we will use constructions of balanced (|V |, k)-families of perfect hash functions.
Each such function defines a coloring of the vertices of the graph. A path is said
to be colorful if each vertex on it is colored by a distinct color. Our goal is to
count the exact number of colorful paths in each of these colorings.

Theorem 8. For any 1 < δ ≤ 2, the number of simple (directed or undirected)
paths of length k − 1 in a (directed or undirected) graph G = (V,E) can be
approximated up to a multiplicative factor of δ in time 2O(k log log k)

(δ−1)O(log k) |E| log |V | +
(δ − 1)−O(k/ log k).

Proof. (sketch) We use the δ-balanced (|V |, k)-family of perfect hash functions
constructed using Theorem 7. Each function of the family defines a coloring of
the vertices in k colors. We know that there exists a constant T > 0, so that
for each set S ⊆ V of k vertices, the number of functions that are 1-1 on S is
between T/δ and δT . The exact value of T can be easily calculated in all of our
explicit constructions.

444 N. Alon and S. Gutner

For each coloring, we use a dynamic programming approach in order to cal-
culate the exact number of colorful paths. We do this in k phases. In the ith
phase, for each vertex v ∈ V and for each subset C ⊆ {1, . . . , k} of i colors, we
calculate the number of colorful paths of length i− 1 that end at v and use the
colors of C. To do so, for every edge (u, v) ∈ E, we check whether it can be the
last edge of a colorful path of length i−1 ending at either u or v. Its contribution
to the number of paths of length i− 1 is calculated using our knowledge on the
number of paths of length i − 2. The initialization of phase 1 is easy and after
performing phase k we know the exact number of paths of length k− 1 that end
at each vertex v ∈ V . The time to process each coloring is therefore 2O(k)|E|.

We sum the results over all colorings and all ending vertices v ∈ V . The result
is divided by T . In case the graph is undirected ,we further divide by 2. This is
guaranteed to be the needed approximation. ��
Theorem 9. For any 1 < δ ≤ 2, the number of simple (directed or undirected)
cycles of size k in a (directed or undirected) graph G = (V,E) can be approxi-
mated up to a multiplicative factor of δ in time 2O(k log log k)

(δ−1)O(log k) |E||V | log |V |+ (δ −
1)−O(k/ log k).

Proof. (sketch) We use the δ-balanced (|V |, k)-family of perfect hash functions
constructed using Theorem 7. For every set S of k vertices, the number of func-
tions that are 1-1 on S is between T/δ and δT . Every function defines a coloring
and for each such coloring we proceed as follows. For every vertex s ∈ V we run
the algorithm described in the proof of Theorem 8 in order to calculate for each
vertex v ∈ V the exact number of colorful paths of length k − 1 from s to v.
In case there is an edge (v, s) that completes a cycle, we add the result to our
count.

We sum the results over all the colorings and all pairs of vertices s and v as
described above. The result is divided by kT . In case the graph is undirected,
we further divide by 2. The needed approximation is achieved. ��
Corollary 2. For any constant c > 0, there is a deterministic polynomial time
algorithm for approximating both the number of simple paths of length k and
the number of simple cycles of size k for every k ≤ O(log n

log log logn) in a graph
with n vertices, where the approximation is up to a multiplicative factor of 1 +
(ln lnn)−c ln lnn.

6 Concluding Remarks

– An interesting open problem is whether for every fixed δ > 1, there ex-
ists an explicit δ-balanced (n, k)-family of perfect hash functions of size
2O(k) logn. The key ingredient needed is an improved construction of bal-
anced (n, k, 2)-splitters. Such splitters can be applied successively to get the
balanced (n, k, �log2 k�)-splitter needed in Theorem 7. It seems that the con-
structions presented in [2] could be good candidates for balanced (n, k, 2)-
splitters, although the Fourier analysis in this case (along the lines of [8])
seems elusive.

Balanced Families of Perfect Hash Functions and Their Applications 445

– Other algorithms from [5] can be generalized to deal with counting problems.
In particular it is possible to combine our approach here with the ideas of
[5] based on fast matrix multiplication in order to approximate the num-
ber of cycles of a given length. Given a forest F on k vertices, the number
of subgraphs of G isomorphic to F can be approximated using a recursive
algorithm similar to the one in [5]. For a weighted graph, we can approxi-
mate, for example, both the number of minimum (maximum) weight paths
of length k−1 and the number of minimum (maximum) weight cycles of size
k. Finally, all the results can be readily extended from paths and cycles to
arbitrary small subgraphs of bounded tree-width. We omit the details.

– In the definition of a balanced (n, k)-family of perfect hash functions, there
is some constant T > 0, such that for every S ⊆ [n], |S| = k, the number
of functions that are 1-1 on S is close to T . We note that the value of T
need not be equal to the expected number of 1-1 functions on a set of size
k, for the case that the functions were chosen independently according to
a uniform distribution. For example, the value of T in the construction of
Theorem 7 is not even asymptotically equal to what one would expect in a
uniform distribution.

References

1. Alon, N., Bruck, J., Naor, J., Naor, M., Roth, R.M.: Construction of asymptoti-
cally good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory 38(2), 509 (1992)

2. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

3. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-
restrictions. ACM Transactions on Algorithms 2(2), 153–177 (2006)

4. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. Wiley, Chichester
(2000)

5. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856
(1995)

6. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

7. Arvind, V., Raman, V.: Approximation algorithms for some parameterized count-
ing problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp.
453–464. Springer, Heidelberg (2002)

8. Azar, Y., Motwani, R., Naor, J.: Approximating probability distributions using
small sample spaces. Combinatorica 18(2), 151–171 (1998)

9. Feller, W.: An introduction to probability theory and its applications, 3rd edn.,
vol. I. Wiley, Chichester (1968)

10. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
Journal on Computing 33(4), 892–922 (2004)

11. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. Journal of the ACM 31(3), 538–544 (1984)

446 N. Alon and S. Gutner

12. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding to
facilitate signaling pathway detection. In: Sankoff, D., Wang, L., Chin, F. (eds.)
APBC 2007. Proceedings of 5th Asia-Pacific Bioinformatics Conference, Hong
Kong, China, January 15-17, 2007. Advances in Bioinformatics and Computational
Biology, vol. 5, pp. 277–286. Imperial College Press, Imperial (2007)

13. Koller, D., Megiddo, N.: Constructing small sample spaces satisfying given con-
straints. SIAM Journal on Discrete Mathematics 7(2), 260–274 (1994)

14. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. SIAM Journal on Computing 22(4), 838–856 (1993)

15. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandom-
ization. In: 36th Annual Symposium on Foundations of Computer Science, pp.
182–191 (1995)

16. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash func-
tions. SIAM Journal on Computing 19(5), 775–786 (1990)

17. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting
signaling pathways in protein interaction networks. Journal of Computational Bi-
ology 13(2), 133–144 (2006)

18. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nature Biotechnology 24(4), 427–433 (2006)

19. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: a method for querying
pathways in a protein-protein interaction network. BMC Bioinformatics 7, 199
(2006)

20. Yuster, R., Zwick, U.: Finding even cycles even faster. SIAM Journal on Discrete
Mathematics 10(2), 209–222 (1997)

21. Yuster, R., Zwick, U.: Detecting short directed cycles using rectangular matrix
multiplication and dynamic programming. In: Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 254–260. ACM Press, New
York (2004)

An Exponential Improvement on the MST

Heuristic for Minimum Energy Broadcasting
in Ad Hoc Wireless Networks�

Ioannis Caragiannis1, Michele Flammini2, and Luca Moscardelli2

1 Research Academic Computer Technology Institute and
Dept. of Computer Engineering and Informatics

University of Patras, 26500 Rio, Greece
2 Dipartimento di Informatica, Università di L’Aquila

Via Vetoio, Coppito 67100, L’Aquila, Italy

Abstract. In this paper we present a new approximation algorithm for
the Minimum Energy Broadcast Routing (MEBR) problem in ad hoc
wireless networks that has exponentially better approximation factor
than the well-known Minimum Spanning Tree (MST) heuristic. Namely,
for any instance where a minimum spanning tree of the set of stations
is guaranteed to cost at most ρ times the cost of an optimal solution
for MEBR, we prove that our algorithm achieves an approximation ra-
tio bounded by 2 ln ρ− 2 ln 2 + 2. This result is particularly relevant for
its consequences on Euclidean instances where we significantly improve
previous results.

1 Introduction

Over the last years the usage of wireless networks has seen a huge increase mostly
because of the recent drop in equipment prices and due to the features provided
by the new technologies. In particular, considerable attention has been devoted
to the so-called ad hoc wireless networks, due to their potential applications in
emergency disaster relief, battlefield, etc. [16,25]. Ad hoc networks do not require
any fixed infrastructure. The network is simply a collection of homogeneous
radio stations equipped with omnidirectional antennas for sending and receiving
signals. Communication occurs by assigning to each station a transmitting power.
In the most common power attenuation model [22,24], the signal power Ps of
a station s decreases as a function of the distance in such a way that at any
station t at distance dist(s, t) it is received with a power Ps

dist(s,t)α , where α ≥ 1
is a constant called the distance-power gradient. While for practical purposes
the constant α is usually assumed to be between 2 and 5, from a theoretical
point of view general values of α are also of interest. The signal is correctly
received by t if Ps

dist(s,t)α ≥ β, where β ∈ IR+ is the transmission quality threshold.

� This work was partially supported by the EU COST Action 293 “Graphs and Algo-
rithms in Communication Networks” (GRAAL) and by the EU IST FET Integrated
Project 015964 AEOLUS.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 447–458, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

448 I. Caragiannis, M. Flammini, and L. Moscardelli

Therefore, if s correctly transmits within a given maximum distance r(s), called
the range of s, the transmission power Ps of s is at least β · r(s)α. Usually, the
transmission quality threshold β is normalized to 1. We remark that, due to
the nonlinear power attenuation, multi-hop transmission of messages through
intermediate stations may result in energy saving.

A naturally arising issue in ad hoc wireless networks is that of supporting
communication patterns that are typical in traditional networks, such as broad-
casting (one-to-all), multicasting (one-to-many), and gossiping (all-to-all), with
a minimum total energy consumption. This problem is generally called Minimum
Energy Routing (MER) and defines different optimization subproblems according
to the connectivity requirements (see for instance [4,5,7,8,11,12,15,17,19,20] for
related results). In this paper, we are interested in the broadcast communication
from a given source node.

Formally, given a set of stations S, let G(S) be the complete weighted graph
whose nodes are the stations of S and in which the weight w(x, y) of each edge
{x, y} is the power consumption needed for a correct communication between
x and y. A power assignment for S is a function p : S → IR+ assigning a
transmission power p(x) to every station in S. A power assignment p for S yields
a directed communication graph Gp = (S,A) such that, for each (x, y) ∈ S2, the
directed edge (x, y) belongs to A if and only if p(x) ≥ w(x, y), that is if x can
correctly transmit to y. In this case y is also said to fall within the transmission
range of x. The total cost of a power assignment is

cost(p) =
∑

x∈S
p(x).

The MEBR problem for a given source s ∈ S consists in finding a power as-
signment p of minimum cost m∗(S, s) such that Gp contains a directed spanning
tree rooted at s (and directed towards the leaves).

In general, the problem is unlikely to have polynomial-time approximation
algorithms with approximation ratio o(lnn) [9], where n is the number of sta-
tions. Logarithmic (in the number of stations) approximation algorithms have
been presented in [4,6,7].

An important case of practical interest is when stations lie in a d−dimensional
Euclidean space. Then, given a constant α ≥ 1, the power consumption needed
for a correct communication between x and y is dist(x, y)α, where dist(x, y) is
the Euclidean distance between the locations of x and y. The problem has been
proved to be NP-hard for α > 1 and d > 1, while it is solvable in polynomial
time for α = 1 or d = 1 [6,9,3].

Several attempts in the literature were made to find good approximation al-
gorithms for Euclidean cases. One fundamental algorithm to provide an approx-
imate solution of the MEBR problem is the MST heuristic [24]. It is based
on the idea of tuning ranges so as to include a minimum spanning tree of the
cost graph G(S). More precisely, denote by T (S) a minimum spanning tree
of G(S). The MST heuristic considers T (S) rooted at the source station s,
directs the edges of T (S) towards the leaves, and sets the power p(x) of ev-
ery internal station x of T (S) with k > 0 children x1, . . . , xk in such a way

An Exponential Improvement on the MST Heuristic 449

that p(x) = maxi=1,...,kw(x, xi). In other words, p is the power assignment of
minimum cost inducing the directed tree derived from T (S) and is such that
cost(p) ≤ c(T (S)), where c(T (S)) denotes the total cost of the edges in T (S)).
Therefore, the approximation ratio of the heuristic is bounded by the ratio
between the cost of a minimum spanning tree of G(S) and the optimal cost
m∗(S, s).

The performance of the MST heuristic has been investigated by several au-
thors [1,6,9,13,18,21,23]. The analysis in all the above papers focuses on the case
α ≥ d (MST has unbounded approximation ratio when α < d) and is based
on elegant geometric arguments. The best known approximation ratios are 6
for d = 2 [1], 18.8 for d = 3 [21] and 3d − 1 for every d > 3 [13]. Moreover,
in [9,23], a lower bound on the approximation ratio of the MST heuristic has
been proven, upper-bounding it by the d-dimensional kissing number nd, i.e.,
the maximum number of d-dimensional unit spheres that touch a unit sphere
but are mutually non-overlapping (but possibly touch each other). This number
is 6 for d = 2 (and, hence, the upper bound of [1] is tight), 12 for d = 3 and,
in general, nd = 2cd(1+o(1)) with 0.2075 ≤ c ≤ 0.401 for large d [10]. Despite
the considerable research effort in the area during the past years, no algorithm
has been theoretically shown so far to outperform the MST heuristic in the Eu-
clidean case, and the improvement of the corresponding ratios is a long standing
open question.

Several other heuristics have been shown to perform better than MST in
practice, at least for 2-dimensional instances (e.g., see [2,3,8,14,24]). The most
famous among them is probably algorithm BIP (broadcast incremental power
[24]). Starting from the source, it builds a tree in steps as follows: at each step,
it includes the edge to an uncovered station that requires the minimum increase
of power. BIP has been shown to be at least as good as MST while the best
known lower bound on its approximation ratio is 4.33 [23]. All other heuristics
that seem to work well in practice are either very complicated to analyze or have
high lower bounds in terms of their approximation ratio.

In this paper we present a new approximation algorithm for the MEBR prob-
lem. For any instance of the problem where the minimum spanning tree of the
cost graph G(S) is guaranteed to cost at most ρ times the cost of an optimal
solution for MEBR, our algorithm achieves an approximation ratio bounded by
2 lnρ−2 ln 2+2 if ρ > 2 and bounded by ρ if ρ ≤ 2, which exponentially improves
upon the MST heuristic. Surprisingly, our algorithm and analysis does not make
use of any geometric arguments and still our results significantly improve the
previously best known approximation factor for Euclidean instances of the prob-
lem. The corresponding approximation ratio is reduced (when α ≥ d) from 6 [1]
to 4.2 for d = 2, from 18.8 [21] to 6.49 for d = 3 and in general from 3d−1 [13] to
2.20d+ 0.61 for d > 3. In the 2-dimensional case, the achieved approximation is
even less than the lower bound on the approximation ratio of the BIP heuristic.
In arbitrary (i.e., non-Euclidean) cost graphs, it is not difficult to see that the
cost of the minimum spanning tree is at most n− 1 times the cost of an optimal
solution for MEBR; hence, our algorithm also slightly improves the logarithmic

450 I. Caragiannis, M. Flammini, and L. Moscardelli

approximations of [4,6,7]. We also prove that our analysis is tight by showing
that there are instances in which the ratio among the cost of the solution re-
turned by the algorithm and the cost of the optimal solution is arbitrarily close
to 2 ln ρ− 2 ln 2 + 2.

The rest of the paper is organized as follows. In Section 2, we describe the
new approximation algorithm and, in Section 3, we prove its correctness. In
Section 4, we show that our analysis is tight, and, finally, in Section 5, we give
some conclusive remarks.

2 The Approximation Algorithm

In this section, we describe our approximation algorithm. We begin with some
necessary definitions.

Given a power assignment p and a given station x ∈ S, let E(p, x) = {{x, y}|
w(x, y) ≤ p(x)} be the set of the undirected edges induced by p at x, and
E(p) =

⋃
x∈S E(p, x) the set of all the undirected edges induced by p.

In the following, for every subset of undirected edges F ⊆ E of a weighted
graph G = (V,E), we will denote as c(F) the overall cost of the edges in F ,
that is the total sum of their weights. For the sake of simplicity, we will identify
trees with their corresponding sets of edges. Given an undirected tree T and two
nodes u and v of T , u, v ∈ V , let P (T, u, v) ⊆ T be the subset of the edges in
the unique path from u to v in T .

A swap set for a spanning tree T of an undirected graph G = (V,E) and a set
of edges F with endpoints in V is any subset F ′ of edges that must be removed
from the multigraph1 T ∪ F in order to eliminate cycles and so that T ∪ F \ F ′

is a spanning tree of G.
We are now ready to describe the algorithm. Before going through the details,

let us describe the basic underlying idea. Starting from a spanning tree T (S) of
G(S), if the cost of T is significantly higher than the one of an optimal solution
for performing broadcasting from a given source s ∈ S, then there must exist a
cost efficient contraction of T . Namely, it must be possible to set the transmission
power p(x) of at least one station x in such a way that p(x) is much lower than the
cost of the swap set A(p, x) for T (S) and E(p, x). The algorithm then repeatedly
chooses at each step p(x) in such a way that, starting from the current spanning
tree, c(A(p, x))/p(x) is maximized. The final tree will be such that, considering
the correct orientation of the edges according to the final assignment p, some
edges will be in the reverse direction, i.e., from the leaves towards the source s.
However, the transmission powers can then be properly set with low additional
cost in order to obtain the right orientation from s towards the other stations.

At a given intermediate step of the algorithm in which p and T are the current
power assignment and maintained tree, respectively, consider a contraction at a
given station x consisting of setting the transmission power of x to p′(x), and let
p′ be the resulting power assignment. Then, a maximum cost swap set A(p′, x)
1 To the purposes of the algorithm, we need to maintain in T ∪ F at most two copies

of the same edge with different weights.

An Exponential Improvement on the MST Heuristic 451

to be accounted to the contraction can be trivially determined by letting A(p′, x)
contain the edges that are removed when determining a minimum spanning tree
in the multigraph T ∪E(p′, x) with the cost of all the edges in E(p′, x) set equal
to 0. Let the ratio c(A(p′,x))

p′(x) be the cost-efficiency of the contraction.
The algorithm then performs the following steps:

– Set the transmission power p(x) of every station in x ∈ S equal to 0.
– Let T = T (S) be a minimum spanning tree of G(S).
– While there exists at least one contraction of cost-efficiency strictly greater

than 2:
• Perform a contraction of maximum cost-efficiency, and let p′(x) be the

corresponding increased power at a given station x, and p′ be the result-
ing power assignment.
• Set the weight of all the edges in E(p′, x) equal to 0.
• Let T ′ = T ∪ E(p′, x) \A(p′, x).
• Set T = T ′ and p = p′.

– Orient all the edges of T from the source s toward all the other stations.
– Return the transmission power assignment p that induces such a set of ori-

ented edges.

Notice that if ρ ≤ 2 the algorithm performs no contraction step and it returns
the initial minimum spanning tree T (S); thus, it guarantees the same approxi-
mation ratio ρ of the MST heuristic. Therefore, in the following of the paper we
will assume that ρ > 2.

3 Correctness of the Algorithm

Clearly, the algorithm has a running time polynomial in the size of the input
instance since, at each step, the power of some station increases while the power
of the remaining nodes does not decrease. We thus now focus on the proof of the
achieved approximation ratio.

We first give two lemmas which are very useful in order to show the existence
of good contractions. Due to lack of space, the corresponding proofs have been
omitted from this extended abstract. They will appear in the final version of the
paper.

Lemma 1. Given two rooted spanning trees T1 and T2 over the same set of nodes
V , there exists a one-to-one mapping f : T1 → T2, called the swap mapping, such
that, if v1, . . . , vk are all the children of a same parent node u in T1, then the set
{f({u, v1}), . . . , f({u, vk})} of the edges assigned to {u, v1}, . . . , {u, vk} by f is
a swap set for T2 and {{u, v1}, . . . , {u, vk}}.

Lemma 2. Given any tree T , and k edges {u, v1}, . . . , {u, vk} not necessarily
belonging to T , if {{w1, y1}, . . . , {wk, yk}} is a swap set for T and {{u, v1}, . . . ,
{u, vk}}, then {{w1, y1}, . . . , {wk, yk}} is the subset of a swap set for T and
{{u, v1}, . . . , {u, vk}, {u, z1}, . . . , {u, zl}}, for every set of l newly added edges
{{u, z1}, . . . , {u, zl}}.

452 I. Caragiannis, M. Flammini, and L. Moscardelli

We are now ready to prove the fundamental property that our algorithm exploits.

Lemma 3. Let T be any spanning tree for G(S) with an arbitrary weighting of
the edges, and let γ = c(T)/m∗(S, s) be the ratio among the cost of T and the one
of an optimal transmission power assignment p∗. Then there exists a contraction
of T of cost-efficiency γ.

Proof. Consider a spanning tree T ∗ of Gp∗, and let f be the swap mapping for
T ∗ and T derived from Lemma 1 considering T ∗ rooted at s.

Then, by Lemma 1, f assigns to all the descending edges D(T ∗, x) in T ∗ of
every station x ∈ S a subset of edges SS(x) ⊆ T forming a swap set for T and
D(T ∗, x). All such subsets SS(x) form a partition of T , and since c(T)

m∗(S,s) =�
x∈S c(SS(x))�

x∈S p
∗(x) = γ, there must exist at least one station x such that c(SS(x))

p∗(x) ≥ γ.
Since D(T ∗, x) ⊆ E(p∗, x), by Lemma 2, SS(x) ⊆ A(p∗, x), where A(p∗, x)

is a swap set for T and E(p∗, x). Therefore, there exists a contraction of T of
cost-efficiency c(A(p∗, x))/p∗(x) ≥ c(SS(x))/p∗(x) = γ. ��

By exploiting Lemma 3, we can prove the following upper bound on the approx-
imation ratio of our algorithm.

Theorem 1. Given an instance of MEBR consisting of a cost graph G(S) and
a source station s ∈ S, the algorithm has approximation ratio 2 ln ρ− 2 ln 2 + 2,
where ρ > 2 is the ratio of the cost of the minimum spanning tree over G(S)
over the cost of an optimal solution for the MEBR instance.

Proof. Let T0 = T (S) be the minimum spanning tree for G(S) computed at the
beginning of the algorithm, T1, . . . , Tk be the sequence of the trees constructed by
the algorithm after the contraction steps, that for the sake of clarity we assume
numbered from 0 to k − 1, and γi = c(Ti)/m∗(S, s) be the ratio among the cost
of Ti and the one of an optimal transmission power assignment p∗.

By applying Lemma 3, since the algorithm always considers contractions of
maximum cost-efficiency, at each step i = 0, 1, . . . , k−1 it performs a contraction
having cost-efficiency at least γi.

If γ0 ≤ 2, the algorithm performs no contraction step and it returns the
initial minimum spanning tree T0; thus, the achieved approximation ratio is
γ0 ≤ 2 ln ρ − 2 ln 2 + 2 as ρ > 2. In the remaining part of the proof we will
assume γ0 > 2.

Let xi be the node involved in the contraction of step i and pi be the resulting
transmission power assigned to xi. Let ti = c(Ti) − c(Ti+1) be the cost of the
edges belonging to the original spanning tree T0 removed by the algorithm at
step i, i.e. included in the maximum cost swap set A(pi, xi) (only such edges
have non-zero weights and thus contribute to the cost of A(pi, xi)).

A power assignment inducing all the edges of Tk oriented from s towards all the
other stations can be obtained by assigning to all the nodes a power assignment
equal to the maximum weight of its outgoing edges in Tk with non-zero weight.

An Exponential Improvement on the MST Heuristic 453

Moreover, given the power assignment p determined by the algorithm right at
the end of the contraction steps, orienting all the corresponding edges of Tk
with zero weight in the right direction requires at most doubling the cost of p.
Indeed, consider a node x which is connected through edges of zero weight to
� > 0 children x1, ..., x� in Tk (according to the orientation of Tk from the source
node s). Then, in order to make the power assignment induce these edges with
direction from x to the children x1, ..., x�, it suffices to increase the power of node
x by at most maxi=1,...,� p(xi) ≤

∑�
i=1 p(xi). Hence, the final power assignment

has overall cost upper-bounded by 2
∑k−1

i=0 pi + c(Tk).
Since by the definition of the algorithm the last contraction has cost-efficiency

γk−1 > 2, and afterwards no contraction of cost-efficiency greater than 2 exists,
by Lemma 3 the cost c(Tk) of the final tree is at most 2m∗(S, s). Denoting by
m the cost of the final power assignment returned by the algorithm we obtain

m ≤ 2
k−1∑

i=0

ti
γi

+ c(Tk)

≤ 2
k−2∑

i=0

ti
γi

+ 2
tk−1 − δ
γk−1

+ δ + c(Tk)

= 2
k−2∑

i=0

ti
γi

+ 2
tk−1 − δ
γk−1

+ 2m∗(S, s),

where δ = 2m∗(S, s)− c(Tk).

t0 t1 t2 . . .

. . .

1

m∗

c(T0)

c(Tk)

2m∗

c(T0)

2m∗

c(Tk)

. . .

2m∗

c(Tk−1)

tk−1

δ

Fig. 1. The cost of the optimal solution (gray area); the cost of the MST heuristic
solution (area of the rectangle of height 1); the cost of the solution returned by the
algorithm (area below the bold line)

454 I. Caragiannis, M. Flammini, and L. Moscardelli

By recalling that γi = c(Ti)/m∗(S, s), we finally have (see Figure 1)

m ≤ 2
k−2∑

i=0

ti
γi

+ 2
tk−1 − δ
γk−1

+ 2m∗(S, s)

= 2m∗(S, s)

(
k−2∑

i=0

ti
c(Ti)

+
tk−1 − δ
c(Tk−1)

+ 1

)

≤ 2m∗(S, s)

(
k−2∑

i=0

∫ ti

0

dt
c(Ti)− t

+
∫ tk−1−δ

0

dt
c(Tk−1)− t + 1

)

= 2m∗(S, s)

⎛

⎝
k−2∑

i=0

∫ c(T0)−c(Ti+1)

c(T0)−c(Ti)

dt
c(T0)− t +

∫ c(T0)
�
1− 2

γ0

�

c(T0)−c(Tk−1)

dt
c(T0)− t + 1

⎞

⎠

= 2m∗(S, s)

⎛

⎝
∫ c(T0)

�
1− 2

γ0

�

0

dt
c(T0)− t + 1

⎞

⎠

= m∗(S, s) (2 lnγ0 − 2 ln 2 + 2) .

If the initial minimum spanning tree T0 = T (S) guarantees a ρ-approximation
of an optimal solution, the theorem follows by observing that γ0 ≤ ρ. ��

4 A Matching Lower Bound

In this section we present a matching lower bound on the approximation ratio
of our algorithm, i.e., we show that our analysis is tight.

Theorem 2. For any ε > 0, there exists an instance of MEBR consisting of a
cost graph and a source station for which the solution returned by the algorithm
has cost at least 2 lnρ− 2 ln 2 + 2− ε times the optimal cost, where ρ > 2 is the
ratio between the cost of the minimum spanning tree over the cost graph and the
cost of an optimal solution for MEBR.

Proof. In order to describe the considered instance, it is useful to first describe
the building block Qx with x > 2, depicted in Figure 2.

The set of nodes and edges of Qx are Vx = {vx} ∪ {ux,i|i = 1, 2, . . . , �x�},
and Ex = {{vx, ux,i}|i = 1, 2, . . . , �x�}, respectively. The weight of the edge
{vx, ux,
x�} is equal to 1 + x − �x�, and the weights of all the other edges are
equal to 1. Notice that in Qx there exists a contraction centered at node vx
having cost-efficiency equal to x.

We are now ready to describe the whole instance, whose minimum spanning
tree is depicted in Figure 3. Let k be an integer parameter; the node set of the
instance is obtained by sequencing k(ρ − 2) building blocks (Q2+ 1

k
, Q2+ 2

k
, . . . ,

Q3, . . . , Qρ) in such a way that for two consecutive blocks Qx and Qy, x > y,
nodes ux,2 and uy,1 coincide. Moreover, in the instance there are other 3 nodes:
the source s, node v1, and node v2 which coincides with u2+ 1

k ,2
.

An Exponential Improvement on the MST Heuristic 455

vx
ux,1

ux,3
ux,�x�

ux,2

11

1 1 + x− �x�

Fig. 2. The building block Qx

It remains to define the weights of the edges between the nodes. The weights of
the edges connecting s to all the other nodes are equal to 1; moreover,w(v1, v2) =
1. The weights of the edges contained in the building blocks are properly scaled
so that the sum of all the edges of each building block is equal to 1

k . In particular,
the weights of all the edges belonging to building block Qx are divided by kx. For
all the other pairs of nodes, we assume that the mutual power communication
cost is very high.

Assume that the initial minimum spanning tree considered by the algorithm
is the one depicted in Figure 3, whose cost is ρ.

Qρ
Qρ− 1

k
Qρ− 2

k
Qρ− 3

k
Q2+ 1

k

s

v1

1

1
v2

Fig. 3. A minimum spanning tree of the lower bound instance

At the initial step (step 0), the algorithm can arbitrarily choose among two
equivalent contractions, i.e., having the same cost-efficiency; the first choice is
the contraction centered at the source and having transmission power equal to 1,
and the second choice is the contraction centered at vρ and having transmission
power equal to 1

ρ . Both contractions have a cost-efficiency equal to ρ, and we
assume that the algorithm chooses the contraction centered at vρ.

456 I. Caragiannis, M. Flammini, and L. Moscardelli

Using the same arguments, we can assume that the algorithm proceeds by
performing other k(ρ − 2) − 1 steps of contractions (steps 1, 2, . . . , k(ρ − 2) −
1), choosing at step i the contraction centered at vρ− i

k
, having transmission

power equal to 1
kρ−i and cost-efficiency equal to ρ− i

k , instead of the equivalent
contraction centered at s.

At this point, no contraction having cost-efficiency at least 2 exists any longer.
Notice that the sum of the costs of the transmission powers set in the contractions
is
∑kρ

i=2k+1
1
i = Hkρ−H2k, where Hi = 1 + 1

2 + . . .+ 1
i is the harmonic number.

In order to orient the edges of the final tree from the source towards the node, we
have to globally double the cost of the transmission powers set in the contraction
steps. In particular, we have to assign to v2 a transmission power equal to the
one of v2+ 1

k
and to ux,2 a transmission power equal to the one of vx, for x =

2 + 2
k , 2 + 3

k , . . . , ρ. Thus, the final cost of the solution returned by the algorithm
has cost 2Hkρ − 2H2k + 2, while the optimal solution has cost 1 and is obtained
by assigning to the source node a transmission cost equal to 1. As it can be easily
checked, letting k go to infinity, the approximation ratio tends to 2 lnρ−2 ln 2+2
from below. ��

5 Conclusions

We have presented an approximation algorithm that exponentially outperforms
the MST heuristic on any instance of the minimum energy broadcasting problem
in ad hoc wireless networks. Our results are particularly relevant for their conse-
quences on Euclidean instances where the achieved approximation ratio is linear
in the number of dimension d instead of exponential. Therefore, the improvement
becomes more and more significant as d increases. Some corresponding values
are depicted in Figure 4.

Number of dimensions 1 2 3 4 5 6 7

MST heuristic approx. ratio 2 [9,3] 6 [1] 18.8 [21] 80 [13] 242 [13] 728 [13] 2186 [13]

Our algorithm approx. ratio 2 4.2 6.49 9.38 11.6 13.8 16

Fig. 4. Comparison between the approximation factors of our algorithm and the MST
heuristic in Euclidean instances for an increasing number of dimensions

Several questions are left open. First of all, our analysis works on general in-
stances, but further improvements might be possible for specific cases like the
Euclidean ones. For such instances, it would be worth to determine exact results
tightening the current gap between the lower and upper bounds on the approxi-
mation ratio. Another interesting issue is that of determining similar contraction
strategies possibly leading to better approximate solutions. An important open
question is also that of determining better approximation results of the MST
heuristic on high-dimensional Euclidean instances. In particular, tightening the
approximation ratio to the kissing number for any number of dimensions would

An Exponential Improvement on the MST Heuristic 457

also decrease the approximation of our algorithms, although the improvement
would be restricted only to a constant multiplicative factor.

References

1. Ambühl, C.: An optimal bound for the MST algorithm to compute energy efficient
broadcast trees in wireless networks. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1139–1150.
Springer, Heidelberg (2005)

2. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Experi-
mental comparison of algorithms for energy-efficient multicasting in ad hoc net-
works. In: Nikolaidis, I., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2004.
LNCS, vol. 3158, pp. 183–196. Springer, Heidelberg (2004)

3. Čagalj, M., Hubaux, J., Enz, C.: Minimum-energy broadcast in all-wireless net-
works: NP-completeness and distribution issues. In: Proceedings of the 8th Annual
International Conference on Mobile Computing and Networking (MobiCom ’02),
pp. 172–182. ACM Press, New York, NY, USA (2002)

4. Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and
power assignment in ad-hoc wireless networks. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 114–126. Springer, Heidelberg (2003)

5. Calinescu, G., Mandoiu, I., Zelikovsky, A.: Symmetric connectivity with minimum
power consumption in radio networks. In: Proceedings of the 2nd IFIP Interna-
tional Conference on Theoretical Computer Science, pp. 119–130. Kluwer, B.V.,
Dordrecht (2002)

6. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: New results for energy-efficient
broadcasting in wireless networks. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS,
vol. 2518, pp. 332–343. Springer, Heidelberg (2002)

7. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Energy-efficient wireless net-
work design. Theory of Computing Systems 39(5), 593–617 (2006)

8. Cartigny, J., Simplot, D., Stojmenovic, I.: Localized minimum-energy broadcasting
in ad-hoc networks. In: Proceedings of the 22nd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM ’03), vol. 3, pp. 2210–
2217. IEEE Computer Society Press, Los Alamitos (2003)

9. Clementi, A., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On the complexity
of computing minimum energy consumption broadcast subgraphs. In: Ferreira, A.,
Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 121–131. Springer, Heidelberg
(2001)

10. Conway, J.H., Sloane, N.J.A.: The kissing number proble and Bounds on kissing
numbers (Ch. 2.1 and Ch. 13). In: Sphere Packings, Lattices, and Groups, 3rd edn.
Springer, New York (1998)

11. Dong, Q., Banerjee, S., Adler, M., Misra, A.: Minimum energy reliable paths using
unreliable wireless links. In: Proceedings of the 6th ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc ’05), pp. 449–459. ACM
Press, New York (2005)

12. Doshi, S., Bhandare, S., Brown, T.X.: An on-demand minimum energy routing
protocol for a wireless ad hoc network. SIGMOBILE Mobile Computing and Com-
munication Review 6(3), 50–66 (2002)

458 I. Caragiannis, M. Flammini, and L. Moscardelli

13. Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Improved approximation
results for the minimum energy broadcasting problem. In: Proceedings of ACM
Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 85–
91. ACM Press, New York (2004)

14. Flammini, M., Navarra, A., Perennes, S.: The real approximation factor of the MST
heuristic for the minimum energy broadcasting. ACM Journal of Experimental
Algorithmics 11(Article no. 2.10), 1–13 (2006)

15. Gilbert, E., Pollak, H.: Steiner minimal trees. SIAM Journal on Applied Mathe-
matics 16, 1–29 (1968)

16. Hac, A.: Wireless sensor network designs. John Wiley & Sons, Ltd., West Sussex,
England (2004)

17. Kirousis, L., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet
radio networks. Theoretical Computer Science 243(1-2), 289–305 (2000)

18. Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adaptive broadcast con-
sumption (ABC), a new heuristic and new bounds for the minimum energy broad-
cast routing problem. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I.,
Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 866–877. Springer,
Heidelberg (2004)

19. Li, X., Wan, P.: Constructing minimum energy mobile wireless networks. SIGMO-
BILE Mobile Computing and Communication Review 5(4), 55–67 (2001)

20. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc net-
works. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc ’02), pp. 112–122. ACM Press, New
York (2002)

21. Navarra, A.: 3-d minimum energy broadcasting. In: Flocchini, P., G ↪asieniec, L.
(eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 240–252. Springer, Heidelberg (2006)

22. Rappaport, T.: Wireless communications: principles and practice. Prentice-Hall,
Englewood Cliffs (1996)

23. Wan, P.-J., Calinescu, G., Li, X., Frieder, O.: Minimum energy broadcast routing
in static ad hoc wireless networks. Wireless Networks 8(6), 607–617 (2002)

24. Wieselthier, J.-E., Nguyen, G.D., Ephremides, A.: On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In: Proceedings of the
19th Annual Joint Conference of the IEEE Computer and Communications Soci-
eties (INFOCOM ’00), pp. 585–594. IEEE Computer Society Press, Los Alamitos
(2000)

25. Zhao, F., Guibas, L.: Wireless sensor networks: an information processing approach.
Morgan Kaufmann, San Francisco (2004)

Modular Algorithms for Heterogeneous Modal Logics

Lutz Schröder1,� and Dirk Pattinson2

1 DFKI-Lab Bremen and Department of Computer Science, Universität Bremen
2 Department of Computing, Imperial College London

Abstract. State-based systems and modal logics for reasoning about them of-
ten heterogeneously combine a number of features such as non-determinism and
probabilities. Here, we show that the combination of features can be reflected al-
gorithmically and develop modular decision procedures for heterogeneous modal
logics. The modularity is achieved by formalising the underlying state-based sys-
tems as multi-sorted coalgebras and associating both a logical and an algorithmic
description to a number of basic building blocks. Our main result is that logics
arising as combinations of these building blocks can be decided in polynomial
space provided that this is the case for the components. By instantiating the gen-
eral framework to concrete cases, we obtain PSPACE decision procedures for
a wide variety of structurally different logics, describing e.g. Segala systems and
games with uncertain information.

1 Introduction

Modal logics appear in computer science in a variety of contexts. They are the formal-
ism of choice for reasoning about reactive systems and feature prominently in areas
related to artificial intelligence such as knowledge representation and reasoning with
uncertainty [7]. The semantics of modal logics typically involves a notion of state and
transition, which can take a number of different forms. Transitions can be probabilis-
tic or weighted, as in probabilistic modal logic [15,9] and graded modal logic [6,5],
induced by joint actions of agents as in coalition logic [18], or non-monotonically con-
ditioned as in conditional logic [3]. An attractive aspect of many of these logics is that
they admit shallow models and are decidable in low complexity classes — in the ab-
sence of fixpoint operators typically PSPACE (e.g. [25,18,23]), i.e. the same as the
standard modal logic K [2] and not dramatically worse than propositional logic.

Features like non-determinism, probabilistic choice or joint actions are often com-
bined, leading to systems that incorporate more than one type of transition. Moreover,
features can be combined in different ways: E.g. in the alternating model of proba-
bilistic transition systems [8], states may have either non-deterministic or probabilis-
tic transitions, whereas simple Segala systems [24] have a two-layered structure where
non-deterministic transitions lead to probability distributions over successor states. Bar-
tels et al. [1] present 12 different types of probabilistic transition systems that arise as
such combinations of basic features.

Here, we introduce a simple calculus that formalises the combination of features and
establish that combined logics inherit the pleasant properties of their building blocks,

� Support by the DFG project HasCASL (KR 1191/7-2) is gratefully acknowledged.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 459–471, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

460 L. Schröder and D. Pattinson

in particular shallow models and decidability in PSPACE . Our results and algorithms
are generic and use the same algorithmic template to realise decision procedures at the
level of each individual feature. This is achieved by formalising the combined logics
in a multi-sorted extension of coalgebraic modal logic [17] whose semantics is para-
metric in a set functor T ; models then appear as T -coalgebras. This pushes the generic
PSPACE -decision procedure of [23], which works uniformly for such diverse logics
as Hennessy-Milner logic, coalition logic, graded modal logic, and probabilistic modal
logic, to the level of combined logics that integrate several features.

Formally, a feature consists of a set of modal operators together with a set of associ-
ated proof rules. On the semantic level, a structure for a feature is an endofunctor of type
Setn → Set, where n is the arity of the feature (e.g. choice, fusion, and conditionality
are binary features). The notion of gluing formalises specific ways of combining given
features. Syntactically, gluings define multi-sorted modal logics. Semantically, gluings
induce endofunctors T : Setn → Setn such that T -coalgebras are models of the com-
bined logic. The single sorted case n = 1 is of special interest since since it captures the
standard models of combined systems, including e.g. the ones presented in [1], which
equip multi-sorted logics with a single-sorted semantics.

The central technical contribution of this work is the construction of a logically
equivalent flattening of a given gluing, where flat gluings assign to each occurence of
a feature an individual sort in the semantics. Flat gluings are technically more tractable
than general gluings. In particular, one can establish the shallow model property and a
generic PSPACE algorithm for flat gluings. Together, these results imply PSPACE
upper bounds for satisfiability w.r.t. general gluings, including the standard single-
sorted semantics.

Related Work. Our work is closely related to the framework presented in [4,11], which
focuses on completeness issues, with the main difference that our approach makes the
multi-sorted nature of heterogeneous logics explicit by considering multi-sorted mod-
els. Our treatment of typed formulas resembles the use of ingredients in [11], but
the multi-sorted semantics avoids the use of the next-operator of loc.cit. The main
advantage of the new framework is that constructions such as cartesian product or
disjoint union are no longer special cases and that the decision procedures of [22,23]
generalise straightforwardly to the multi-sorted case. The multisorted approach to the
complexity of composite modal logics complements transfer results obtained for the
fusion of modal logics [26,10] in the sense that our framework is presently limited to
logics axiomatised without nested modalities, but allows more flexible logic composi-
tion and covers also non-Kripke semantics.

2 Multisorted Modal Logics by Example

2.1 Logics for Probabilistic Systems

Segala systems [24] and alternating systems [8] both combine probabilistic transitions
and non-determinism. In Segala systems, each system state can non-deterministically
perform actions that lead to probability distributions over states. Contrastingly, alter-
nating systems have two kinds of states engaging in purely probabilistic transitions and
non-deterministic actions, respectively, that may end up in either kind of state.

Modular Algorithms for Heterogeneous Modal Logics 461

•
a

����
��a ��

b

���
��

�

◦
0.2

���
�

0.8 ���
� ◦

1 ���
� ◦

0.5 ���
�

0.5

���
�

• • • • •

Simple Segala systems

•
0.4

���
��

�
0.6

����
��

◦
a

����
��b ��

•
0.2 ��

0.8

���
��

�

• ◦ • ◦

Alternating systems

It has been shown in [12, Theorem 8] that probabilistic modal logic over a set A of
actions characterises states of image-finite Segala systems up to bisimilarity. This logic
has two sorts n and u of non-deterministic and probabilistic (‘uncertain’) formulas,
respectively, and two families of modal operators

�a : u→ n (a ∈ A) and Lp : n→ u (p ∈ [0, 1] ∩ �),

where Lp reads ‘with probability at least p’. The sets Ln and Lu of non-deterministic
and probabilistic formulas, respectively, are thus defined by the grammar

Ln / φ ::= 0 | φ1 ∧ φ2 | ¬φ | �aψ (ψ ∈ Lu, a ∈ A)

Lu / ψ ::= 0 | ψ1 ∧ ψ2 | ¬ψ | Lpφ (φ ∈ Ln, p ∈ [0, 1] ∩ �).

Alternating systems, on the other hand, can be captured by a logic comprising three sorts
n, u, and o of non-deterministic, probabilistic, and alternating formulas, respectively,
and modal operators

+ : u, n→ o Lp : o→ u �a : o→ n

inducing the obvious three-sorted grammar. The binary modal operator + implements
the choice between probabilistic and non-deterministic transitions, being essentially a
case statement: φ+ψ demands that φ holds if the present state is probabilistic whereas
ψ holds if present state is non-deterministic.

2.2 Fusion of Modal Logics

Both logics described above wire up the component logics in a restricted way, by im-
posing layering and choice, respectively. The unrestricted combination of logics La and
Lb featuring modal operators � and ♥, respectively, can be modelled by a logic with
sorts a, b, f and four modal operators with associated source and target sorts

[π1] : a→ f [π2] : b→ f � : f → a ♥ : f → b.

The [πi] are postulated to commute with all boolean connectives. The well-known fu-
sion La⊗Lb (cf. e.g. [13]) disjointly combines the axioms and modalities ofLa andLb.
One can translate back and forth between the fusion and formulas of sort f , taking e.g.
the operator � of the fusion to the composite operator [π1]�. Thus, fusion is an instance
of the multi-sorted combination of modal logics.

As fusion does not impose any well-typedness constraints on formulas, it can be re-
garded as the maximally permissive way of combining two modal logics. However, as
shown by the previous example, formulas of the fusion do not in general have an inter-
pretation over the intended type of systems, so that it is for many purposes preferable
to work with the more restrictive well-typed combinations considered here.

462 L. Schröder and D. Pattinson

2.3 Conditional Logic

The standard conditional logicCK [3] has a binary modal operator⇒, where φ⇒ ψ is
read as a non-monotonic conditional. The right hand argument of⇒ behaves essentially
like the normal modal logic K , in particular obeys the usual K-axiom when the left
argument is fixed. Indeed we can embed CK into a two-sorted extended conditional
logic with sorts c, k and modal operators

•⇒: c, k → c � : c→ k

by translating α ⇒ β to α
•⇒ �β. Here,

•⇒ represents a rudimentary conditional, and
� is the standard box modality of K . This shows how a given complex logic can be
broken down into simpler building blocks.

3 Compositional Syntax of Multisorted Modal Logic

For our purposes, it is convenient to present the syntax of multi-sorted modal logic in
a way that provides explicitly for a decomposition into building blocks. The building
blocks, which we call features, are collections of (possibly polyadic) modal operators
and associated proof rules that capture specific properties of a logic, such as the ability
to describe choice, non-determinism, or uncertainty.

Definition 1. An n-ary feature is a pair F = (Λ,R) consisting of a set Λ of modal
operators L with profiles L : i1, . . . , ik → ∗, where 1 ≤ i1, . . . , ik ≤ n are for-
mal argument sorts and ∗ is a formal target sort, and a set R of one-step rules of
the form (φ1; . . . ;φn)/ψ,where for i = 1, . . . , n, φi is a propositional formula over
a set Vi of propositional variables, and ψ is a disjunctive clause over atoms of the form
L(a1, . . . , ak) with L : i1, . . . , ik → ∗ in Λ and aj ∈ Vij , j = 1, . . . , k.

Note that the rule format disallows nested modalities in the conclusion, so that rules
describe the one-step behaviour of a system. As in the single sorted case [22], this
format always suffices to completely axiomatise the features of interest, as long as no
global conditions (such as transitivity) are imposed on the coalgebraic models.

Example 2. We describe the features implicit in the Examples of Sect. 2. Figure 1
shows the associated proof rules, already in a special format needed in Sect. 5. The
rules for non-determinism and uncertainty are taken from [23]; the others are obtained
by the same principles. The sum expression in the uncertainty rule refers to the (propo-
sitionally expressible) arithmetic of characteristic functions [23].

Non-Determinism: Given a setA of actions, the unary feature NA has modal operators
�a : 1→ ∗ for a ∈ A. We write K instead of NA if A is a singleton.

Uncertainty: The unary feature U has modal operators Lp : 1→ ∗ for p ∈ [0, 1] ∩ �.

Choice: The binary feature S has a single modal operator + : 1, 2→ ∗.
Fusion: The binary feature P has two modal operators [πi] : i→ ∗, i = 1, 2.

Conditionality: The binary feature C has a binary modal operator
•⇒: 1, 2→ ∗.

Modular Algorithms for Heterogeneous Modal Logics 463

Nondeterminism :

Vn
j=1 αj → βVn

j=1 �aαj → �aβ
(n ≥ 0, a ∈ A)

Uncertainty :

Pn
j=1 rjαj ≥ kWn

j=1 sgn(rj)Lpj αj

0
B@

n ≥ 1, rj ∈ − {0}, k ∈Pn
j=1 rjpj

(
< k if ∀j. rj < 0

≤ k otherwise

1
CA

Choice :
(
Vm

j=1 αj →
Wn

k=1 βk) : 1 (
Vm

j=1 γj →
Wn

k=1 δk) : 2Vm
j=1(αj + γj)→

Wn
k=1(βk + δk)

(m, n ≥ 0)

Fusion :
(
Vm

j=1 αj →
Wn

k=1 βk) : iVm
j=1[πi]αj →

Wn
k=1[πi]βk

(i = 1, 2; m, n ≥ 0)

Conditionality :
(
Vm

j=1 αj →
Wn

k=1 βk) : 2Vm
j=1(γ

•⇒ αj) →
Wn

k=1(γ
•⇒ βk)

(m, n ≥ 0)

Fig. 1. Proof rules for the features of Example 2

The examples from Sect. 2 demonstrate that features can be combined in different ways.
This is formalised by the notion of gluing.

Definition 3. Let Φ be a set of features, and let S be a set of sorts. Feature expressions t
are terms over the set S of variables where the features appear as function symbols, i.e.

t ::= a | F(t1, . . . , tn) a ∈ S, F ∈ Φ n-ary.

A gluing of Φ over S is a family G = (ta)a∈S of feature expressions, denoted by (a1 →
ta1 , . . . , an → tan) for S = {a1, . . . , an}; in this case we also write ai → tai ∈ G.

A gluing G = (ta)a∈S induces a multi-sorted modal logic, as follows. The set Types(G)
of G-types consists of the proper subterms of the ta, where the sorts a ∈ S are called
base types and the expressions t ∈ Types(G) \ S are the composite types. (Types are
related to the ingredients of [11].) We call a gluing flat if S = Types(G), i.e. there are no
composite types, which is the case if every term ta is of the form F(a1, . . . , an). Typed
G-formulas φ : s, s ∈ Types(G), are inductively generated by closure under boolean
operators ⊥, ¬, ∧ at each type (with further boolean operators defined in the standard
way) and by the following typing rules for composite types (left) and base types (right)

φ1 : s1, . . . , φn : sn
L(φi1 , . . . , φin) : F(s1, . . . , sn)

φ1 : s1, . . . , φn : sn
L(φi1 , . . . , φin) : a

,

where the left hand rule has side condition F(s1, . . . , sn) ∈ Types(G) and the right hand
rule has side condition a → F(s1, . . . , sn) ∈ G, and in both cases L : i1, . . . , in → ∗
in F. We write Fs(G) for the set of G-formulas of type s and denote the family
(Fs(G))s∈Types(G) by F(G).

Similarly, the proof system induced by G is described in terms of a Types(G)-
indexed family of derivability predicates 2s⊆ Fs(G) defined inductively by closure

464 L. Schröder and D. Pattinson

under propositional reasoning at each type and the deduction rules for composite types
(left) and base types (right), distinguished only by the type discipline,

2s1 φ1σ, . . . ,2sn φnσ

2F(s1,...,sn) ψσ

2s1 φ1σ . . . 2sn φnσ

2a ψσ

where F(s1, . . . , sn) ∈ Types(G) in the left hand rule, a → F(s1, . . . , sn) ∈ G in the
right hand rule, and in both cases, (φ1; . . . ;φn)/ψ is a rule of F and σ is a substitution
mapping variables a ∈ Vi to formulas σ(a) : si.

A given logic can be syntactically generated by different gluings, typically including
both flat and non-flat ones, determining different classes of semantic structures (cf.
Sect. 4). The core of this work is the proof of logical equivalence for the respective
semantics. Flat gluings are technically more tractable, while logics occurring in the
literature, including the ones described in Sect. 2, are typically non-flat.

Example 4. From the features S, U, and NA (Example 2), we can form gluings

G1 ≡ (a→ S(U(a),NA(a))) and G2 ≡ (a→ S(u, n), u→ U(a), n→ NA(a)).

Here, G1 has types a, NA(a), U(a), whereas G2 is flat with types a, n, u. Modulo
identifications NA(a) = n and U(a) = u, both gluings give rise to the (typed) formulas
describing alternating systems (Sect. 2.1). The remaining example logics from Sect. 2
are captured by the following gluings (where we omit the obvious flat versions):

Probabilistic modal logic of Segala Systems: s→ NA(U(s)).

Fusion: The fusion of logics La and Lb as in Sect. 2.2, regarded as features, is f →
P(La(f),Lb(f)).

Extended conditional logic: c → C(c,K(c)). Note in particular that in the induced
proof system, we can derive the standard rule

(RCK)
∧n
i=1 αi → β

∧n
i=1(γ ⇒ αi)→ (γ ⇒ β)

(n ≥ 0)

of the conditional logic CK [3], where γ ⇒ α abbreviates γ
•⇒ �α.

4 Multi-sorted vs. Single-Sorted Coalgebraic Semantics

We now generalise the coalgebraic interpretation of modal logic, introduced in [17],
to the multi-sorted case. Crucially, we interpret multi-sorted logics over multi-sorted
coalgebras. The parametricity over signature functors for coalgebras is the key feature
of our framework that allows for uniform results that can be instantiated to a large
number of structurally different systems and logics. We recall some basic notions of
multi-sorted coalgebra (cf. e.g. [16]), generalising the single-sorted setting [19]:

Definition 5. We write Set for the category of sets and functions. Let SetS denote
the category of S-sorted sets and S-sorted functions, with objects being families X =
(Xa)a∈S (or just (Xa)) of sets Xa, and morphisms f : (Xa) → (Ya) being families

Modular Algorithms for Heterogeneous Modal Logics 465

f = (fa)a∈S of maps fa : Xa → Ya. We write Setn for Set{1,...,n}. A functor
T : SetS → SetS may be regarded a family T = (Ta)a∈S of functors Ta : SetS →
Set. A T -coalgebra A = (X, ξ) is a pair (X, ξ) where X is an S-sorted set and ξ =
(ξa) : X → TX is an S-sorted function (i.e. ξa : Xa → TaX) called the transition
function. A morphism between T -coalgebras (X, ξ) and (Y, ζ) is an S-sorted function
f : X → Y such that (Tf)ξ = ζf in SetS .

We view coalgebras as generalised transition systems: the transition function maps
states to structured sets of observations and successor states, the latter taken from the
available sorts as specified by T .

The interpretation of modal operators is based on predicate liftings [17,20]; in the
multi-sorted setting, this takes the following shape.

Definition 6. A predicate lifting λ of profile λ : i1, . . . , ik
•→ ∗ for a functor T :

Setn → Set, where i1, . . . , ik ≤ n, is a natural transformation

λ : (Q ◦ P op
i1

)× · · · × (Q ◦ P op
ik

)→ Q ◦ T op

between functors (Setn)op → Set, where Q denotes the contravariant powerset func-
tor Setop → Set (i.e. QX = PX , and Q(f)(A) = f−1[A]) and Pi : Setn → Set is
the i-th projection.

We now construct a compositional coalgebraic semantics of the logic F(G) induced by
a gluing G from structures associated with the features combined by G. We first describe
the notion of structure associated with a single feature, and then the combination of such
structures along a gluing.

Definition 7. Let F = (Λ,R) be an n-ary feature. A structure for F consists of an endo-
functor [[F]] : Setn → Set and an assignment of a predicate lifting [[L]] : i1, . . . , ik

•→ ∗
for T to every modal operator L : i1, . . . , ik → ∗ in Λ, subject to the condition that
every rule R = φ1; . . . ;φn/ψ over V in R is one-step sound: for every n-sorted set X
and every assignment τ of subsets τ(a) ⊆ Xi to the variables a ∈ Vi, if [[φi]]τ = Xi for
all i, then [[ψ]]τ = TX , where [[φi]]τ ⊆ Xi and [[ψ]]τ ⊆ TX are defined by the usual
clauses for boolean operators and [[L(a1, . . . , ak)]]τ = [[L]](τ(a1), . . . , τ(ak)).

When features are equipped with structures, every feature expression t over the set S of
sorts defines a functor [[t]] : SetS → Set by

[[a]] = Pa : SetS → Set (a ∈ S) and [[F(t1, . . . , tn)]] = [[F]] ◦ 〈[[t1]], . . . , [[tn]]〉,

where Pa is projection to the a-th component and 〈·〉 represents tupling. Thus, a gluing
G = (ta)a∈S induces a functor [[G]] : SetS → SetS .

The coalgebraic semantics of F(G) is now given w.r.t. [[G]]-coalgebras C = (X, ξ).
For a type s ∈ Types(G), an s-state of C is an element x ∈ [[s]]X . The semantics of a
formula φ : s is a set [[φ]]C ⊆ [[s]]X of s-states. We have the usual clauses for propo-
sitional connectives, and the semantics of modal operators is given by the following

466 L. Schröder and D. Pattinson

clauses for composite types (top, assuming F(s1, . . . , sn) ∈ Types(G)) and base types
(bottom, for a→ F(s1, . . . , sn) ∈ G):

[[L(φ1, . . . , φn) : F(s1, . . . , sn)]]C = [[L]]([[φ1]]C , . . . , [[φn]]C)

[[L(φ1, . . . , φn) : a]]C = ξ−1
a ◦ [[L]]([[φ1]]C , . . . , [[φn]]C)

where, in both cases, L : i1, . . . , in → ∗ in F. We write x |=s
C φ if φ : s and x ∈ [[φ]]C .

Note that the requirement that rules are one-step sound immediately yields soundness
of the logic w.r.t. the semantics described above; this is as in [4].

Example 8. The standard semantics for the features of Example 2 is induced by the
following structures.

Non-Determinism: A structure for NA is given by [[NA]] = P(A×) and

[[�a]]X(C) = {B ∈ P(A×X) | {x : (a, x) ∈ B} ⊆ C}.

Note that (single-sorted) coalgebras for P(A ×) are labelled transition systems, and
the lifting associated with �a gives rise to Hennessy-Milner logic [17].

Uncertainty: Put [[U]] = Dω, whereDω is the finite distribution functor Dω that maps
a set X to the set of probability distributions on X with finite support. The modal
operators Lp are interpreted by

[[Lp]]X(A) = {P ∈ DωX | PA ≥ p}.

(Single-sorted) Dω-coalgebras are finitely branching probabilistic transition systems.
For G = (s→ NA(U(s))) (Example 4), we have [[G]] = P ◦Dω, so that [[G]]-coalgebras
are precisely Segala systems, while coalgebras for the corresponding flat signature have
an explicit separation between non-deterministic and probabilistic states.

Choice: Let [[S]] be the disjoint sum functor [[S]](X,Y) = X + Y , and interpret the
modality + by

[[+]]X,Y (A,B) = A+B ⊆ X + Y.

Fusion: Let [[P]] be the binary product functor [[P]](X,Y) = X × Y , and put

[[π1]]X,Y A = {(x, y) | x ∈ A} and [[π2]]X,Y B = {(x, y) | y ∈ B}.

Conditionality: Define the functor [[C]] by [[C]](X,Y) = QX → Y , with Q denoting
contravariant powerset and→ denoting function space, and put

[[•⇒]]X,Y (A,B) = {f : QX → Y | f(A) ∈ B}.

For G = (c → C(c,K(c))) (Example 4), we have [[G]]X = QX → PX , and [[G]]-
coalgebras are conditional frames [3].

Modal logic talks only about the observable behaviour of states; this is formally ex-
pressed as invariance of the logic under morphisms:

Proposition 9. Let f : C → D be a morphism of [[G]]-coalgebras. Then for each G-
formula φ : s and each s-state x in C, x |=s

C φ iff ([[s]]f)(x) |=s
D φ.

Modular Algorithms for Heterogeneous Modal Logics 467

We can now state the (local) satisfiability problem for multi-sorted modal logics.

Definition 10. A G-formula φ : s is satisfiable in a G-model if there exist a [[G]]-
coalgebra C and an s-state x in C such that x |=s

C φ.

A central contribution of this work is to show that for every gluing, we can con-
struct a flat gluing with an equivalent satisfiability problem. For flat gluings, one can
generalise existing model constructions and complexity results for coalgebraic modal
logic [22,23,21], and the relevant criteria reduce to the component logics; for the
shallow-model-based PSPACE algorithm of [23], this is discussed in more detail in
Sect. 5. We thus obtain compositional algorithmic methods also for the standard single-
sorted semantics present in the literature.

We start by constructing a flattening G� of an arbitrary gluing G and then transform
[[G]]-coalgebras to [[G�]]-coalgebras preserving satisfaction of formulas.

Definition 11. Let G be a gluing over the set S of sorts. The flattening G� =
(us)s∈Types(G) of G is a flat gluing over the set S� = Types(G) of sorts, defined by
us = ta for s = a ∈ S (with immediate subexpressions of ta regarded as sorts in S�)
and us = s otherwise (with s regarded as a sort in S�).

Example 12. Given the gluings G1 ≡ (a → S(U(a),NA(a)) and G2 ≡ (a →
S(u, n), u → U(a), n → NA(a)) from Example 4, G2 is the flattening of G1, up to
renaming the sorts U(a) and NA(a) of the flattening into u and n, respectively.

It is easy to see that the flattening G� syntactically induces the same logic as G, i.e. the
types, formulas, and proof systems coincide. Our main result is now stated as follows.

Theorem 13. A G-formula is satisfiable in a G-model iff it is satisfiable (as a G�-
formula) in a G�-model.

Proof. (Sketch) ‘Only if’: Expand a [[G]]-coalgebra C to a [[G�]]-coalgebraC� by insert-
ing identity functions for the components of the structure map corresponding to com-
posite types. Induction on the definition of the semantics then shows that the semantics
w.r.t. C and C� agree.

‘If’: Turn a [[G�]]-coalgebra D = (Xb, ξb)b∈S� into the [[G]]-coalgebra D� =
(Xa, γa)a∈S , where

γa = [[F]](ζs1 , . . . , ζsn) ◦ ξa

for a → F(s1, . . . , sn) in G, and the maps ζs : Xs → [[s]](Xa)a∈S for s ∈ Types(G)
are defined recursively by

ζa = idXa (a ∈ S) and ζF(s1,...,sn) = [[F]](ζs1 , . . . , ζsn) ◦ ξF(s1,...,sn).

One can then construct a coalgebra morphismD → (D�)�, and Proposition 9 yields the
claim. ��

468 L. Schröder and D. Pattinson

In our running example, the situation is as follows:

Example 14. Consider the gluings G1 and G2 over S = {a, u, n} from Example 4 and
recall from Example 12 that G�1 = G2. Let C = (X, ξ : X → DωX + P(A × X))
be a [[G1]]-coalgebra. Then C� = ((Xs), (ξs)) where Xa = X,Xu = DωX , Xn =
P(A×X), ξa = s, ξu = idXu , and ξn = idXn .

Conversely, given a [[G2]]-coalgebra D = ((Xs), (ξs)), we construct a [[G1]]-
coalgebra D� = (X, ξ) by putting X = Xa and ξ = (ξu + ξn) ◦ ξa. The triple
(idX , ξu, ξs) is a homomorphismD → (D�)�.

5 Applications to Model Construction and Complexity

We have seen in Sect. 3 that the same multi-sorted logic can arise from different gluings
of given features, where the difference manifests itself only on a semantic level. The
different interpretations of the logic are related by Theorem 13 which shows that the
satisfiability problem for a given gluing is equivalent to that of its flattening. We now
show that the generic shallow model construction and the ensuing PSPACE decision
procedure from [23] generalise to flat gluings; this enables us to derive upper PSPACE
bounds for arbitrary gluings, in particular for heterogeneous logics equipped with their
standard single-sorted semantics as in Sect. 2.

The shallow model construction requires the involved structures to be strictly one-
step complete in the following sense, where the notation [[]]τ , is as in Definition 7.
(Strict) one-step completeness implies weak completeness of the rule system [17,22].

Definition 15. An n-ary feature F is strictly one-step complete for a structure T =
[[F]] : Setn → Set if, whenever [[χ]]τ = T (X1, . . . , Xn) for a sorted set (V1, . . . , Vn)
of variables, an assignment τ of subsets τ(a) ⊆ Xi to variables a ∈ Vi, and a clause χ
over atoms of the form L(ai1 , . . . , aik), where L : i1, . . . , ik → ∗ in F and aij ∈ Vij ,
then χ is propositionally entailed by a clause ψσ, where (φi)/ψ is a rule of F and σ is
a (V1, . . . , Vn)-substitution (i.e. σ(a) ∈ Vi for a ∈ Vi) such that [[φiσ]]τ = Xi for all i.

(The formulation above corrects the formulation given in [23] in admitting only a sin-
gle rule application in a strict derivation.) One shows analogously to the single-sorted
case [22] that the set of all one-step sound rules for a given F-structure is strictly one-
step complete, so that strictly one-step complete axiomatisations always exist. In [23],
rule resolution, a systematic procedure for obtaining strictly one-step complete rule
sets, has been described, which straightforwardly generalises to the multi-sorted set-
ting. Throughout this section, we fix a gluing G of a set Φ of features over a set S of
sorts; moreover we assume that every feature is equipped with a structure.

Definition 16. The set MA(φ) of modal atoms of an G-formula φ is defined recursively
by MA(φ ∧ ψ) = MA(φ) ∪MA(ψ), MA(¬φ) = MA(φ), and MA(L(ρ1, . . . , ρn)) =
{L(ρ1, . . . , ρn)}. A pseudovaluation for φ is a subsetH of MA(φ). We define satisfac-
tion of propositional formulasχ over MA(φ) byH (H |= χ) inductively in the obvious
way, with H |= χ ⇐⇒ χ ∈ H for χ ∈ MA(φ).

Assuming that s = F(s1, . . . , sn) ∈ Types(G) if s is composite and a →
F(s1, . . . , sn) ∈ G if s = a is a base type, we say that a rule R = (φ1; . . . ;φn)/ψ

Modular Algorithms for Heterogeneous Modal Logics 469

associated with the feature F matches a pseudovaluation H for φ : s if there is a sub-
stitution σ such that ψσ is a clause over MA(φ) with H �|= ψσ. In this case, the pair
(R, σ) is called a matching of H .

Our shallow model theorem now takes the following form.

Theorem 17. If every feature in G is strictly one-step complete, then a formula φ : s
is satisfiable in a G-model iff H |= φ for some pseudovaluation H for φ such that for
every matching ((φ1; . . . ;φn)/ψ, σ) of H , one of the formulas ¬φiσ is satisfiable.

The proof first reduces to flat gluings by Theorem 13 and then recursively constructs a
shallow model whose root state is a pseudovaluation and whose branches are models of
negated substitution instances of rule premises as in the statement.

From Theorem 17, we obtain a multi-sorted version of the generic PSPACE deci-
sion procedure of [23]. This requires to compute matchings of given pseudovaluations,
and we require that the rules associated with features are reduction closed, i.e. it suffices
to consider matchings ((φ1, . . . , φn)/ψ, σ) where ψσ does not contain duplicate liter-
als, with the consequence that there are only finitely many matches to check in every
recursion step. Since rules are generally too large to pass around directly, we assume
that every rule is represented by a code, i.e. a string over some alphabet. For the features
discussed in Example 2, the codes can be taken as the parameters of the rules.

The crucial requirement for the effectivity of the algorithm is that one has a poly-
nomial bound on codes of matching rules and that a number of minor infrastructure
operations can be performed in polynomial time (cf. [23] for details), in which case
we call a rule set PSPACE-tractable. All rule sets presented in Fig. 1 are strictly one-
step complete, reduction closed, and PSPACE -tractable (this is either clear or shown
in [23]). We obtain:

Theorem 18 (Space Complexity). If every feature in G is strictly one-step complete,
reduction closed, and PSPACE -tractable, then the satisfiability problem for F(G)-
formulas over [[G]]-coalgebras is in PSPACE .

In particular, satisfiability for logics arising through arbitrary gluings of the features
from Example 2 are in PSPACE .

Remark 19. The recursive structure of the algorithm allows for a modular implemen-
tation which interconnects separate matching routines for each feature. In particular, the
same algorithmic structure may alternatively be applied to effective heuristic matching
routines, leading to approximative but more efficient solutions.

6 Conclusions

We have introduced a calculus of gluings, which describe ways of combining logical
features like uncertainty, non-determinism, and choice. We have shown that the satis-
faction problem of a gluing is in PSPACE if this is true for involved features. This has
been achieved by equipping the logics under consideration with a multi-sorted coalge-
braic semantics. Crucially, we have shown that the satisfiability problem of a gluing is
equivalent to that of a corresponding flattened gluing; flat gluings are technically more

470 L. Schröder and D. Pattinson

tractable than general gluings, in particular allow for a straightforward generalization
of the generic algorithm of [23]. Our results pave the way for modularized tool sup-
port for a large class of heterogeneous logics. The study of E-connections [14] in the
coalgebraic framework is the subject of future work.

References

1. Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types. In: Gumm,
H.-P. (ed.) Coalgebraic Methods in Computer Science. ENTCS, vol. 82, Elsevier, Amsterdam
(2003)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cam-
bridge (2001)

3. Chellas, B.: Modal Logic. Cambridge University Press, Cambridge (1980)
4. Cı̂rstea, C., Pattinson, D.: Modular construction of modal logics. Theoret. Copmut. Sci. (to

appear). Earlier version In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 258–275. Springer, Heidelberg (2004)

5. D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets.
Arch. Math. Logic 41, 267–298 (2002)

6. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)
7. Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge (2003)
8. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities.

In: Real-Time Systems, RTSS 90, pp. 278–287. IEEE Computer Society Press, Los Alamitos
(1990)

9. Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic Behav-
ior 35, 31–53 (2001)

10. Hemaspaandra, E.: Complexity transfer for modal logic. In: Abramsy, S. (ed.) Logic in Com-
puter Science, LICS ’94, pp. 164–173. IEEE Computer Society Press, Los Alamitos (1994)

11. Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. Theor. Inform.
Appl. 35, 31–59 (2001)

12. Jonsson, B., Yi, W., Larsen, K.G.: Probabilistic extensions of process algebras. In: Bergstra,
J., Ponse, A., Smolka, S.M. (eds.) Handbook of Process Algebra, Elsevier, Amsterdam
(2001)

13. Kurucz, A.: Combining modal logics. In: van Benthem, J., Blackburn, P., Wolter, F. (eds.)
Handbook of Modal Logic, Elsevier, Amsterdam (2006)

14. Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E -connections of abstract description sys-
tems. Artificial Intelligence 156, 1–73 (2004)

15. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94, 1–28
(1991)

16. Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-coalgebraic specifi-
cation in CoCASL. J. Logic Algebraic Programming 67, 146–197 (2006)

17. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame
J. Formal Logic 45, 19–33 (2004)

18. Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12, 149–166
(2002)

19. Rutten, J.: Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249, 3–80 (2000)
20. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. Theoret. Com-

put. Sci. (to appear). Earlier version In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441,
pp. 440–454. Springer, Heidelberg (2005)

Modular Algorithms for Heterogeneous Modal Logics 471

21. Schröder, L.: A semantic PSPACE criterion for the next 700 rank 0-1 modal logics. Avail-
able at http://www.informatik.uni-bremen.de/∼lschrode/papers/
rank01pspace.pdf

22. Schröder, L.: A finite model construction for coalgebraic modal logic. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 157–171.
Springer, Heidelberg (2006)

23. Schröder, L., Pattinson, D.: PSPACE reasoning for rank-1 modal logics. In: Alur, R. (ed.)
Logic in Computer Science, LICS ’06, pp. 231–240. IEEE Computer Society Press, Los
Alamitos (2006)

24. Segala, R.: Modelling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, Massachusetts Institute of Technology (1995)

25. Tobies, S.: PSPACE reasoning for graded modal logics. J. Logic Comput. 11, 85–106 (2001)
26. Wolter, F.: Fusions of modal logics revisited. In: Zakharyaschev, M., Segerberg, K., de Rijke,

M., Wansing, H. (eds.) Advances in modal logic. CSLI Lect. Notes, vol. 1, pp. 361–379.
CSLI, Stanford (1998)

http://www.informatik.uni-bremen.de/~lschrode/papers/rank01pspace.pdf
http://www.informatik.uni-bremen.de/~lschrode/papers/rank01pspace.pdf

Co-Logic Programming: Extending Logic

Programming with Coinduction

Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta

Department of Computer Science
University of Texas at Dallas, Richardson, TX 75080

Abstract. In this paper we present the theory and practice of co-logic
programming (co-LP for brevity), a paradigm that combines both induc-
tive and coinductive logic programming. Co-LP is a natural generaliza-
tion of logic programming and coinductive logic programming, which in
turn generalizes other extensions of logic programming, such as infinite
trees, lazy predicates, and concurrent communicating predicates. Co-LP
has applications to rational trees, verifying infinitary properties, lazy
evaluation, concurrent LP, model checking, bisimilarity proofs, etc.

1 Introduction

Recently coinductive logic programming has been introduced as a means of pro-
gramming with infinite data structures and supporting co-recursion [2] in logic
programming [9]. Practical applications of coinductive LP include improved
modularization of programs as seen in lazy functional languages, rational terms,
and model checking. Coinductive LP allows infinite proofs and infinite data struc-
tures via a declarative semantics based on greatest fix points and an operational
semantics based on the coinductive hypothesis rule that recognizes a co-recursive
call and succeeds.

There are problems for which coinductive LP is better suited than traditional
inductive LP (not to be confused with ILP, LP systems that deal with machine
learning). Conversely, there are problems for which inductive LP is better suited
than coinductive LP. But there are even more problems where both coinductive
and inductive logic programming paradigms are simultaneously useful. In this
paper we examine the combination of coinductive and inductive LP. We chris-
ten the new paradigm co-logic programming (co-LP for brevity). Thus, co-LP
subsumes both coinductive LP and inductive LP. A combination of inductive
and coinductive LP is not straightforward as cyclical nesting of inductive and
coinductive definitions results in programs to which proper semantics cannot
be given. Co-logic programming combines traditional and coinductive LP by al-
lowing predicates to be optionally annotated as being coinductive; by default,
unannotated predicates are interpreted as inductive. In our formulation of co-
LP, coinductive predicates can call inductive predicates and vice versa, with the
only exception being that no cycles are allowed through alternating calls to in-
ductive and coinductive predicates. This results in a natural generalization of

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 472–483, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Co-Logic Programming: Extending Logic Programming with Coinduction 473

logic programming and coinductive logic programming, which in turn generalizes
other extensions of logic programming, such as infinite trees, lazy predicates, and
concurrent communicating predicates. In this paper the declarative semantics
for co-LP is defined, and a corresponding top-down, goal-directed operational
semantics is provided in terms of alternating SLD and co-SLD semantics and
proved equivalent to the declarative semantics.

Applications of co-LP are also discussed. Co-LP has applications to rational
trees, verifying infinitary properties, lazy evaluation, concurrent logic program-
ming, model checking, bisimilarity proofs, Answer Set Programming (ASP), etc.
Our work can be thought of as developing a practical and reasonable top-down
operational semantics for computing the alternating least and greatest fixed-
point of a logic program. We assume that the reader has familiarity with coin-
duction [2] & coinductive LP [9].

2 Coinductive Logic Programming

Coinductive LP allows one to program with infinite data structures and infinite
proofs. Under Coinductive LP, programs such as the one below, which describes
infinite streams of binary digits, become semantically meaningful, i.e., not se-
mantically null.

bit(0).
bit(1).
bitstream([H|T]) :- bit(H), bitstream(T).

| ?- X = [0, 1, 1, 0 | X], bitstream(X).

We would like the above query to have a finite derivation and return a posi-
tive answer; however, aside from the bit predicate, the least fixed-point (lfp)
semantics of the above program is null, and its evaluation using SLD resolution
lacks a finite derivation. The problems are two-fold. The Herbrand universe does
not allow for infinite terms such as X and the least Herbrand model does not
allow for infinite proofs, such as the proof of bitstream(X); yet these concepts
are commonplace in computer science, and a sound mathematical foundation
exists for them in the field of hyperset theory [2]. Coinductive LP extends the
traditional declarative and operational semantics of LP to allow reasoning over
infinite and cyclic structures and properties [9].

In the coinductive LP paradigm the declarative semantics of the predicate
bitstream/1 above is given in terms of infinitary Herbrand universe, infinitary
Herbrand base, and maximal models (computed using greatest fixed-points). The
operational semantics is given in terms of the coinductive hypothesis rule which
states that during execution, if the current resolvent R contains a call C′ that
unifies with a call C encountered earlier, then the call C′ succeeds; the new
resolvent is R′θ where θ = mgu(C,C′) and R′ is obtained by deleting C′ from
R. With this extension a clause such as p([1|T]) :- p(T) and the query p(Y)
will produce an infinite answer Y = [1|Y]. Applications of purely coinductive

474 L. Simon et al.

logic programming to fields such as model checking, concurrent logic program-
ming, real-time systems, etc., can also be found in [9]. To implement coinductive
LP, one needs to remember in a memo-table (memoize) all the calls made to
coinductive predicates.

3 Motivation and Examples

Coinductive LP and inductive LP cannot be naively combined together, as this
results in interleaving of least fixed point and greatest fixed point computations.
Such programs cannot be given meaning easily. Consider the following program:

:- coinductive p/0. %q/0 is inductive by default.
p :- q.
q :- p.

For computing the result of goal ?- q., we’ll use lfp semantics, which will pro-
duce null, implying that q should fail. Given the goal ?- p. now, it should also
fail, since p calls q. However, if we use gfp semantics (and the coinductive hy-
pothesis computation rule), the goal p should succeed, which, in turn, implies
that q should succeed. Thus, naively mixing coinduction and induction leads to
contradictions.

We resolve this contradiction by disallowing such cyclical nesting of inductive
and coinductive predicates. Thus, inductive and coinductive predicates can be
used in the same program as long as the program is stratified w.r.t. inductive and
coinductive predicates. That is, an inductive predicate in a given strata cannot
call a coinductive predicate in a higher strata and vice versa.

Next, we illustrate co-LP via more examples.

Infinite Streams: The following example involves a combination of an induc-
tive predicate and a coinductive predicate. By default, predicates are inductive,
unless indicated otherwise. Consider the execution of the following program,
which defines a predicate that recognizes infinite streams of natural numbers.
Note that only the stream/1 predicate is coinductive, while the number/1 pred-
icate is inductive.
:- coinductive stream/1.
stream([H | T]) :- number(H), stream(T).
number(0).
number(s(N)) :- number(N).
| ?- stream([0, s(0), s(s(0)) | T]).

The following is an execution trace, for the above query, of the memoization of
calls by the operational semantics. Note that calls of number/1 are not memo’ed
because number/1 is inductive.
MEMO: stream([0, s(0), s(s(0)) | T])
MEMO: stream([s(0), s(s(0)) | T])
MEMO: stream([s(s(0)) | T])

Co-Logic Programming: Extending Logic Programming with Coinduction 475

The next goal call is stream(T), which unifies with the first memo’ed ancestor,
and therefore immediately succeeds. Hence the original query succeeds with the
infinite solution:
T = [0, s(0), s(s(0)) | T]

The user could force a failure here, which would cause the goal to be unified
with the next two matching memo’ed ancestor producing T = [s(0),s(s(0))
|T] & T = [s(s(0))|T] respectively. If no remaining memo’ed elements exist,
the goal is memo’ed, and expanded using the coinductively defined clauses, and
the process repeats—generating additional results, and effectively enumerating
the set of (rational) infinite lists of natural numbers that begin with the prefix
[0,s(0),s(s(0))].

The goal stream(T) is true whenever T is some infinite list of natural numbers.
If number/1 was also coinductive, then stream(T) would be true whenever T is
a list containing either natural numbers or ω, i.e., infinity, which is represented
as an infinite application of successor s(s(s(...))). Such a term has a finite
representation as X = s(X).

Note that excluding the occurs check is necessary as such structures have a
greatest fixed-point interpretation and are in the co-Herbrand Universe. This is
in fact one of the benefits of co-LP. Unification without occurs check is typically
more efficient than unification with occurs check, and now it is even possible to
define non-trivial predicates on the infinite terms that result from such unifica-
tion, which are not definable in LP with rational trees. Traditional logic pro-
gramming’s least Herbrand model semantics requires SLD resolution to unify
with occurs check (or lack soundness), which adversely affects performance in
the common case. Co-LP, on the other hand, has a declarative semantics that
allows unification without doing occurs check, and it also allows for non-trivial
predicates to be defined on infinite terms resulting from such unification.

List Membership: This example illustrates that some predicates are naturally
defined inductively, while other predicates are naturally defined coinductively.
The member/2 predicate is an example of an inherently inductive predicate.

member(H, [H |]).
member(H, [| T]) :- member(H, T).

If this predicate was declared to be coinductive, then member(X, L) is true
(i) whenever X is in L or (ii) whenever L is an infinite list, even if X is not in
L! The definition above, whether declared coinductive or not, states that the
desired element is the last element of some prefix of the list, as the following
equivalent reformulation of member/2, called membera/2 shows, where drop/3
drops a prefix ending in the desired element and returns the resulting suffix.

membera(X, L) :- drop(X, L,).
drop(H, [H | T], T).
drop(H, [| T], T1) :- drop(H, T, T1).

When the predicate is inductive, this prefix must be finite, but when the
predicate is declared coinductive, the prefix may be infinite. Since an infinite list
has no last element, it is trivially true that the last element unifies with any other

476 L. Simon et al.

term. This explains why the above definition, when declared to be coinductive,
is always true for infinite lists regardless of the presence of the desired element.

A mixture of inductive and coinductive predicates can be used to define a
variation of member/2, called comember/2, which is true if and only if the desired
element occurs an infinite number of times in the list. Hence it is false when the
element does not occur in the list or when the element only occurs a finite number
of times in the list. On the other hand, if comember/2 was declared inductive,
then it would always be false. Hence coinduction is a necessary extension.

:- coinductive comember/2.
comember(X, L) :- drop(X, L, L1), comember(X, L1).
?- X = [1, 2, 3 | X], comember(2, X).

Answer: yes.
?- X = [1, 2, 3, 1, 2, 3], comember(2, X).

Answer: no.
?- X = [1, 2, 3 | X], comember(Y, X).

Answer: Y = 1;
Y = 2;
Y = 3;

Note that drop/3 will have to be evaluated using OLDT tabling for it not to go
into an infinite loop for inputs such as X = [1,2,3|X] (if X is absent from the list
L, the lfp of drop(X,L) is null). More elaborate examples including application
to model checking can be found elsewhere [10].

4 Syntax and Semantics

While co-logic programming is based on the very simple concept of co-induction,
the previous examples show that it is an extremely elegant and powerful
paradigm. Next, we present the declarative and operational semantics of co-logic
programming and prove that they are equivalent.

Syntax: A co-logic program P is syntactically identical to a traditional, that is,
inductive logic program. In the following, it is important to distinguish between
an idealized class of objects and the syntactic restriction of said objects. Elements
of syntax are necessarily finite, while many of the semantic objects used by
co-LP are infinite. It is assumed that there is an enumerable set of variables,
an enumerable set of constants, and for all natural numbers n, there are an
enumerable set of function and predicate symbols of arity n.

Definition 1. A pre-program is a definite program paired with a mapping of
predicate symbols to the token coinductive or inductive. A predicate is coin-
ductive (resp. inductive) if the partial mapping maps the predicate to
coinductive (resp. inductive). An atom is coinductive (resp. inductive) if the
underlying predicate is coinductive (resp. inductive).

Not every pre-program is a co-logic program. Co-LP programs do not allow
for any pair of inductive and coinductive predicates to be mutually recursive:

Co-Logic Programming: Extending Logic Programming with Coinduction 477

programs must be stratified w.r.t. alternating induction and coinduction. An
inductive predicate can (indirectly) call a coinductive predicate and visa versa,
but they cannot be mutually recursive.

Definition 2. In some pre-program P , we say that a predicate p depends on a
predicate q if and only if p = q or P contains a clause C ← D1, . . . , Dn such
that C contains p and some Di contains q. The dependency graph of program P
has the set of its predicates as vertices, and the graph has an edge from p to q if
and only if p depends on q.

Co-LP programs are pre-programs with stratification restriction.

Definition 3. A co-logic program is a pre-program such that for any strongly
connected component G in the dependency graph of the program, every predicate
in G is either mapped to coinductive or to inductive.

Declarative Semantics: The declarative semantics of a co-logic program is a
stratified interleaving of the minimal Herbrand model [1,7] and the maximal co-
Herbrand model semantics [9]. Hence, co-LP strictly contains logic programming
with rational trees [6] as well as coinductive logic programming [9]. This allows
the universe of terms to contain infinite terms, in addition to the traditional
finite terms. Finally, co-LP also allows for the model to contain ground goals
that have either finite or infinite proofs. Note that stratification is necessary
because programs that cyclically interleave inductive and coinductive predicates
cannot be given a meaning easily, as explained earlier.

The following definition is necessary for defining the model of a co-logic pro-
gram. Intuitively, a reduced graph is derived from a dependency graph by col-
lapsing the strongly connected components of the dependency graph into single
nodes. The graph resulting from this process is acyclic.

Definition 4. The reduced graph for a co-logic program has vertices consisting
of the strongly connected components of the dependency graph of P . There is an
edge from v1 to v2 in the reduced graph if and only if some predicate in v1 depends
on some predicate in v2. A vertex in a reduced graph is said to be coinductive
(resp. inductive) if it contains only coinductive (resp. inductive) predicates.

A vertex in a reduced graph of a program P is called a stratum, as the set of
predicates in P is stratified into a collection of mutually disjoint strata of pred-
icates. The stratification restriction states that all vertices in the same stratum
are of the same kind, i.e., every stratum is either inductive or coinductive. A
stratum v depends on a stratum v′, when there is an edge from v to v′ in the
reduced graph. When there is a path in the reduced graph from v to v′, v is said
to be higher than v′ and v′ is said to be lower than v, and the case when v �= v′ is
delineated by the modifier “strictly”, as in “strictly higher” and “strictly lower”.
This restriction allows for the model of a stratum v to be defined in terms of
the models of the strictly lower strata, upon which v depends. However, before
we can define the model of a stratum, we must define a few basic sets. In the
description below, μ (resp. ν) is the least (resp. greatest) fixed point operator.

478 L. Simon et al.

Definition 5. Let P be a definite program. Let A (P) be the set of constants
in P , and let Fn(P) denote the set of function symbols of arity n in P . The
co-Herbrand universe of P , denoted U co(P) = νΦP , where

ΦP (S) = A(P) ∪ {f(t1, . . . , tn) | f ∈ Fn(P) ∧ t1, . . . , tn ∈ S}

Intuitively, this is the set of terms both finite and infinite that can be constructed
from the constants and functions in the program. Hence unification without oc-
curs check has a greatest fixed-point interpretation, as rational trees are included
in the co-Herbrand universe. The Herbrand universe is simply μΦP .

Definition 6. Let P be a definite program. The co-Herbrand base a.k.a. the
infinitary Herbrand base, written Bco(P), is the set of all ground atoms that can
be formed from the atoms in P and the elements of U co(P). Also, let Gco(P) be
the set of ground clauses C ← D1, . . . , Dn that are a ground instance of some
clause of P such that C,D1, . . . , Dn ∈ Bco(P).

Now we can define the model of a stratum, i.e., the model of a vertex in the
reduced graph of a co-logic program. The model of each stratum is defined using
what is effectively the same TP monotonic operator used in defining the minimal
Herbrand model [1,7], except that it is extended so that it can treat the atoms
defined as true in lower strata as facts when proving atoms containing predicates
in the current stratum. This is possible because co-logic programs are stratified
such that the reduced graph of a program is always a DAG and every predicate
in the same stratum is the same kind: inductive or coinductive.

Definition 7. The model of a stratum v of P equals μT vP if v is inductive and
νT vP if v is coinductive, such that R is the union of the models of the strata that
are strictly lower than v and

T vP (S) = R ∪
{
q
(
t̂
)
| q ∈ v ∧ [q

(
t̂
)
← D̂] ∈ Gco(P) ∧ D̂ ∈ S

}

Since any predicate resides in exactly one stratum, the definition of the model
of a co-logic program is straightforward.

Definition 8. The model of a co-logic program P , written M(P), is the union
of the model of every stratum of P .

Obviously co-LP’s semantics subsumes the minimal co-Herbrand model used as
the semantics for logic programming with rational trees, as well as the maximal
co-Herbrand model used as the semantics for coinductive logic programming.

Definition 9. An atom A is true in program P iff the set of all groundings of
A with substitutions ranging over the U co(P), is a subset of M(P).

Example 1. Let P1 be the following program.
:- coinductive from/2.
from(N, [N|T]) :- from(s(N), T).
| ?- from(0,).

Co-Logic Programming: Extending Logic Programming with Coinduction 479

The model of the program, which is defined in terms of an alternating fixed-
point is as follows. The co-Herbrand Universe is U co(P1) = N ∪ Ω ∪ L
where N = {0, s(0), s(s(0)), . . .}, Ω = {s(s(s(. . .)))}, and L is the set of all
finite and infinite lists of elements in N , Ω, and even L. Therefore the model
M(P1) = {from(t, [t, s(t), s(s(t)), . . .]) | t ∈ U co(P1)}, which is the meaning of
the program and is obviously not null, as was the case with traditional logic
programming. Furthermore from(0, [0, s(0), s(s(0)), . . .]) ∈ M(P1) implies that
the query returns “yes”. On the other hand, if the directive on the first line of
the program was removed, call the resulting program P ′

1, then the program’s
only predicate would by default be inductive, and M(P ′

1) = ∅. This corresponds
to the traditional semantics of logic programming with infinite trees. Examples
involving multiple strata of different kinds, i.e., mixing inductive and coinductive
predicates, are given in section 3.

The model characterizes semantics in terms of truth, that is, the set of ground
atoms that are true. This set is defined via a generator; later we will need to
talk about the manner in which the generator is applied in order to include an
atom in the model. For example, the generator is only allowed to be applied a
finite number of times for any given atom in a least fixed-point, while it can be
applied an infinite number of times in the greatest fixed-point. We capture this
by recording the application of the generator in the elements of the fixed-point
itself. We call these objects “idealized proofs.” In order to define idealized proofs,
it is first necessary to define some formalisms for trees.

Definition 10. A path π is a finite sequence of positive integers i. The empty
path is written ε, the singleton path is written i for some positive integer i, and
the concatenation of two paths is written π · π′. A tree of S, called an S-tree,
is formally defined as a partial function from paths to elements of S, such that
the domain is non-empty and prefix-closed. A node in a tree is unambiguously
denoted by a path. So a tree t is described by the paths π from the root t(ε) to
the nodes t(π) of the tree, and the nodes are labeled with elements of S.

A child of node π in tree t is any path π ·i that is in the domain of t, where i is
some positive integer. If π is in the domain of t, then the subtree of t rooted at π,
written t \ π, is the partial function t′(π′) = t(π · π′). Also, node(L, T1, . . . , Tn)
denotes a constructor of an S-tree with root labeled L and subtrees Ti, where
L ∈ S and each Ti is an S-tree, such that 1 ≤ i ≤ n, node(L, T1, . . . , Tn)(ε) = L,
and node(L, T1, . . . , Tn)(i · π) = Ti(π).

Idealized proofs are trees of ground atoms, such that a parent is deduced from
the idealized proofs of its children.

Definition 11. The set of idealized proofs of a stratum of P equals μΣv
P if v

is inductive and νΣv
P if v is coinductive, such that R is the union of the sets of

idealized proofs of the strata strictly lower than v and

Σv
P (S) = R ∪ {node(q

(
t̂
)
, T1, . . . , Tn) | q ∈ v ∧ Ti ∈ S∧

[q
(
t̂
)
← D1, . . . , Dn] ∈ Gco(P) ∧ Ti(ε) = Di}

480 L. Simon et al.

Note that these definitions mirror the definitions defining models, with the excep-
tion that the elements of the sets record the application of the program clauses
as a tree of atoms.

Definition 12. The set of idealized proofs generated by a co-logic program P ,
written ΣP , is the union of the sets of idealized proofs of every stratum of P .

Again, this is nothing more than a reformulation of M(P), which records the
applications of the generator in the elements of the fixed-points, as the following
theorem demonstrates.

Theorem 1. Let S = {A | ∃T ∈ ΣP .A is root of T }, then S = M(P).

Hence any element in the model has an idealized proof and anything that has
an idealized proof is in the model. This formulation of the declarative semantics
in terms of idealized proofs will be used in soundness and completeness proofs
in order to distinguish between the case when a query has a finite derivation,
from the case when there are only infinite derivations of the query.

Operational Semantics: This section defines the operational semantics for co-
LP. This requires some infinite tree theory. However, this section only states a
few definitions and theorems without proof. The details of infinite tree theory
can be found in [4].

The operational semantics given for co-LP is defined as an interleaving of SLD
[7] and co-SLD [9]. Where SLD uses sets of syntactic atoms and syntactic term
substitutions for states, co-SLD uses finite trees of syntactic atoms along with
systems of equations. Of course, the traditional goals of SLD can be extracted
from these trees, as the goal of a forest is simply the set of leaves of the forest.
Furthermore, where SLD only allows program clauses as state transition rules,
co-SLD also allows a special coinductive hypothesis rule for proving coinductive
atoms [9]. The coinductive hypothesis rule allows us to compute the greatest
fixed-point. Intuitively, it states that if, during execution, a call C is encountered
that unifies with an ancestor call A that has been seen before, then C is deleted
from the resolvent and the substitution resulting from unification of C and A
imported into the resolvent. Thus, given the clause: p :- p the query | ?-
p. succeeds by the coinductive hypothesis rule (indeed {p} is the gfp of this
program). Likewise, given the clause: p([1|T]) :- p(T). the query | ?- p(X).
succeeds by the coinductive hypothesis rule with solution X = [1 | X] (note
that indeed {p([1,...])}, where [1,...] denotes an infinite list of 1’s, is the
gfp of the program).

Definition 13. A system of equations E is a term unification problem where
each equation is of the form X = t, s.t. X is a variable and t a syntactic term.

Theorem 2. (Courcelle) Every system of equations has a rational mgu.

Theorem 3. (Courcelle) For every rational substitution σ with domain V , there
is a system of equations E, such that the most general unifier σ′ of E is equal
to σ when restricted to domain V .

Co-Logic Programming: Extending Logic Programming with Coinduction 481

Without loss of generality, the previous two theorems allow for a solution to a
term unification problem to be simultaneously a substitution as well as a system
of equations. Given a substitution specified as a system of equations E, and a
term A, the term E(A) denotes the result of applying E to A.

Now the operational semantics can be defined. The semantics implicitly de-
fines a state transition system. Systems of equations are used to model the part of
the state involving unification. The current state of the pending goals is modeled
using a forest of finite trees of atoms, as it is necessary to be able to recognize in-
finite proofs, for coinductive queries. However, an implementation that executes
goals in the current resolvent from left to right (as in standard LP), only needs
a single stack.

Definition 14. A state S is a pair (F,E), where F is a finite multi-set of finite
trees (syntactic atoms), and E is a system of equations.

Definition 15. A transition rule R of a co-logic program P is an instance of a
clause in P , with variables consistently renamed for freshness, or R is a coin-
ductive hypothesis rule of the form ν(π, π′), where π and π′ are paths, such that
π is a proper prefix of π′.

Before we can define how a transition rule affects a state, we must define how a
tree in a state is modified when an atom is proved to be true. This is called the
unmemo function, and it removes memo’ed atoms that are no longer necessary.
Starting at a leaf of a tree, the unmemo function removes the leaf and the
maximum number of its ancestors, such that the result is still a tree. This involves
iteratively removing ancestor nodes of the leaf until an ancestor is reached, which
still has other children, and so removing any more ancestors would cause the
result to no longer be a tree, as children would be orphaned. When all nodes in
a tree are removed, the tree itself is removed.

Definition 16. The unmemo function δ takes a tree of atoms T , a path π in
the domain of T , and returns a forest. Let ρ(T, π · i) be the partial function equal
to T , except that it is undefined at π · i. δ(T, π) is defined as follows:

δ(T, π) = {T } , if π has children in T
δ(T, ε) = ∅ , if ε is a leaf in T
δ(T, π) = δ(ρ(T, π), π′) , if π = π′ · i is a leaf in T

The intuitive explanation of the following definition is that (1) a state can be
transformed by applying the coinductive hypothesis rule ν(π, π′), whenever in
some tree, π is a proper ancestor of π′, such that the two atoms unify. Also,
(2) a state can be transformed by applying an instance of a definite clause from
the program. In either case, when a subgoal has been proved true, the forest
is pruned so as to remove unneeded memos. Also, note that the body of an
inductive clause is overwritten on top of the leaf of a tree, as an inductive call
need not be memo’ed, since the coinductive hypothesis rule can never be invoked
on a memo’ed inductive predicate. When the leaf of the tree is also the root, this

482 L. Simon et al.

causes the old tree to be replaced with, one or more singleton trees. Coinductive
subgoals, on the other hand, need to be memo’ed, in the form of a forest, so that
infinite proofs can be recognized.

The state transition system may be nondeterministic, depending on the pro-
gram, that is, it is possible for states to have more than one outgoing transition
as the following definition shows (implementations typically use backtracking
to realize nondeterministic execution). We write S − x to denote the multi-set
obtained by removing an occurrence of x from S.

Definition 17. Let T ∈ F . A state (F,E) transitions to another state ((F −
T) ∪ F ′, E′) by transition rule R of program P whenever:

1. R is an instance of the coinductive hypothesis rule of the form ν(π, π′), p
is a coinductive predicate, π is a proper prefix of π′, which is a leaf in T ,
T (π) = p(t′1, . . . , t

′
n), T (π′) = p(t1, . . . , tn), E′ is the most general unifier for

{t1 = t′1, . . . , tn = t′n} ∪ E, and F ′ = δ(T, π′).
2. R is a definite clause of the form
p(t′1, . . . , t

′
n) ← B1, . . . , Bm, π is a leaf in T , T (π) = p(t1, . . . , tn), E′ is the

most general unifier for {t1 = t′1, . . . , tn = t′n} ∪ E, and the set of trees of
atoms F ′ is obtained from T acc. to the following case analysis of m and p:
(a) Case m = 0: F ′ = δ(T, π).
(b) Case m > 0 and p is coinductive: F ′ = {T ′} where T ′ is equal to T

except at π · i, & T ′(π · i) = Bi, for 1 ≤ i ≤ m.
(c) Case m > 0 and p is inductive: If π = ε then F ′ = {node(Bi) | 1 ≤ i ≤

m}. Otherwise, π = π′ · j for some positive integer j. Let T ′′ be equal
to T except at π′ · k for all k, where T ′′ is undefined. Finally, F ′ = {T ′}
where T ′ = T ′′ except at π′ · i, where T ′(π′ · i) = Bi, for 1 ≤ i ≤ m, and
T ′(π′ · (m+ k)) = T (π′ · k), for k �= j.

Definition 18. A transition sequence in program P consists of a sequence of
states S1, S2, . . . and a sequence of transition rules R1, R2 . . ., such that Si tran-
sitions to Si+1 by rule Ri of program P .

A transition sequence is an execution trace. Execution halts when it reaches a
terminal state: all atoms have been proved or a dead-end reached.

Definition 19. The following are two distinguished terminal states:

1. An accepting state is a state of the form (∅, E), where ∅ = empty set.
2. A failure state is a non-accepting state with no outgoing transitions.

Finally we can define the execution of a query as a transition sequence through
the state transition system induced by the input program, with the start state
consisting of the initial query.

Definition 20. A derivation of a state (F,E) in program P is a state transition
sequence with the first state equal to (F,E). A derivation is successful if it ends
in an accepting state, and a derivation has failed if it reaches a failure state. We
say that a list of syntactic atoms A1, . . . , An, also called a goal or query, has a
derivation in P , if ({node(Ai) | 1 ≤ i ≤ n}, ∅) has a derivation in P .

Co-Logic Programming: Extending Logic Programming with Coinduction 483

Equivalence: Correctness is proved by equating operational & declarative se-
mantics via soundness and completeness theorems. Completeness is restricted to
atoms with rational proofs.

Theorem 4. (soundness) If the query A1, . . . , An has a successful derivation in
program P , then E(A1, . . . , An) is true in program P , where E is the resulting
variable bindings for the derivation.

Theorem 5. (completeness) Let A1, . . . , An ∈M(P), s.t. each Ai has a rational
idealized proof; the query A1, . . . , An has a successful derivation in P .

5 Conclusions and Future Work

In this paper we presented a comprehensive theory of co-LP and demonstrated
its practical applications. Note that most past efforts [3,6,5] do not support
coinduction in its most general form and therefore are deficient. A prototype
implementation of co-LP has been developed by modifying the YAP Prolog sys-
tem [8]. Current work also includes extending co-LP’s operational semantics
with alternating OLDT and co-SLD, so that the operational behavior of induc-
tive predicates can be made to more closely match their declarative semantics.
Current work also involves extending the operational semantics of co-LP to al-
low for finite derivations in the presence of irrational terms and proofs, that is,
infinite terms and proofs that do not have finitely many distinct subtrees.

Acknowledgments. We are grateful to Vı́tor Santos Costa and Ricardo Rocha
for help with YAP, and Srividya Kona for comments.

References

1. Krzysztof, R.: Apt. Logic programming. In: Handbook of Theoretical Computer
Science, pp. 493–574. MIT Press, Cambridge (1990)

2. Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded
Phenomena. CSLI Pub. (1996)

3. Colmerauer, A.: Equations and inequations on finite and infinite trees. In: FGCS’84
4. Courcelle, B.: Fundamental properties of infinite trees. TCS, pp. 95–212 (1983)
5. Hanus, M.: Integration of functions into LP. J. Logic Prog. 19, 20, 583–628 (1994)
6. Jaffar, J., Stuckey, P.J.: Semantics of infinite tree LP. TCS 46(2–3), 141–158 (1986)
7. Lloyd, J.W.: Foundations of LP, 2nd edn. Springer, Heidelberg (1987)
8. Rocha, R., et al.: Theory and Practice of Logic Programming 5(1-2), 161–205,

(2005)Tabling Engine That Can Exploit Or-Parallelism. In: ICLP 2001, pp. 43–58
(2001)

9. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006)

10. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Co-Logic Programming: Extending
Logic Programming with Coinduction. TR #UTDCS-21-06, UT Dallas (2006)

Offline/Online Mixing

Ben Adida1,� and Douglas Wikström2,��

Harvard, Center for Research on Computation and Society
ben@eecs.harvard.edu, douglas@wikstrom.net

Abstract. We introduce an offline precomputation technique for mix-
nets that drastically reduces the amount of online computation needed.
Our method can be based on any additively homomorphic cryptosystem
and is applicable when the number of senders and the maximal bit-size
of messages are relatively small.

1 Introduction

Suppose some senders S1, . . . , SN , each with input mi, want to compute the
sorted list (mπ(1), . . . ,mπ(N)) while keeping the permutation π secret. A trusted
party can provide this service. First, it collects all messages. Then, it shuffles
the inputs according to π and outputs the result. A protocol, i.e. a list of ma-
chines M1, . . . ,Mk, that emulates this service is called a mix-net, and the parties
M1, . . . ,Mk are referred to as mix-servers. The assumption is that each sender
Si trusts that a certain fraction of the mix-servers M1, . . . ,Mk is honest. The
notion of a mix-net was introduced by Chaum [9].

There are numerous proposals in the literature for how to construct a secure
mix-net, but there are also several attacks. A rigorous definition of security of
a mix-net was first given by Abe and Imai [1], though they did not construct a
scheme satisfying their construction. Wikström [20] gives the first definition of
a universally composable (UC) mix-net, and also the first UC-secure construc-
tion. In recent work, Wikström [21] gives a more efficient UC-secure scheme and
Wikström and Groth [23] describes an adaptively secure construction.

In this paper we assume that a statically UC-secure mix-net can be con-
structed, and consider to what extent offline precomputation can be used to
reduce the amount of online computation needed during execution.

1.1 Previous Work

General techniques, e.g., precomputation of re-encryption factors, fixed base ex-
ponentiation, and simultaneous exponentiation [16], can be used to lower the
online computational complexity of most mix-nets in the literature. However, for
the known constructions, it seems difficult to use these methods to completely

� Work done while at MIT, funded by the Caltech/MIT Voting Technology Project.
�� Work done while at ETH Zürich, Department of Computer Science.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 484–495, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Offline/Online Mixing 485

remove the large number of exponentiations needed in the proofs of shuffles used
to provide security against active attacks.

We are not aware of any previous work on mix-nets using our approach, but
it is inspired by the ground-breaking work on homomorphic election schemes
introduced by Cohen1 and Fischer [10] and further developed in a long line of
papers [5,11,15].

In recent work [3], we consider a related precomputation technique with con-
nections to public key obfuscation. By comparison, the solution we present here
requires an individual key for each sender but is much more efficient. Thus, the
two solutions are complementary.

1.2 Our Contributions

We describe a novel precomputation technique for mix-nets based on additively
homomorphic cryptosystems such as the Paillier [19] cryptosystem. Although our
technique is universally applicable, it only reduces the online complexity in terms
of computation and communication when the number of senders and the maximal
bit-size of their messages are reasonably small. We also introduce the notion of
concatenation-friendly cryptosystems as a separate tool and prove that such
schemes can be constructed from any additively homomorphic cryptosystem.
Our technique may be of great value in some practical applications where online
computational power is a scarce resource and the result is needed quickly.

1.3 Notation

We denote the natural numbers by N, the integers by Z, the integers modulo n
by Zn, the multiplicative group modulo n by Z∗

n, and the subgroup of squares
modulo n by SQn. We interpret strings as integers in base two when convenient.
We write a‖b to denote the concatenation of the two strings a and b. We use
PT and PT∗ to denote the set of polynomial time and non-uniform polynomial
time Turing machines respectively, and let κ be the main security parameter.
We say that a function ε(κ) is negligible if for every constant c and sufficiently
large κ it holds that ε(κ) < κ−c. We denote by Sort the algorithm that, on
input a list of strings, outputs the same strings in lexicographical order. If pk is
the public key of a cryptosystem, we denote by Mpk , Cpk , and Rpk the plaintext
space, the ciphertext space, and the randomness space respectively. We state our
results using the Universal Composability (UC) framework [8]. We use slightly
non-standard notation in that we use an explicit communication model, denoted
CI , that acts as a router between the parties. We refer the reader to [8,22] for
details on this variant of the UC model.

2 Additively Homomorphic Cryptosystems

There are several homomorphic cryptosystems in the literature, but not all are
additively homomorphic. For our new scheme, we do not require the
1 In his later work, Cohen published under the name Benaloh.

486 B. Adida and D. Wikström

cryptosystem to have efficient decryption for all encrypted messages. More pre-
cisely, we use the following definitions.

Definition 1. A weak cryptosystem CS = (Kg,E,D) is a cryptosystem except
we do not require that D run in polynomial time. If there exists polynomial T (·)
and κs(κ) > 0 such that {0, 1}κs ⊂ Mpk and such that Dsk (Epk (m)) outputs
m in time T (κ) for every (pk , sk) = Kg(1κ) and m ∈ {0, 1}κs, we call CS a
κs-cryptosystem.

Definition 2. A weak cryptosystem CS is homomorphic if for every (pk , sk) =
Kg(1κ):

1. The message space Mpk and the randomizer space Rpk are additive abelian
groups, and the ciphertext space Cpk is a multiplicative abelian group, and
the group operations can be computed in polynomial time given pk.

2. For every m,m′ ∈ Mpk and r, r′ ∈ Rpk : Epk (m, r)Epk (m′, r′) = Epk (m +
m′, r + r′).

Definition 3. A weak homomorphic cryptosystem CS is said to be additive if,
for every (pk , sk) = Kg(1κ) the message space Mpk is the additive modular group
Zn for some integer n > 1. In this case we identify the elements of Zn with their
bit-string representations as integers in base two.

Efficient Examples. The Paillier cryptosystem [19,12] is additively homomor-
phic, since Mpk = Zn, Rpk = Z∗

n, and Cpk = Z∗
n2 , where n is the κ-bit modulus

contained in the public key pk . Similarly, the Okamoto-Uchiyama cryptosys-
tem [18], a precursor of the Paillier cryptosystem, is additively homomorphic,
since Mpk = Zp, Rpk = Zn, and Cpk = Z∗

n, where n is the κ-bit modulus
contained in the public key pk .

Inefficient Examples. The Goldwasser-Micali cryptosystem [14], when based on
quadratic residues, is additively homomorphic, since Mpk = Z2, Rpk = SQn, and
Cpk is the subset of Z∗

n with Jacobi symbol 1. This example may be interesting
despite its inefficiency, since the quadratic residuosity assumption is considered
a very weak assumption. The Boneh-Goh-Nissim cryptosystem [6] can be viewed
as an additively homomorphic O(κ)-cryptosystem. This is both inefficient and
based on a very strong assumption, but it may still be interesting in connection
with our ideas due to its special algebraic properties.

3 The Basic Idea

Our construction is simple provided that we use an additive homomorphic κs-
cryptosystem such that Nκm < κs, where N is the maximal number of senders
and κm is the maximal bit-size of submitted messages.

The idea can be described as follows. Define Bi = 2(i−1)κm for i = 1, . . . , N .
The offline phase produces ciphertexts for the sequence of indexed positions

Offline/Online Mixing 487

where the inputs will end up, namely B1, . . . , BN . Then, still in the offline phase,
these ciphertexts are re-randomized and shuffled. Each sender is assigned one
such encrypted index to use as his effective public key. The sender uses the ad-
ditive homomorphic property of the cryptosystem to exponentiate his encrypted
index to his plaintext value mi, thereby creating a ciphertext of the value mi

offset to that sender’s bit position (which remains hidden from the sender). The
resulting ciphertext is then sent to the bulletin board. When all inputs are sub-
mitted, the offline phase ends. Then, they are aggregated using homomorphic
addition. The plaintext of the resulting single ciphertext is the concatenation of
all submitted messages, with each message at its appropriate offset. The idea is
illustrated in Figure 1.

00000000 0000 0001

00010000 0000 0000

00000000 0001 0000

00000001 0000 0000

00000000 0001 0000

00000000 0000 0001

00000001 0000 0000

00010000 0000 0000

m4 0000 00000000

m2

m1

m3

m4

0000m2 0000 0000

00000000 0000

00000000 0000

m3

m1

m4 m3 m1m2

∏

(m2, m4, m3, m1)

Dsk(·)

Fig. 1. The trivial ciphertexts are shuffled to produce a new list of re-encrypted and
permuted ciphertexts. Then each sender uses its assigned ciphertext as a public key
and the result is a new list of ciphertexts, where the messages of the senders are
embedded. Finally, the mix-servers take the product of the ciphertexts and decrypt a
single ciphertext to find the input messages, but in random order.

In the remainder of the paper we relax the restriction Nκm ≤ κs, give a more
detailed description, and prove the security of the scheme, but, before we do so
we give a more detailed description of the simple case. In the offline-phase, the
mix-servers first form the list of trivial encryptions

(C1, . . . , CN) = (Epk (B1, 0), . . . ,Epk (BN , 0)) .

Then, they mix the above list to produce a randomly re-encrypted and permuted
list of ciphertext on the form

(C′
1, . . . , C

′
N) = (Epk (Bπ(1), s1), . . . ,Epk (Bπ(N), sN)) .

The sender Si is then assigned the public key pk i = C′
i. To send a message

mi ∈ {0, 1}κm, the sender Si chooses ri ∈ Rpk randomly, computes the ciphertext

ci = pkmi

i Epk (0, ri)

and writes it on the bulletin board. It also proves knowledge of ri ∈ Rpk and
mi ∈ {0, 1}κm such that the above holds. When the submission phase is over,
the mix-servers compute the product c =

∏N
i=1 ci. Note that we have

488 B. Adida and D. Wikström

c =
N∏

i=1

pkmi

i Epk (0, ri) = Epk(0, r)
N∏

i=1

Epk (Bπ(i), si)mi = Epk

(N∑

i=1

Bπ(i)mi, r
′
)

= Epk

(N∑

i=1

Bπ(i)−1mi, r
′
)

= Epk
(
mπ−1(1)‖ · · · ‖mπ−1(N), r

′) ,

for r =
∑N

i=1 ri and r′ = r +
∑N

i=1 simi, since mi ∈ {0, 1}κm. The mix-servers
jointly compute m′

1‖ · · · ‖m′
N = Dsk (c), and output Sort(m′

1, . . . ,m
′
N).

The Relation With Homomorphic Election Schemes. Recall that the idea behind
the homomorphic election schemes [10] mentioned in the introduction is to use
an additive homomorphic κs-cryptosystem and let a sender Si encode a vote for
party j by a ciphertext ci = Epk(M j), where M is an integer larger than the
number of senders N . The point is that the plaintext of the ciphertext product∏N
i=1 ci is of the form

∑C−1
j=0 ajM

j, where aj is the number of senders that voted
for candidate number j. If C is the number of candidates, this approach requires
that C logN ≤ κs, but one can increase the number of candidates by using
several ciphertexts. In some sense, our approach follows by switching the roles
played by candidates and senders.

4 Model and Definitions

We define some ideal functionalities and the notion of concatenation-friendly
cryptosystems to allow us to state our results more easily.

4.1 The Ideal Bulletin Board

We assume the existence of an ideal authenticated bulletin board. Each party
can write to the bulletin board, nobody can erase anything from the bulletin
board, and the messages that appear on the bulletin board are indexed in the
order they appear (see the full version [4] for a formal definition).

4.2 The Ideal Mix-Net

We use an ideal mix-net functionality similar to the one in [20]. The only essential
difference is that we explicitly allow the adversary to prohibit senders from
submitting an input. This makes the ideal functionality more realistic.

Functionality 1 (Mix-Net). The ideal functionality for a mix-net, FMN, run-
ning with mix-servers M1, . . . ,Mk, senders S1, . . . , SN , and ideal adversary S
proceeds as follows

1. Initialize a list L = ∅, a database D, a counter c = 0, and set JS = ∅ and
JM = ∅.

Offline/Online Mixing 489

2. Repeatedly wait for inputs
– Upon receipt of (Si, Send,mi) with mi ∈ {0, 1}κm and i �∈ JS from
CI , store this tuple in D under the index c, set c ← c + 1, and hand
(S, Si, Input, c) to CI .

– Upon receipt of (Mj, Run) from CI , store (Mj , Run) in D under the index
c, set c← c+ 1, and hand (S,Mj , Input, c) to CI .

– Upon receipt of (S, AcceptInput, c) such that something is stored under
the index c in D do
(a) If (Si, Send,mi) with i �∈ JS is stored under c, then append mi to L,

set JS ← JS ∪ {i}, and hand (S, Si, Send) to CI .
(b) If (Mj , Run) is stored under c, then set JM ← JM ∪ {j}. If |JM | >

k/2, then sort the list L lexicographically to form a list L′, hand
((S,Mj , Output, L′), {(Ml, Output, L′)}kl=1) to CI and ignore further
messages. Otherwise, hand CI the list (S,Mj , Run).

4.3 The Ideal Mixer

Since our focus in this paper is to minimize the online work needed by the mix-
servers and not how to construct a secure mix-net from scratch, we assume the
existence of a powerful ideal functionality that allows us to invoke the different
phases of a mix-net without going into details. We use this functionality during
the offline phase only. Although it is essentially equivalent to an ideal mix-net, we
call it a mixer to distinguish it from the ideal mix-net above, and we parameterize
it by a cryptosystem. The functionality outputs a public key, waits for a list of
ciphertexts to mix, and then finally waits for ciphertexts to decrypt.

Functionality 2 (CS-Mixer). The ideal functionality for a CS-mixer, Fmixer,
running with mix-servers M1, . . . ,Mk, senders S1, . . . , SN , and ideal adversary
S proceeds as follows

1. Set JM = ∅, compute (pk , sk) = Kg(1κ), and hand ((S, PublicKey, pk),
{(Mj, PublicKey, pk)}kj=1) to CI .

2. Wait for an input on the form (Mj , Mix, Lj) with j �∈ JM and set JM ←
JM ∪ {j}.
(a) If there is an L = (ci)Ni=1 such that Lj = L for more than k/2 dis-

tinct j, where ci ∈ Cpk , choose ri ∈ Rpk randomly and compute L′ =
(cπ(1)Epk (0, r1), . . . , cπ(N)Epk (0, rN)) for a random π ∈ ΣN . Then hand
((S, Mixed, L′), {(Mj, Mixed, L′}kj=1) to CI , and go to the next step.

(b) Otherwise hand (S,Mj , Mix, Lj) to CI and wait for another input.
3. Repeatedly wait for messages. Upon receiving (Mj , Decrypt, c) check if c has

been received. If so set Jc ← Jc ∪ {j}. Otherwise initialize Jc = ∅. If |Jc| >
k/2, then hand ((S, Decrypted, c,Dsk (c)), {(Mj , Decrypted, c,Dsk(c))}ki=1)
to CI , and otherwise hand (S,Mj , Decrypt, c) to CI .

Proving that this functionality can be realized in an efficient and UC-secure
way is beyond the scope of this paper. It can be achieved following [21,23].

490 B. Adida and D. Wikström

4.4 Ideal Zero-Knowledge Proof of Knowledge of Plaintexts

We assume the existence of an ideal zero-knowledge proof of knowledge for cor-
rect encryption. The corresponding relation is defined below.

Definition 4 (Plaintext Knowledge). Define the relation Renc as consisting
of the pairs ((pk , pk ′, c), (m, r)) such that c = (pk ′)mEpk (0, r) and m ∈ {0, 1}κm.

Functionality 3 (Zero-Knowledge Proof of Knowledge). Let L be a lan-
guage given by a binary relation R. The ideal zero-knowledge proof of knowledge
functionality FRZK of a witness w to an element x ∈ L, running with provers
S1, . . . , SN , and verifiers M1, . . . ,Mk, proceeds as follows.

1. Upon receipt of (Si, Prover, x, w) from CI , store w under the tag (Si, x), and
hand (S, Si, Prover, x, R(x,w)) to CI . Ignore further messages from Si.

2. Upon receipt of (Mj, Question, Si, x) from CI , if JSi,x is not initialized set
JSi,x = ∅ and otherwise JSi,x ← JSi,x∪{j}. Let w be the string stored under
the tag (Si, x) (the empty string if nothing is stored). If |JSi,x| = k, then hand
((S,Mj , Verifier, Si, x, R(x,w)), {(Mj , Verifier, Si, x, R(x,w))}kj=1) to
CI and otherwise (S,Mj , Question, Si, x).

Note that the functionality synchronizes the response. For cryptosystems such
as Paillier [19] and ElGamal [13] with messages encoded in the exponent, the
above functionality can be efficiently realized using the Naor and Yung [17]
double ciphertext trick and an efficient proof of membership in an interval [7].

4.5 Concatenation Friendly Cryptosystems

To simplify the exposition, we introduce the notion of concatenation-friendly
cryptosystems. Informally, a concatenation-friendly cryptosystem allows con-
catenation of plaintexts under the cover of encryption. We show that this feature
can be obtained from any additively homomorphic κs-cryptosystem for an arbi-
trary κs > 0.

Definition 5. Let CS = (Kg,E,D) be a Nκs-cryptosystem. We say that CS
is (N, κm)-concatenation friendly if there exists Shift,Exp ∈ PT, such that for
every κ ∈ N and every (pk , sk) = Kg(1κ):

1. For every m ∈ {0, 1}κm we have Dsk (Exppk (Epk (0),m)) = 0.
2. For every 1 ≤ t ≤ N and mc ∈ {0, 1}κm:

Dsk (Exppk (Epk (Shiftpk (t)),mc)) = 0(t−1)κm‖mc‖0(N−t)κm .

3. For every ml ∈ {0, 1}(t−1)κm, mc ∈ {0, 1}κm, mr ∈ {0, 1}(N−t)κm:

Dsk
(
Epk(ml‖0κm‖mr)Epk (0(t−1)κm‖mc‖0(N−t)κm)

)
= ml‖mc‖mr .

We abuse notation and write cm instead of Exppk (c,m), and also drop the sub-
script pk from Shiftpk (·). We stress that, in general, the operation computed by
Exp is not the standard exponentiation operator.

Offline/Online Mixing 491

Proposition 1. Let N , κm, and κs > 0 be polynomially bounded. If there exists
a polynomially indistinguishable additively homomorphic κs-cryptosystem, then
there exists a (N, κm)-concatenation friendly and polynomially indistinguishable
Nκm-cryptosystem.

Proof. Let CSah = (Kgah,Eah,Dah) be a polynomially indistinguishable additively
homomorphic κs-cryptosystem for some polynomial κs(κ) > 0. Define Kg equal
to Kgah.

The idea is to “pack” the bits of a message into a list of ciphertexts in such
a way that we can “concatenate” messages from {0, 1}κm under encryption as
required by the definition. We assume that an integer 0 < tm ≤ κs has been fixed
and define tr = �κm/tm�. The integer tr decides into how many pieces we divide
a message m ∈ {0, 1}κm, and tm decides how many bits we have in each such
piece. Note that we may choose a value of tm lower than strictly necessary, so
that, later, we can optimize the number of bits encrypted under CSah depending
on the specific values of N , κm, and κs, without breaking the symmetry required
for concatenation under the cover of encryption.

On input pk and m ∈ {0, 1}Nκm, the encryption algorithm E first writes
m = m1‖ . . . ‖mN with mj ∈ {0, 1}κm. Then it writes mj = m1,j‖ . . . ‖mtr,j

with mi,j ∈ {0, 1}tm . This gives a tr × N -matrix m = (mi,j), where the jth
column corresponds to mj. Then it defines

Mi,j = mi,jtM +1‖ . . . ‖mi,jtM+tM

for j = 0, . . . , t′M where tM is chosen maximal under the restriction tmtM ≤ κs,
and t′M = N/tM − 1. Finally, the algorithm chooses ri,j ∈ Rah

pk randomly and
defines

c =
(
Eah

pk (Mi,j , ri,j)
)tr ,t′M
i=1,j=0

.

The decryption algorithm D takes as input a secret key sk and a ciphertext
c = (ci,j) and proceeds as follows. It first computes

(Mi,j) = (Dah
sk (ci,j))

for i = 1, . . . , tr, j = 0, . . . , t′M and interprets Mi,j as mi,jtM +1‖ · · · ‖mi,jtM +tM

by truncating the string in the natural way. Then, it outputs the concatenation
m of the columns in the matrix m = (mi,l), where i ranges over {1, . . . , tr} and
l ranges over {1, . . . , N}.

The encryption and decryption algorithms obviously run in polynomial time,
since each individual operation does, and it is easy to see that an encrypted
message is always recovered. Thus, CS = (Kg,E,D) is a Nκm-cryptosystem.

The polynomial indistinguishability of the scheme follows by a standard hy-
brid argument, since a ciphertext essentially consists of a polynomial length list
of ciphertexts of a polynomially indistinguishable cryptosystem [14].

It remains to show that the scheme is (N, κm)-concatenation friendly. We de-
fine multiplication component-wise, i.e., cc′ = (ci,j)(c′i,j) = (ci,jc′i,j). The output
of Shift(t) is defined as the concatenation of the columns in the tr × N -matrix

492 B. Adida and D. Wikström

(zi,l) where zi,l = 0 for all elements except that z1,t = z2,t = . . . = ztr,t = 1.
In other words the tth column consists of ones and all other elements are zero.
Finally, we define the Exp algorithm as follows. We write m = (m1, . . . ,mtr)
with mi ∈ {0, 1}tm as above. Then we define

cm = (cmi

i,j) .

Consider now t and mc as in Definition 5, and denote by z = (zi,l) = Shift(t),
and define Zi,j = zi,jtM+1‖ . . . ‖zi,jtM+tM for j = 0, . . . , t′M . We have

Epk(Shift(t))m =
((

Eah
pk (Zi,j)

)tr ,t′M
i=1,j=0

)m =
(
Eah

pk (Zi,j)mi
)tr,t′M
i=1,j=0

=
(
Eah

pk(zi,jtM +1‖ . . . ‖zi,jtM+tM)mi
)tr,t′M
i=1,j=0

.

If we write Eah
pk(zi,jtM +1‖ . . . ‖zi,jtM+tM)mi = Eah

pk (z′i,jtM +1‖ . . . ‖z′i,jtM +tM), we
may conclude that z′i,l = 0 for all i and l except that z′i,t = mi for i = 1, . . . , tr. In
other words, the second requirement is satisfied. Note that if Shift(t) is replaced
by 0 above, we see in a similar way that the first requirement is satisfied.

Consider now ml, mc, and mr as in Definition 5 and write m = ml‖0κm‖mr

and m′ = 0(t−1)κm‖mc‖0(N−t)κm . We have

Epk (m)Epk (m′) =
(
Eah

pk(Mi,j)
)tr,t′M
i=1,j=0

(
Eah

pk (M ′
i,j)

)tr ,t′M
i=1,j=0

=
(
Epk (mi,jtM +1‖ . . . ‖mi,jtM +tM)Epk (m′

i,jtM +1‖ . . . ‖m′
i,jtM +tM)

)tr ,t′M
i=1,j=0

.

From the additive homomorphism of CSah we conclude that

Epk (mi,jtM +1‖ . . . ‖mi,jtM +tM)Epk (m′
i,jtM +1‖ . . . ‖m′

i,jtM +tM)
= Epk(m̄i,jtM +1‖ . . . ‖m̄i,jtM+tM)

with m̄i,l = mi,l for l �= t and m̄i,l = m′
i,l otherwise. Thus, the third requirement

is satisfied.
Finally, note that it is an easy task to optimize the value of tm with regards

to minimizing the number of individual ciphertexts.

5 Detailed Protocol and Security Analysis

We are now ready to describe the details of our scheme and prove its security.

Protocol 1 (Online/Offline Mix-Net). The online/offline mix-net πo/o
MN ex-

ecuting with senders S1, . . . , SN , mix-servers M1, . . . ,Mk, and ideal adversary S
proceeds as follows.

Sender Si

1. Wait until (Mj , SenderPublicKeys, (pk i)Ni=1) appears on FBB for more than
k/2 distinct j.

Offline/Online Mixing 493

2. Wait for an input (Send,mi) with mi ∈ {0, 1}κm. Then choose ri ∈ Rpk

randomly and compute ci = pkmi

i Epk (0, ri).
3. Hand (Prover, (pk , pk i, ci), (mi, ri)) to FRenc

ZK .
4. Hand (Send, ci) to FBB.

Mix-Server Mj

Offline Phase

1. Wait for a message (PublicKey, pk) from Fmixer.
2. Form the list L = (Epk (Shift(1), 0), . . . ,Epk (Shift(N), 0). Hand (Mix, L) to
Fmixer, and wait until it returns (Mixed, (pk i)

N
i=1).

3. Hand (Write, SenderPublicKeys, (pk i)Ni=1) to FBB.
4. Initialize JM = ∅ and repeatedly wait for new inputs or the next new message

on FBB.
– On input (Run), hand (Write, Run) to FBB.
– If (Mj , Run) appears on FBB, then set JM ← JM ∪ {j}. If |JM | > k/2,

go to Step 5.
– If (Sγ , Send, cγ) appears on FBB for γ �∈ JS then do:

(a) Set JS ← JS ∪ {γ}.
(b) Hand (Question, Sγ , (pk , pkγ , cγ)) to FRenc

ZK and wait for a reply
(Verifier, Sγ , (pk , pkγ , cγ), bγ) from FRenc

ZK .

Online Phase

5. Let J ′
S ⊂ JS be the set of γ such that bγ = 1. Compute c =

∏
γ∈J′

S
cγ ,

hand (Decrypt, c) to Fmixer, and wait until a message (Decrypted, c,m) is
returned by Fmixer.

6. Write m = m1‖ . . . ‖mN , where mi ∈ {0, 1}κm, set m′ = (m1, . . . ,mN), and
return (Output, Sort(m′)).

5.1 Online Complexity

The complexity of our scheme depends heavily on the application, the cryptosys-
tem used, the number of parties N and the maximal bit-size κm of messages.
The setting where our techniques reduce the online complexity the most is when
the verification of the submissions can be considered part of the offline phase and
Nκm ≤ O(κ). For this case, the online complexity both in terms of computation
and communication between the mix-servers is drastically reduced, as illustrated
by the following example.

The most natural practical set-up is to use the Paillier cryptosystem [19]
with Nκm ≤ O(κ). In this case, the online complexity consists of performing
O(N) multiplications and O(1) joint decryptions. This can be done using O(k)
exponentiations, with a small hidden constant. The fastest mix-net based on
the Paillier cryptosystem requires at least Ω(kN) exponentiations with small
constants with precomputation. Thus, we get a speed-up on the order of N .

We have chosen to consider the submission phase as part of the offline phase.
If this is not reasonable, then our techniques are still applicable, but they do

494 B. Adida and D. Wikström

not reduce the complexity as much. In the Paillier example, this would give a
speedup on the order of k. We expect most applications with Nκ ≤ O(κ) to be
somewhere between these to extremes.

5.2 Security Analysis

We denote byMl the set of static adversaries that corrupt at most l mix-servers
and arbitrarily many senders. The following proposition captures the security
properties of the protocol.

Proposition 2. Let CS be a concatenation-friendly and polynomially indistin-
guishable cryptosystem. Then π

o/o
MN securely realizes FMN with respect to Mk/2

adversaries in the (FBB,FRenc
ZK ,Fmixer)-hybrid model.

We refer the reader to the full version [4] for a proof.

6 Conclusion

A mix-net allows any polynomial number N of senders to send any of exponen-
tially many possible messages, i.e, the only restriction is that Nκm is polynomial
in κ, where κm is the maximal bit-size of submitted messages.

The homomorphic election schemes may be viewed as a mix-net with the
restriction that 2κm logN ≤ O(κ), i.e., each sender can send one out of very
few messages, but there can be many senders. The advantage of this is that
homomorphic election schemes are much more efficient than general mix-nets.

In this paper we have considered the dual restriction κmN ≤ O(κ), i.e., there
can be few senders, but each sender can send one out of many messages. We have
shown that, in this case also, there exists a solution that is much more efficient
than a general mix-net in the online phase.

References

1. Abe, M., Imai, H.: Flaws in some robust optimistic mix-nets. In: Safavi-Naini, R.,
Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 39–50. Springer, Heidelberg
(2003)

2. Adida, B., Wikström, D.: How to shuffle in public. Cryptology ePrint Archive,
Report 2005/394 (2005), http://eprint.iacr.org/

3. Adida, B., Wikström, D.: How to shuffle in public. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007) Accepted for
publication at Theory of Cryptography Conference 2007 (full version [2])

4. Adida, B., Wikström, D.: Offline/online-mixing. Cryptology ePrint Archive, Report
2007/143 (2007), http://eprint.iacr.org/

5. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: 26th ACM Sym-
posium on the Theory of Computing (STOC), pp. 544–553. ACM Press, New York
(1994)

http://eprint.iacr.org/
http://eprint.iacr.org/

Offline/Online Mixing 495

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–342. Springer, Heidelberg
(2005)

7. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg
(2000)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 136–145. IEEE Computer Society Press, Los Alamitos (2001) (Full
version at Cryptology ePrint Archive, Report 2000/067, http://eprint.iacr.org,
October, 2001)

9. Chaum, D.: Untraceable electronic mail, return addresses and digital pseudo-nyms.
Communications of the ACM 24(2), 84–88 (1981)

10. Cohen, J., Fischer, M.: A robust and verifiable cryptographically secure election
scheme. In: 28th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 372–382. IEEE Computer Society Press, Los Alamitos (1985)

11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

12. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

13. El Gamal, T.: A public key cryptosystem and a signiture scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

14. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

15. Katz, J., Myers, S., Ostrovsky, R.: Cryptographic counters and applications to
electronic voting. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 78–92. Springer, Heidelberg (2001)

16. Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC
Press, Boca Raton (1997)

17. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attack. In: 22th ACM Symposium on the Theory of Computing (STOC),
pp. 427–437. ACM Press, New York (1990)

18. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

20. Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 315–335. Springer, Heidelberg (2004)

21. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle (Full version
[22]). In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer,
Heidelberg (2005)

22. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. Cryptology
ePrint Archive, Report 2004/137 (2005) http://eprint.iacr.org/

23. Wikström, D., Groth, J.: An adaptively secure mix-net without erasures. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 276–287. Springer, Heidelberg (2006)

http://eprint.iacr.org
http://eprint.iacr.org/

Fully Collusion Resistant Black-Box Traitor

Revocable Broadcast Encryption with Short
Private Keys

Jun Furukawa1 and Nuttapong Attrapadung2

1 NEC Corporation, Japan
j-furukawa@ay.jp.nec.com

2 Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology, Japan

n.attrapadung@aist.go.jp

Abstract. Broadcast encryption schemes enable senders to efficiently
broadcast ciphertexts to a large set of receivers in a way that only non-
revoked receivers can decrypt them. Black-box traitor revocable broad-
cast encryption schemes are broadcast encryption schemes that enable
a tracer, who is given a pirate decoder, to identify traitors by black-box
accessing the given pirated decoder and to revoke traitors so identified.
In this paper, we propose a fully collusion resistant black-box traitor re-
vocable broadcast encryption scheme in which the size of each private
key is constant, the size of the public key is proportional to the number of
receivers, and the sizes of ciphertexts are sub-linear with respect to the
number of receivers. The encryption procedure in our scheme requires
only a public key. The tracing procedure in it requires only a public key
and black-box access to a resettable pirate decoder. The security of our
scheme is proved in the generic bilinear group model if the subgroup
decision assumption holds.

Keywords: Black-Box, Traitor Tracing, Revocation, Fully Collusion
Resistant.

1 Introduction

Broadcast encryption schemes are cryptosystems that enable senders to effi-
ciently broadcast ciphertexts to a large set of receivers such that only non-
revoked receivers can decrypt them. Their notion was first introduced by
Berkovits in [4] and was given formal analysis by Fiat and Naor in [17]. Many
schemes, such as [17,1,27,25,20,16,3,19,2,11], have been proposed since then, and
their main purpose is to decrease private key size, ciphertext length, public key
size, and computational costs for encryption and decryption. One notable scheme
is the one proposed by Boneh et al. in [11].

Black-box traitor revocable broadcast encryption schemes are variants of
broadcast encryption schemes that enable a tracer, which is given a pirate de-
coder, to identify traitors by black-box accessing the pirated decoder and to

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 496–508, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Fully Collusion Resistant Black-Box Traitor Revocable 497

revoke traitors so identified. The first such scheme was introduced by D. Naor
et al. in [25] as a broadcast encryption scheme with a trace and revoke system.
Since the number of receivers in broadcast encryption schemes is potentially
large, pirate decoders are always a serious threat, and that is why trace and
revoke systems are useful for them. Recently, Boneh et al. proposed in [13] one
such a scheme that has many desirable properties.

Black-box traitor tracing schemes are those closely related to black-box traitor
revocable broadcast encryption schemes. These are cryptosystems that enable
senders to efficiently send ciphertexts to a large number of receivers such that, given
a pirate decoder, at least one receiver who has leaked its key can be traced by black-
box accessing this pirate decoder. After the notion of such schemes was first intro-
duced by Chor et al. in [10], many schemes, [21,26,31,32,18,9,27,28,25,23,16,15],
including non black-box schemes, have been proposed. One notable scheme is that
proposed by Boneh et al. in [12].

In this paper, we propose a new black-box traitor revocable broadcast encryp-
tion scheme. Its encryption and revocation procedure require only a public key.
Black-box traitor revocation is possible even if all receivers are colluding and the
scheme is secure as a broadcast encryption scheme even if all the non-revoked
receivers are colluding. In this paper, we call such a scheme fully collusion re-
sistant black-box public key traitor revocable public key broadcast encryption
scheme. We have proved the security of our scheme under the subgroup decision
(SD) assumption in the generic bilinear group model.

Our scheme is a careful combination of a modified version of the broadcast
encryption scheme in [11] and the traitor tracing scheme in [12]. The modified
broadcast encryption scheme is designed to prevent revoked receivers from being
able to check whether ciphertexts have been generated correctly or not. This is
achieved by making decrypted results of revoked users to be different each other,
which prevents them from comparing their results. Because of this property,
during when the tracer iteratively revokes traitors, already revoked traitors are
unable to recognized whether it is revoked or not so as to hinder the tracer from
tracing other traitors. This modified scheme is then integrated with the scheme
in [12] to form the proposed scheme. We note that Boneh et al. used a similar
approach in [13] but with a different variant of broadcast encryption scheme,
which results to achieve different complexity.

The complexity of our scheme is compared to those of the previous scheme [13]
and related schemes [12] and [11]1 in Table 1. In particular, the size of private
keys in the scheme [13] is O(

√
N), larger than our O(1). By way of contrast,

the size of public key in their scheme is O(
√
N), shorter than our O(N). These

differences come from a difference in the respective newly constructed broadcast
encryption portions of the two combination schemes. Boneh’s new broadcast
encryption scheme in [13] requires longer private keys but requires only shorter
public key. The order of the cost for black-box revocation in both schemes is
at most (κ/ε)N3 where κ is the security parameter for revocation and ε is the

1 The case when the size of ciphertext is O(
√

N).

498 J. Furukawa and N. Attrapadung

maximum probability that the adversary is allowed to succeed in attacks. This
can be improved if we use technique of binary search etc.

The adaptive security of Boneh’s scheme can be proven in the standard model,
but ours can only be proven in the generic bilinear model. This is the cost we
paid to shorten the private key. Nevertheless, the security of assumptions that
the scheme in [13] is proven only in generic bilinear group model.

An advantage of our scheme over that in [13] can be found in the following
case. Consider a scenario in which each receiver carries his private key in a secure
device such as a smart card and decrypts messages with the help of untrusted
platform such as a PC connected to the Internet which is flooded with virus and
spy-ware. The part of decryption procedures that requires their private keys are
done within their smart cards so that there is no chance of their private keys
being stolen.

The memory size and computational cost required by our scheme and that
in [13] is given also in Table 1. We note that even if the secure devices are
handed fake data by untrusted platforms, this secure device works no more than
a decryption oracle of our basic scheme.

Although the public key length of our scheme is larger than that in [13], this
can never be disadvantage since each receiver requires only O(

√
N) size part of

this public key. If the public key is locally stored in the decoder in our scheme,
the size of this stored data is no more than that of stored private key in the
decoder of [13]. Moreover, this portion of public key in our scheme can be stored
in the untrusted platform which are supposed to have rather large storage, while
private keys cannot be so without risk in the scheme of [13].

Table 1. Comparison of schemes

Our scheme [13] [12] [11]

private key length O(1) O(
√

N) O(1) O(1)

ciphertext length O(
√

N) O(
√

N) O(
√

N) O(1)

public key length O(N) O(
√

N) O(
√

N) O(N)

public key length for each receiver O(
√

N) O(
√

N) O(
√

N) O(N)

black-box traitor revoking public-key public-key N/A N/A

Memory size of secure device O(1) O(
√

N) O(1) O(1)

Computational cost of secure device O(1) O(
√

N) O(1) O(1)

Organization
The paper is organized as follows: Section 2 specifies the model used and defines
the security requirements for a black-box traitor revocable broadcast encryption
scheme. Section 3 reviews a number of basic facts and complexity assumptions
that our scheme relies on. Section 4 presents our basic scheme and describes how
we can obtain from the basic scheme a scheme that is fully secure.

Fully Collusion Resistant Black-Box Traitor Revocable 499

2 The Model and Security Requirements

2.1 The Model

Four types of players participate in black-box public-key traitor revocable broad-
cast encryption schemes: a membership authority M, traitors T , encrypters E ,
and receivers. We let the total number of receivers be N and i-th receiver be Ri.

Each scheme consists of five algorithms: Gen, Ext, Enc, Dec, and Revoke.

Gen: A probabilistic setup algorithm that, given the number of receivers N ,
outputs a public key pkey and a registration key mkey. (pkey,mkey) ←
Gen(N). mkey is given to M. We assume that pkey includes N .

Ext: A probabilistic algorithm forM that, given mkey, pkey, and an index i of re-
ceiver, outputs a private key skeyi for i-th receiver. skeyi ← Ext(pkey,mkey, i).

Enc: A probabilistic algorithm for encrypters that, given a receiver set S ⊆
{1, . . . , N} and a public key pkey, outputs a shared key key and a header
hdr. (key, hdr)← Enc(S, pkey).

Dec: A probabilistic algorithm for receivers that, given a hdr for S, i ∈ S, skeyi,
and the public key pkey, outputs key. key← Dec(S, i, skeyi, hdr, pkey).

Revoke: A probabilistic algorithm for T that, given a receiver set S†, pkey,
a black-box access to a pirate decoder D, and a probability parameter ε,
outputs an honest receiver set S‡ ⊂ S†. S‡ ← RevokeD(S†, pkey, ε).2

2.2 Security Requirements

Let us now consider formal definitions of security requirements for black-box
public key traitor revocable public key broadcast encryption schemes. The cor-
rectness is defined as usual and is omitted in this version.

We next consider requirements for the scheme to be a secure broadcast en-
cryption and to be able to revoke traitors in black-box manner until the pirate
decoder is no longer able to decrypt ciphertexts but all the honest and legitimate
decoders are still able to decrypt them. Since we here require the scheme to be
a broadcast encryption that is key indistinguishable against adversaries, it is
natural to require the scheme to be also key indistinguishable against pirates, so
do we require it. Therefore, our requirements are stronger than those in [13] and
are balanced ones. We do not need to consider revocation queries of adversaries
and pirate decoders since Revoke requires no private data.

Definition 1 (Key Distinguishing Game). Suppose N is given to C and A.

1. Key Generation Phase: C runs (pkey,mkey) ← Gen(N) and provides
pkey to A. C keeps pkey and mkey. C keeps a colluder set T which is initially
set to be ∅.

2. Query Phase: A adaptively sends the following queries:
– Extraction: A sends C an index i ∈ {1, . . . , N}. Then, C runs skeyi ←

Ext(pkey,mkey, i) and provides skeyi to A. C replace T with T ∪ i.
2 Note that Revoke requires only public data.

500 J. Furukawa and N. Attrapadung

– Decryption: A sends C a tuple (S ⊂ {1, . . . , N}, i ∈ S, hdr). Then, C
runs (key, hdr)← Dec(S, i, skeyi, hdr, pkey) and provides key to A.

While sending the above two types of queries, A sends C the following chal-
lenge query once and is provided a challenge by C in turn.

3. Challenge Query: A sends C a receiver set S∗ ⊂ {1, . . . , N}. Then, C runs
(key∗, hdr∗)← Enc(S∗, pkey), randomly chooses b ∈R {0, 1} and key∗1−b ∈R
K, and assigns key∗b = key∗. C finally sends to A (hdr∗, key∗0, key∗1). Here, C
only allows S∗ such that S∗ = {1, . . . , N} \ T ∗, where T ∗ be the colluder set
T at the end of the game.

4. Answer Phase: At the end of game, A sends b′ ∈ {0, 1}. Then C outputs 1
if b′ = b, otherwise outputs 0.

Let AdvKI(A,N) denote the probability that C outputs 1 in this game.

Definition 2 (Key Indistinguishable). We say a traitor revocable broadcast
encryption scheme is (t, ε,N, qd)-key indistinguishable if, for all t-times algo-
rithm A who makes a total of qd decryption queries and at most N extraction
queries, we have that

|AdvKI(A,N)− 1/2| ≤ ε.

Definition 3 (Pirate Distinguisher Game). Suppose C and A are given N .

1. Key Generation Phase: This phase is exactly the same as that in Defini-
tion 1. C keeps a colluder set T which is initially set to be ∅.

2. Query Phase: In this phase, A adaptively sends extraction queries and
decryption queries as in the query phase in Definition 1. C updates T as in
Definition 1.

3. Challenge Query: A sends C a pirate decoder D and S† ∈ {1, . . . , N},
where D is a probabilistic circuit that takes, as input, a receiver set S, a
header hdr, pkey, and two candidates of keys key0 and key1, outputs b′. We
let T ∗ denote the colluder set T when the challenge query is sent. 3

4. Revocation and Answer Phase: C runs S‡ ← RevokeD(S†, pkey, ε).
Next, C runs (key∗, hdr∗) ← Enc(S‡, pkey), randomly chooses b ∈R {0, 1}
and key∗1−b ∈R K, and assigns key∗b = key∗. C gives D (hdr∗, key∗0, key∗1).
Then, D returns b′ ∈ {0, 1}. Finally, C outputs 1 if b′ = b and S† \S‡ ⊂ T ∗;
otherwise 0

Let AdvPD(A,N) denote the probability that C outputs 1 in this game.

Definition 4 (Black-Box Traitor Revocable). We say a traitor revocable
broadcast encryption scheme is (t, ε,N, qd, tR)-black-box traitor revocable if, for

3 If the pirate decoder is one which outputs key when it is given S†, hdr, and pkey,
then we construct another pirate decoder that distinguishes keys. This can be done
by using the original pirate decoder as a black-box. Given S†, hdr, pkey, key0, key1,
gives the new pirate decoder S†, hdr, pkey to the original pirate decoder and obtains
the output key∗. If key∗ = keyb′ , it outputs b′; otherwise outputs random bit.

Fully Collusion Resistant Black-Box Traitor Revocable 501

all t-times algorithm A who makes a total of qd decryption queries and at most
N extraction queries before sending D, we have tR-time revocation algorithm
Revoke such that

|AdvPD(A,N)− 1/2| ≤ ε.

Limitation and Extension of the Model

It is natural to consider key indistinguishability of pirate decoder (it may be
called as pirate distinguisher) since we require that our scheme is key indistin-
guishable as a broadcast encryption scheme, which is a strictly stronger require-
ment than key recoverability. Although it is also natural by the same reason to
consider pirate decoders that can ask decryption queries and extraction queries
after the challenge ciphertext is given to it, we do not consider such pirate de-
coders. This is because no tracer is able to answer such queries of D as long as
it is given only public key. We consider public-key revocability is nice property
that it worth to achieve it by giving up to consider such stronger pirate decoders.

It is more natural to consider indistinguishability of ciphertexts rather than
indistinguishability of session keys. However, we adopted the latter for simplicity.
Since ciphertexts in broadcast encryption scheme tend to be long, it is better
to construct the entire scheme in hybrid manner. Hence, considering only its
header, i.e., key encapsulation mechanism, for concrete construction is practical.
We note that there is no difficulty in constructing such a scheme that ciphertexts
are indistinguishable and that traitor revocation is possible from pirate decoder
who distinguishes ciphertexts, from our proposed scheme and a symmetric key
cryptosystem. Thus, the simplification that we choose loose no generality.

The goal of revocation in our model is to output receiver such S‡ that the
corresponding pirate decoder is no longer able to decrypt ciphertexts for this
receiver set S‡. However, pirate decoder may be able to decode ciphertext for
another receiver set S �= S‡ even if S � S‡ . That means the tracers in this model
are required to check whether or not any of previously found pirate decoders
return to be effective every time when they use a new receiver set. This problem
cannot be solved within black-box revocation paradigm.

3 Preliminaries

We describe basic facts and assumptions that our scheme depends on.

Definition 5 Bilinear groups of composite order

1. G and GT are two cyclic groups of composite order n = pq where p and q are
distinct primes.

2. e : G × G → GT is an efficient map such that:
(i) Bilinear: for all u, v ∈ G and α, β ∈ Z/nZ, we have

e(uα, vβ) = e(u, v)αβ.
(ii) Non-degenerate: there exists g ∈ G such that e(g, g) has order n in GT .

502 J. Furukawa and N. Attrapadung

We let Ĝ and ĜT be, respectively, order q subgroups of G and GT , Ǧ and ǦT
be, respectively, order p subgroups of G and GT . Let g, ĝ, ǧ be, respectively,
generators of G, Ĝ, and Ǧ.

The generic group model [29] for the bilinear group of prime order is defined
in [5]. Note that, although our scheme works in bilinear group of composite
order, we use the generic group model of bilinear group of prime order rather
than that of composite order to prove its security. The property for which the
composite order is essential is proven under the SD assumption.

The generic group of prime order: Let us consider the case the bilinear
groups of prime order p are Ǧ and ǦT and ǧ is a generator of Ǧ. In this model,
elements of Ǧ and ǦT appear to be encoded as unique random strings, so that no
property other than equality can be directly tested by th adversary. There exist
three oracles in this model. Those are, oracles that perform group operations in
each Ǧ and ǦT and an oracle that performs paring e. The opaque encoding of an
element in Ǧ is modeled as an injective function ψ : Z/pZ→ Σ ⊂ {0, 1}∗, which
maps all α ∈ Z/pZ to the string representation ψ(ǧα) of ǧα ∈ Ǧ. We similarly
define ψT : Z/pZ → ΣT for ǦT . The attacker communicates with the oracles
using the ψ-representations of the group elements only.

Definition 6 (SD Assumption). The Subgroup Decision (SD) problem is
stated as follows. Given G, Ĝ, g, and ĝ as defined before where the order of Ĝ
is unknown, decide whether an element s is a random member of the subgroup
Ĝ or a random element of the full group G. We say that an algorithm A has an
advantage εSD in solving the SD Problem if

∣
∣
∣Pr[A(n, g, ĝ, s) = 1 : s ∈R Ĝ]− Pr[A(n, g, ĝ, s) = 1 : s ∈R G]

∣
∣
∣ ≥ εSD.

We say the (t, εSD)-subgroup decision assumption holds if no t time adversary
has an advantage εSD in solving the subgroup decision problem.

4 Basic Scheme and Full Scheme

We now propose, as our basic scheme, a public key traitor revocable public-
key broadcast encryption scheme that is (t, ε,N, 0)-key indistinguishable and
(t, ε,N, 0, tR)-black-box traitor revocable under the subgroup decision assump-
tion in the generic bilinear group model. At the end of this section, we briefly
present how our full schemes can be constructed.

The key point of our basic scheme lies in the new broadcast encryption portion.
Assume that the reader is familiar with the broadcast encryption in [11], where
we will now borrow some notations to describe intuition for our modification.
We can say that, in the original scheme proposed in [11], the result of decryption
by all non-revoked receivers is the data of the form

K = e(gi, C1)/e(di ·
∏

j∈S,j �=i
gn+1−j+i, C0) = e(g, g)α

�+1
.

Fully Collusion Resistant Black-Box Traitor Revocable 503

On the other hand, the result of decryption by every revoked receiver is

e(gi, C1)/e(di ·
∏

j∈S
gn+1−j+i, C0) = e(g, g)0 = 1.

From this result, all the revoked receivers are able to check whether the ci-
phertext is correctly generated or not by checking whether or not the result of
its decryption coincides with 1. If such a broadcast encryption is used to gen-
erate traitor revocable broadcast encryption, already revoked receivers are able
to check whether a given ciphertext is generated by Probe in Construction 1 or
not. That is the event |p̂i − p̂i+1| ≥ ε/2N during the execution of Probe can be
prevented from occurring even if i �∈ S†. Hence, the procedure of tracing i ∈ S‡

and revoking i by S‡ → S‡ \ i is not effective any more.

Basic Scheme

In our scheme, the result of decryption by all non-revoked receivers is the data
of the form K = e(g,m) · e(g, g)0. However, that of (i, j)-th revoked receiver is

e(g,m) · e(g, g)σjθiα
�+1
.

That values {e(g, g)σjθiα
�+1}i,j vary among revoked receivers prevents them from

checking the validity of ciphertexts even if they are colluding. Boneh et al. also
proposed new broadcast encryption scheme in [13] that solves the same problem
and additionally achieve adaptive security at the cost of longer private keys.

Let Λ be the product set {1, . . . , �}2 such that each element corresponds to
each receiver, Λj ⊂ Λ be a subset {(i, j)}i∈{1,...,�}, and let p, q be sufficiently
large primes, n = pq, G and GT be order n (elliptic curve) cyclic groups such
that an efficient bilinear map e : G × G → GT exists, Ĝ and Ǧ be subgroups of
G such that their orders are q and p respectively. Let S̄ be the complement of S
in {1, . . . , �}2. Similar notation is used for other sets such as S∗, S†, S‡.
Gen: Given �, Gen chooses a composite order n cyclic groups G and GT with

e. Gen randomly chooses (ĝ, g) ∈R Ĝ × G,m ∈R G, ǧ ∈R Ǧ, (ξ, α) ∈R
(Z/nZ)2, (βj)j=1,...,� ∈R (Z/nZ)�, (δj)j=1,...,� ∈R (Z/nZ)�, (γi)i=1,...,� ∈R
(Z/nZ)�, (θk)k=1,...,� ∈R (Z/nZ)�, (λ, π) ∈R (Z/nZ)2.
Next, Gen generates

(ĥ, h) = (ĝξ, gξ), M̂ = e(ĝ,m) , M = e(g,m), (v, w) = (gπ, ǧλhπ)

(b̂j , ĥj)j=1,...,� = (ĝβj , ĥβj)j=1,...,� , (bj , hj)j=1,...,� = (gβj , hβj)j=1,...,�

(ĝi)i=1,...,2� = (ĝα
i

)i=1,...,2� , (gi)i=1,...,2� = (gα
i

)i=1,...,2�

(d̂j)j=1,...,� = (ĝδj)j=1,...,� , (dj)j=1,...,� = (gδj)j=1,...,�

(ai)i=1,...,� = (gγi)i=1,...,� , (xk,i)k=1,...,�;i=1,...,2� = (giθk)k=1,...,�;i=1,...,2�

Finally, Gen outputs

pkey = {M, (g, h), (bj, hj)j=1,...,�, (gi)i=1,...,�,�+2,...,2�, (dj)j=1,...,�,

M̂ , (ĝ), (b̂j , ĥj)j=1,...,�, (ĝi)i=1,...,�,�+2,...,2�, (d̂j)j=1,...,�,

(ai)i=1,...,�, (xk,i)k=1,...,�;i=1,...,�,�+2,...,2�, (v, w)}
mkey = {m,α, (δj , βj)j=1,...,�, (γi)i=1,...,�, (θk)k=1,...,�}}

504 J. Furukawa and N. Attrapadung

Ext: Given a receiver identity (i, j) ∈ {1, . . . , �}2, mkey, and pkey, Ext generates
and output skeyij = kij = mgδjα

iθi+βjγi

Enc: Given S ⊆ Λ, Enc randomly chooses K ∈ GT , (σj)j=1,...,� ∈R (Z/nZ)�,
(εi)i=1,...,� ∈R (Z/nZ)�, (τ, ρ) ∈R (Z/nZ)2 and generates, for i, j = 1, . . . , �,

(Cj , êj , f̂j, r̂j , t̂j) =

⎛

⎝K · M̂σjτ , ĝσjτ , (d̂j
∏

k∈S̄∩Λj

ĝ�+1−k)σjτ , b̂j
σj , ĥj

ρσj

⎞

⎠

(si, ui) = (aiτhρεi , gεi).

Then, Enc outputs, a tuple hdrS = ((Cj , êj, f̂j , r̂j , t̂j)j=1,...,�, (si, ui)i=1,...,�).
Dec: Given hdrS , pkey, and skeyij such that (i, j) ∈ S, Dec outputs

key = K = Cj ·
e(xi,i, f̂j)

e(êj, kij
∏
k∈S̄∩Λj

xi,�+1−k+i)
· e(r̂j , si)
e(t̂j , ui)

.

Revoke: The Revoke, as is given in Construction 2 below, works by repeatedly
invoking the following Probe in Construction 1.
Construction 1 (Probe:). Suppose that S ⊆ Λ and (̄i, j̄) ∈ S, κ are given.
Probe randomly chooses K = e(g, g)k ∈R GT , (σj)j=1,...,�

∈R (Z/nZ)�, (τ, ρ) ∈R Z/nZ, (K ′
j = e(g, g)k

′
j)1,...,j=j̄−1 ∈R (GT)j̄−1,

(σ′j)1,...,j=j̄−1 ∈R (Z/nZ)j̄−1 and generates (Cj , êj, f̂j , r̂j , t̂j)j=1,...,� as in the
following:

For j > j̄,
⎛

⎝K · e(ĝ,m)σjτ , ĝσjτ , (d̂j
∏

k∈S∩Λj

ĝ�+1−k)σjτ , b̂j
σj , ĥj

ρσj

⎞

⎠ .

For j = j̄ when (̄i, j̄) = (1, 1),
⎛

⎝K · e(ĝ,m)σj̄τ , ĝσj̄τ , (d̂j̄
∏

k∈S∩Λj̄

ĝ�+1−k)σj̄τ , b̂j̄
σj̄ , ĥ

ρσj̄

j̄

⎞

⎠ .

For j = j̄ when (̄i, j̄) �= (1, 1),
⎛

⎝K · e(g,m)σj̄τ , gσj̄τ , (dj̄
∏

k∈S∩Λj̄

g�+1−k)σj̄τ , bj̄
σj̄ , h

ρσj̄

j̄

⎞

⎠ .

For j < j̄,
⎛

⎝K ′
j · e(g,m)σjτ , gσjτ , (dj

∏

k∈S∩Λj

g�+1−k)σjτ , bj
σ′

j , hj
ρσ′

j

⎞

⎠ .

Next, Probe randomly chooses (εi)i=1,...,� ∈R (Z/nZ)�, (ε′i)i=1,...,̄i ∈R (Z/nZ)�

and generates (si, ui)i=1,...,� as in the following:

For i ≥ ī, (aiτhρεi , gεi).

For i < ī, (aiτhρεiwρε
′
i , gεivε

′
i).

Fully Collusion Resistant Black-Box Traitor Revocable 505

Then, Enc outputs, a tuple hdrS = ((Cj , êj , f̂j , r̂j , t̂j)j=1,...,�, (si, ui)i=1,...,�).

Construction 2 (Revoke:). In this construction, the following procedure
Estimate() is repeatedly invoked. Procedure p̂i ← Estimate(pkey, S‡, i, ε, k)
is as in the following:
1. Do the following 8(κ/ε)N times:

(i) Run (key∗, hdr∗) ← Probe(pkey, S‡, i), randomly choose b ∈R {0, 1}
and key∗1−b ∈R K, and assign key∗b = key∗. Then, send to D

(hdr∗, key∗0, key∗1).

(ii) D returns b′ ∈ {0, 1}. Then compare whether or not b′ = b holds.
2. Based on the above 8(κ/ε)N comparisons, calculate p̂i as the estimated

probability that b = b′ holds.
Now, Revoke is as in the following:
1. Revoke is given pkey, S†, and black-box access to a pirate decoder D. It

sets S‡ = S†.
2. Until Revoke stops, do the following:

(i) Run p̂1 ← Estimate(pkey, S‡, 1, ε, k).
(ii) For i = 2 to N + 1 do the following:

i. If i �∈ S‡, p̂i = p̂i−1.
ii. If i ∈ S‡, Revoke runs p̂i ← Estimate(pkey, S‡, i, ε, k)

(iii) For all i such that |p̂i − p̂i+1| ≥ ε/2N , S‡ ← S‡ \ i. If there is no
such i, output S‡ and stop, otherwise, go to Step 2i.

Theorem 1. We assume (t, εSD)-subgroup decision assumption and ε/N < 1/8.
Then, the basic scheme is (t, ε,N, 0, tR)-black-box traitor revocable in the generic
bilinear group model. Here

ε ≤ 16(
√
N + t+ 28)7

p
+ 8NεSD

tR ≤ t+ 8(κ/ε)N3Θ

where Θ is the time for single run of Probe and several constant number of
operations such as coin flipping etc..

Theorem 2. We assume the (t, εSD)-subgroup decision assumption. Then, the
basic scheme is (t, ε,N, 0)-key indistinguishable in the generic bilinear group
model. Here

ε ≤ 16(
√
N + t+ 28)7

p
+ 8NεSD.

The proofs of the above two theorems are omitted in this version.

506 J. Furukawa and N. Attrapadung

Full Scheme

The basic scheme is secure only (t, ε,N, 0)-key indistinguishable and (t, ε,N, 0, tR)-
black-box traitor revocable. That is, it is secure only against chosen plaintext and
adaptive key extraction attacks. We want to construct black-box traitor revocable
broadcast encryption schemes that are (t, ε,N, qd �= 0)-key indistinguishable and
(t, ε,N, qd �= 0, tR)-black-box traitor revocable, i.e., they are secure against “adap-
tive chosen ciphertexts” and adaptive key extraction attacks. This is possible if we
use the technique of [14] or the technique of [30]. The latter technique requires the
existence of random oracles. Since these are trivial extensions of the basic scheme,
we omit the detail of their constructions here.

Generic Group Model and Open Problem

The security of the scheme is proven only in the generic bilinear group model.
This is because our scheme has less redundancy to embed a problem. If we have
less redundancy than a adaptively secure protocol, we can embed a problem
only in the pre-selected challenge. If we have less redundancy than a selectively
secure protocol, we can embed only the adversary-strategy-specific-problem in
its challenge. Our scheme achieved its efficiency by this tradeoff. The problem
whose difficulty that the security of our scheme depends on varies according to
the adversaries behavior, difficulty of each can be proven in the generic bilinear
group model. We believe we need an essential improvement to escape from this
tradeoff. Such an improvement is still an open problem.

References

1. Anzai, J., Matsuzaki, N., Matsumoto, T.: A Quick Group Key Distribution Scheme
with Entity ”Revocation”. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASI-
ACRYPT 1999. LNCS, vol. 1716, pp. 333–347. Springer, Heidelberg (1999)

2. Attrapadung, N., Imai, H.: Graph-Decomposition-Based Frameworks for Subset-
Cover Broadcast Encryption and Efficient Instantiations. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 100–120. Springer, Heidelberg (2005)

3. Attrapadung, N., Kobara, K., Imai, H.: Sequential Key Derivation Patterns for
Broadcast Encryption and Key Predistribution Schemes. In: Laih, C.-S. (ed.) ASI-
ACRYPT 2003. LNCS, vol. 2894, pp. 374–391. Springer, Heidelberg (2003)

4. Berkovits, S.: How To Broadcast A Secret. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)

5. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

6. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

Fully Collusion Resistant Black-Box Traitor Revocable 507

8. Boneh, D., Boyen, X., Shacham, H.: Short Group Signature. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Boneh, D., Franklin, M.K.: An Efficient Public Key Traitor Tracing Scheme. In:
Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Hei-
delberg (1999)

10. Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

11. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

12. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

13. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: ACM Conference on Computer and Communications Security 2006,
pp. 211–220 (2006)

14. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

15. Chabanne, H., Phan, D.H., Pointcheval, D.: Public Traceability in Traitor Tracing
Schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–
558. Springer, Heidelberg (2005)

16. Dodis, Y., Fazio, N.: Public Key Trace and Revoke Scheme Secure against Adaptive
Chosen Ciphertext Attack. Public Key Cryptography, pp. 100–115 (2003)

17. Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

18. Fiat, A., Tassa, T.: Dynamic Traitor Training. In: Wiener, M.J. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 354–371. Springer, Heidelberg (1999)

19. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-Based Revocation in
Groups of Low-State Devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 511–527. Springer, Heidelberg (2004)

20. Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

21. Kurosawa, K., Desmedt, Y.: Optimum Traitor Tracing and Asymmetric Schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, Springer, Heidelberg
(1998)

22. Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of Elliptic Curve Traces
under FR-Reduction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 90–108.
Springer, Heidelberg (2001)

23. Mitsunari, S., Sakai, R., Kasahara, M.: A new Traitor tracing. IEICE Trans. Fun-
damentals E85-A(2), 481–484 (2002)

24. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: STOC 1990, pp. 427–437 (1990)

25. Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

26. Naor, M., Pinkas, B.: Threshold Traitor Tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

27. Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. Financial Cryptography
pp. 1–20 (2000)

508 J. Furukawa and N. Attrapadung

28. Safavi-Naini, R., Wang, Y.: Sequential Traitor Tracing. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)

29. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

30. Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ci-
phertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
1–16. Springer, Heidelberg (1998)

31. Stinson, D.R., Wei, R.: Combinatorial Properties and Constructions of Traceability
Schemes and Frameproof Codes. SIAM J. Discrete Math. 11(1), 41–53 (1998)

32. Stinson, D.R., Wei, R.: Key Preassigned Traceability Schemes for Broadcast En-
cryption. Selected Areas in Cryptography, 144–156 (1998)

Succinct Ordinal Trees Based on Tree Covering

Meng He1, J. Ian Munro1, and S. Srinivasa Rao2

1 Cheriton School of Computer Science, University of Waterloo, Canada
{mhe,imunro}@uwaterloo.ca

2 Computational Logic and Algorithms Group, IT University of Copenhagen,
Denmark

ssrao@itu.dk

Abstract. Various methods have been used to represent a tree of n
nodes in essentially the information-theoretic minimum space while sup-
porting various navigational operations in constant time, but different
representations usually support different operations. Our main contribu-
tion is a succinct representation of ordinal trees, based on that of Geary et
al. (7), that supports all the navigational operations supported by vari-
ous succinct tree representations while requiring only 2n + o(n) bits. It
also supports efficient level-order traversal, a useful ordering previously
supported only with a very limited set of operations (8).

Our second contribution expands on the notion of a single succinct
representation supporting more than one traversal ordering, by show-
ing that our method supports two other encoding schemes as abstract
data types. In particular, it supports extracting a word (O(lg n) bits)
of the balanced parenthesis sequence (11) or depth first unary degree
sequence (3; 4) in O(f(n)) time, using at most n/f(n) + o(n) additional
bits, for any f(n) in O(lg n) and Ω(1).

1 Introduction

Trees are fundamental data structures in computer science. There are essentially
two forms. An ordinal tree is a rooted tree in which the children of a node are
ordered and specified by their rank, while in a cardinal tree of degree k, each
child of a node is identified by a unique number from the set [k]. In this paper,
we mainly consider ordinal trees.

The straightforward representation of trees explicitly associates with each
node the pointers to its children. Thus, an ordinal tree of n nodes is represented
by Θ(n lg n) bits. This representation allows straightforward, efficient parent-to-
child navigation in trees. However, as current applications often consider very
large trees, such a representation often occupies too much space.

To solve this problem, various methods have been proposed to encode an ordi-
nal tree of n nodes in 2n+ o(n) bits, which is close to the information-theoretic
minimum (as there are

(
2n
n

)
/(n + 1) different ordinal trees), while supporting

various navigational operations efficiently. These representations are based on
various traversal orders of the nodes in the tree: preorder in which each node
is visited before its descendants, postorder in which each node is visited after

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 509–520, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

510 M. He, J.I. Munro, and S.S. Rao

its descendants, and DFUDS order in which all the children of a node are visited
before its other descendants (3; 4). However, different representations of trees
usually support different sets of navigational operations. A new problem is to
design a succinct representation that supports all the navigational operations of
various succinct tree structures. We consider the following operations:

– child(x, i): the ith child of node x for i ≥ 1;
– child rank(x): the number of left siblings of node x plus 1;
– depth(x): the depth of x, i.e. the number of edges in the rooted path to node x;
– level anc(x, i): the ith ancestor of node x for i ≥ 0 (given a node x at depth d,

its ith ancestor is the ancestor of x at depth d− i);
– nbdesc(x): the number of descendants of node x;
– degree(x): the degree of node x, i.e. the number of its children;
– height(x): the height of the subtree rooted at node x;
– LCA(x, y): the lowest common ancestor of nodes x and y;
– distance(x, y): the number of edges of the shortest path between nodes x and y;
– leftmost leaf(x) (rightmost leaf(x)): the leftmost (or rightmost) leaf of the

subtree rooted at node x;
– leaf rank(x): the number of leaves before node x in preorder plus 1;
– leaf select(i): the ith leaf among all the leaves from left to right;
– leaf size(x): the number of leaves of the subtree rooted at node x;
– node rankPRE/POST/DFUDS(x): the position of node x in the preorder, postorder or

DFUDS order traversal of the tree;
– node selectPRE/POST/DFUDS(r): the rth node in the preorder, postorder or DFUDS order

traversal of the tree;
– level leftmost(i) (level rightmost(i)): the first (or last) node visited in a pre-

order traversal among all the nodes whose depths are i;
– level succ(x) (level pred(x)): the level successor (or predecessor) of node x, i.e.

the node visited immediately after (or before) node x in a preorder traversal among
all the nodes whose depths are equal to depth(x).

1.1 Related Work

Jacobson’s succinct tree representation (8) was based on the level order unary
degree sequence (LOUDS) of a tree, which lists the nodes in a level-order traversal1

of the tree and encode their degrees in unary. With this, Jacobson (8) encoded
an ordinal tree in 2n + o(n) bits to support the selection of the first child, the
next sibling, and the parent of a given node in O(lg n) time under the bit probe
model. Clark and Munro (6) further showed how to support the above operations
in O(1) time under the word RAM model with Θ(lg n) word size2.

As LOUDS only supports a very limited set of operations, various researchers
have proposed different ways to represent ordinal trees using 2n + o(n) bits.
There are three main approaches based on (see Table 1 for a complete list of
operations that each of them supports):

1 The ordering puts the root first, then all of its children, from left to right, followed
by all the nodes at each successive level (depth).

2 We use lg n to denote �log2 n.

Succinct Ordinal Trees Based on Tree Covering 511

Table 1. Navigational operations supported in O(1) time on succinct ordinal trees
using 2n + o(n) bits

– Balanced parenthesis sequence (BP) (11). The BP sequence of a given tree
can be obtained by performing a depth-first traversal, and outputting an
opening parenthesis each time a node is visited, and a closing parenthesis
immediately after all its descendants are visited.

– Depth first unary degree sequence (DFUDS) (3; 4). The DFUDS sequence rep-
resents a node of degree d by d opening parentheses followed by a closing
parenthesis. All the nodes are listed in preorder (an extra opening parenthe-
sis is added to the beginning of the sequence), and each node is numbered
by its opening parenthesis in its parent’s description (DFUDS number).

– Tree covering TC (7). There is an algorithm to cover an ordinal tree with a
set of mini-trees, each of which is further covered by a set of micro-trees.

1.2 Our Results

Our first result is to extend the succinct ordinal trees based on tree covering by
Geary et al. (7) to support all the operations on trees proposed in other work:

Theorem 1. An ordinal tree of n nodes can be represented using 2n+ o(n) bits
to support all the operations in Section 1 in O(1) time under the word RAM
model with Θ(lg n) word size.

We compare our results with existing results in Table 1, in which the columns
BP and DFUDS list the results of tree representations based on balanced parenthe-
ses and DFUDS, respectively, and the columns old TC and new TC list the results
by Geary et al. (7) and our results, respectively.

Our second result deals with BP and DFUDS representations as abstract data
types, showing that any operation to be supported by BP or DFUDS in the future
can also be supported by TC efficiently:

512 M. He, J.I. Munro, and S.S. Rao

Theorem 2. Given a tree represented by TC, any O(lg n) consecutive bits of its
BP or DFUDS sequence can be computed in O(f(n)) time, using at most n/f(n) +
O(n lg lg n/ lgn) extra bits, for any f(n) where f(n) = O(lg n) and f(n) = Ω(1)
under the word RAM model with Θ(lg n) word size.

2 Preliminaries

2.1 Bit Vectors

A key structure for many succinct data structures is a bit vector B[1..n] that sup-
ports rank and select operations. Operations rank1(B, i) and rank0(B, i) return
the number of 1s and 0s in B[1..i], respectively. Operations select1(B, i) and
select0(B, i) return the positions of ith 1 and 0, respectively. Lemma 1 addresses
the problem, in which part (a) is from (6; 8), and part (b) is from (14).

Lemma 1. A bit vector B of length n with t 1s can be represented using either:
(a) n+o(n) bits, or (b) lg

(
n
t

)
+O(n lg lgn/ lgn) bits, to support the access to each

bit, rank1(B, i), rank0(B, i), select1(B, i), and select0(B, i) in O(1) time.

2.2 Succinct Ordinal Tree Representation Based on Tree Covering

Geary et al. (7) proposed an algorithm to cover an ordinal tree by mini-trees (the
tier-1 cover) of size Θ(M) for a given parameter M (they choose M = �lg4 n�).
Any two mini-trees computed by this algorithm either do not intersect, or only
intersect at their common root. They showed that the size of any mini-tree is
at most 3M − 4, and the size of any mini-tree that does not contain the root of
the tree is at least M . They further use the same algorithm with the parameter
M ′ = �lg n/24� to cover each mini-tree by a set of micro-trees (the tier-2 cover).
See Figure 1 for an example, in which all the nodes are numbered in preorder.

Geary et al. (7) list the mini-trees t1, t2, · · · in an order such that in a preorder
traversal of T , either the root of ti is visited before that of ti+1, or if these two
mini-trees share the same root, the children of the root in ti are visited before the

Fig. 1. An example of covering an ordinal tree with parameters M = 8 and M ′ = 3,
in which the solid curves enclose mini-trees and dashed curves enclose micro-trees

Succinct Ordinal Trees Based on Tree Covering 513

children of the root in ti+1. The ith mini-tree in the above sequence is denoted
by μi. All the micro-trees in a mini-tree are also listed in the same order, and
the jth micro-tree in mini-tree μi is denoted by μij . When the context is clear,
they also refer to this micro-tree using μj . A node is denoted by its preorder
number from an external viewpoint. To further relate a node to its position in
its mini-tree and micro-tree, they define the τ -name of a node x to be a triplet
τ(x) =< τ1(x), τ2(x), τ3(x) >, which means that node x is the τ3(x)th node
visited in a preorder traversal of micro-tree μτ1(x)

τ2(x). For a node that exists in more
than one mini-tree and/or micro-tree, its lexicographically smallest τ -name is its
canonical name, and the corresponding copy of the node is its canonical copy.

To enable the efficient retrieval of the children of a given node, Geary et
al. (7) proposed the notion of extended micro-trees. To construct extended micro-
trees, each micro-tree is initially made into an extended micro-tree, and each of
its nodes is an original node. Every node x that is the root of a micro-tree is
promoted into the extended micro-tree to which its parent, y, belongs. See (7)
for the details of promoting a node, and the properties of extended micro-trees.
The main data structures by Geary et al. (7) are designed to represent each
individual extended micro-tree. They take 2n + o(n) bits in total and can be
used as building blocks to construct the tree representation at a higher level.

3 New Operations Based on Tree Covering (TC)

We now extend the succinct tree representation proposed by Geary et al. (7) to
support more operations on ordinal trees, by constructing o(n)-bit auxiliary data
structures in addition to their main data structures that use 2n + o(n) bits. As
the conversion between the preorder number and the τ -name of a given node can
be done in constant time (7), we omit the steps of performing such conversions in
our algorithms (e.g. we may return the τ -name of a node directly when we need
to return its preorder number). We use T to denote the (entire) ordinal tree.

3.1 height

Definition 1. Node x is a tier-1 (or tier-2) preorder changer if x = 1, or
if nodes x and (x− 1) are in different mini-trees (or micro-trees).

For example, in Figure 1, nodes 1, 2, 16, 22, and 30 are tier-1 preorder changers.
Nodes 16, 17, 20, 22, 26 and others are tier-2 preorder changers. It is obvious
that all the tier-1 preorder changers are also tier-2 preorder changers. By Lemma
2.2 in (7), each tier-1 (or tier-2) preorder changer can be mapped to a unique
tier-1 (or tier-2) boundary node defined by Geary et al. (7). As each mini-tree
(or micro-tree) has at most 2 tier-1 (or tier-2) boundary nodes:

Lemma 2. The total number of tier-1 (or tier-2) preorder changers is at most
twice the number of mini-trees (or micro-trees).

To compute height(x), we compute x’s number of descendants, d, using nbdesc
(from (7), see Section 1). Then all the descendants of x are nodes x + 1, x +

514 M. He, J.I. Munro, and S.S. Rao

2, · · · , x+d. We have the formula: height(x) = maxdi=1(depth(x+i))−depth(x)
+ 1. Therefore, the computation of height(x) can be reduced to answering the
range maximum query (i.e. retrieving the leftmost maximum value among the
elements in a given range of the array) on the conceptual array D[1..n], where
D[j] = depth(j) for 1 ≤ j ≤ n. For any node j, we can compute depth(j) in
O(1) time (7). We now show how to support the range maximum query on D
using o(n) additional bits without storing D explicitly.

Based on Bender and Farach-Colton’s algorithm (2), Sadakane (15) showed
how to support the range minimum/maximum query in O(1) time on an array
of n integers using o(n) additional bits. As we do not explicitly store D, we
cannot use this approach directly (Sadakane (15) combined this approach with
an array of integers encoded in the form of balanced parentheses). However,
these o(n)-bits auxiliary data structures provide constant-time support for the
range minimum/maximum query without accessing the array, when the starting
and ending positions of the range are multiples of lgn (i.e. the given range is
of the form [k lgn..l lg n], where k and l are integers). We thus construct these
o(n)-bit auxiliary structures to support this special case on the conceptual array
D. To support the general case, we construct (we assume that the ith tier-1 and
tier-2 preorder changers are numbered yi and zi, respectively):

– A bit vector B1[1..n], where B1[i] = 1 iff node i is a tier-1 preorder changer;
– A bit vector B′

1[1..n], where B′
1[i] = 1 iff node i is a tier-2 preorder changer;

– An array C1[1..l1] (l1 denotes the number of tier-1 preorder changers), where
C1[i] = τ1(yi);

– An array C′
1[1..l′1] (l′1 denotes the number of tier-2 preorder changers), where

C′
1[i] = τ2(zi);

– An array E[1..l′1], where E[i] is the τ3-name of the node, ei, with maximum
depth among the nodes between zi and zi+1 (including zi but excluding
zi+1) in preorder (we also consider the conceptual array E′[1..l′1], where
E′[i] = depth(ei), but we do not store E′ explicitly);

– A two-dimensional array M , where M [i, j] stores the value δ such that E′[i+
δ] is the maximum between and including E′[i] and E′[i+ 2j], for 1 ≤ i < l′1
and 1 ≤ j ≤ �lg lgn�;

– A table A1, in which for each pair of nodes in each possible micro-tree, we
store the τ3-name of the node of the maximum depth between (inclusive)
this pair of nodes in preorder. This table could be used for several trees.

There are O(n/ lg4 n) tier-1 and O(n/ lgn) tier-2 preorder changers, so B1 and
B′

1 can be stored in o(n) bits using Part (b) of Lemma 1. C1, C′
1 and E can also be

stored in o(n) bits (each element of C′
1 in O(lg lg n) bits). As M [i, j] ≤ 2
lg lgn�,

we can store eachM [i, j] in �lg lg n� bits, so M takes O(n/ lg n×lg lg n×lg lg n) =
o(n) bits. As there are n1/4 possible micro-trees, and a micro-tree has at most
�lgn/8� nodes, A1 occupies o(n) bits. Thus these auxiliary structures occupy
o(n) bits.

To support the range maximum query on D, we divide the given range
[i, j] into up to three subranges: [i, �i/ lgn� lgn], [�i/ lgn� lg n, �j/ lgn� lgn] and
[�j/ lgn� lgn, j]. The result is the largest among the maximum values of these

Succinct Ordinal Trees Based on Tree Covering 515

three subranges. The range maximum query on the second subrange is supported
by Sadakane’s approach (see above), so we consider only the first (the query on
the third one, and the case where [i, j] is indivisible using this approach can be
supported similarly).

To support range maximum query for the range [i, �i/ lgn� lgn], we first use
B′

1 to check whether there is a tier-2 preorder changer in this range. If not, then
all the nodes in the range is in the same micro-tree. We further use B1, B′

1,
C1 and C′

1 to retrieve the micro-tree by performing rank/select operations, and
then use A1 to compute the result in constant time.

If there are one or more tier-2 preorder changes in [i, �i/ lgn� lgn], let node
zu be the first one and zv be the last. We further divide this range into three
subranges: [i, zu], [zu, zv) and [zv, �i/ lgn� lgn]. We can compute the maximum
values in the first and the third subranges using the method described in the
last paragraph, as the nodes in either of them are in the same micro-tree. To
perform range maximum query on D with the range [zu, zv), by the definition of
E′, we only need to perform the query on E′ with range [u, v−1]. we observe that
[u, v) = [u, u+2s)∪[v−2s, v), where s = �lg(v−1−u)�. As v−u < zv−zu < lg n,
s ≤ �lg lgn�. Thus using M [u, s] and M [v − 2s, s], we can retrieve from E the
τ3-names of the nodes corresponding to the maximum values of E′ in [u, u+ 2s]
and [v − 2s, v], respectively. We further retrieve these two nodes using B1, B′

1,
C1 and C′

1, and the node with the larger depth is the one with the maximum
depth in range [zu, zv].

3.2 LCA and distance

We pre-compute a tier-1 macro tree as follows. First remove any node that is
not a mini-tree root. For any two remaining nodes x and y, there is an edge
from x to y iff among the remaining nodes, x is the nearest ancestor of y in
T . Given a tree of n nodes, Bender et al. (2) showed how to support LCA using
O(n lg n) additional bits3 for any tree representation. We store the tier-1 macro
tree using the representation by Geary et al. (7) and then build the structures
by Bender et al. (2) to support LCA and the operations listed in the column
old TC of Table 1 in O(1) time. As the tier-1 macro tree has O(n/ lg4 n) nodes,
this costs O(n/ lg4 n × lgn) = o(n) bits. Similarly, for each mini-tree, we pre-
compute a tier-2 macro tree for the micro-tree roots, and store it using the same
approach so that all the tier-2 macro trees occupy o(n) bits in total. We also
construct a table A2 to store, for each possible micro-tree and each pair of nodes
in it (indexed by their τ3-names), the τ3-name of their lowest common ancestor.
Similarly to the analysis in Section 3.1, A2 occupies o(n) bits.

Figure 2 presents the algorithm to compute LCA. The correctness is straight-
forward and it clearly takes O(1) time. With the support for LCA and depth, the
support for distance is trivial.

3 They did not analyze the space cost in (2), but it is easy to verify that the cost is
O(n lg n) bits.

516 M. He, J.I. Munro, and S.S. Rao

Algorithm LCA(x, y)
1. If x and y are in the same micro-tree, retrieve their LCA using a constant-time

lookup on A2 and return.
2. If x and y are not in the same micro-tree, but are in the same mini-tree, retrieve

the roots, u and v, of the micro-trees that x and y are in, respectively.
3. If u = v, return u as the result.
4. If u �= v, retrieve their lowest common ancestor, w, in the tier-2 macro tree.
5. Retrieve the two children, i and j, of w in the tier-2 macro tree that are an-

cestors of x and y, respectively using depth and level anc. Then retrieve the
parents, k and l, of i and j in T , respectively.

6. If k and l are in two different micro-trees, return w as the result. Otherwise,
return LCA(k, l).

7. If x and y are in two different mini-trees, retrieve the roots, p and q, of the two
different mini-trees, respectively.

8. If p = q, return p as the result. Otherwise, similarly to Steps 4 and 5, retrieve
two nodes a and b, such that a and b are the children of the lowest common
ancestor, c, of p and q in the tier-1 macro tree, and they are also the ancestors of
p and q, respectively. Retrieve the parents, r and s, of p and q in T , respectively.

9. If r and s are in two different mini-trees, return c. Otherwise, return LCA(r, s).

Fig. 2. An algorithm for computing LCA

3.3 leaf rank, leftmost leaf, leaf size and leaf select

Definition 2. Each leaf of a mini-tree (or micro-tree) is a pseudo leaf of the
original tree T . A pseudo leaf that is also a leaf of T is a real leaf. Given a
mini-tree (or micro-tree), we mark the first real leaf and each real leaf visited
after an edge that leaves the mini-tree (or micro-tree). These nodes are called
tier-1 (or tier-2) marked leaves.

For example, in Figure 1, nodes 6, 11 and 15 are pseudo leaves of micro-tree μ2
1,

among which nodes 6 and 15 are real leaves, while node 11 is not. Nodes 23 and
29 are tier-2 marked leaves. We observe the following property.

Property 1. Given a mini-tree (or micro-tree) and a pair of its tier-1 (or tier-2)
marked leaves such that there is no marked leaf between them in preorder, the
real leaves visited in preorder between these two leaves (including the left one
but excluding the right) have the property that, when listed from left to right,
their leaf ranks are consecutive integers. The real leaves that are to the right
of (and including) the rightmost marked leaf have the same property.

Observe that each tier-1 marked leaf (except perhaps the first real leaf in a mini-
tree) corresponds to an edge that leaves its mini-tree (which in turn corresponds
to a unique mini-tree root). Therefore, the number of tier-1 marked leaves is
at most twice as many as the number of mini-trees, which is O(n/ lg4 n). We
thus store for each mini-tree μi, the ranks of its tier-1 marked leaves. Similarly,
the number of tier-2 marked leaves is at most twice the number of micro-trees.

Succinct Ordinal Trees Based on Tree Covering 517

For each tier-2 marked leaf x, let y be the last tier-1 marked leaf visited before
x during a preorder traversal (if x is a tier-1 marked leaf then we set y = x).
We compute the difference of leaf rank(x) and leaf rank(y) (bounded by the
number of nodes in x’s mini-tree) and store for each micro-tree, the list of such
values for its tier-2 marked leaves. With additional bit vectors to mark the
positions of these marked leaves, and an o(n)-bit table to lookup the number of
nodes between two pseudo leaves in a micro-tree, we can support leaf rank in
constant time by Property 1. We omit the details.

To support leftmost leaf and rightmost leaf, given a node x with pre-
order number i, postorder number j, and m descendants, we observe that the
postorder number of its left-most leaf is j − m, and the preorder number of
its rightmost leaf is i + m. Thus the support of these two operations follows
the constant-time support for node rankPRE, node rankPOST, node selectPRE and
node selectPOST. With the constant-time support for leaf rank, leftmost leaf
and rightmost leaf, we can also support leaf size in constant time.

To support leaf select, we observe that given a leaf x that is not a tier-1 (or
tier-2) marked leaf, if the closest tier-1 (or tier-2) marked leaf to the left is node
y (or node z), then τ1(x) = τ1(y) (or τ2(x) = τ2(z)). This property allows us to
support leaf select in O(1) time with o(n) additional bits, using an approach
similar to that of Section 3.1. We omit the details.

3.4 node rankDFUDS and node selectDFUDS

We use the following formula proposed by Barbay et al. (1): node rankDFUDS(x)

=

�
child rank(x)− 1 + node rankDFUDS(child(parent(x), 1)) if child rank(x) > 1;
node rankPRE(x) +

�
y∈anc(x)\r (degree(parent(y))− child rank(y)) otherwise.

where parent(x) = level anc(x, 1), anc(x) is the set of ancestors of x, and
r is the root of T . This formula reduces the support of node rankDFUDS to the
support of computing S(x) =

∑
y∈anc(x)\r degree(parent(y)) − childrank(y)

for any given node x (1). We use u(x) and v(x) to denote the roots of the mini-
tree and micro-tree of node x, respectively. Then we compute S(x) as the sum
of the following three values as suggested by Barbay et al. (1): S1(x) = S(u(x)),
S2(x) = S(v(x))− S(u(x)), and S3(x) = S(x)− S(v(x)). It is trivial to support
the computation of S1(x) in constant time: for each mini-tree root i, we simply
precompute and store S(i) using O(n/ lg3 n) = o(n) bits. However, we cannot
do the same to support the computation of S2(x). The approach of Barbay et
al. (1) does not solve the problem, either, because Property 1 in (1) does not
hold. To address this problem, we extend the mini-trees using the same method
used to extend micro-trees. As with the Proposition 4.1 in (7), we have that
except for the roots of mini-trees, all the other original nodes have the property
that (at least a promoted copy of) each of their children is in the same extended
mini-tree as themselves. With this we can support node rankDFUDS. We omit the
details.

To support node selectDFUDS, we first define the τ∗-name of a node and show
how to convert τ∗-names to τ -names. Then we show how to convert DFUDS num-
bers to τ∗-names.

518 M. He, J.I. Munro, and S.S. Rao

Definition 3. Given a node x whose τ-name is τ(x) =< τ1(x), τ2(x), τ3(x) >,
its τ∗-name is τ∗(x) =< τ1(x), τ2(x), τ∗3 (x) >, if x is the τ∗3 (x)th node of its
micro-tree in DFUDS order.

For example, in Figure 1, node 29 has τ -name < 3, 1, 5 > and τ∗-name <
3, 1, 4 >. To convert the τ∗-name of a node to its τ -name, we only need convert
its τ∗3 -name to its τ3-name, in constant time using a table of size o(n).

As with the algorithm in Section 4.3.1 of (7) supporting node selectPRE, the
idea of computing the τ∗-name given a DFUDS number is to store the τ∗-names
of some of the nodes, and compute the τ∗-names of the rest using these values.

Definition 4. List the nodes in DFUDS order, numbered 1, 2, ..., n. The ith node
in DFUDS order is a tier-1 (or tier-2) DFUDS changer if i = 1, or if the ith and
(i− 1)th nodes in DFUDS order are in different mini-trees (or micro-trees).

For example, in Figure 1, nodes 1, 2, 16, 3, 17, 22 and 30 are tier-1 DFUDS chang-
ers, and nodes 2, 16, 3, 6, 7, 11, 4 and others are tier-2 DFUDS changers. It is
obvious that all the tier-1 DFUDS changers are also tier-2 DFUDS changers. We
have the following lemma (we omit its proof because of the space constraint).

Lemma 3. The number of tier-1 (or tier-2) DFUDS order changers is at most
four times the number of mini-trees (or micro-trees).

This allows us to convert DFUDS numbers to τ∗-names with o(n) additional bits,
using an approach similar to that of Section 3.1. We omit the details.

3.5 level leftmost, level rightmost, level succ and level pred

We define the ith level of a tree to be the set of nodes whose depths are equal to
i. To support level leftmost (level rightmost can be supported similarly),
we first show how to compute the τ1-name, u, of the node level leftmost(i).
Let h be the height of T . We construct a bit vector B[1..h], in which B[j] = 1
iff the nodes level leftmost(j−1) and level leftmost(j) are in two different
mini-trees, for 1 < j ≤ h (we set B[1] = 1). Let m be the number of 1s in B,
and we construct an array C[1..m] in which C[k] stores the τ1-name of the node
level leftmost(select1(B, k)). As the τ1-name of the node level leftmost(i)
is the same as that of the node level leftmost(select1(B, rank1(B, i))), we
have that u = C[rank1(B, i)]. To analyze the space cost of B and C, we observe
that if a given value, p, occurs q times in C, then the mini-tree μp has at least
q−1 edges that leave μp. If we map the first occurrence of p to mini-tree μp, and
each of the rest of the occurrences of p to a unique edge of μp that leaves μp, then
we can map each element of C, to either to a unique mini-tree, or to a unique
edge that leaves a mini-tree. Thus m is at most the number of mini-trees plus
the number of edges that leave a mini-tree, which is O(n/ lg4 n). Hence B and C
occupy o(n) bits. Similarly, we can support the computation of the τ2-name, v,
of the node level leftmost(i) in constant time using o(n) additional bits. The
τ3-name can be computed in constant time using an o(n)-bit table.

The support for level succ and level pred is based on the above approach
and other techniques. We omit the details.

Succinct Ordinal Trees Based on Tree Covering 519

4 Computing a Subsequence of BP and DFUDS

We use BP[1..2n] to denote the BP sequence. Recall that each opening paren-
thesis in BP corresponds to the preorder number of a node, and each closing
parenthesis corresponds to the postorder. Thus the number of opening paren-
theses corresponding to tier-1 (or tier-2) preorder changers is O(n/ lg4 n) (or
O(n/ lg n)), and we call them tier-1 (or tier-2) marked opening parentheses.

We first show how to compute the subsequence of BP starting from a tier-2
marked opening parenthesis up to the next tier-2 marked opening parenthesis.
We use j and k to denote the positions of these two parentheses in BP, respec-
tively, and thus our goal is to compute BP[j..k− 1]. We construct auxiliary data
structures B6, B′

6, C6 and C′
6, which are similar to the structures in Section 3.1,

except that they store τ -names of the nodes that correspond to marked opening
parentheses. We also construct a table A6, in which for each possible micro-tree
and each one of its nodes, we store the subsequence of the balanced parenthesis
sequence of the micro-tree, starting from the opening parenthesis corresponding
to this node, to the end of this sequence, and we also store the length of such
a subsequence. These auxiliary data structures occupy O(n lg lg n/ lgn) bits. To
compute BP[j..k − 1], we first compute, in constant time, the τ -names of the
tier-2 preorder changers, x and y, whose opening parenthesis are stored in BP[j]
and BP[k], respectively, using B6, B′

6, C6 and C′
6. If x and y are in the same

micro-tree, then we can perform a constant-time lookup on A6 to retrieve the
result. Otherwise, BP[j..k−1] is the concatenation of the following two sequences:
the subsequence of the balanced parenthesis sequence of x’s micro-tree, starting
from the opening parenthesis corresponding to x, to the end of this sequence,
and zero or more closing parentheses. Thus, BP[j..k− 1] can either be computed
in constant time using table lookup on A6 if its length is at most lgn/4, or any
lgn subsequence of it can be computed in constant time.

To compute any O(lg n)-bit subsequence of BP, we conceptually divide BP into
blocks of size lgn. As any O(lg n)-bit subsequence spans a constant number of
blocks, it suffices to support the computation of a block. For a given block with u
tier-2 marked opening parentheses, we can run the algorithm described in the last
paragraph at most u+1 times to retrieve the result. To facilitate this, we choose
a function f(n) where f(n) = O(lg n) and f(n) = Ω(1). We explicitly store the
blocks that have 2f(n) or more tier-2 marked opening parentheses, which takes
at most 2n/(lgn× 2f(n)) × lg n = n/f(n) bits. Thus, a block explicitly stored
can be computed in O(1) time, and a block that is not can be computed in
O(f(n)) time as it has at most 2f(n) tier-2 marked opening parentheses.

To support the computation of a word of the DFUDS sequence, recall that
the DFUDS sequence can be considered as the concatenation of the DFUDS subse-
quences of all the nodes in preorder (See Section 1.1). Thus the techniques used
above can be modified to support the computation of a subsequence of DFUDS.
The main difference is that we need the notion of extended micro-trees, as they
have the property that the children of each non-root original node of an extended
micro-tree are all in the same extended micro-tree.

520 M. He, J.I. Munro, and S.S. Rao

5 Open Problems

The first open problem is whether we can compute any O(lg n)-bit subsequence
of BP or DFUDS in constant time using o(n) additional bits for TC. Our result in
Theorem 2 is in the form of time/space tradeoff and we do not know whether
it is optimal. Other interesting open problems include the support of the oper-
ations that are not previously supported by BP, DFUDS or TC. One is to support
rank/select operations on the level-order traversal of the tree. Another one is to
support level leftmost (level rightmost) on an arbitrary subtree of T .

References

[1] Barbay, J., Rao, S.: Succinct encoding for XPath location steps. Technical Report
CS-2006-10, University of Waterloo, Ontario, Canada (2006)

[2] Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Proc. 7th Latin
American Theoretical Informatics Symp., pp. 88–94 (2000)

[3] Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Rep-
resenting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

[4] Benoit, D., Demaine, E.D., Munro, J.I., Raman, V.: Representing trees of higher
degree. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999.
LNCS, vol. 1663, pp. 169–180. Springer, Heidelberg (1999)

[5] Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly spanning trees with applications to
graph encoding and graph drawing. In: Proc. 12th ACM-SIAM Symp. Discrete
Algorithms, pp. 506–515 (2001)

[6] Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: Proc. 7th
ACM-SIAM Symp. Discrete Algorithms, pp. 383–391 (1996)

[7] Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Trans. Algorithms 2(4), 510–534 (2006)

[8] Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th IEEE Symp.
Found. Comput. Sci., pp. 549–554 (1989)

[9] Jansson, J., Sadakane, K., Sung, W.-K.: Ultra-succinct representation of ordered
trees. In: Proc. 18th ACM-SIAM Symp. Discrete Algorithms, pp. 575–584 (2007)

[10] Lu, H.-I., Yeh, C.-C.: Balanced parentheses strike back. Accepted to ACM Trans.
Algorithms (2007)

[11] Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

[12] Munro, J.I., Raman, V., Rao, S.S.: Space efficient suffix trees. J. Algorithms 39(2),
205–222 (2001)

[13] Munro, J.I., Rao, S.S.: Succinct representations of functions. In: Proc. 31st Int.
Colloquium Automata, Languages and Programming, pp. 1006–1015 (2004)

[14] Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In: Proc. 13th ACM-SIAM Symp.
Discrete Algorithms, pp. 233–242 (2002)

[15] Sadakane, K.: Succinct representations of lcp information and improvements in the
compressed suffix arrays. In: Proc. 13th ACM-SIAM Symp. Discrete Algorithms,
pp. 225–232 (2002)

A Framework for

Dynamizing Succinct Data Structures�

Ankur Gupta1, Wing-Kai Hon2, Rahul Shah1, and Jeffrey Scott Vitter1

1 Department of Computer Sciences, Purdue University,
West Lafayette, IN 47907–2107, USA
{agupta,rahul,jsv}@cs.purdue.edu

2 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
wkhon@cs.nthu.edu.tw

Abstract. We present a framework to dynamize succinct data struc-
tures, to encourage their use over non-succinct versions in a wide variety
of important application areas. Our framework can dynamize most state-
of-the-art succinct data structures for dictionaries, ordinal trees, labeled
trees, and text collections. Of particular note is its direct application to
XML indexing structures that answer subpath queries [2]. Our framework
focuses on achieving information-theoretically optimal space along with
near-optimal update/query bounds.

As the main part of our work, we consider the following problem
central to text indexing: Given a text T over an alphabet Σ, construct a
compressed data structure answering the queries char(i), rank s(i), and
selects(i) for a symbol s ∈ Σ. Many data structures consider these queries
for static text T [5,3,16,4]. We build on these results and give the best
known query bounds for the dynamic version of this problem, supporting
arbitrary insertions and deletions of symbols in T .

Specifically, with an amortized update time of O(nε), any static suc-
cinct data structure D for T , taking t(n) time for queries, can be con-
verted by our framework into a dynamic succinct data structure that
supports ranks(i), selects(i), and char(i) queries in O(t(n) + log log n)
time, for any constant ε > 0. When |Σ| = polylog(n), we achieve O(1)
query times. Our update/query bounds are near-optimal with respect to
the lower bounds from [13].

1 Introduction

The new trend in indexing data structures is to compress and index data in one
shot. The ultimate goal of these compressed indexes is to retain near-optimal
query times (as if not compressed), yet still take near-optimal space (as if not
an index). A few pioneer results are [6,5,3,15,4,2]; there are many others. For
compressed text indexing, see Navarro and Mäkinen’s excellent survey [11].

Progress in compressed indexing has also expanded to more combinatorial
structures, such as trees and subsets. For these succinct data structures, the
� Support was provided in part by the National Science Foundation through research

grants CCF–0621457 and IIS–0415097.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 521–532, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

522 A. Gupta et al.

emphasis is to store them in terms of the information-theoretic (combinatorial)
minimum required space with fast query times [15,9,7]. Compressed text indexing
makes heavy use of succinct data structures for set data, or dictionaries.

The vast majority of succinct data structuring work is concerned largely with
static data. Although the space savings is large, the main deterrent to a more
ubiquitous use of succinct data structures is their notable lack of support for
dynamic operations. Many settings require indexing and query functionality on
dynamic data: XML documents, web pages, CVS projects, electronic document
archives, etc. For this type of data, it can be prohibitively expensive to rebuild
a static index from scratch each time an update occurs. The goal is then to
answer queries efficiently, perform updates in a reasonable amount of time, and
still maintain a compressed version of the dynamically-changing data.

In that vein, there have been some results on dynamic succinct bitvectors
(dictionaries) [14,8,12]. However, these data structures either perform queries in
far from optimal time (in query-intensive environments), or allow only a limited
range of dynamic operations (“flip” operations only). Here, we consider the more
general update operations consisting of arbitrary insertion and deletion of bits,
which is a central challenge in dynamizing succinct data structures for a variety of
applications. We define the dynamic text dictionary problem: Given a dynamic
text T of n symbols drawn from an alphabet Σ, construct a data structure
(index) that allows the following operations for any symbol s ∈ Σ:
– ranks(i) tells the number of s symbols up to the ith position in T ;
– selects(i) gives the position in T of the ith s;
– char (i) returns the symbol in the ith position of T ;
– inserts(i) inserts s before the position i in T ;
– delete(i) deletes the ith symbol from T .

When |Σ| = 2, the above problem is called the dynamic bit dictionary prob-
lem. For the static case, [15] solves the bit dictionary problem using nH0 + o(n)
bits of space and answers rank and select queries in O(1) time, where H0 is the
0th order empirical entropy of the text T . The best known time bounds for the
dynamic problem are given by [12], achieving O(log n) for all operations.1

The text dictionary problem is a key tool in text indexing data structures.
For the static case, Grossi et al. [5] present a wavelet tree structure that answers
queries in O(log |Σ|) time and takes nH0 + o(n log |Σ|) bits of space. Golynski
et al. [4] improve the query bounds to O(log log |Σ|) time, although they take
more space, namely, n log |Σ|+o(n log |Σ|) bits of space. Nevertheless, their data
structure presents the best query bounds for this problem.

Developing a dynamic text dictionary based on the wavelet structure can be
done readily using dynamic bit dictionaries (as is done in [12]) since updates to a
particular symbol s only affect the data structures for O(log |Σ|) groups of sym-
bols according to the hierarchical decomposition of the alphabet Σ. The solution
to this problem is given by Mäkinen and Navarro [12], with an update/query
bound ofO(log n log |Σ|). These bounds are far from optimal, especially in query-
intensive settings. On the other hand, the best known query bounds for static
1 There is another data structure proposed in [8], requiring non-succinct space.

A Framework for Dynamizing Succinct Data Structures 523

text dictionaries are given by [4], which treats each symbol in Σ individually;
an update to symbol s could potentially affect Σ different data structures, and
thus may be hard to dynamize.

We list the following contributions of our paper:

– We develop a general framework to dynamize many succinct data structures
like ordinal trees, labeled trees, dictionaries, and text collections. Our frame-
work can transform any static succinct data structure D for a text T into
a dynamic succinct data structure. Precisely, if D supports ranks, selects,
and char queries in O(t(n)) time and takes s(n) bits of space, the dynamic
data structure supports queries in O(t(n) + log logn) time and updates in
amortized O(nε) time and takes just s(n) + o(n) bits of space.

– Our results represent near-optimal tradeoffs for update/query times for the
dynamic text (and bit) dictionary problem. (For lower bound, see [13].)

– We provide the first succinct data structure for the dynamic bit dictionary
problem. Our data structure takes nH0 + o(n) bits of space and requires
O(log logn) time to support ranks, selects, and char queries while supporting
updates to the text T in amortized O(nε) time.

– We provide the first near-optimal result for the dynamic text dictionary prob-
lem on a dynamic text T . Our data structure requires n log |Σ|+o(n log |Σ|)
bits of space and supports queries in O(log logn) time and updates in O(nε)
time. When |Σ| = polylog(n), we can improve our query time to O(1).

– Our framework can dynamize succinct data structures for labeled trees, text
collections, and XML documents.

2 Preliminaries

We summarize several important static structures that we will use in achieving
the dynamic results. The proofs of their construction are omitted due to space
constraints. In the rest of this paper, we refer to a static bit or text dictionary D,
that requires s(n) bits and answers queries in t(n) time.

Lemma 1 ([15]). For a bitvector (i.e., |Σ| = 2) of length n, there exists a
static data structure D called RRR solving the bit dictionary problem support-
ing rank, select, and char queries in t(n) = O(1) time using s(n) = nH0 +
O(n log logn/ logn) bits of space, while taking O(n) time to construct. ��

Lemma 2 ([5]). For a text T of length n drawn from alphabet Σ, there exists a
static data structure D called the wavelet tree solving the text dictionary problem
supporting ranks, selects, and char queries in t(n) = O(log |Σ|) time using
s(n) = nH0 + o(n log |Σ|) bits of space, while taking O(nH0) time to construct.
When |Σ| = polylog(n), we can support queries in t(n) = O(1) time. ��

Lemma 3 ([4]). For a text T of length n drawn from alphabet Σ, there exists
a static data structure D called GMR that solves the text dictionary problem
supporting selects queries in t1(n) = O(1) time and rank and char queries in
t2(n) = O(log log |Σ|) time using s(n) = n log |Σ| + o(n log |Σ|) bits of space,
while taking O(n log n) time to construct. ��

524 A. Gupta et al.

We also use the following static data structure called prefix-sum (PS) as a build-
ing block for achieving our dynamic result. Suppose we are given a non-negative
integer array A[1..t] such that

∑
iA[si] ≤ n. We define the partial sums P [i] =

∑i
j=1A[j]. Note that P is a sorted array, such that 0 ≤ P [i] ≤ P [j] ≤ n for all

i < j. A prefix-sum (PS) structure on A is a data structure that supports the
following operations:
– sum(j) returns the partial sum P [j];
– findsum(i) returns the index j such that sum(j) ≤ i < sum(j + 1).

Lemma 4. Let A[1 . . . t] be a non-negative integer array such that
∑

iA[i] ≤ n.
There exists a data structure PS onA that supports sum and findsum inO(log logn)
time using O(t log n) bits of space and can be constructed in O(t) time. In the par-
ticular case where x ≤ A[i] ≤ cx for all i, where x is a positive integer and c ≥ 1 is
a positive constant integer, sum and findsum can be answered in O(1) time. ��
We also make use of a data structure called the Weight Balanced B-tree (WBB
tree), which was used in [14,8]. We use this structure with Lemma 4 to achieve
O(1) time. A WBB tree is a B-tree defined with a weight-balance condition. A
weight-balance condition means that for any node v at level i, the number of
leaves in v’s subtree is between 0.5bi + 1 and 2bi − 1, where b is the fanout
factor. Insertions and deletions on the WBB tree can be performed in amortized
O(logb n) time while maintaining the weight-balance condition.

We use the WBB tree since it ensures that x ≤ A[i] ≤ cx where c is a positive
constant integer, thus allowing constant-time search at each node. However, a
simple B-tree would require O(log logn) time in this situation. Also, WBB trees
are a crucial component of the onlyX structure, described in Section 3.3. WBB
trees are also used in Section 3.1 (although B-trees could be used here).

3 Data Structures

Our solution is built with three main data structures:
– BitIndel : bitvector supporting insertion and deletion, described in Section 3.1;
– StaticRankSelect : static text dictionary structure supporting ranks, selects,

and char on a text T ;
– onlyX : non-succinct dynamic text dictionary, described in Section 3.3.

We use StaticRankSelect to maintain the original text T ; we can use any
existing structure such as the wavelet tree or GMR mentioned in Section 2.
For ease of exposition, unless otherwise stated, we shall use GMR [4] in this
section. We keep track of newly inserted symbols N in onlyX such that after
every O(n1−ε logn) update operations performed, updates are merged with the
StaticRankSelect structure. Thus, onlyX never contains more than O(n1−ε logn)
symbols. We maintain onlyX using O(n1−ε log2 n) = o(n) bits of space. Finally,
since mergingN with T requiresO(n log n) time, we arrive at an amortizedO(nε)
time for updating these data structures. BitIndel is used to translate positions pt
from the old text T to the new positions pt̂ from the current text T̂ . (We main-
tain T̂ implicitly through the use of BitIndel structures, StaticRankSelect, and
onlyX.)

A Framework for Dynamizing Succinct Data Structures 525

3.1 Bitvector Dictionary with Indels: BitIndel

In this section, we describe a data structure (BitIndel) for a bitvector B of
original length n that can handle insertions and deletions of bits anywhere in B
while still supporting rank and select on the updated bitvector B′ of length n′.
The space of the data structure is n′H0 + o(n′). When n′ = O(n), our structure
supports these updates in O(nε) time and rank and select queries in O(log logn)
time. (In [8], Hon et al. propose a non-succinct BitIndel structure taking n′+o(n′)
bits of space.)

Formally, we define the following update operations that we support on the
current bitvector B′ of length n′: insertb(i) inserts the bit b in the ith position,
delete(i) deletes the bit located in the ith position, and flip(i) flips the bit in
the ith position.

We defer the details until the full paper. The idea is to use a B-tree overΘ(nε)-
sized chunks of the bitvector, which are stored using an RRR structure. This
B-tree is constant-height and needs prefix-sum data structures in its internal
nodes for fast access.

Lemma 5. Given a bitvector B′ with length n′ and original length n, we can
create a data structure that takes n′H0 + o(n′) bits and supports rank and select
in O((logn n

′) log logn) time, and indel in O(nε logn n
′) time. When n′ = O(n),

our time bounds become O(log logn) and O(nε) respectively. ��

The prefix sum data structure used inside the B-tree is the main bottleneck to
query times, allowing us only O(log logn) time access. However, if we store three
WBB-trees, then separately in each of them the special condition from Lemma 4
can be met allowing us O(1) queries on prefix sum structures. This allows us to
obtain the following lemma.

Lemma 6. Given a bitvector B′ with length n′ and original length n, we can
create a data structure that takes 3n′H0 +o(n′) bits and supports rank and select
in O(logn n′) time, and indel in O(nε logn n′) amortized time. When n′ = O(n),
our time bounds become O(1) and O(nε) respectively. ��

If we change our BitIndel structure such that the bottom-level RRR [15] data
structures are built on [log2 n, 2 log2 n] bits each and set the B-tree fanout fac-
tor b = 2, we can obtain O(log n) update time with O(log n) query time. In this
sense, our BitIndel data structure is a generalization of [12].

3.2 Insert-X-Delete-Any: Inx

Let x be a symbol other than those in alphabet Σ. In this section, we describe
a data structure on a text T of length n supporting ranks and selects that can
handle delete(i) and insertx(i). That is, only x can be inserted to T , while any
characters can be deleted from T . Notice that insertions and deletions will affect
the answers returned for symbols in the alphabet Σ. For example, T may be
abcaab, where Σ = {a, b, c}. Here, ranka(4) = 2 and selecta(3) = 5. Let T̂
be the current text after some number of insertions and deletions of symbol x.

526 A. Gupta et al.

Initially, T̂ = T . After some insertions, the current T̂ may be axxxbcaxabx.
Notice that ranka(4) = 1 and selecta(3) = 9. We represent T̂ by the text T ′, such
that when the symbols of the original text T are deleted, each deleted symbol
is replaced by a special symbol d (whereas if x is deleted, it is just deleted from
T ′). Continuing the example, after some deletions of symbols from T , T ′ may
be axxxddaxabx. Notice that ranka(4) = 1 and selecta(3) = 7.

We define an insert vector I such that I[i] = 1 if and only if T ′[i] = x.
Similarly, we define a delete vector D such that D[i] = 1 if and only if T ′[i] = d.
We also define a delete vector Ds for each symbol s such that Ds[i] = 1 if and
only if the ith s in the original text T was deleted. The text T ′ is merely a
conceptual text: we refer to it for ease of exposition but we actually maintain T̂
instead.

To store T̂ , we store T using the StaticRankSelect data structure and store
all of the I, D, Ds bitvectors using the constant time BitIndel structure. Now,
we describe T̂ .insertx(i), T̂ .delete(i), T̂ .ranks(i), and T̂ .selects(i):

T̂ .insertx(i). First, we convert position i in T̂ to its corresponding position i′

in T ′ by computing i′ = D.select0(i). Then we must update our various vectors.
We perform I.insert1(i′) on our insert vector, and D.insert0(i′) on our delete
vector.

T̂ .delete(i). First, we convert position i in T̂ to its corresponding position i′ in
T ′ by computing i′ = D.select0(i). If i′ is newly-inserted (i.e., I[i′] = 1), then we
perform I.delete(i′) and D.delete(i′) to reverse the insertion process from above.
Otherwise, we first convert position i′ in T ′ to its corresponding position i′′ in T
by computing i′′ = I.rank0(i′). Let s = T.char(i′′). Finally, to delete the symbol,
we perform D.flip(i′) and Ds.flip(j), where j = T.ranks(i′′).

T̂ .ranks(i). First, we convert position i in T̂ to its corresponding position i′ in
T ′ by computing i′ = D.select0(i). If s = x, return I.rank1(i′). Otherwise, we
first convert position i′ in T ′ to its corresponding position i′′ in T by computing
i′′ = I.rank0(i′). Finally, we return Ds.rank0(j), where j = T.ranks(i′′).

T̂ .selects(i). If s = x, compute j = I.select1(i) and return D.rank0(j). Oth-
erwise, we compute k = Ds.select0(i) to determine i’s position among the s
symbols from T . We then compute k′ = T.selects(k) to determine its original
position in T . Now the position k′ from T needs to be mapped to its appropriate
location in T̂ . Similar to the first case, we perform k′′ = I.select0(k′) and return
D.rank0(k′′), which corresponds to the right position of T̂ .

T̂ .char(i). First, we convert position i in T̂ to its corresponding position i′

in T ′ by computing i′ = D.select0(i). If I[i′] = 1, return x. Otherwise, we
convert position i′ in T ′ to its corresponding position i′′ in T by computing
i′′ = I.rank0(i′) and return T.char (i′′).

Space and Time. As can be seen, each of the rank and select operations
requires a constant number of accesses to BitIndel and StaticRankSelect struc-
tures, thus taking O(1) time to perform. The indel operations require O(nε)
update time, owing to the BitIndel data structure. The space required for the

A Framework for Dynamizing Succinct Data Structures 527

above data structures comes from the StaticRankSelect structure, which requires
s(n) = O(n log |Σ|+o(n log |Σ|)) bits of space, and the many BitIndel structures,
whose space can be bounded by 3 log

(
n′

n

)
+ 6 log

(
n′

n′′

)
+ o(n′) +O((n′/nε) logn′)

bits where n′′ is number of deletes. If n′′ and n′ − n are bounded by n1−ε, then
this expression is o(n) bits.

Theorem 1. Let T be a dynamic text of original length n and current length n′,
with characters drawn from an alphabet Σ. Let n′′ be the number of deletions. If
the number of updates is O(n1−ε), We can create a data structure using GMR
that takes n log |Σ|+o(n log |Σ|) bits of space and supports ranks(i) and selects(i)
in O(1) time and insertx(i) and deletes(i) in O(nε) time. ��

3.3 onlyX-structure

Let T be the dynamic text that we want to maintain, where symbols of T
are drawn from alphabet Σ. Let n′ be the current length of T , and we as-
sume that n′ = O(n). In this section, we describe a data structure for main-
taining a dynamic array of symbols that supports ranks and selects queries in
O((logn n′)(t(n) + log logn)) time, for any fixed ε with 0 < ε < 1; here, we
assume that the maximum number of symbols in the array is O(n). Our data
structure takes O(n′ logn) bits; for each update (i.e., insertion or deletion of a
symbol), it can be done in amortized O(nε) time.

We describe how to apply the WBB tree to maintain T while supporting ranks
and selects efficiently, for any s ∈ Σ.2 In particular, we choose ε < 1 and store
the symbols of T in a WBB W with fanout factor b = nδ where δ = ε/2 such that
the ith (leftmost) leaf of W stores T [i]. Each node at level 1 will correspond to a
substring of T with O(b) symbols, and we will maintain a static text dictionary
for that substring so that ranks and selects are computed for that substring
in t(n) = O(log log |Σ|) time. In each level-� node v� with � ≥ 2, we store an
array size such that size[i] stores the number of symbols in the subtree of its
ith (leftmost) child. To have fast access to this information at each node, we
build a PS structure to store size. Also, for each symbol s that appears in the
subtree of v�, v� is associated with an s-structure, which consists of three arrays:
poss, nums, and ptrs. The entry poss[i] stores the index of v�’s ith leftmost child
whose subtree contains s. The entry nums[i] stores the number of s in v�’s ith
leftmost child whose subtree contains s. The entry ptrs[i] stores a pointer to the
s-structure of v�’s ith leftmost child whose subtree contains s.

The arrays in each s-structure (sizes, poss, and nums) are stored using a PS
data structure so that we can support O(log logn)-time sum and findsum queries
in sizes or nums, and O(log logn)-time rank and select queries in poss. (These
rank and select operations are analogous to sum and findsum queries, but we
2 One may think of using a B-tree instead of a WBB-tree. However, in our design, a

particular node in the WBB tree will need to store auxiliary information about every
symbol in the subtree under that node. In the worst case, this auxiliary information
will be as big as the size of the subtree. If we use a B-tree, the cost of updating a
particular node cannot bounded by O(nε) time in the amortized case.

528 A. Gupta et al.

refer to them as rank and select for ease of exposition.) The list ptrs is stored
in a simple array.

We also maintain another B-tree B with fanout nδ such that each leaf �s
corresponds to a symbol s that is currently present in the text T . Each leaf
stores the number of (nonzero) occurrences of s in T , along with a pointer to its
corresponding s-structure in the root of W . The height of B is O(lognε |Σ|) =
O(1), since we assume |Σ| ≤ n.

Answering char(i). We can answer this query in O(log logn) time by main-
taining a B-tree with fanout b = nδ over the text. We call this tree the text
B-tree.

Answering ranks(p). Recall that ranks(p) tells the number of occurrences of
s in T [1..p]. We first query B to determine if s occurs in T . If not, return 0.
Otherwise, we follow the pointer from B to its s-structure. We then perform
r.sizes.findsum(p) to determine the child ci of root r from W that contains T [p].
Suppose that T [p] is in the subtree rooted at the ith child ci of r. Then, ranks
consists of two parts: the number of occurrences m1 = r.nums.sum(j) (with
j = r.poss.rank(i − 1)) in the first i − 1 children of r, and m2, the number
of occurrences of s in ci. If r.poss.rank(i) �= j + 1 (ci contains no s symbols),
return m1. Otherwise, we retrieve the s-structure of ci by its pointer r.ptr[j + 1]
and continue counting the remaining occurrences of s before T [p] in the WBB
tree W . We will eventually return m1 +m2.

The above process either (i) stops at some ancestor of the leaf of T [p] whose
subtree does not contain s, in which case we can report the desired rank, or
(ii) it stops at the level-1 node containing T [p], in which case the number of
remaining occurrences can be determined by a ranks query in the static text
dictionary in t(n) = O(log log |Σ|) time. Since it takes O(log logn) time to check
the B-tree B at the beginning, and it takes O(log logn) time to descend each of
the O(1) levels in the WBB-tree to count the remaining occurrences, the total
time is O(log log n).

Answering selects(j). Recall that selects(j) tells the number of symbols (in-
clusive) before the jth occurrence of s in T . We follow a similar procedure
to the above procedure for ranks. We first query B to determine if s occurs
at least j times in T . If not, we return −1. Otherwise, we discover the ith
child ci of root r from W that contains the jth s symbol. We compute i =
r.poss.select(r.nums.findsum(j)) to find out ci.

Then, selects consists of two parts: the number of symbols m1 = r.size.sum(i)
in the first i− 1 children of r, and m2, the number of symbols in ci before the
jth s. We retrieve the s-structure of ci by its pointer r.ptr[r.nums.findsum(j)]
and continue counting the remaining symbols on or before the jth occurrence of
s in T . We will eventually return m1 + m2. The above process will stop at the
level-1 node containing the jth occurrence of s in T , in which case the number
of symbols on or before it maintained by this level-1 node can be determined by
a selects query in the static text dictionary in t(n) = O(log log |Σ|) time. With
similar time analysis as in ranks, the total time is O(log logn).

A Framework for Dynamizing Succinct Data Structures 529

Updates. We can update the text B-tree in O(nε) time. We use a naive ap-
proach to handle updates due to the insertion or deletion of symbols in T : For
each list in the WBB-tree and for each static text dictionary that is affected,
we rebuild it from scratch. In the case that no split, merge, or merge-then-split
operation occurs in the WBB-tree, an insertion or deletion of s at T [p] will affect
the static text dictionary containing T [p], and two structures in each ancestor
node of the leaf containing T [p]: the size array and the s-structure corresponding
to the inserted (deleted) symbol. The update cost is O(nδ logn) = O(nε) for the
static text dictionary and for each ancestor, so in total it takes O(nε) time.

If a split, merge, or merge-then-split operation occurs at some level-� node
v� in the WBB-tree, we need to rebuild the size array and s-structures for all
newly created nodes, along with updating the size array and s-structures of the
parent of v�. In the worst case, it requires O(n(�+1)ε logn) time. By the property
of WBB trees, the amortized update takes O(nε) time.

In summary, each update due to an insertion or deletion of symbols in T can
be done in amortized O(nε) time.

Space complexity. The space for the text B-tree is O(n log |Σ| + n1−ε logn)
bits. The total space of all O(n1−ε) static text dictionaries can be bounded by
s(n) = O(n log |Σ|) bits.

For the space of the s-structures, it seems like it is O(|Σ|n1−ε logn) bits at
the first glance, since there are O(n1−ε) nodes in W . This space however is not
desirable, since |Σ| can be as large as n. In fact, a closer look of our design reveals
that each node in W only maintains s-structures for those s that appears in its
subtree. In total, each character of T contributes to at most O(1) s-structures,
thus incurring only O(log n) bits. The total space for s structures is thus bounded
by O(n log n) bits.

The space for the B-tree B (maintaining distinct symbols in T) is O(|Σ| log n)
bits, which is at most O(n logn) bits. In summary, the total space of the above
dynamic rank-select structure is O(n log n) bits.

Summarizing the above discussions, we arrive at the following theorem.

Theorem 2. For a dynamic text T of length at most O(n), we can maintain a
data structure on T using GMR to support ranks, selects, and char O(t(n) +
log logn) = O(log logn) time, and insertion/deletion of a symbol in amortized
O(nε) time. The space of the data structure is O(n log n) bits. ��

Theorem 3. Suppose that |Σ| = polylog(n). For a dynamic text T of length at
most O(n), we can maintain a data structure on T using the wavelet tree to sup-
port ranks, selects, and char in O(t(n)) = O(1) time, and insertion/deletion of a
symbol in amortized O(nε) time. The space of the data structure is O(|Σ|n log n)
bits, and the working space to perform the updates at any time is O(nε) bits. ��

3.4 The Final Data Structure

Here we describe our final structure, which supports insertions and deletions of
any symbol. To do this, we maintain two structures: our inX structure on T̂ and the

530 A. Gupta et al.

onlyX structure, where all of the new symbols are actually inserted and maintained.
After every O(n1−ε logn) update operations, the onlyX structure is merged into
the original text T and a new T is generated. All associated data structures are also
rebuilt. Since this construction process could take at mostO(n logn) time, this cost
can be amortized toO(nε) per update. The StaticRankSelect structure on T takes
s(n) = n log |Σ| + o(n log |Σ|) bits of space. With this frequent rebuilding, all of
the other supporting structures take only o(n) bits of space.

We augment the above two structures with a few additional BitIndel structures.
In particular, for each symbol s, we maintain a bitvector Is such that Is[i] = 1 if
and only if the ith occurrence of s is stored in the onlyX structure. With the above
structures, we quickly describe how to support ranks(i) and selects(i).

For ranks(i), we first find j = inX.ranks(i). We then find k = inX.rankx(i)
and return j + onlyX.ranks(k). For selects(i), we first find whether the ith oc-
currence of c belongs to the inX structure or the onlyX structure. If Is[i] =
0, this means that the ith item is one of the original symbols from T ; we
query inX.selects(j) in this case, where j = Is.rank0(i). Otherwise, we com-
pute j = Is.rank1(i) to translate i into its corresponding position among new
symbols. Then, we compute j′ = onlyX.selects(j), its location in T̂ and return
inX.selectx(j′).

Finally, we show how to maintain Is during updates. For delete(i), compute
T̂ [i] = s. We then perform Is.delete(inX.ranks(i)). For inserts(i), after inserting
s in T̂ , we insert it into Is by performing Is.insert1(inX.ranks(i)). Let nx be the
number of symbols stored in the onlyX structure. We can bound the space for
these new BitIndel data structures using RRR [15] and Jensen’s inequality by
�log

(
n′

nx

)
�+ o(n′) = O(n1−ε log2 n) + o(n) = o(n) bits of space. Thus, we arrive

at the following theorem.

Theorem 4. Given a text T of lengthn drawn from an alphabetΣ, we create a data
structure using GMR that takes s(n)=n log |Σ|+ o(n log |Σ|) + o(n) bits of space
and supports ranks(i), selects(i), and char (i) inO(log logn+ t(n))=O(log logn+
log log |Σ|) time and insert(i) and delete(i) updates in O(nε) time. ��
For the special case when |Σ| = polylog(n), we may now use [10] as the Stati-
cRankSelect structure, and the Constant Time BitIndel as the BitIndel structure.
For the onlyX structure, we can use a similar improvement (using separate select
structures for each symbol s ∈ Σ) as with BitIndel to achieve O(1) time queries.
The space required is o(n) if merging is performed every O(n1−ε) update oper-
ations. We defer the details of this modification until the full paper. Then, we
achieve the following theorem.

Theorem 5. Given a text T of length n drawn from an alphabet Σ, with |Σ| =
polylog(n), we create a data structure using the wavelet tree that takes s(n)+o(n) =
nH0+o(n log |Σ|)+o(n) bits of space and supports ranks(i), selects(i), and char (i)
in O(t(n)) = O(1) time and insert(i) and delete(i) updates in O(nε) time. ��
We skip the details about the memory allocation issues for our dynamic struc-
tures and rebuilding space issues. However, the overhead for these issues can be
shown to be o(n) bits of additional space.

A Framework for Dynamizing Succinct Data Structures 531

4 Dynamizing Ordinal Trees, Labeled Trees, and the XBW
Transform

In this section, we describe applications of our BitIndel data structure and our
dynamic multi-symbol rank/select data structure to dynamizing ordinal trees,
labeled trees, and the XBW transform [2].

Ordinal Trees. An ordinal tree is a rooted tree where the children are ordered
and specified by their rank. An ordinal tree can be represented by the Jacob-
son’s LOUDS representation [1] using just rank and select . Thus, we can use
our BitIndel data structure to represent any ordinal tree with the following op-
erations: v.parent(), which returns the parent node of v in T ; v.child(i), which
returns the ith child node of v; v.insert(k), which inserts the kth child of node v;
and v.delete(k), which removes the kth child of node v.

Lemma 7. For any ordinal tree T with n nodes, there exists a dynamic represen-
tation of it that takes at most 2n+O(n log logn/ logn) bits of space and supports
updates in amortized O(nε) time and navigational queries in O(log logn) time.
Alternatively, we can take 6n + O(n log logn/ logn) bits of space and support
navigational queries in just O(1) time. ��

Labeled Trees, Text Collections, and XBW. A labeled tree T is a tree
where each of the n nodes is associated with a label from alphabet Σ. To ease
our notation, we will also number our symbols from [0, |Σ|−1] such that the sth
symbol is also the sth lexicographically-ordered one. We’ll call this symbol s. We
are interested in constructing a data structure such that it supports the following
operations in T : insert(P), which inserts the path P into T ; v.delete(), which
removes the root-to-v path for a leaf v; subpath(P), which finds all occurrences
of the path P ; v.parent(), which returns the parent node of v in T ; v.child (i),
which returns the ith child node of v; and v.child (s), which returns any child
node of v labeled s.

Ferragina et al. [2] propose an elegant way to solve the static version of this
problem by performing an XBW transform on the tree T , which produces an
XBW text S. They show that storing S is sufficient to support the desired
operations on T efficiently, namely navigational queries in O(log |Σ|) time and
subpath(P) queries in O(|P | log |Σ|) time.

In the dynamic case when we want to support insert or delete of a path of
lengthm, we observe that either operation corresponds to an update of this XBW
text S at m positions. Using our dynamic framework, we can then maintain a
dynamic version of this text S and achieve the following result using GMR.

Theorem 6 (Dynamic XBW). For any ordered tree T , there exists a dynamic
succinct representation of it using the XBW transform [2] that takes at most
s(n)+2n = n log |Σ|+o(n log |Σ|)+2n bits of space, while supporting navigational
queries in O(t(n) + log logn) = O(log logn) time. The representation can also
answer a subpath(P) query in O(m(t(n) + log logn)) = O(m log logn) time,
where m is the length of path P . The update operations insert(P) and delete()

532 A. Gupta et al.

at node u for this structure take O(nε + m(t(n) + log logn)) amortized time,
where m is the length of the path P being inserted or deleted. ��

Acknowledgements. We would like to thank Gonzalo Navarro and S. Muthu-
krishnan for helpful discussions and reviews of this work.

References

1. Benoit, D., Demaine, E., Munro, I., Raman, R., Raman, V., Rao, S.: Representing
trees of higher degree. Algorithmica 43(4), 275–292 (2005)

2. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proceedings of the IEEE Symposium on
FOCS, pp. 184–196 (2005)

3. Ferragina, P., Manzini, G.: Indexing Compressing texts. JACM, 52(4), 552–581,
(2005)

4. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: SODA, pp. 368–373 (2006)

5. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: SODA (2003)

6. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In: STOC, vol. 32 (2000)

7. Hagerup, T., Miltersen, P., Pagh, R.: Deterministic dictionaries. Journal of Algo-
rithms 41(1), 353–363 (2001)

8. Hon, W.K., Sadakane, K., Sung, W.K.: Succinct data structures for searchable
partial sums. In: ISAAC, pp. 505–516 (2003)

9. Jacobson, G.: Succinct static data structures. Technical Report CMU-CS-89-112,
Dept. of Computer Science, Carnegie-Mellon University (1989)

10. Navarro, G., Ferragina, P., Manzini, G., Mäkinen, V.: Succinct representation of
sequences and full-text indexes. TALG (to appear, 2006)

11. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
(to appear, 2006)

12. Navarro, G., Mäkinen, V.: Dynamic entropy-compressed sequences and full-text
indexes. In: CPM, pp. 306–317 (2006)

13. Patrascu, M., Demaine, E.: Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing 35(4), 932–963 (2006)

14. Raman, R., Raman, V., Rao, S.: Succinct dynamic data structures. In: WADS, pp.
426–437 (2001)

15. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)

16. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.
In: SODA, pp. 1230–1239 (2006)

In-Place Suffix Sorting

G. Franceschini1 and S. Muthukrishnan2

1 Department of Computer Science, University of Pisa
francesc@di.unipi.it

2 Google Inc., NY
muthu@google.com

Abstract. Given string T = T [1, . . . , n], the suffix sorting problem is
to lexicographically sort the suffixes T [i, . . . , n] for all i. This problem
is central to the construction of suffix arrays and trees with many ap-
plications in string processing, computational biology and compression.
A bottleneck in these applications is the amount of workspace needed to
perform suffix sorting beyond the space needed to store the input as well
as the output. In particular, emphasis is even on the constant c in the
O(n) = cn space algorithms known for this problem,

Currently the best previous result [5] takes O (nv + n log n) time and
O (n/

√
v) extra space, for any v ∈ [1,

√
n] for strings from a general al-

phabet. We improve this and present the first known in-place suffix sort-
ing algorithm. Our algorithm takes O (n log n) time using O(1) workspace
and is optimal in the worst case for the general alphabet.

1 Introduction

Given string T = T [1, . . . , n], the suffix sorting problem is to lexicographically
sort the suffixes T [i, . . . , n] for all i. Formally, the output is the array S such
that if S[j] = k, T [k, . . . , n] is the jth smallest suffix.1

This problem is central to many applications in string processing, computa-
tional biology and data compression. For instance, the array S is in fact the
suffix array for string T and is directly applicable to many problems [3]. The
classical suffix tree is a compressed trie in which the leaves comprise S. Finally,
the beautiful Burrows-Wheeler transform uses S to compress T , and is a popular
data compression method.

There are algorithms that will solve this problem using O(n) workspace, i.e.,
space used in addition to the space needed to store T and S. However, in many
applications, T is often very large, for example when T is a biological sequence,
or large corpus. Therefore, for more than a decade, research in this area has
been motivated by the fact that even constants in O(n) matter. For example,
the motivation to work with suffix arrays rather than suffix trees arose from
decreasing the workspace used from roughly 11n to roughly 3n. Since then the
1 As is standard, we will assume that the end of string is lexicographically smaller

than all the other symbols in the string and hence, unequal strings can be compared
in a well-defined way.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 533–545, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

534 G. Franceschini and S. Muthukrishnan

goal has been to minimize the extra workspace needed. This was explicitly posed
as an open problem in [2].

Currently the best previous result [5] takes O (nv+n logn) time and O (n/
√
v)

extra space, for any v ∈ [1,
√
n]. Here we assume the general alphabet model in

which the string elements can be compared pairwise.2 This has a variety of
tradeoffs: one is O(n log n) time and O(n) space, and the other is O(n3/2) time
and O(n1/4) space, depending on v.

Our main result is a substantial improvement over the above. In particular, we
present the first known in-place suffix sorting algorithm, that is, our algorithm
uses only O(1) workspace. The running time of our algorithm is O(n log n) which
is optimal in the general alphabet model since even sorting the n characters will
take that much time in the worst case. Formally, we prove:

Theorem 1. The suffixes of a text T of n characters drawn from a general
alphabet Σ can be sorted in O (n logn) time using O(1) locations besides the
ones for T and the suffix array S of T .

2 Preliminaries

We are given a text T of n characters drawn from a general alphabet Σ and an
array S of n integers of �logn� bits each. A total order relation ≤ is defined on
Σ, the characters are considered atomic (no bit manipulation, hashing or word
operations) and the only operations allowed on them are comparisons (w.r.t.
≤). Let Ti be the suffix of T starting with the character T [i] (i.e. Ti = T [i]T [i+
1] · · ·T [n]) and let integer i be the suffix index of Ti. The objective is to sort
lexicographically the n suffixes of T . The result, consisting of the n suffix indices
permuted according to the lexicographical order of the suffixes, is to be stored
in S. Apart from accessing T (readonly) and S, we are allowed to use only O(1)
integers of �logn� bits each to carry out the computation.

In the following we denote with ≺ the lexicographical order relation. For any
suffix Ti, we refer to Ti−1 (Ti+1) as the text-predecessor (text-successor) of Ti.
The terms sequence and subarray will have slightly different meanings. Even
though they are both composed by contiguous elements of an array, a subarray
is intended to be just a static portion of an array while sequences are dynamic
and can be moved, exchanged, permuted etc. For any string A we denote with
A[i . . . j] the contiguous substring going from the i-th position to the j-th position
of A. We extend the same notation to arrays and sequences.

2.1 A Space Consuming Approach

The strategy for sorting suffixes in our solution is based on the simple and elegant
approach by Ko and Aluru in [6]. Even though their technique was originally
used for the case where Σ = {1, . . . , n}, it can be extended to the comparison

2 The bounds in [5] are for strings with integer alphabet. The bound we have quoted
is the best possible time bound they can achieve in the general alphabet model.

In-Place Suffix Sorting 535

model. The result is a suffix sorting algorithm with an optimal O (n logn) time
complexity but requiring O (n) auxiliary locations in addition to S.

Let us recall Ko and Aluru’s approach. The suffixes of T are classified as
follows: a suffix Ti is an α-suffix (a β-suffix) if Ti ≺ Ti+1 (Ti+1 ≺ Ti), that is if
it is less (greater) than its text-successor w.r.t. the lexicographical order (Tn is
classified as a β-suffix by convention). This classification has the following main
property: for any α-suffix Ti and any β-suffix Tj, if T [i] = T [j] then Tj ≺ Ti.

Let us assume without loss of generality that the α-suffixes of T are fewer in
number than the β-suffixes. An α-substring of T is a substring Ai = T [i]T [i+
1] · · ·T [i′] such that (i) both Ti and Ti′ are α-suffixes and (ii) Tj is a β-suffix,
for any i < j < i′. We need to sort the α-substring of T according to a variation
of the lexicographical order relation, the in-lexicographical order, from which it
differs in only one case: if a string s is a prefix of another string s′, then s follows
s′. For any multisetM (i.e. a collection allowing duplicates), for any total order
< defined on M and for any o ∈ M, the bucket number of o is the rank of o
according to < in the set SM obtained from M by removing all the duplicates.

The Ko and Aluru’s approach proceeds with the following three main steps.
First. We sort in-lexicographically the α-substrings of T .
Second. We build a string T ′ from T by replacing any α-substring with its

bucket number (according to the in-lexicographical order). Then, we sort the suf-
fixes of T ′ recursively, obtaining the corresponding array S′. Because of the main
property of the α-β classification and by the definition of the in-lexicographical
order, sorting the suffixes of T ′ is equivalent to sorting the α-suffixes of T .

Third. We distribute the suffixes into temporary buckets according to their
first character. By the main property of the α-β classification we know that any
α-suffix is greater than any β-suffix belonging to the same bucket. Therefore,
for any bucket, we move all its α-suffixes to its right end and we dispose them
in lexicographical order (known since the second step). Then, we move the suf-
fixes from the temporary buckets to S (in the same order we find them in the
temporary buckets). Finally, we take care of the β-suffixes. We scan S from left
to right. Let Ti be the currently examined suffix. If the text-predecessor of Ti
is an α-suffix, we ignore it (it is already in its final position in S). Otherwise,
if Ti−1 is a β-suffix, we exchange Ti−1 with the leftmost β-suffix Tj having the
same first character as Ti−1 and not yet in its final position (if any). After the
scanning process, the suffixes are in lexicographical order.

2.2 Obstacles

Before we proceed with the description of our algorithm, let us briefly consider
some of the obstacles that we will have to overcome.

2.2.1 Input Partitioning and Simulated Resources
A common approach for attacking space complexity problems consists of the fol-
lowing phases. First, the input set is partitioned into two disjoint subsets. Then,
the problem is solved for the first subset using the second subset to simulate
additional space resources. Usually these simulated resources are implemented

536 G. Franceschini and S. Muthukrishnan

by permuting the elements in the second subset in order to encode data or, if
the model allows it, by compressing them in order to free some bits temporarily.
After the problem has been solved for the first subset, the approach is applied
recursively on the second one. Finally, the partial solutions for the two subsets
are merged into one.

Unfortunately, this basic approach cannot be easily extended to the suffix
sorting problem. This is due to the well-known fact that the suffixes of a sequence
cannot be just partitioned into generic subsets to be sorted separately and then
merged efficiently. Only few specific types of partitionings are known to have
this property and either they exploit some cyclic scheme (e.g. [4]), thus being
too rigid for our purposes, or they need to be explicitly represented (e.g. [6])
thereby increasing the auxiliary memory requirements.

2.2.2 Auxiliary Information Needed in Ko and Aluru’s Approach
Not only is the α-β partitioning unsuitable, but it also claims auxiliary resources.
Clearly, in the first and third main steps of the Ko and Aluru’s approach, we need
to be able to establish whether a particular suffix is an α-suffix or a β-suffix. The
number of bits needed to represent the α-β partitioning can be reduced to n/c,
for a suitably large integer constant c. We will employ various encoding schemes
to maintain this information implicitly during the phases of the computation.

Let us consider the final scanning process of the third main step. For any
suffix Ti considered, the positions in S of Ti−1 and Tj (the leftmost β-suffix
such that Tj [1] = Ti−1[1] and not yet in its final position) must be retrieved
efficiently. To this end, the algorithm in [6] explicitly stores and maintains the
inverse array of S. Unlike the case of the of the α-β partitioning, it is clearly
impossible to encode implicitly the necessary n �log n� bits. Therefore, we will
devise an “on-the-fly” approach to the scanning process that will require neither
the exchange step of Ti−1 and Tj nor the use of any implicit encoding scheme.

3 Our Algorithm

In this section we present our optimal in-place suffix sorting algorithm for generic
alphabets. We will assume without loss of generality that the α-suffixes of T are
fewer in number than the β-suffixes (the other case is symmetric).

The α-β table. In [6] the information for classifying α and β-suffixes is cal-
culated in linear time with a left to right scan of T . It is easy to see how this
information can be gathered in linear time also by a right to left scan: by con-
vention Tn is classified as α-suffix and Tn−1 can be classified by comparing T [n]
and T [n − 1]; for any i < n − 1, let us assume inductively that the classifi-
cation of Ti+1 is known, if T [i] �= T [i + 1] then Ti is classified by the result
of the comparison between T [i] and T [i + 1], otherwise Ti is of the same type
of Ti+1. Therefore, to be able to classify any suffix Ti in O(1) time there is
no need to store a table with n entries of one bit each. For any integer con-
stant c, we can use a table of n/c bits whose j-th entry represents the classi-
fication of Tcj. Any suffix Ti can be classified in O(c) time: if the substrings

In-Place Suffix Sorting 537

Ti[1 . . . c − i mod c] and Ti+1[1 . . . c − i mod c] differ then Ti is classified by the
result of their lexicographical comparison, otherwise Ti is of the same type of
Ti+c−i mod c (whose classification is in the i+c−i mod c

c -th entry of the table).
Ee will refer to this smaller table as the α-β table. We will not be able to keep

the α-β table explicitly stored or implicitly encoded all the time. Its information
will be lost and recalculated multiple times during any execution.

3.1 Sorting the α-Suffixes

In this section we show how to sort the α-suffixes of T . We have four phases.

3.1.1 First Phase
We compute the α-β table and we store it in S[1 . . . n/c] (that is, simply using one
entry of S for any entry of the table). Let nα be the number of α-suffixes. While
we are scanning T to compute the α-β table we also find the α-substrings and we
store the nα pointers to them in S[n − nα + 1, . . . , n]. Since nα ≤ n/2, in the
following phases we can exploit n(1/2−1/c) free locations in the first half of S (as
we have seen, we can choose the constant c, defining the size of the α-β table, as
large as we want). Let F denote the subarray of S containing the free locations.

3.1.2 Second Phase
We divide the pointers to the α-substrings into d groups G1, . . . , Gd of nα/d
contiguous pointers each, for a suitable constant d. Then, we sort each group
in-lexicographically using the locations in the subarray F (and the α-β table to
recognize the last position of any α-substring). As we can choose d as large as we
want and given that the total length of the α-substrings is O (n), each group can
be sorted in O (n logn) time with any optimal string sorting algorithm operating
in linear space (linear w.r.t. the size of the group).

Now that the groups of α-substrings are in-lexicographically sorted we merge
them. We first merge the first group with the second one, then the resulting
sequence is merged with the third group and so forth. For any i, the i-th single
binary merging step is performed with the help of the locations in F in the
following way. Let G be the sequence to be merged with the i-th group Gi

and let us assume that |G| + |Gi| > |F | (at a certain point this will happen,
since nα > |F |). Using the α-β table to recognize the ends of the α-substrings,
we initially proceed like in a normal merging (we compare in-lexicographically
the α-substrings pointed by G[1] and Gi[1] and move a pointer to F [1] and so
forth). Since |G| + |Gi| > |F |, after |F | of these single string comparison steps
F becomes full. At that point we slide what is left of G to the right so that
it becomes adjacent with what is left of Gi. After the sliding we resume the
merging but now we move the pointers to the subarray of |F | positions that
is right after F and that has become free after the sliding. We proceed in this
fashion until G or Gi is empty. At that point we compact the sorted pointers
with what is left of G or Gi. Finally, we slide the resulting sequence to the right
to be adjacent with Gi+1 (in case we need to).

538 G. Franceschini and S. Muthukrishnan

3.1.3 Third Phase
In this phase we build a sequence T ′ of nα integers in the range [1, nα] using
the bucket numbers of the α-substrings (see Section 2.1). After the second phase
the α-substrings are in in-lexicographical order and the pointers to them are
permuted accordingly. Let us denote with P the subarray S[n − nα + 1 . . . n]
where the pointers are stored.

We start by modifying the allocation scheme for the α-β table. Up until now
the n/c entries have been stored in the first n/c locations of S. We now allocate
the α-β table so that the i-th entry is stored in the most significant bit of the
2i-th location of S, for any 1 ≤ i ≤ n/c. Since we can choose c to be as large as
we want, the nα pointers residing in P will not be affected by the change.

Then, we associate to any pointer the bucket number of the α-substring it
points to in the following way. We scan P from left to right. Let two auxiliary
variables j and p be initially set to 1 and P [1], respectively. In the first step of
the scanning we set S[1] and S[2] to P [1] and 1, respectively. Let us consider the
generic i-th step of the scanning, for i > 1.

1. We compare in-lexicographically the α-substrings pointed by p and P [i]
(using the α-β table to recognize the last positions of the two α-substrings).

2. If they are different we increment j by one and we set p to P [i].
3. In any case, we set S[2i − 1] and S[2i] to P [i] and j, respectively and we

continue the scanning.

As we said, the scanning process depends on the α-β table for the substring
comparisons. It might seem that writing the current value of j in the locations
of S with even indices would destroy the α-β table. That is not the case. After
the scanning process, the first 2nα locations of S contains nα pairs 〈pi, bi〉, where
pi is a pointer to the i-th α-substring (in in-lexicographical order) and bi is the
bucket number of it. Since nα ≤ n/2, the bits necessary to represent a bucket
number for an α-substrings are no more than �log(n/2)� (and the locations of
S have �logn� bits each). Therefore, the n/c entries of the α-β table and the
bucket numbers of the first n/c pair 〈pi, bi〉 can coexist without problems.

After the scanning process we proceed to sort the nα pairs 〈pi, bi〉 according
to their first members (i.e. the pointers are the sorting keys). Since there can be
as many as n/2 α-substrings, at the worst case we have that all the locations
of S are occupied by the sequence of pairs. Therefore, for sorting the pairs we
use mergesort together with an in-place, linear time merging like [8]. When the
pairs are sorted, we scan them one last time to remove all the pointers, ending
up with the wanted sequence T ′ stored in the first nα locations of S.

3.1.4 Fourth Phase
We start by applying our in-place algorithm recursively to the sequence T ′ stored
in S[1 . . . nα]. At the worst case |T ′| = nα can be equal to n/2 and the space
used by the algorithm to return the nα sorted suffixes of T ′ is the subarray
S′ = S[n−nα + 1 . . . n]. Concerning the use of recursion, if before any recursive
call we were to store explicitly O(1) integer values (e.g. the value of nα), we would
end up using O (logn) auxiliary locations (O (logn) nested recursive calls). There

In-Place Suffix Sorting 539

are many solutions to this problem. We use the n most significant bits of S (the
most signicant bit in each of the n entries in S) to store the O(1) integers we need
for any recursive call. That is possible because starting from the first recursive
call the alphabet of the text is not Σ anymore but {1, 2, . . . , n/2} and the size
of the input becomes at most n/2. Therefore, the n most significant bits of S
are untouched during all the recursive calls.

After the recursive call, we have nα integers of �log(n/2)� bits each stored in
the subarray S′ = S[n−nα+ 1 . . . n]. They are the suffix indices of the sequence
T ′ stored in the subarray S[1 . . . nα] and they are permuted according to the
lexicographical order of the suffixes of T ′.

Finally, to obtain the lexicographical order of the α-suffixes of T we proceed
as follows. First, scanning T as we do to compute the α-β table, we recover the
indices of the α-suffixes and we store them in T ′ (we do not need the data in T ′

anymore). Then, for any 1 ≤ i ≤ nα, we set S′[i] = T ′[S′[i]].

3.2 Sorting the Suffixes

In this section we show how to sort the suffixes of T provided the α-suffixes
are already sorted. Let us assume that the suffix indices for the α-suffixes are
stored in S[n− nα + 1 . . . n]. Before we start let us recall that any two adjacent
sequences U and V , possibly with different sizes, can be exchanged in-place and
in linear time with three sequence reversals, since UV = (V RUR)R.

We have six phases.

3.2.1 First Phase
With a process analogous to the one used to compute the α-β table (which we
do not have at our disposal at this time), we scan T , recover the n − nα suffix
indices of the β-suffixes and store them in S[1 . . . n− nα].

Then, we sort the pointers stored in S[1 . . . n − nα] according to the first
character of their respective β-suffixes (i.e. the sorting key for S[i] is T [S[i]]).
We use mergesort together with the in-place, linear time merging in [8].

3.2.2 Second Phase
Let us denote S[1 . . . n− nα] and S[n− nα + 1 . . . n] by Sβ and Sα, respectively.
After the first phase the pointers in Sβ are sorted according to the first character
of their suffixes and so are the ones in Sα.

Scanning Sβ , we find the rightmost location jβ such that the following hold:

(i) Sβ [jβ] is the leftmost pointer in Sβ whose β-suffix has T [Sβ[jβ]] as first
character.

(ii) n − nα − jβ + 1 ≥ 2n/c, that is, the number of pointers in the subarray
Sβ [jβ . . . n−nα] is at least two times the number of entries of the α-β table.
The reason for this choice will be clear at the end of this phase.

Then, we find the leftmost position jα in Sα such that T [Sα[jα]] ≥ T [Sβ[jβ]]
(a binary search). Let us consider the pointers in S as belonging to four se-
quences B′,B′′,A′ and A′′, corresponding to the pointers in Sβ [1 . . . jβ − 1],

540 G. Franceschini and S. Muthukrishnan

Sβ [jβ . . . n − nα], Sα[1 . . . jα − 1] and Sα[jα . . . nα], respectively. We exchange
the places of the sequences B′′ and A′.

For the sake of presentation, let us assume that the choice of jβ is balanced
that is condition (ii) holds for subarray Sβ[1 . . . jβ − 1] too. The other case
requires only minor, mainly technical, modifications to the final phases and we
will discuss it in the full version of this paper.

In the final step of this phase, we calculate the α-β table by scanning T and
while we are doing so we encode the table in B′′ in the following way: if the i-th
entry of the table is 0 (1) we exchange positions of the pointers B′′[2i− 1] and
B′′[2i] so that they are in ascending (descending) order. It is important to point
out that in this case we mean the relative order of the two pointers themselves,
seen as simple integer numbers, and not the relative order of the suffixes pointed
by them. Clearly, any entry of the table can be decoded in O(1) time.

This basic encoding technique is known as odd-even encoding ([7]). Its main
advantage w.r.t. other, more sophisticated, encoding techniques is its extreme
simplicity. Its main drawback is that it introduces an ω(1) overhead if used to
encode/decode a table with entries of ω(1) bits. Since we will use it only to
encode the α-β table, the overhead will not be a problem.

At the end of the second phase the pointers in the S are divided into the
four contiguous sequences B′A′B′′A′′ and the α-β table is implicitly encoded
in B′′. For the rest of the paper let us denote with SL and SR the subarrays
S[1 . . . |B′|+ |A′|] and S[|B′|+ |A′|+ 1 . . . n], respectively (i.e. the two subarrays
of S containing all the pointers in B′A′ and in B′′A′′).

3.2.3 Third Phase
We start by merging stably the pointers in B′ and A′ according to the first
character of their suffixes. So, the sorting key for pointer B′[i] is T [B′[i]] and the
relative order of pointers with equal keys is maintained. For this process we use
the stable, in-place, linear time merging in [8].

After the merging, the pointers inSL are contained intom contiguous sequences
C1C2 . . . Cm where m is the cardinality of the set {T [SL[i]] | 1 ≤ i ≤ |SL|} and
for any j and p′, p′′ ∈ Cj , T [p′] = T [p′′]. Let us recall that A′ contained the point-
ers to the |A′| lexicographically smallestα-suffixes and they were already in lexico-
graphical order. Therefore, since we merged B′ and A′ stably, we know that any
sequence Cj is composed by two contiguous subsequences, Cβ

j followed by Cα
j ,

such that (i) Cβ
j contains only pointers to β-suffixes and (ii) Cα

j contains only
pointers to α-suffixes and they are already in lexicographical order.

Now we need to gather some elements from some of the sequences Ci into a
sequence E. We process each sequence Ci starting from C1. Initially E is void.
Let us assume that we have reached the location cj in SL where the generic
subsequence Cj begins and let us assume that at this time E is located right
before Cj . We process Cj with the following steps.

1. We find the ending locations of Cβ
j and Cα

j , using the α-β table encoded in
sequence B′′ of SR (e.g. with a linear scan of Cj).

In-Place Suffix Sorting 541

2. If Cβ
j contains at least two pointers we proceed as follows.

(a) We “mark” the second location of Cβ
j by setting Cβ

j [2] = SL[1]. We can
employ SL[1] as a “special value” since, by construction, it has to point
to an α-suffix and so it is not among the values affected by this process.

(b) We enlarge E by one element at its right end (thus including the first
element of Cβ

j and shrinking Cj by one element at its left end).
3. We move E (which may have been enlarged by one element in step 2) past Cj

in the following way. If |E| ≤ |Cj |, we simply exchange them. Otherwise, if
|E| > |Cj |, we exchange the first |Cj | elements of E with Cj , thus “rotating”
E. (If we just exchanged E and Cj all the times, the cost of the whole
scanning process would be O

(
n2
)
).

After this first scanning process, E resides at the right end of SL. Moreover,
|E| sequences among C1C2 . . . Cm had their first pointer to a β-suffix moved at
the right end of SL and their second pointer to a β-suffix overwritten with the
“special value” SL[1].

We proceed with a second scanning of the sequences C1C2 . . . Cm from left
to right. This time we remove the “special values” SL[1] in every location we
find it (except the first location of SL) by compacting the sequences toward
left. With this process |E| locations are freed right before sequence E. (Clearly,
any sequence Ci that before the two scannings had |Ci| = 2 and contained only
pointers to β-suffixes has now disappeared.)

Finally, we create a “directory” in the last 2 |E| locations of SL (the second
scanning has freed the |E| locations before sequence E). Let us denote with GL

and DL the subarrays with the first |SL| − 2 |E| and the last 2 |E| locations of
SL, respectively. We proceed with the following steps.

1. We use mergesort with the in-place, linear time binary merging in [8] to sort
the elements of E, for any 1 ≤ i ≤ |E| we use T [E[i]] as sorting key.

2. We “spread” E throughDL, that is we move E[1] to DL[1], E[2] to DL[3],. . . ,
E[i] to DL[2i− 1] etc.

3. For any 1 ≤ i ≤ |E|. We do a binary search for the character ti = T [DL[2i−
1]] in GL using the character T [GL[l]] as key for the l-th entry of GL. The
search returns the leftmost position pi in GL where ti could be inserted to
maintain a sorted sequence. We set DL[2i] = pi.

3.2.4 Fourth Phase
In this phase we finalize the sorting of the |SL| lexicographically smallest suffixes
of T (and their pointers will be stored in SL).

We start the phase by scanning GL from left to right. Let us remark that,
by construction, GL[1] contains a pointer to an α-suffix, the lexicographically
smallest suffix of T . For the generic i-th location of GL we perform two main
steps. First we will give a fairly detailed and formal description of these two
steps and then we will give a more intuitive explanation of them.

542 G. Franceschini and S. Muthukrishnan

1. We do a binary search for the character T [GL[i]− 1] (i.e. the first character
of the text-predecessor of the suffix pointed by GL[i]) in the directory in
DL. The binary search is done on the odd locations of DL (the ones with
pointers to T) by considering the character T [DL[2l − 1]] as the key for the
l-th odd location of DL.

2. If the binary search succeeded, let j be the (odd) index in DL such that
T [GL[i] − 1] = T [DL[j]]. Let pj be the inward pointer stored in DL[j + 1].
We use pj to place the outward pointer to the text-predecessor of the suffix
pointed by GL[i] in a position in SL (not only in GL). We have three cases:
(a) If T [GL[i]− 1] = T [GL[pj]] and GL[pj] is a β-suffix (we verify this using

the α-β table encoded in sequence B′′ of SR), we set GL[pj] to GL[i]− 1
and we increment DL[j + 1] (i.e. pj) by one.

(b) If GL[pj] is an α-suffix or T [GL[i] − 1] �= T [GL[pj]], we set DL[j] to
GL[i]− 1 and DL[j + 1] (i.e. pj) to |GL|+ 1.

(c) If pj > |GL|, we set DL[j + 1] = GL[i]− 1.

And now for the intuitive explanation. As we anticipated in Section 2.2.2, the
scanning process of the third main step (see Section 2.1) needs to maintain the
inverse array of S in order to find the correct position for the text-predecessor
of Ti in its bucket. Obviously we cannot encode that much information and so
we develop an “on-the-fly” approach. The directory in DL is used to find an
inward (i.e. toward S itself and not T) pointer to a location in one of the Ck
sequences (which represent the buckets in our algorithm). So the first step simply
uses the directory to find the inward pointer. Unfortunately the directory itself
is stealing positions from the sequences Ck that sooner or later in the scanning
will be needed to place some outward pointer (i.e. toward T). For any sequence
Ck that has a “representative”, that is a pair 〈pout, pin〉, in the directory (the
sequences without representatives are already in lexicographical order as they
contain only one β-suffix) we have three cases to solve.

In the first case (corresponding to step 2a), there is still space in Ck, that is
the two lexicographically largest β-suffixes belonging to Ck have not yet been
considered by the scanning (these are the suffixes of Ck whose space in S is
stolen by the directory in DL). In this case the inward pointer we found in the
directory guides us directly to the right position in Ck.

In the second case (corresponding to step 2b) the space in Ck is full and the
suffix whose pointer we are trying to place is the lexicographically second largest
β-suffix belonging to Ck. To solve the problem, we place its outward pointer in
the first location of the pair 〈pout, pin〉 in DL corresponding to the bucket Ck.
This overwrites the outward pointer pout that we use in the binary search but
this is not a problem, as the old one and the new one belong to the same bucket.
The only problem is that we need to be able to distinguish this second case from
the third case, when the last β-suffix belonging to Ck will be considered in the
scan. To do so we set pin to a value that cannot be a valid inward pointer for
the phase (e.g. |GL|+ 1).

In the third case (corresponding to step 2c) the space in Ck is full, and the
pointer to the lexicographically second largest β-suffix belonging to Ck has been

In-Place Suffix Sorting 543

placed in the first location of the pair 〈pout, pin〉 in DL corresponding to Ck.
When the largest β-suffix of Ck is finally considered in the scanning, we are able
to recognize this case since the value of the pin is an invalid one (|GL|+1). Then,
we set pin to be the pointer to the largest β-suffix of Ck and, for what concerns
Ck, we are done.

After the scanning process, the pointers in GL are permuted according to the
lexicographical order of their corresponding suffixes. The same holds for DL.
Moreover, for any 1 ≤ j ≤ |DL| /2, the suffixes pointed by DL[2j − 1] and
DL[2j] (a) have the same first character, (b) are both β-suffixes and (c) they are
the second largest and largest β-suffixes among the ones with their same first
character, respectively. Knowing these three facts, we can merge the pointers in
GL and DL in two steps.

1. We merge GL and DL stably with the in-place, linear time binary merging
in [8] using T [GL[i]] and T [DL[j]] as merging keys for any i, j.

2. Since we merged GL and DL stably, after step 1 any pair of β-suffixes with
the same first character whose two pointers were previously stored in DL,
now follow immediately (instead of preceding) the α-suffixes with their same
first character (if any). A simple right to left scan of SL (using the encoded
α-β table) is sufficient to correct this problem in linear time.

3.2.5 Fifth Phase
We start the phase by sorting the pointers in the sequence B′′ of SR according
to the first character of their corresponding suffixes. The pointers in B′′ were
already in this order before we perturbed them to encode the α-β table. Hence,
we can just scan B′′ and exchange any two pointers B[i] and B[i+ 1] such that
T [B[i]] > T [B[i+ 1]] (since the pointers in B′′ are for β-suffixes, we do not need
to care about their relative order when T [B[i]] = T [B[i+ 1]]).

After that, we process SR in the same way we processed SL in the third phase
(Section 3.2.3). Since α-β table was used in that process, we need to encode it
somewhere in SL

Unfortunately, we cannot use the plain odd-even encoding on the suffix indices
in SL because they are now in lexicographical order w.r.t. to the suffixes they
point to. If we encoded each bit of the α-β table by exchanging positions of two
consecutive pointers SL[i] and SL[i + 1] (like we did with sequence B′′ in the
second phase, Section 3.2.2), then, after we are done using the encoded table, in
order to recover the lexicographical order in SL we would have to compare n/c
pairs of consecutive suffixes. At the worst case that can require O

(
n2
)

time.
Instead, we exploit the fact that pointers in SL are in lexicographical order

w.r.t. to their suffixes in the following way. Let Tab′
L and Tab′′

L be the subarrays
SL[1 . . . n/c] and SL[n/c+1 . . .2n/c], respectively. We encode a smaller α-β table
with only n/2c entries in Tab′′

L as follows (Tab′
L will be used in the sixth phase):

if the i-th entry of the table is 0 (1) we exchange positions of the pointers Tab′′
L[i]

and Tab′′
L[
∣
∣Tab′′

L

∣
∣ − i + 1] so that they are in ascending (descending) order (as

before, in this case we mean the relative order of the two pointers themselves,
seen as simple integer numbers).

544 G. Franceschini and S. Muthukrishnan

Since the pointers in Tab′′
L were in lexicographical sorted order before the pair

swapping, the recovering of the order of all the pairs of Tab′′
L can be achieved

in O (n) time in the following way. Let us denote with p1, p2, . . . pt be the point-
ers in Tab′′

L after the encoding (where t =
∣
∣Tab′′

L

∣
∣). We start lexicographically

comparing the suffixes Tp1 and Tpt . When we find the mismatch, let it be at
the h-th pair of characters, we exchange p1 and pt accordingly. Then we proceed
by comparing Tp2 and Tpt−1 but we do not start comparing them by their first
characters. Since Tab′′

L was in lexicographical sorted order, we know that the
first h − 1 characters must be equal. Hence, we start comparing Tp2 and Tpt−1

starting from their h-th characters. We proceed in this fashion until the last pair
has been dealt with. Clearly this process takes O (n) time at the worst case.

3.2.6 Sixth Phase
In this phase we finalize the sorting of the remaining |SR| lexicographically
largest suffixes of T (and their pointers will be stored in SR).

The final sorting process for SR is the same we used in the fourth phase
(Section 3.2.4) for SL but with one difference: the scanning process does not
start from GR[1] but from SL[1] again. We proceed as follow.

1. We scan the first n/c pointers of SL (they correspond to subarray Tab′
L,

which has not yet been used to encode the α-β table). The scanning process
is the same one of the fourth phase, except that we use DR as directory and
Tab′′

L for the α-β table.
2. After the first n/c pointers of SL have been scanned, we move the α-β table

encoding from Tab′′
L to Tab′

L and recover the lexicographical order of the
pointers in Tab′′

L. Then, we continue the scanning of the rest of SL.
3. Finally, the scanning process arrives to GR. After GR is sorted we merge GR

and DR as we merged GL and DL in the fourth phase and we are done.

Let us point out one peculiar aspect of this last process. Since during the scan we
use DR as directory, the suffixes whose pointers reside in SL will not be moved
again. That is because DR has been built using pointers to β-suffixes whose first
characters are always different from the ones of suffixes with pointers in SL. For
this reason, during the second scan of SL, any search in DR for a suffix whose
pointer is in SL will always fail and nothing will be done to the pointer for that
suffix (correctly, since SL is already in order).

To summarize, we get Theorem 1.

4 Concluding Remarks

We have presented first known inplace algorithm for suffix sorting, i.e., an al-
gorithm that uses O(1) workspace beyond what is needed for the input T and
output S. This algorithm is optimal for the general alphabet. Ultimately we
would like to see simpler algorithms for this problem. Also, an interesting case is
one in which the string elements are drawn from an integer alphabet. Then we
can assume that each T [i] is stored in �logn� bits and O(1) time bit operations

In-Place Suffix Sorting 545

are allowed on such elements. In that case, known suffix tree algorithms solve
suffix sorting in O(n) time and use O(n) workspace in addition to T and S [1].
We leave it open to design inplace algorithms for this case in o(n logn) time and
ultimately, in even O(n) time.

References

1. Farach, M.: Optimal Suffix Tree Construction with Large Alphabets. In: FOCS 1997,
pp. 137–143 (1997)

2. Ferragina, P., Manzini, G.: Engineering a lightweight suffix array construction algo-
rithm. In: Proc. ESA (2002)

3. Gusfield, D.: Algorithms on strings, trees and sequences: Computer Science and
Computational Biology. Cambridge Univ Press, Cambridge (1997)

4. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. Int. Col-
loquium on Automata, Languages and Programming 2719, 943–955 (2003)

5. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
Journal of the ACM (in press)

6. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-
Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp.
200–210. Springer, Heidelberg (2003)

7. Ian Munro, J.: An implicit data structure supporting insertion, deletion, and search
in O(log2 n) time. Journal of Computer and System Sciences 33(1), 66–74 (1986)

8. Salowe, J., Steiger, W.: Simplified stable merging tasks. Journal of Algorithms 8(4),
557–571 (1987)

Maximal Infinite-Valued Constraint Languages

Manuel Bodirsky1, Hubie Chen2, Jan Kára3, and Timo von Oertzen4

1 Department of Algorithms and Complexity, Humboldt University, Berlin
bodirsky@informatik.hu-berlin.de

2 Department of Applied Mathematics, Charles University, Prague
kara@kam.mff.cuni.cz

3 Departament de Tecnologies de la Informació i les Comunicacions
hubie.chen@upf.edu

4 Max-Planck-Institute for Human Development, Berlin
vonoertzen@mpib-berlin.mpg.de

Abstract. We systematically investigate the computational complex-
ity of constraint satisfaction problems for constraint languages over an
infinite domain. In particular, we study a generalization of the well-
established notion of maximal constraint languages from finite to infinite
domains. If the constraint language can be defined with an ω-categorical
structure, then maximal constraint languages are in one-to-one corre-
spondence to minimal oligomorphic clones. Based on this correspon-
dence, we derive general tractability and hardness criteria for the corre-
sponding constraint satisfaction problems.

1 Introduction

One of the research goals in constraint satisfaction is to determine the constraint
languages whose constraint satisfaction problem (CSP) can be solved by a poly-
nomial time algorithm (we will call such languages tractable), and the languages
for which the constraint satisfaction problem is NP-hard. In the last decade,
a lot of progress was made in this direction, in particular if the domain D of
the constraint language is finite. Particularly stimulating has been the obser-
vation that the computational complexity of a constraint satisfaction problem
is for finite D determined by a set of closure operations, which forms an object
known as polymorphism clone in universal algebra. The line of research that uses
this connection to universal algebra is also known as the algebraic approach to
constraint satisfaction; see e.g. [10] for a recent account.

The complexity classification of CSPs for finite domains D is still not com-
plete. However, based on the algebraic approach, the complexity classification
for maximal constraint languages has been completed recently [8, 9]. Roughly
speaking, a constraint language is maximal if it is as large as possible without
expressing all relations on D. The notion of a maximal constraint language was
previously only used for finite domains D.

Compared to constraint satisfaction with finite domains, there are not as many
systematic results for infinite-valued CSPs. One of the outstanding exceptions is

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 546–557, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Maximal Infinite-Valued Constraint Languages 547

the complexity classification for the tractable sub-languages of Allen’s interval
algebra. Allen’s interval algebra is a (binary) constraint language that allows
to specify relative positions of intervals over the rational numbers, and is in
its unrestricted form NP-complete [1]. However, there are many tractable sub-
languages, which were determined in a series of papers, most notably in [19,20].

Many constraint languages in temporal and spatial reasoning, but also con-
straint languages studied in computational linguistics and computational biol-
ogy are ω-categorical. The CSPs for the fragments of Allen’s interval algebra, for
instance, can all be formulated with ω-categorical constraint languages. The con-
cept of ω-categoricity is of central importance in model theory. It turns out that
the algebraic approach to constraint satisfaction can be applied not only to con-
straint languages over a finite domain, but also to ω-categorical constraint lan-
guages [2,4,6]. From the model-theoretic point of view, ω-categoricity is a severe
restriction. However, the class of CSPs that can be formulated with ω-categorical
structures is very rich. It contains for instance all CSPs (for a constraint lan-
guage over an arbitrary infinite domain) in MMSNP [4], a fragment of existential
second order logic, which was introduced in the context of constraint satisfaction
in [13]. We will later also see how ω-categorical structures can be used to model
problems about solving equations over infinite-dimensional vector spaces.

Contributions. In this paper, we introduce and investigate a notion of maxi-
mal constraint languages that extends to infinite domains D. For finite D, our
definition of maximal constraint languages essentially coincides with the well-
established notion of maximal constraint languages in [8,9]. We will use the fact
that maximal ω-categorical constraint languages are in one-to-one correspon-
dence to minimal oligomorphic clones, and prove that the tractable maximal
constraint languages are of three types: either they have a polymorphism that
is a unary constant operation, a quasi majority operation, or an essentially bi-
nary oligopotent operation. In the first case, the constraint satisfaction problem
is trivial and tractable. In the second case, tractability follows from a result
in [4]. Therefore, all maximal constraint languages of unknown computational
complexity are preserved by an essentially binary operation.

Another main contribution is a strong tractability criterion which shows that
ω-categorical constraint languages with a certain binary polymorphism can be
solved in polynomial time. This class also contains many maximal constraint
languages. As demonstrated in Section 8, our condition also captures and extends
tractability results in qualitative temporal and spatial reasoning, and it provides
an universal-algebraic perspective on these results.

2 The Constraint Satisfaction Problem

We first recall fundamental concepts and notation used throughout the text; the
book of Hodges [16] might serve as an introduction. A relational language τ is
a (here always at most countable) set of relation symbols Ri, each associated
with an arity ki. A (relational) structure Γ over the relational language τ (also
called τ -structure) is a set DΓ (the domain) together with a relation Ri ⊆ Dki

Γ

548 M. Bodirsky et al.

for each relation symbol of arity ki. If necessary, we write RΓ to indicate that
we are talking about the relation R belonging to the structure Γ . For simplicity,
we denote both a relation symbol and its corresponding relation with the same
symbol. For a τ -structure Γ and R ∈ τ it is convenient to say that R(u1, . . . , uk)
holds in Γ iff (u1, . . . , uk) ∈ R. We sometimes use the shortened notation x for
a vector x1, . . . , xn of any length. Sometimes we do not distinguish between the
symbol for a relational structure Γ and its domain DΓ . If we add relations to a
given structure Γ we call the resulting structure Γ ′ an expansion of Γ , and we
call Γ a reduct of Γ ′.

Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to Γ ′ is a function f
from DΓ to DΓ ′ such that for each n-ary relation symbol in τ and each n-tuple a,
if a ∈ RΓ , then (f(a1), . . . , f(an)) ∈ RΓ ′

. In this case we say that the mapping f
preserves the relation R. If there is a homomorphism from Γ to Γ ′ and a homo-
morphism from Γ ′ to Γ , we say that Γ and Γ ′ are homomorphically equivalent.
Homomorphisms from Γ to Γ are called endomorphisms. A homomorphism is
called an embedding, if it is injective and satisfies the stronger condition that
for each n-ary relation symbol in τ and each n-tuple a, a ∈ RΓ if and only if
(f(a1), . . . , f(an)) ∈ RΓ ′

. An isomorphism is a surjective embedding. Isomor-
phisms from Γ to Γ are called automorphisms. The set of all automorphisms
Aut(Γ) of a structure Γ is a group with respect to composition.

The constraint satisfaction problem. Let Γ be a structure with the relational
language τ . The constraint satisfaction problem (CSP) for the template Γ is the
following computational problem:

CSP(Γ)
INSTANCE: A finite structure S of the same relational language τ as the tem-
plate Γ .
QUESTION: Is there a homomorphism from S to Γ ?

The elements of the finite input structure S are also called the variables of the
CSP. In order to study the computational complexity of this problem, we have to
encode the input structure S as a finite string over the alphbet {0, 1}. However,
if we assume that the language τ is finite, the exact choice of the representation
does not matter (since the relational language is fixed and in particular does not
grow with the size of the input). For infinite constraint languages τ , we say that
CSP(Γ) is tractable if and only if CSP(Γ ′) is tractable for all all reducts Γ ′ of
Γ having a finite relational language. This definition is commonly used also for
constraint satisfaction over finite domains [10].

To study the computational complexity of the CSP, reductions from one con-
straint language to another can be described conveniently using the notion of
primitive positive definability from logic. A formula is called primitive positive
(pp), if it has the form ∃x1 . . . xk.ψ1 ∧ · · · ∧ ψl, where ψi is atomic (it might be
of the form x = y, i.e., we always include equality in our language). The atomic
formulas might contain free variables and existentially quantified variables from

Maximal Infinite-Valued Constraint Languages 549

x1, . . . , xk. As usual, every formula with k free variables defines on a structure Γ a
k-ary relation. Primitive positive definability of relations is an important concept
in constraint satisfaction, because pp-definable relations can be ’simulated’ by
the constraint satisfaction problem. The following is frequently used in hardness
proofs for constraint satisfaction problems; see e.g. [10].

Lemma 1. Let Γ be a relational structure, and let R be a relation that has a
primitive positive definition in Γ . Then the constraint satisfaction problems of
Γ and of the expansion of Γ by R have the same computational complexity up
to logspace reductions.

The (universal-) algebraic approach to constraint satisfaction relies on the fact
that pp-definability can be characterized by preservation under so-called poly-
morphisms ; we introduce these concepts in Section 4.

3 Preliminaries from Model Theory

We first recall fundamental concepts from model theory, which are standard,
see e.g. [16]. A relational structure over a countably infinite domain is called
ω-categorical if the first-order theory of Γ has only one countable model up to
isomorphism. The following deep theorem discovered independently by Engeler,
Ryll-Nardzewski, and Svenonius (see [16]) describes these structures in algebraic
terms.

An orbit of a k-tuple t in Γ is the set of all tuples of the form (π(t1), . . . , π(tk)),
where π is an automorphism of Γ . The automorphism group G of Γ is called
oligomorphic, if for each k ≥ 1, there are finitely many orbits of k-tuples in G.

Theorem 1 (Engeler, Ryll-Nardzewski, Svenonius; see e.g. [16]). A
countable relational structure is ω-categorical if and only if the automorphism
group of Γ is oligomorphic. A relation R has a first-order definition in an ω-
categorical structure Γ if and only if R is preserved by all automorphisms of Γ .

An ω-categorical structure Γ is called model-complete if every embedding from
Γ into Γ preserves all first-order formulas. It is called homogeneous (in the
literature sometimes also ultra-homogeneous), if all isomorphisms between fi-
nite induced substructures of Γ can be extended to automorphisms of Γ . It is
well-known [16] that an ω-categorical structure is homogeneous if and only if
it has quantifier-elimination, i.e., every first-order formula is over Γ equivalent
to a quantifier-free formula. Homogeneous ω-categorical structures are always
model-complete [16]. We say that an ω-categorical structure Γ is a core, if every
endomorphism of Γ is an embedding. We say that Δ is a core of Γ if Δ is a core
and homomorphically equivalent to Γ .

Theorem 2 (from [2]). Every ω-categorical structure Γ has a model-complete
core Δ, which is unique up to isomorphism, and which is either finite or ω-
categorical. Every relation consisting of a single orbit of k-tuples of Δ has a
primitive positive definition in Δ.

550 M. Bodirsky et al.

Since a model-complete core Δ of Γ is unique up to isomorphisms, we call Δ
the core of Γ . Clearly, Γ and Δ have the same constraint satisfaction problem,
and we can therefore always assume that templates of constraint satisfaction
problems are model-complete cores. One of the reasons why it is convenient to
assume that Γ is a model-complete core is the following.

Lemma 2 (from [2]). Let Γ be a model-complete ω-categorical core, and let
Γ ′ be the expansion of Γ by a unary singleton relation C = {c}. If CSP(Γ) is
tractable, then so is CSP(Γ ′).

4 Preliminaries from Universal Algebra

To explore the expressive power of a constraint language, we make use of uni-
versal algebraic techniques. We give a very short but self-contained introduction
to clones on infinite domains.

Let D be an infinite set, and let O(k) be a subset of operations from Dk

to D, for k ≥ 1. The symbol O denotes
⋃∞
k=1O

(k). An operation π ∈ O(k) is
called a projection if for some fixed i ∈ {1, . . . , k} and for all k-tuples x we have
the identity π(x1, . . . , xk) = xi. The composition of a k-ary operation f and k
operations g1, . . . , gk of arity n is an n-ary operation defined by

f(g1, . . . , gk)(x1, . . . , xn) = f
(
g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)

)
.

We say that an operation f ∈ O(k) is interpolated by a set F ⊆ O if for every
finite subset B of D there is some operation g ∈ F such that f(t) = g(t) for
every t ∈ Bk. The set of all operations that are interpolated by F is denoted by
I(F).

A subset F of O is called a clone if it contains all projections and is closed
under composition. It is called a local clone if I(F) = F . The smallest clone
that contains F is called the clone generated by F , and denoted by G(F). The
smallest local clone that contains F is called the clone locally generated by F ,
and denoted by L(F). The following seems to be folklore, and is easy to see.
(Note that L(F) = G(I(F)) is in general not true.)

Proposition 1. For all F ⊆ O we have that L(F) = I(G(F)).

The connection to the expressive power of constraint languages is as follows. The
(direct-, categorical-, or cross-) product Γ1×Γ2 of two relational τ -structures Γ1

and Γ2 is a τ -structure on the domain DΓ1 × DΓ2 . For all relations R ∈ τ the
relation R

(
(x1, y2), . . . , (xk, yk)

)
holds in Γ1 × Γ2 iff R(x1, . . . , xk) holds in Γ1

and R(y1, . . . , yk) holds in Γ2. Homomorphisms from Γ k = Γ × . . .×Γ to Γ are
called polymorphisms of Γ . It is well-known and easy to prove that the set of all
polymorphisms of a relational structure Γ with domain D, denoted by Pol(Γ),
is a local clone (with domain D).

The algebraic approach is based on the following observation, which shows
together with Lemma 1 that the computational complexity of a constraint

Maximal Infinite-Valued Constraint Languages 551

satisfaction problem with template Γ is determined by the polymorphisms of Γ .
If F is a clone, we denote by Inv(F) the set of relations that are preserved by F .

Theorem 3 (from [6]). Let Γ be an ω-categorical structure. Then a relation is
primitive positive definable in Γ if and only if it is preserved by all polymorphisms
of Γ . In other words, Inv(Pol(Γ)) is the set of all primitive positive definable
relations of Γ .

This motivates the study of polymorphism clones of ω-categorical structures. A
clone F on a countable set D is called oligomorphic, if the permutations of D
that are contained in F form an oligomorphic permutation group. Theorem 1
asserts that the polymorphism clones of ω-categorical structures are oligomor-
phic. Conversely, a locally closed oligomorphic clone is the polymorphism clone
of an ω-categorical structure; see [3].

An operation of an oligomorphic clone F is called elementary if it is locally
generated by the permutations in F . Clearly, for finite clones, the elementary
operations are the operations that are composed of a projection with a permu-
tation. Note that all endomorphisms of a model-complete ω-categorical core are
elementary.

Proposition 2 (from [3]). If all polymorphisms of an ω-categorical structure
Γ are locally generated by the automorphisms of Γ , then every first-order formula
is in Γ equivalent to a primitive positive formula.

We now define several other important properties of k-ary operations. A k-ary
operation f is

– idempotent iff f(x, . . . , x) = x;
– oligopotent iff g(x) := f(x, . . . , x) is elementary
– essentially unary iff there is a unary operation f0 such that f(x1, . . . , xk) =
f0(xi) for some i ∈ {1, . . . , k};

– essential iff f is not essentially unary;
– a quasi near-unanimity operation (short, qnu-operation) iff f(x, . . . , x) =
f(x, . . . , x, y) = · · · = f(x, . . . , x, y, x, . . . , x) = · · · = f(y, x, . . . , x);

– a quasi majority operation iff f is a ternary quasi near-unanimity operation;
– a quasi semiprojection iff there is an essentially unary operation g such that
f(x1, . . . , xk) = g(x1, . . . , xk) whenever |{x1, . . . , xk}| < k.

An idempotent quasi majority, quasi near-unanimity, and quasi semiprojection is
known as majority, near-unanimity operation, and semiprojection, respectively.
If all operations of a clone are elementary, essentially unary, or oligopotent, then
we say that the clone is elementary, essentially unary, or oligopotent, respectively.

Minimal Clones. Important questions in universal algebra and useful tools for
constraint satisfaction arise from the notion of minimal clones. A (proper) sub-
clone F ′ of a clone F is a clone on the same domain as F , and the operations of F ′

form a (proper) subset of the operations of F . An oligomorphic clone F is called
minimal, if in every proper oligomorphic subclone every operation is elementary.

552 M. Bodirsky et al.

The following is the oligomorphic analog of a result proved by Rosenberg [22]
for clones with a finite domain1.

Theorem 4 (of [3]). Every minimal oligomorphic clone F is locally generated
by the permutations from F and a non-elementary operation that is of one of
the following types

1. a unary operation f such that f(f) and the permutations in F locally gen-
erate f ;

2. a binary oligopotent operation;
3. a ternary oligopotent quasi majority operation;
4. a k-ary oligopotent quasi semi-projection, for k > 2.

We also need the following.

Theorem 5 (of [3]). Let Γ be an ω-categorical model-complete core. If the
polymorphism clone F of Γ contains a non-elementary operation, then F also
contains a minimal oligomorphic clone.

5 Hardness Criteria for CSPs

We show that if a constraint language is not preserved by polymorphisms of a
special kind, the corresponding constraint satisfaction problem must be NP-hard.

Theorem 6. Let Γ be an ω-categorical structure. Then either Γ has a finite core,
or CSP(Γ) is NP-hard, or Γ has a polymorphism f of one of the following types.

– an oligopotent binary operation
– an oligopotent ternary quasi majority operation
– a k-ary oligopotent quasi semi-projection, for k ≥ 3

It was shown in [17] that for constraint languages over finite domains the
semiprojections alone do not guarantee tractability. The same holds even for
ω-categorical constraint languages and quasi semiprojections.

Proposition 3. Let Γ be an ω-categorical core. If all polymorphisms of Γ are
locally generated by quasi semiprojections, then CSP(Γ) is NP-hard.

6 Maximal Constraint Languages

A constraint language Γ is called complete, if every first-order definable rela-
tion in Γ also has a primitive positive definition in Γ . We call an incomplete
constraint language maximal, if adding any relation to the language that was
1 Note that one of the five cases presented by Rosenberg can not occur for minimal

oligomorphic clones, essentially because ω-categorical model-complete cores can not
have a ternary polymorphism that satisfies the identities f(y, x, x) = f(x, x, y) =
f(y, y, y); see [3].

Maximal Infinite-Valued Constraint Languages 553

not primitive positive definable before turns the constraint language into a com-
plete constraint language. We will see that for ω-categorical structures, maximal
constraint languages precisely correspond to minimal locally closed clones.

This definition of maximality coincides with the well-established notion of
maximality of constraint languages for finite templates (see [9,10]), if we assume
that the constraint language additionally contains for every element a ∈ D a
symbol Ra that denotes the unary relation {a}. Every CSP with a finite domain
is polynomial-time equivalent to the CSP where the language has been expanded
by all singleton relations as described above [10].

We briefly recall the definition of maximality given in [9]. For finite domains
D a constraint language is called complete if every relation over D has a prim-
itive positive definition over the constraint language. As before, an incomplete
constraint language is called maximal if adding any relation to the language that
was not primitive positive definable before turns the constraint language into a
complete constraint language. Once we have singleton relations for all elements
in our constraint language, this definition of completeness coincides with the
definition shown above, because in such constraint languages every relation has
a first-order definition, which is easy to see. Therefore, our definition and the
standard definition of maximality essentially coincide on finite templates.

Proposition 4 (of [3]). Let Γ be an ω-categorical constraint language that is
not complete, and let F be the polymorphism clone of Γ . Then the following are
equivalent:

1. The language of Γ is maximal;
2. F is minimal, i.e., every proper oligomorphic subclone of F is elementary;
3. Every non-elementary operation in F together with the permutations in F

locally generates F .

Theorem 6 now specializes to the following.

Theorem 7. Let Γ be an ω-categorical structure with a maximal language. Then
one of the following cases applies.

1. CSP(Γ) is NP-hard;
2. Γ has a constant polymorphism, and CSP(Γ) is tractable;
3. The polymorphisms of Γ are locally generated by the automorphisms of Γ

and a non-elementary binary operation, and Γ is a core;
4. The polymorphism clone of Γ contains a quasi majority operation, and CSP(Γ)

is tractable.

Note that all the maximal ω-categorical constraint languages of unknown com-
putational complexity are from the third case of Theorem 7.

7 Tractability

In this section we present a new general tractability criterion based on preser-
vation under a binary polymorphism.

554 M. Bodirsky et al.

If Γ = (D;R1, . . .) is a relational structure, we denote by Γ c the expansion
of Γ that also contains the complement for each relation in Γ . We say that a
relation R has a quantifier-free Horn definition in Γ if R can be defined by a
quantifier-free first-order formula over the signature of Γ that is in conjunctive
normal form in which every clause contains at most one positive literal.

Theorem 8. Let Γ be an ω-categorical homogeneous structure. If there is an
isomorphism i between Γ 2 and Γ , then

– the binary operation i : D2 → D and the automorphisms of Γ locally generate
a minimal oligomorphic clone F ; hence, Δ = Inv(F) is a maximal constraint
language;

– all relations in Δ have a quantifier-free Horn definition in Γ ;
– if CSP(Γ c) is tractable, then CSP(Δ) is tractable as well.

Aplications of Theorem 8 for concrete constraint languages and computational
problems can be found in Section 8. We would like to remark that our tractabil-
ity result is a new application of the universal-algebraic approach to constraint
satisfaction, and indeed we have linked tractability of constraint languages to
the existence of a binary polymorphism that locally generates a minimal oligo-
morphic clone. Note that this tractability result is specific to infinite domains,
because for constraint languages Γ over a finite domain Γ 2 cannot possibly be
isomorphic to Γ . For infinite structures Γ the situation that Γ is isomorphic
to Γ 2 is not so rare; it is e.g. well-known that the set of models of a universal
first-order Horn theory is preserved under direct products [16].

8 Applications

8.1 Solving Equations over Infinite Vector Spaces

Solving equations with equalities and disequalities for an infinite-dimensional
vector space over a finite field can be formulated as a constraint satisfaction
problem with an ω-categorical template. The tractability result we present here
is new.

Let Fq be a finite field with elements s0, . . . , sq−1 and let V be a countably
infinite vector space over Fq. Then V is unique up to isomorphism [16]. We
consider the following relational structure ΓV := (V,R+, Rs0 , . . . , Rsq−1), where
the relations are defined as follows.

R+(x, y, z) ≡ (x+ y = z)
Rsi(x, y) ≡ (y = six)

The structure ΓV is homogeneous and ω-categorical [16]. Hence, its automor-
phism group is oligomorphic; in fact, the automorphism group is one of the
groups known as the classical infinite groups, which have many remarkable prop-
erties [14]. Clearly, the constraint satisfaction problem for ΓV is trivial, because
it has a constant endomorphism. But in the expansion Γ cV of ΓV we can find

Maximal Infinite-Valued Constraint Languages 555

primitive positive definitions of the relation defined by x �= y, and it is not
difficult to show that Γ cV is a core. It is also not difficult to come up with an
algorithm for CSP(Γ cV), essentially by Gaussian elimination.

It is well-known that V 2, the direct product of the algebraic object V with
itself, is isomorphic to V ; similarly, we have that Γ 2

V (as defined in Section 4) is
isomorphic to ΓV . Let iV be the isomorphism, and let CV be the oligomorphic
clone that is locally generated by iV and the automorphisms of ΓV . Then The-
orem 8 implies that Inv(CV) is a maximal constraint language. Since CSP(Γ cV)
is tractable as well, we can apply Theorem 8 and find that CSP(Inv(CV)) is
tractable. This is a more interesting result, saying that we can find an efficient al-
gorithm for Horn clauses of equations for infinite vector spaces over a finite field.

8.2 CSPs for the Universal Triangle-Free Graph

Let � be a countably infinite graph (D,E) that satisfies the following property:
� does not contain a triangle (i.e., does not contain K3 as a subgraph), and for
all finite disjoint sets S, I ⊂ D where I forms an independent set in � we find a
vertex v /∈ S∪I such that v is connected to all vertices in I and to no vertex in S.

It is well known that such a graph must be unique up to isomorphism, and
is homogeneous and ω-categorical; it is known as the universal homogeneous
triangle-free graph. Clearly, CSP(�c) can be solved in polynomial time: we sim-
ply have to check that the input instance does not contain two literals E(x, y)
and ¬E(x, y) at the same time, and that E is without loops and triangle-free.
One can easily verify that �2 is isomorphic to �; let i be the isomorphism. By
Theorem 8, we have found another maximal ω-categorical constraint language,
and the corresponding CSP can be solved in polynomial time.

8.3 Spatial Reasoning

One of the most fundamental spatial reasoning formalisms is the RCC-5 cal-
culus (also known as the containment algebra in the theory of relation alge-
bras [11]). The maximally tractable sublanguages of the binary constraint lan-
guage for RCC-5 have been determined in [18, 21]. Let B0 be the countable
atomless boolean ring without an identity elements. This structure is unique up
to isomorphism and ω-categorical, see for example [12]. It is straightforward to
verify that (B0)2 is isomorphic to B0. We are interpreting the elements of this
boolean ring as non-empty sets (regions), where A + B denotes the symmetric
difference, and A · B the intersection of A and B. Now, consider the relational
structure Σ over the domain of B0 with the two binary relations called DR and
PP (these are the traditional names in RCC-5). With the interpretation of the
elements of B0 being sets, they are defined as follows: DR(X,Y) iff X ∩ Y = ∅
and PP(X,Y) iff X ⊂ Y .

The constraint satisfaction problem for CSP(Σc) is in P [21]. Σ2 is isomorphic
to Σ as well, and it again follows by Theorem 8 that the constraint language
whose relations have a Horn definition in Σ is tractable. We would like to remark
that Nebel and Renz [21] determined a largest tractable fragment of RCC-5, and

556 M. Bodirsky et al.

that it follows from the result in [18] that this fragment is the unique largest
tractable fragment that contains the basic relations DR and PP. But note that
RCC-5 only contains binary relations, whereas our maximal language contains
relations of arbitrary arity.

8.4 Temporal Reasoning

We present another maximal constraint language from the field of temporal
reasoning. It will serve us as an example of a maximal constraint language whose
polymorphism clone is locally generated by a binary injective operation, but
which has an NP-complete CSP.

One of the basic structures for temporal reasoning is (Q, <), the set of rational
numbers, ordered by <. This structure is an unbounded and dense linear order
on countably many vertices, and it is uniquely described by these properties, up
to isomorphism. Note that (Q, <)2 is clearly not isomorphic to (Q, <).

Consider a binary operation lex on Q satisfying lex(a, b) < lex(a′, b′) if either
a < a′, or a = a′ and b < b′. Note that every operation lex satisfying these
conditions is by definition injective. Let F be the clone generated by lex and
the automorphisms of (Q, <). The problem CSP(Inv(F)) is NP-complete. This
is because all operations in F preserve the Betweenness relation defined by the
formula (x < y < z) ∨ (z < y < x), and the CSP for the Betweenness relation
is a well-known NP-complete problem [15]. It is not hard to show that F is a
minimal oligomorphic clone.

For temporal reasoning with partially ordered time as studied by Broxvall
and Jonsson [7] there are four maximally tractable classes, called SA, SB, SC , SD
of so-called disjunctive constraint languages; for terminology in this paragraph,
we refer to [7]. These constraint languages all have a first-order definition in
the so-called countable universal homogeneous partial order, denoted here by P ;
see [23]. It is easy to verify that there is an isomorphism iP between P 2 and P .
The language SD has a constant endomorphism, and SB has a core with a first-
order definition in (Q, <). It can be verified that the language SC is preserved
by iP ; in fact, the relations with a first-order definition in P that are preserved
by iP strictly contain the relations from SC . Since P c is tractable (this is easy
to see) tractability and maximality of again follows from Theorem 8.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Bodirsky, M.: Cores of countably categorical structures. Logical Methods in Com-
puter Science (LMCS) (2007), doi:DOI: 10.2168/LMCS-3(1:2)

3. Bodirsky, M., Chen, H.: Oligomorphic clones. Algebra Universalis (to appear, 2007)

4. Bodirsky, M., Dalmau, V.: Datalog and constraint satisfaction with infinite tem-
plates. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
646–659. Springer, Heidelberg (2006)

Maximal Infinite-Valued Constraint Languages 557

5. Bodirsky, M., Kára, J.: The complexity of equality constraint languages. In: Grig-
oriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, Springer,
Heidelberg (2006)

6. Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous
templates. Journal of Logic and Computation 16(3), 359–373 (2006)

7. Broxvall, M., Jonsson, P.: Point algebras for temporal reasoning: Algorithms and
complexity. Artif. Intell. 149(2), 179–220 (2003)

8. Bulatov, A.: A graph of a relational structure and constraint satisfaction problems.
In: Proceedings of the 19th IEEE Annual Symposium on Logic in Computer Science
(LICS’04), Turku, Finland (2004)

9. Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint lan-
guages. In: Proceedings of STOC ’01, pp. 667–674 (2001)

10. Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)

11. Düntsch, I.: algebras and their application in temporal and spatial reasoning. Ar-
tificial Intelligence Review 23, 315–357 (2005)

12. Evans, D.: Examples of ℵ0-categorical structures. In: Automorphisms of first-order
structures, pp. 33–72 (1994)

13. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal
on Computing 28, 57–104 (1999)

14. Gardener, T.: Infinite dimensional classical groups. J. London Math. Soc 51, 219–
229 (1995)

15. Garey, Johnson: A Guide to NP-completeness. CSLI Press, Stanford (1978)
16. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge

(1997)
17. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of

the ACM 44(4), 527–548 (1997)
18. Jonsson, P., Drakengren, T.: A complete classification of tractability in RCC-5. J.

Artif. Intell. Res. 6, 211–221 (1997)
19. Krokhin, A.A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The

tractable subalgebras of Allen’s interval algebra. Journal of the ACM 50(5), 591–
640 (2003)

20. Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. Journal of the ACM 42(1), 43–66
(1995)

21. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal
tractable fragment of the region connection calculus. Artif. Intell. 108(1-2), 69–123
(1999)

22. Rosenberg, I.G.: Minimal clones I: the five types. Lectures in Universal Algebra
(Proc. Conf. Szeged, 1983), Colloq. Math. Soc. J. Bolyai 43, 405–427 (1986)

23. Schmerl, J.H.: Countable homogeneous partially ordered sets. Algebra Univer-
salis 9, 317–321 (1979)

Affine Systems of Equations and Counting

Infinitary Logic�

Albert Atserias1,��, Andrei Bulatov2, and Anuj Dawar3

1 Universitat Politécnica de Catalunya, Barcelona, Spain
2 Simon Fraser University, Burnaby BC, Canada

3 University of Cambridge Computer Laboratory, Cambridge, UK

Abstract. We study the definability of constraint satisfaction problems
(CSP) in various fixed-point and infinitary logics. We show that test-
ing the solvability of systems of equations over a finite Abelian group, a
tractable CSP that was previously known not to be definable in Datalog,
is not definable in an infinitary logic with counting and hence that it is
not definable in least fixed point logic or its extension with counting.
We relate definability of CSPs to their classification obtained from tame
congruence theory of the varieties generated by the algebra of polymor-
phisms of the template structure. In particular, we show that if this
variety admits either the unary or affine type, the corresponding CSP
is not definable in the infinitary logic with counting. We also study the
complexity of determining whether a CSP omits unary and affine types.

1 Introduction

The classification of constraint satisfaction problems (CSP) according to their
tractability has been a major research goal since Feder and Vardi first formulated
their dichotomy conjecture [1]. The general form of the constraint satisfaction
problem takes as instance two finite relational structures A and B and asks if
there is a homomorphism from A to B. We think of the elements of A as the
variables of the problem and the universe of B as the domain of values which
these variables may take. The individual tuples in the relations of A act as
constraints on the values that must be matched to the relations holding in B.
The general form of the problem is NP-complete. In this paper we are mainly
concerned with the non-uniform version of the problem which gives rise, for each
fixed finite structure B to a different decision problem that we denote CSP(B),
namely the problem of deciding whether a given A maps homomorphically to B.
For many fixed B, this problem is solvable in polynomial time, while for others
it remains NP-complete.

In the present paper we are concerned with classifying constraint satisfaction
problems according to their definability in a suitable logic. This is an approach
that has proved useful in studying the tractability of constraint satisfaction prob-
lems [1,2,3]. In particular, it is known that many natural constraint satisfaction
� Research supported by the Isaac Newton Institute, LAA programme.

�� Supported in part by CICYT TIN2004-04343.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 558–570, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Affine Systems of Equations and Counting Infinitary Logic 559

problems that are tractable are definable (or, to be precise, their complements
are definable) in Datalog, the language of function-free Horn clauses. Any class
of structures that is definable in Datalog is necessarily decidable in polynomial
time, but there are known constraint satisfaction problems that are tractable but
are not definable in Datalog. A classical example is the solvability of systems of
linear equations over the two-element field [1], which we denote CSP(Z2). Bula-
tov [4] (see also [5]) provides a uniform explanation for the tractability of these
by showing that any constraint language that has a Mal’tsev polymorphism is
solvable in polynomial time. Furthermore, there are NP-complete constraint sat-
isfaction problems, such as 3-colourability of graphs, which we can show are not
Datalog-definable, without requiring the assumption that P is different from NP.
Indeed, the class of constraint satisfaction problems whose complements are de-
finable in Datalog appears to be a robust, natural class of problems with many
independent and equivalent characterisations [6,7].

A natural question that arises is whether we can offer any explanation based
on logical definability for the tractability of problems such as the satisfiability of
systems of linear equations over a finite field. Is there a natural logic such that
all problems definable in this logic are polynomial-time decidable and that can
express CSP(Z2)? In particular, is this problem definable in LFP—the exten-
sion of first-order logic with least fixed points or LFP+C—the extension of LFP
with counting? Both these logics have been extensively studied in the context of
descriptive complexity as characterising natural fragments of polynomial time.
Interestingly, Blass et al. [8] proved that LFP + C is able to define the class of
non-singular square matrices over any fixed finite field, so it would not be very
surprising if this logic were able to express CSP(Z2). Despite this, it is a conse-
quence of our results that neither of these logics is able to express the solvability
of systems of linear equations over any finite field. Indeed, we show that these
problems are not definable in Cω

∞ω, the infinitary logic with bounded number of
variables and counting, a logic much more expressive than LFP + C. Combined
with the result of Blass, Gurevich and Shelah about non-singular matrices, our
result exhibits a fine-grained distinction between the problem of computing the
rank of a square matrix and the problem of computing its determinant.

Another important means of classifying constraint satisfaction problems is
on the basis of the algebra of the template structure B. A polymorphism of
a structure is an operation on its universe that preserves all its relations (see
Section 2 for precise definitions). It is known that whether or not CSP(B) is
tractable depends only on the algebra B obtained from the universe of B endowed
with its polymorphisms. Indeed, it depends only on the variety generated by this
algebra. This is established in [9] by showing that if the algebra B′ of structure B′

is obtained from B as a power, subalgebra or homomorphic image, then CSP(B′)
is polynomial-time reducible to CSP(B). We show in the present paper that this
can be improved to Datalog-definable reductions. These are weak reductions
that, in particular, preserve definability in LFP and Cω

∞ω. This allows us to
establish that definability of a CSP in these logics is also determined by var(B),
the variety generated by the algebra of B.

560 A. Atserias, A. Bulatov, and A. Dawar

Using the tool of Datalog-reductions, which we expect to be useful for other
applications in the area, we relate definability of constraint satisfaction problems
in Cω

∞ω to the classification of varieties of finite algebras from tame congruence
theory [10]. It is known [9] that CSP(B) is NP-complete if var(B) admits the
unary type (also known as type 1), and it is conjectured that CSP(B) is in P
otherwise. Similarly, Larose and Zádori showed [11] that CSP(B) is not definable
in Datalog if var(B) admits the unary or affine types (types 1 and 2), and
conjectured the converse. It is a consequence of our results that we can strengthen
the assertion by replacing Datalog with Cω

∞ω . This implies that, if the Larose-
Zádori conjecture is true, we obtain a dichotomy of definability whereby, for
every B, either CSP(B) is definable in Datalog or it is not definable in Cω

∞ω.
Finally, we consider the meta-problems of deciding, given a structure B or an

algebra B whether or not var(B) omits the unary and affine types. For algebras,
the problem was shown decidable in polynomial time in [12], while for structures
we show it is NP-complete.

2 Preliminaries

Structures and graphs A vocabulary σ is a finite collection of relation symbols,
each with an associated arity. A σ-structure A consists of a finite set A with a
relation RA ⊆ Ar for each r-ary relation symbol R in σ. A graph is a structure
with a binary relation that is symmetric and irreflexive. A homomorphism from
a σ-structure A to a σ-structure B is a map h : A → B such that for each R
in σ and each a ∈ Ar, if a ∈ RA then h(a) ∈ RB. We write A → B to denote
that there exists a homomorphism from A to B. We write CSP(B) for the class
of finite structures A such that A → B and also for the decision problem of
determining membership in this class.

For the standard definition of the treewidth of a graph, we refer the reader
to [13]. In our proofs we will use the following alternative characterization in
terms of the cops and robber game [14]. The game is played by two players, one
of whom controls the set of k cops attempting to catch a robber controlled by
the other player. The cop player can move any set of cops to any vertices of the
graph, while the robber can simultaneously move along any path in the graph as
long as there is no cop currently on the path. It is known [14] that the cop player
has a winning strategy on a graph using k + 1 cops if and only if the graph has
treewidth at most k. The treewidth of a graph G is denoted tw(G).

Logic. A formula is positive quantifier-free if it is formed from the atomic for-
mulas using conjunctions and disjunctions. A formula is existential positive if
it is formed from the atomic formulas using conjunctions, disjunctions and ex-
istential quantification. Datalog is the extension of existential positive formulas
with a recursion mechanism. Similarly, LFP is the extension of full first-order
logic with an operator for forming the least fixed points of positive formulas.
Finally, LFP + C is the extension of LFP with a counting mechanism. For for-
mal definitions, which we will not need in this paper, we refer the reader to [15].

Affine Systems of Equations and Counting Infinitary Logic 561

It is known that every class of structures definable in LFP + C is decidable in
polynomial time.

The formulas of the logic C∞ω are obtained from the atomic formulas using
negation, infinitary conjunction and disjunction, and counting quantifiers (∃ixφ
for any integer i ≥ 0). The fragment Ck

∞ω consists of those formulas of C∞ω in
which only k distinct variables appear and Cω

∞ω =
⋃
k∈ω Ck

∞ω. The significance
of Cω

∞ω is that fixed-point logics can be translated into it. That is, any formula of
Datalog or LFP, and indeed of LFP + C is equivalent to one of Cω

∞ω. Moreover,
these translations into infinitary logics have provided some of the most effective
tools for proving inexpressibility results for the fixed-point logics. See [16,17] for
a discussion of this and the role of these logics in descriptive complexity.

The expressive power of Cω
∞ω is characterised by a game known as the bijective

game [18]. This is played by two players, Spoiler and Duplicator, on a pair of
structures A and B, with k pairs of pebbles (xi, yi) for 1 ≤ i ≤ k. At each
stage of the game, some of the pebbles may be on elements of the structures
with xi on an element of A and yi on an element of B. We write ai for the
element currently pebbled by xi, and bi for the element pebbled by yi. For each
move, Spoiler chooses a pair of pebbles (xi, yi), Duplicator chooses a bijection
f : A→ B such that f(aj) = bj for i �= j, and Spoiler chooses a ∈ A and places
xi on a and yi on f(a). If, after some move, the map ai �→ bi(1 ≤ i ≤ k) is not
a partial isomorphism, Spoiler wins; Duplicator wins infinite plays. By a result
of Hella [18], Duplicator has a winning strategy if, and only if, A and B cannot
be distinguished by any formula of Ck

∞ω, a fact denoted by A≡Ck
B.

Universal algebra. An n-ary operation f on a set A is a polymorphism of a
relationR ⊆ Ar if, for any tuples a1, . . .an ∈ R, the r-tuple obtained by applying
f component-wise also belongs to R. We say that R is invariant under f .

A set with a collection of operations on it is called an algebra. Every structure
A can be naturally associated with an algebra Al(A), called the algebra of A,
whose base set is the universe of A, and whose operations are the polymorphisms
of A. A variety is a class of algebras which, if it contains A also contains every
subalgebra of A, every homomorphic image of A, and every direct power of
A. The smallest variety containing A is called the variety generated by A and
denoted by var(A). For further background on universal algebra, see [19].

3 Definability of Equations

In this section we show that the problem of determining the solvability of linear
equations over the two-element field, which we mentioned above as a canonical
example of a tractable CSP whose complement is not definable in Datalog, is
also not definable in Cω

∞ω. Indeed, we prove a more general result by showing
that the solvability of equations over a finite Abelian group G with at least two
elements is not definable in Cω

∞ω. In the following we will write + for the group
operation in G and 0 for the identity.

Consider the following formulation of the problem.

562 A. Atserias, A. Bulatov, and A. Dawar

Definition 1. Let G be a finite Abelian group over a set G and r be a positive
integer. We define the structure EG,r to have universe G and, for each a ∈ G
and 1 ≤ j ≤ r, it has a relation Rja of arity j that consists of the set of tuples
(x1, . . . , xj) ∈ Gj that satisfy the equation x1 + · · ·+ xj = a.

Thus, any structure A in the signature of EG,r can be seen as a set of equations
in which at most r variables occur in each equation. The universe of A is the set
of variables and the occurrence of a tuple (x1, . . . , xj) in a relation Rja signifies
the equation x1 + · · · + xj = a. This set of equations is solvable if, and only if,
A → EG,r. In the sequel we will say “the equation x1 + · · · + xj = a occurs in
A” to mean that the tuple (x1, . . . , xj) is in Rja.

Our aim now is to exhibit, for each non-trivial finite Abelian group G and
each positive integer k, a pair of structures A and B such that A≡Ck

B and
such that A ∈ CSP(EG,3) and B �∈ CSP(EG,3). This will show that CSP(EG,3) is
not definable in Cω

∞ω. This, of course, implies the result for all CSP(EG,r) with
r ≥ 3. The structures we construct are sets of equations derived from 3-regular
graphs of large treewidth. From now on, fix a non-trivial finite Abelian group
G over a set G, a 3-regular graph H , and a distinguished vertex u of H . We
define, for each a ∈ G, a set of equations EaH

u as follows (note that EaH
u is a

structure over the vocabulary of EG,3):
For each vertex v ∈ V H and each edge e ∈ EH that is incident on v, we have

m distinct variables xv,ei where i ranges over G. Since each vertex has three edges
incident on it, there are 3m variables associated to each vertex. For every vertex
v other than u, let e1, e2, e3 be the three edges incident on v. We then include
the following equation in EaH

u for all i, j, k ∈ G:

xv,e1i + xv,e2j + xv,e3k = i+ j + k. (1)

For the distinguished vertex u, instead of the above, we include the following
equation, again for all i, j, k ∈ G:

xu,e1i + xu,e2j + xu,e3k = i+ j + k + a. (2)

In addition, for each edge e ∈ EH let v1, v2 be its endpoints. We include the
following equations in EaH

u for all i, j ∈ G:

xv1,ei + xv2,ej = i+ j. (3)

We refer to equations of the form (1) and (2) as vertex equations and equations
of the form (3) as edge equations.

Lemma 2. EaH
u is satisfiable if, and only if, a = 0

Proof. To see that E0H
u is satisfiable, just take the assignment that gives the

variable xv,ei the value i. To see that EaH
u is unsatisfiable when a �= 0, consider

the subsystem S0 of equations involving only the variables xv,e0 with subscript
0. Note that each such variable occurs exactly twice in S0, once in a vertex
equation and once in an edge equation. Thus, if we add up the left hand sides

Affine Systems of Equations and Counting Infinitary Logic 563

of all equations in S0, we get 2
∑
xv,e0 . Note also that each variable xv,e0 has a

companion variable xv
′,e

0 where v′ is the other endpoint of the edge e and we
have the equation xv,e0 +xv

′,e
0 = 0. Thus 2

∑
v,e x

v,e
0 = 2

∑
e(x

v,e
0 +xv

′,e
0) = 0. On

the other hand, the right-hand side of all equations is 0 except for the one vertex
equation for u, which has right-hand side a. Thus summing the right-hand sides
of all equations gives the sum a. Since a �= 0, this shows that the subsystem S0

and hence the system of equations EaH
u is unsatisfiable.

Lemma 3. If tw(H) > k and H is connected, then E0H
u≡Ck

EaH
u for any

a ∈ G.

Proof. Our aim is to exhibit a winning strategy for Duplicator in the k-pebble
bijective game played on the two structures A = E0H

u and B = EaH
u. Since

tw(H) > k, we know that in the k cops and robber game played on H , robber
has a winning strategy and Duplicator will make use of this strategy.

For each vertex v ∈ V H let Xv denote the set of variables xv,ei for edges e
incident on v. Similarly, for each e ∈ EH , let Xe denote the set of variables
involving e.

We say that a bijection f : A→ B is good for a vertex v ∈ V H if the following
conditions hold:

1. for all w ∈ V H , fXw = Xw;
2. for all e ∈ EH , fXe = Xe;
3. for all x, y, if x + y = i is an equation in A then f(x) + f(y) = i is an

equation in B; and
4. for all x, y, z, if x+ y + z = i is an equation in A, then

– f(x) + f(y) + f(z) = i is an equation in B if x, y, z �∈ Xv; and
– f(x) + f(y) + f(z) = i+ a is an equation in B if x, y, z ∈ Xv.

Note that the identity is a bijection that is good for u. Also, note that a bijection
that is good for v preserves all equations except the vertex equations for v.

Claim. Given a bijection f : A → B that is good for v, if there is a path in H
from v to w avoiding u1, . . . , uk then there is a bijection f ′ : A→ B that is good
for w such that f |(Xu1∪···∪Xuk) = f ′|(Xu1∪···∪Xuk).

Proof. Let the path from v to w avoiding u1, . . . , uk be v = v1, . . . , vn = w.
For each edge e = {vi, vi+1} along this path, write xe−j for the variable xvi,e

j

and xe+j for the variable xvi+1,e
j . We then define f ′ by f ′(xe−j) = f(xe−j−a) and

f ′(xe+j) = f(xe+j+a); and f ′ agrees with f everywhere else. In particular, since
the path from v to w avoids u1, . . . , uk, f ′ agrees with f on Xu1 ∪ · · · ∪Xuk .

We now describe Duplicator’s winning strategy in the bijective k-pebble game.
Duplicator responds to Spoiler’s first move with the identity bijection. She main-
tains a board on the side which describes a position in the k cops and robber
game played on the graph H . At any point, if Spoiler’s pebbles are on the posi-
tion x1, . . . , xk in A and v1, . . . , vk are the vertices of H to which these variables

564 A. Atserias, A. Bulatov, and A. Dawar

correspond, then the current position of the cops and robber game has k cops on
the vertices v1, . . . , vk. If the robber’s position according to its winning strategy
is v, then Duplicator will play a bijection that is good for v.

To see that Duplicator can do this forever, suppose Spoiler lifts a pebble from
xi. Duplicator responds with a current bijection f that is good for v. Since the
only equations not preserved by f are those associated with the vertex v, Spoiler
must place at least three pebbles on variables associated with v to win the game.
However, Duplicator responds to Spoiler placing the pebble on a new position x′i
by updating the position of the cops and robber game. Suppose robber’s winning
strategy dictates that the robber move from v to w. Since robber’s move must
be along a path avoiding the current cop positions, by Claim 3, Duplicator can
update the bijection f to an f ′ that is good for w and agrees with f on all
currently pebbled positions. It is now clear that Duplicator can play forever.

Theorem 4. Let G be a non-trivial finite Abelian group. Then CSP(EG,3) is not
definable in Cω

∞ω

Proof. Suppose, to the contrary, that there is a k such that CSP(EG,3) is defin-
able in Ck

∞ω . Let H be any connected, 3-regular graph with tw(H) > k and u
any vertex of H . For instance, H could be a sufficiently large brick graph. Let
a be any element of G distinct from 0. Then, by Lemma 2, E0H

u ∈ CSP(EG,3)
and EaH

u �∈ CSP(EG,3). But, by Lemma 3, E0H
u≡Ck

EaH
u, a contradiction.

4 Logical Reductions

4.1 Definition

Let σ and τ = (R1, . . . , Rs) be two relational vocabularies. A k-ary interpre-
tation with p parameters of τ in σ is an (s + 1)-tuple I = (ϕU , ϕ1, . . . , ϕs) of
formulas over the vocabulary τ , where ϕU = ϕU (x,y) has k + p free variables
x = (x1, . . . , xk) and y = (y1, . . . , yp), and ϕi = ϕi(x1, . . . ,xr,y) has kr free vari-
ables where r is the arity of Ri and each xj = (x1

j , . . . , x
k
j) and y = (y1, . . . , yp).

Let A be a σ-structure. A tuple c = (a1, . . . , ap) of pairwise different points of
A is called proper. The interpretation of A through I with parameters c, denoted
by I(A, c), is the τ -structure whose universe is {a ∈ Ak : A |= ϕU (a, c)}, and
whose interpretation for Ri is the set of tuples (a1, . . . ,ar) ∈ (Ak)r such that
A |= ϕU (a1, c) ∧ · · · ∧ ϕU (ar , c) ∧ ϕi(a1, . . . ,ar, c). If each formula in I belongs
to a class of formulas Θ, we say that I is a Θ-interpretation.

Now we are ready to define the notion of logical reduction:

Definition 5. Let C be a class of σ-structures, D a class of τ-structures closed
under isomorphisms, and Θ be a class of formulas. A Θ-interpretation with p
parameters I of τ in σ is a Θ-reduction from C to D if, for every σ-structure A
with at least p elements, A ∈ C if, and only if, I(A, c) ∈ D for some proper c.

If such a reduction exists, we say that C reduces to D under Θ-reductions, and
write C ≤Θ D. We use the collections of positive quantifier-free formulas, exis-
tential positive formulas, and datalog formulas (i.e. datalog programs) and write

Affine Systems of Equations and Counting Infinitary Logic 565

≤pqf , ≤ep and ≤datalog, respectively. These are reductions of increasing power,
and definability in Cω

∞ω is preserved downwards by all three.

4.2 Expansions by Reduced Invariant Relations

Let A be a set and let R ⊆ As be a relation on A. We define an equivalence
relation θ(R) on {1, . . . , s} by setting (i, j) ∈ θ(R) if, and only if, ai = aj for
every (a1, . . . , as) ∈ R. We say that R is reduced if θ(R) is the trivial equivalence
relation (i.e. equality). Note that the equality relation on A is not reduced. The
proof of the following lemma appears in the full version of this paper.

Lemma 6. Let B be a finite structure, and D be an expansion of B by a reduced
relation invariant under all polymorphisms of B. Then, CSP(D) ≤pqf CSP(B).

Next we show that reduced relations are general enough. First a piece of notation:
Let a = (a1, . . . , am) be a sequence and let I = (i1, . . . , ir) be a sequence of
indices, where 1 ≤ ij ≤ m for every j ∈ {1, . . . , r}. We write aI for the sequence
(ai1 , . . . , air). Now let R be a relation of arity s and I a sequence of indices from
{1, . . . , s}. Then prIR denotes the relation {aI : a ∈ R}.

Let R be a relation of arity s and θ(R), the equivalence relation on {1, . . . , s}
as defined in the previous section. Let I be a set of representatives of the
equivalence-classes of θ(R), ordered in an arbitrary way, and define red(R) =
prIR. Note that red(R) does not depend on the choice of I. Besides, for every
i �∈ I there exists some j ∈ I such that ai = aj for every tuple (a1, . . . , as) ∈ R.
We call red(R) the reduced version of R. A reduced structure is a structure all
whose relations are reduced. To every structure B we can associate a reduced
structure, called the reduced version of B, whose universe is the universe of B
itself and whose relations are the reduced versions of the relations of B. Note
that the vocabularies of a structure and its reduced version may be different.
Note that the polymorphisms of B and its reduced version are the same.

Lemma 7. Let B a finite structure and let D be the reduced version of B. Then
CSP(B) ≤datalog CSP(D) and CSP(D) ≤pqf CSP(B).

Proof : For space constraints, we only sketch the reduction CSP(B) ≤datalog

CSP(D). Let A be an instance of CSP(B). We define an instance C of CSP(D).
The universe of C is A itself. For the relations, the basic idea is to project every
relation RA to the coordinates of a set of representatives I of the θ-classes,
where θ = θ(R). However, before we do that, we need to close each RA under
all equalities implied by the equivalences (i, j) ∈ θ. We do that using Datalog-
definable intermediate relations.

Let E be the binary relation on A defined by the following Datalog program:

E(xi, xj) : − R(x1, . . . , xs)
E(x, y) : − E(y, x)
E(x, z) : − E(x, y) ∧ E(y, z),

566 A. Atserias, A. Bulatov, and A. Dawar

where the first rule is introduced for every symbol R in σ and every (i, j) ∈ θ(R).
It is obvious that E is an equivalence relation on A; reflexivity follows from the
fact that (i, j) ∈ θ(R) in the first rule, symmetry is enforced by the second rule,
and transitivity is enforced by the third. Next, for every r-ary symbol R in σ, let
R′ be the relation defined by R′(xI) : − R(y1, . . . , ys)∧E(x1 , y1)∧· · ·∧E(xs, ys),
where I is a set of representatives of the θ(R)-classes ordered in an arbitrary way.
This defines C, and we defined it by a Datalog program interpreted on A. It
remains to argue that this datalog-interpretation is indeed a reduction. The
argument may be found in the full version of this paper. ��

4.3 Powering, Subalgebras, and Homomorphic Images

In this subsection we show how the basic algebraic constructions of powering,
subalgebra and homomorphic images can be handled by Datalog-reductions. In
the following, fix a finite structure B and its corresponding algebra B.

Suppose B′ is an algebra that has a homomorphic image A = h(B′) that is
a reduct of B. Note that A = B = h(B′), i.e. the universes of A and B are the
same and are the image of the universe of B′ under h. We define a new structure
B′ = pre(B, h), the preimage of B, whose universe is B′ and whose relations are
the preimages h−1(RB) of the relations RB of B.

Lemma 8. Let the algebras B and B′, and the structures B and B′ = pre(B, h)
be as above. Then CSP(B) ≤pqf CSP(B′) and B′ is a reduct of Al(B′).

Suppose B′ is an algebra that has a subalgebra A ⊆ B′ that is a reduct of B.
Note that A = B ⊆ B′, i.e. the universes of A and B are the same and are a
subset of the universe of B′. We define a new structure B′ = ext(B, B′), the
extension of B, with universe B′ and the same relations as B.

Lemma 9. Let the algebras B and B′, and the structures B and B′ = ext(B, B′)
be as above. Then CSP(B) ≤pqf CSP(B′) and B′ is a reduct of Al(B′).

Let R be an r-ary relation on the set An. Then the flattening of R, denoted
fla(R, n), is the rn-ary relation on A that contains all tuples (x1, . . . , xrn) such
that ((x1, . . . , xn), . . . , (x(r−1)n+1, . . . , xrn)) ∈ R. Suppose B′ is an algebra that
has a direct power A = B′n that is a reduct of B. Note that A = B = B′n, i.e.
the universes of A and B are the same and are the n-th power of the universe of
B′. We define a new structure B′ = fla(B, n), the flattening of B, whose universe
is B and whose relations are the flattenings of the relations of B.

Lemma 10. Let the algebras B and B′, and the structures B and B′ = fla(B, n)
be as above. Then CSP(B) ≤pqf CSP(B′) and B′ is a reduct of Al(B′).

These lemmas allow us to derive the following consequence we require.

Theorem 11. Let B and B′ be finite structures and let B and B′ be their respec-
tive algebras. If var(B′) contains a reduct of B, then CSP(B) ≤datalog CSP(B′).

Affine Systems of Equations and Counting Infinitary Logic 567

Proof: Suppose that some algebra A of var(B′) is a reduct of B. By the HSP-
theorem [19, Theorem 9.5] A is a homomorphic image of a subalgebra of a
direct power of B′. Let Bp, Bs, and Bh be the direct power, its subalgebra, and
the homomorphic image, respectively. We have A = Bh. Let n be such that
Bp = B′n, and let h be a homomorphism from Bs to Bh.

We use three intermediate structures Bs = pre(B, h), Bp = ext(Bs, Bp), and
Bf = fla(Bp, n) that, by the definition, have the universes of the algebras Bs,
Bp, and B′ respectively. By Lemma 8, CSP(B) ≤pqf CSP(Bs) and Bs is a reduct
of Al(Bs). By Lemma 9, CSP(Bs) ≤pqf CSP(Bp) and Bp is a reduct of Al(Bp).
By Lemma 10, CSP(Bp) ≤pqf CSP(Bf), and B′ is a reduct of Al(Bf). Now, let
D be the reduced version of Bf . Then CSP(Bf) ≤datalog CSP(D) by Lemma 7.
We prove that CSP(D) ≤pqf CSP(B′) and the result will follow by composing.

Let D′ be the expansion of D obtained by adding all the relations of B′.
Since B′ is a reduct of the algebra of Bf and D′ is the flattening of Bf , it is
straightforward that every relation of D′ is invariant under all polymorphisms of
B′. Moreover, the relations in D′ that are not in B′ are reduced, so CSP(D′) ≤pqf

CSP(B′) by Lemma 6. It is also obvious that CSP(D) ≤pqf CSP(D′) through the
mapping that sends a structure to its expansion with empty relations. Composing
we get CSP(D) ≤pqf CSP(B′). ��

4.4 Reduction from the Idempotent Case

To every finite structure B we associate a new structure, the singleton-expansion
of B, by adding one unary relation {b} for every b ∈ B. In other words, if B =
{b1, . . . , bn}, then the structure (B, {b1}, . . . , {bn}) is the singleton-expansion of
B. Note that the polymorphisms of the singleton-expansion of B are exactly the
idempotent polymorphisms of B, that is polymorphisms f satisfying the identity
f(x, . . . , x) = x. Indeed, every singleton set {b} is preserved by any idempotent
polymorphism of B, and any polymorphism of B that preserves every singleton
set {b} must by idempotent.

Lemma 12. Let B be a finite structure, and let D be the singleton-expansion
of B. Then CSP(B) ≤pqf CSP(D) and if B is a core with at least two points,
then CSP(D) ≤ep CSP(B).

5 Omitting Types and Results

Let A be an algebra. A congruence of A is an equivalence relation α that is
invariant with respect to all operations of A. In other words, for any (n-ary)
operation f of A and any a1, . . . , an, b1, . . . , bn ∈ A such that (ai, bi) ∈ α we
have (f(a1, . . . , an), f(b1, . . . , bn)) ∈ α. The congruences ofA form its congruence
lattice con(A). A prime quotient in this lattice is a pair of congruences α, β such
that α ≤ β, α �= β, and for any γ with α ≤ γ ≤ β we have either α = γ, or
β = γ. The fact that α, β is a prime quotient will be denoted by α ≺ β.

Tame congruence theory [10] allows one to assign to each prime quotient of the
congruence lattice con(A) of a finite algebraA one of five types. The type reflects

568 A. Atserias, A. Bulatov, and A. Dawar

the local structure of the algebra, which can be one of the following: 1 a finite
set with a group action on it (unary type), 2 a finite vector space over a finite
field (affine type), 3 a two-element Boolean algebra, 4 a two-element lattice, 5
a two-element semilattice. We use tame congruence as a black box extracting
properties we need from existing results, and we do not therefore need a precise
definition of the types.

The type of a prime quotient α ≺ β is denoted by typ(α, β), while typ(A)
denotes the set of types appearing as types of some prime quotient of A. If A
is a class of algebras, typ(A) denotes the set

⋃
A∈A typ(A). If i �∈ typ(A), we say

that A omits type i. Otherwise, we say A admits type i. We need the following:

Lemma 13. Let A be a finite idempotent algebra. If var(A) admits types 1 or
2 then it contains a finite idempotent reduct of a module.

Recall from Section 3 the definition of the structure EG,r for every finite Abelian
group G and every integer r ≥ 1.

Lemma 14. Let M be a finite module, let G be its underlying Abelian group,
and let A be an idempotent reduct of M. Then A is a reduct of the algebra of
EG,r for every r ≥ 1.

Bringing together these results with those of Section 4 we get:

Theorem 15. Let B be a finite structure and let B be its algebra. If var(B)
admits the unary or affine types, then there exists a non-trivial finite Abelian
group G such that CSP(EG,r) ≤datalog CSP(B) for every r ≥ 1.

Proof. Since CSP(B) = CSP(core(B)), where core(B) is the core of B, we may
assume that B is a core. Let D be the singleton-expansion of B and let D be its
algebra, which is idempotent. By Lemma 12, we have CSP(D) ≤datalog CSP(B).
Moreover, if var(B) admits types 1 or 2, so does var(D) because D is a reduct
of B (see [10, Chapter 5]). By Lemma 13, the variety var(D) contains a finite
idempotent reduct A of a module. Let G be the Abelian group underlying the
module. Then G is non-trivial and finite. Moreover,A is a reduct of the algebra of
EG,r for every r ≥ 1 by Lemma 14. It follows that CSP(EG,r) ≤datalog CSP(D).
Composing we get the result. ��

We have seen in Section 3 that CSP(EG,3) is not definable in Cω
∞ω when G is non-

trivial. Since definability in Cω
∞ω is preserved downwards by Datalog-reductions,

this yields the following corollary:

Corollary 16. Let B be a finite structure and let B be its algebra. If CSP(B)
is definable in Cω

∞ω, then var(B) omits the unary and affine types.

Corollary 16 can be seen as a strengthening of the result of Larose and Zádori [11]
that if the complement of CSP(B) is definable in Datalog then var(B) omits the
unary and affine types. Larose and Zádori also conjectured the converse, namely
that if var(B) omits the unary and affine types then the complement of CSP(B)

Affine Systems of Equations and Counting Infinitary Logic 569

is definable in Datalog. By Corollary 16 this conjecture would imply that every
CSP(B) is either definable in Datalog or not definable in Cω

∞ω , which can be
seen as a definability dichotomy.

Finally, we consider three decision problems. In Algebra of type 2 we are
given a finite set A and operation tables of idempotent operations f1, . . . , fn
on A, and the question is whether var(A), where A = (A; {f1, . . . , fn}), omits
types 1 and 2. In Relational Structure of type 2 we are given a finite
relational structure A, and the question is whether var(Al(A)) omits types 1 and
2. In Relational Structure of type 2(k) we are given a finite relational
structure A, |A| ≤ k, and the question is whether var(Al(A)) omits types 1 and
2. The problems Algebra of type 2 and Relational Structure of type

2(k) were shown tractable in [12].

Theorem 17. Relational Structure of type 2 is NP-complete.

References

1. Feder, T., Vardi, M.: Computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal
on Computing 28, 57–104 (1998)

2. Dalmau, V.: Linear datalog and bounded path duality of relational structures.
Logical Methods in Computer Science 1(1) (2005)

3. Larose, B., Loten, C., Tardif, C.: A characterisation of first-order constraint satis-
faction problems. In: LICS, pp. 201–210 (2006)

4. Bulatov, A.: Mal’tsev constraints are tractable. Technical Report PRG-RR-02-05,
Computing Laboratory, University of Oxford, Oxford, UK (2002)

5. Bulatov, A.A., Dalmau, V.: A simple algorithm for Mal’tsev constraints. SIAM J.
Comput. 36(1), 16–27 (2006)

6. Dalmau, V., Kolaitis, P., Vardi, M.: Constraint satisfaction, bounded treewidth,
and finite variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470,
pp. 311–326. Springer, Heidelberg (2002)

7. Kolaitis, P., Vardi, M.: A game-theoretic approach to constraint satisfaction. In:
Proc. 17th National Conference on Artificial Intelligence, AAAI- 2000, pp. 175–181
(2000)

8. Blass, A., Gurevich, Y., Shelah, S.: On polynomial time computation over un-
ordered structures. J. Symbolic Logic 67(3), 1093–1125 (2002)

9. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)

10. Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Volume 76 of Con-
temporary Mathematics. American Mathematical Society, Providence, R.I. (1988)

11. Larose, B., Zádori, L.: Bounded width problems and algebras. Algebra Universalis
(to appear)

12. Larose, B., Valeriote, M.: personal communication (2006)
13. Diestel, R.: Graph Theory. Springer, Heidelberg (1997)
14. Seymour, P., Thomas, R.: Graph searching and a min-max theorem for treewidth.

Journal of Combinatorial Theory Series B 58, 22–33 (1993)
15. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

570 A. Atserias, A. Bulatov, and A. Dawar

16. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg
(1999)

17. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)
18. Hella, L.: Logical hierarchies in PTIME. Info. and Comput. 129, 1–19 (1996)
19. Burris, S., Sankappanavar, H.: A course in universal algebra. In: Graduate Texts

in Mathematics, vol. 78, Springer, New York (1981)

Boundedness of Monadic FO over Acyclic Structures

Stephan Kreutzer1, Martin Otto2, and Nicole Schweikardt1,�

1 Institut für Informatik, Humboldt Universität zu Berlin
{kreutzer,schweika}@informatik.hu-berlin.de
2 Fachbereich Mathematik, Technische Universität Darmstadt

otto@mathematik.tu-darmstadt.de

Abstract. We study the boundedness problem for monadic least fixed points as a
decision problem. While this problem is known to be undecidable in general and
even for syntactically very restricted classes of underlying first-order formulae,
we here obtain a decidability result for the boundedness issue for monadic fixed
points over arbitrary first-order formulae in restriction to acyclic structures.

1 Introduction

The extension of first-order logic by least and greatest fixed points of monotone first-
order operators is one of the most natural remedies to some of the obvious limitations of
first-order logic when considered as a query language over relational structures. While
for instance the very basic graph query concerning reachability of a red node is well
known not to be first-order expressible, it possesses a straightforward formalisation in
terms of the monadic least fixed point associated with the positive, monotone first-order
operator X �→ {x : red(x) ∨ ∃y(Exy ∧ Xy)}. In a database context, the query lan-
guage DATALOG is the extension of positive existential first-order logic by least fixed
points. In the context of modal logics, the modal μ-calculus extends basic modal logic
by monadic least and greatest fixed points and provides one of the most prominent
frameworks for temporal and process logics. In the context of descriptive complexity
and finite model theory, the extension of FO by least and greatest fixed points plays a
major role. In all these cases it is natural to ask which queries rely on fixed point recur-
sion in an essential way — as opposed to queries which, although they are presented as
fixed points, could also be formalised without.

Least fixed points of monotone operators are reached in a (transfinite) iteration of the
operator starting from the empty set and taking unions at limit ordinals. The resulting
monotone sequence of stages eventually reaches the fixed point. A fixed point process
is bounded if there is a finite bound on the number of iterations required, uniformly
across all input structures. As a decision problem, the boundedness problem asks, given
a monotone relational operator, whether the least fixed point process for this operator is
bounded. As a logical decision problem for first-order formulae, more specifically, we
want to decide whether the monotone operator specified by some first-order formula
ϕ(X,x) that is positive in X is bounded.

� We gratefully acknowledge our participation in the 2006 Isaac Newton Institute programme on
Logic and Algorithms; this opportunity has greatly promoted our collaboration in this research.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 571–582, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

572 S. Kreutzer, M. Otto, and N. Schweikardt

The boundedness problem was first studied with a view to query optimisation, in
particular for variants of DATALOG. Clearly a bounded fixed point can be eliminated
in favour of an explicit unfolding of the iteration to the required depth. By a classical
theorem of Barwise and Moschovakis [3], cf. Theorem 2.1 below, boundedness of the
fixed point process associated with ϕ(X,x) ∈ FO not just implies but is actually equiv-
alent to first-order definability of the fixed point. This reduces the question whether a
given fixed point can be eliminated in favour of any “static” first-order definition to the
boundedness issue.

The model theoretic link between the procedural behaviour of fixed point recursions
and FO-ness provides a source of interest in the boundedness problem that goes far
beyond the original motivation from query optimisation. The study of effective criteria
for FO-definability of MSO-definable properties has a long tradition in particular over
word and tree structures, cf. the handbook chapter [17]. We recall the characterisations
by McNaughton–Pappert and Schützenberger, and Beauquier–Pin, respectively, in the
word case; and the more recent work of Benedikt and Segoufin [4] for trees.

Not surprisingly, the boundedness problem as such is undecidable. In fact one can
show that the boundedness problem is at least as hard as the satisfiability problem (for
fragments of FO satisfying some very mild closure conditions). But also for many frag-
ments of FO that are decidable for satisfiability, like purely existential or purely univer-
sal FO or two-variable first-order logic FO2, boundedness is known to be undecidable
[10,11,13,16]. On the positive side, boundedness is decidable for instance for monadic
DATALOG [7] (purely existential positive FO) as well as for its universal counterpart
[16], and for the modal fragment of FO [15]. But the decidability region is very narrow;
for instance binary DATALOG and monadic DATALOG with inequality are undecidable
[10,11], and also monadic universal FO with equality or with mixed polarities in the
static relations [14,16]. The boundedness problem may thus be viewed as a critical
strengthening of the satisfiability issue for fragments of FO; in fact unboundedness of ϕ
precisely corresponds to the satisfiability of the sequence of formulae that express that
the n-th stage of ϕ is non-trivial, for each n.

The undecidability proofs for the boundedness problem of partly very weak frag-
ments of FO suggest that grid-like structures (or structures of unbounded treewidth) play
a crucial role in the reduction arguments (in [13,14,16], in particular, tiling problems are
used). This would explain, for instance, why binary recursion almost inevitably leads
to undecidability: here the recursion itself can be used to generate grid-like structures
into which other undecidable issues can be coded. For monadic recursion, on the other
hand, grid-like structure can only reside in the input and not be built up in the fixed point
process. It therefore seems conceivable that boundedness of monadic fixed points over
certain classes of tree-like structures, e.g., structures of bounded treewidth, could be
decidable. Such a decidability result, we hope, would provide a uniform framework for
most of the known decidability results for monadic boundedness — just as reductions
of the tiling problem can provide a rather uniform view of the negative cases, explored
in [14].

We therefore want to analyse the boundedness issue from a new perspective, in a
way orthogonal to the established approach: rather than looking at fragments of first-
order logic, we ask whether decidability can be regained for all monadic first-order

Boundedness of Monadic FO over Acyclic Structures 573

fixed points over suitably restricted classes of structures. This can be viewed as being
part of recent efforts towards developing a model theory for “well-behaved” classes of
structures [2,1,5].

As a first significant result in this direction concerning boundedness issues, we here
show the decidability of boundedness of monadic first-order fixed points over the class
of acyclic structures, i.e., structures whose (undirected) Gaifman graph is acyclic (we
consider such tree-like structures rather than, say, directed acyclic graphs, since bound-
edness is undecidable over the class of directed acyclic graphs: the two-dimensional
grids that can be used to reduce the tiling problem to monadic boundedness issues can
clearly be cast as directed acyclic graphs in this sense). A major goal for the exten-
sion of the present paper’s approach would consist in a similar decidability result for
boundedness of monadic fixed points over classes of bounded treewidth.

2 Preliminaries

We denote first-order structures by German letters A,B, ... and their universes by cor-
responding Roman lettersA,B, We use C, T , ... for classes of structures. We always
assume that classes of structures are closed under isomorphisms. If A is a structure,
U ⊆ A, and ψ(X) is a formula with a free monadic second-order variableX , we write
(A, U) |= ψ, or A |= ψ[U], whichever is more convenient, to denote that the expansion
of A byXA := U satisfies ψ. If ϑ(X,x) is a formula with a free monadic second-order
variable X and a free first-order variable x, we let ϑA(U) := {a ∈ A : A |= ϑ[U, a]}.
We omit the index if A is understood.

Let ϕ(X,x) be a first-order formula with a free first-order variable x and a free
second-order variable X , in which it is positive (i.e., X only occurs within the scope
of an even number of negation symbols). On corresponding structures A, ϕ defines an
operator

FA
ϕ : P(A) −→ P(A) with FA

ϕ (P) = ϕA(P) for each P ∈ P(A),

where P(A) denotes the power set of A. Due to positivity in X , FA
ϕ is monotone and

hence has a least fixed point (μX.ϕ)A which we usually write as ϕ∞(A). The fixed
point can also be obtained as the limit of the monotone sequence of stages Xα, with
α an ordinal, defined by X0 := ∅, Xα+1 := ϕA(Xα), Xλ :=

⋃
β<λX

β for limit
ordinals λ. We usually write ϕα(A) to denote the α-th stage Xα.

Note that each finite stage Xn, n ∈ N, is uniformly first-order definable. We write
ϕn(x) for the formula that defines the n-th stage of ϕ, which is obtained inductively by
substituting ϕn−1(x) for each atom Xx in ϕ(X,x), where ϕ0(x) is meant to be false.
Fϕ (or the least fixed point of ϕ or also just ϕ) is called bounded (over a class of

structures C) if there is some n ∈ N such that ϕ∞(A) = ϕn(A) for all A (for all
A ∈ C).

Recall that a class of structures is elementary if it is the class of models of some first-
order theory; a class is called projective if it is the class of models of some first-order
theory in a possibly extended vocabulary (cf., e.g., [12]). The notions of FO-definability
(and similarly, projective FO-definability, as well as MSO-definability) refer to definabil-
ity in terms of single sentences rather than possibly infinite theories.

574 S. Kreutzer, M. Otto, and N. Schweikardt

At various places throughout the paper we will use the following classical theo-
rem [3] on boundedness.

Theorem 2.1 (Barwise-Moschovakis). The following are equivalent for every FO for-
mula ϕ(X,x) suitable for positive least fixed-point iteration (also in restriction to any
elementary or projective class of structures):

(i) ϕ(X,x) is bounded.
(ii) ϕ∞ is uniformly FO-definable.

(iii) ϕ∞ is FO-definable in each structure (non-uniformly).

We also remark that the Löwenheim–Skolem theorem for FO tells us that a first-order
fixed point is bounded (over some elementary or projective class) if, and only if, it is
bounded over all countable structures (in that class).

Recall that the Gaifman graph G(A) of a first-order structure A := (A, τA) of sig-
nature τ is defined as the undirected graph with vertex set A and an edge between two
vertices a, b ∈ A, if a �= b and there exists an R ∈ τ and a tuple (a1, . . . , ar) ∈ RA

such that a, b ∈ {a1, . . . , ar}.

Definition 2.1. A structure is called acyclic if its Gaifman graph is acyclic.
AC denotes the class of all acyclic structures.

Note that AC is elementary so that the Barwise-Moschovakis theorem applies to it. For
the rest of this paper we work over a fixed finite relational signature of unary and binary
relation symbols. The restriction to at most binary signatures is w.l.o.g., as in this paper
we only work with acyclic structures and a structure containing a relation R of arity
> 2 can only be acyclic if every tuple in R contains at most two distinct elements. Such
relations can easily be coded in binary relations.

3 Locality

3.1 Syntactic Locality and a Positive Variant of Gaifman’s Theorem

In 1981, Gaifman [9] proved that any first-order formula is equivalent to a Boolean
combination of basic-local sentences and local formulae. We recall the necessary defi-
nitions.

Let A := (A, τA) be a first-order structure of signature τ . The distance dA(a, b)
between two elements a, b ∈ A is defined as the length of the shortest path in the
Gaifman graph G(A) connecting a and b. For r ≥ 0 and a ∈ A we define the r-
neighbourhood of a in A as NA

r (a) := {b ∈ A : dA(a, b) ≤ r}. It is easily seen that
for any r ≥ 0 there is a first-order formula δr(x, y) ∈ FO[τ] such that A |= δr[a, b] iff
dA(a, b) ≤ r, for all τ -structures A and all a, b ∈ A. For notational convenience we
write d(x, y) ≤ r for δr(x, y) and d(x, y) > r for ¬δr(x, y).

If ϕ(x) is a first-order formula, then ϕNr(x)(x) is the formula obtained from ϕ by
relativising all quantifiers in ϕ to the r-neighbourhood of x, i.e. replacing ∀yψ by
∀y(d(x, y) ≤ r → ψ) and ∃yψ by ∃y(d(x, y) ≤ r ∧ ψ). A formula ψ(x) of the
form ϕNr(x)(x) is called r-local. A formula ψ(x) is local, or local in x, if it is r-local
for some r ≥ 0.

Boundedness of Monadic FO over Acyclic Structures 575

Theorem 3.1 (Gaifman [9]). Every first-order formula ϕ(x) is equivalent to a Boolean
combination of local formulae χ(x), and basic local sentences, i.e., sentences of the
form

∃x1 . . . ∃xk
(∧

1≤i<j≤k
d(xi, xj) > 2r ∧

∧

1≤i≤k
ϑ(xi)

)

for suitable r, k > 0 and an r-local formula ϑ(x).

The following theorem establishes a variant of Gaifman’s locality theorem for first-
order formulae ϕ(X,x) which are positive in the monadic second-order variable X .
The proof is an adaptation of the proof of the analogous statement for sentences as it
appears in [8]. Due to space limitations, we refrain from giving the proof here and refer
the reader to the full version of the paper.

Theorem 3.2. Every formula ϕ(X,x) ∈ FO that is positive in the monadic second-
order variable X is logically equivalent to a finite disjunction of formulae ϕi(X,x) ∧
ψi(X), where the ϕi(X,x) are local in x and the ψi are positive inX and conjunctions
of (possibly negated) basic local sentences. Furthermore, for every formula ϕ(X,x) ∈
FO that is positive in X , we can effectively compute a finite disjunction of formulae
ϕi(X,x) ∧ ψi(X) that is equivalent to ϕ over AC.

In what follows we shall actually not even rely on the basic local nature of the X-
positive sentential components ψi(X).

Note that the ϕi(X,x) are local in x but not necessarily positive inX . The following
example demonstrates that the theorem fails if in addition we require the ϕi(X,x) to
be positive in X . Let τ := {E,P,X}, where E is binary and P and X are unary,
and consider the formula ϕ(X,x) := Px ∧ ∃y(x �= y ∧ Xy ∧ Py). Suppose that
ϕ(X,x) is equivalent to a formula ψ :=

∨k
i=1

(
ϕi(X,x) ∧ ψi(X)

)
, where the ϕi are

positive in X and local in x and the ψi are positive in X . Let A := ({a, b}, τA) with
EA := ∅ and PA := {a, b} and XA := {b}. Clearly, A |= ϕ[a] and therefore there
exists an i ∈ {1, . . . , k} such that A |= (ϕi ∧ ψi)[a]. The l-neighbourhoods of a and
b are distinct for all l and their {E,P}-reducts are isomorphic. As A |= ϕi[a] and ϕi
is positive in X it follows that A |= ϕi[b]. Hence, A |= (ϕi ∧ ψi)[b] but A �|= ϕ[b]
contradicting the equivalence of ϕ and ψ.

3.2 Locality of Queries

Definition 3.3 Let C be a class of τ -structures.
(i) A monadic queryQ on C is a mapping which assigns to each A ∈ C a set QA ⊆ A

so that for all isomorphisms π : A ∼= B and all a ∈ A, a ∈ QA ⇐⇒ π(a) ∈
QB.

(ii) A monadic query Q is MSO-definable, if there is an MSO-formula ϕ(x) ∈ MSO[τ]
such that QA = {a ∈ A : A |= ϕ[a]} for all A ∈ C.

(iii) Let l ∈ N. Q is l-local over C, if for all countable structures A,B ∈ C and
a ∈ A, b ∈ B such that (A|NA

l (a), a) ∼= (B|NB
l (b), b): a ∈ QA ⇐⇒ b ∈ QB.

Here, A|NA
l (a) denotes the restriction of A to the l-neighbourhood of a.

(iv) Q is local, if it is l-local for some l ∈ N.

576 S. Kreutzer, M. Otto, and N. Schweikardt

Note that locality for queries is a purely semantic property, as opposed to syntactic
locality of formulae discussed above. We refer to just countable structures in (iii), as
this will allow us to use interpretations of the relevant structures in the ω-branching tree;
for our boundedness concerns we may always restrict attention to countable structures,
by the Löwenheim–Skolem theorem (cf., Section 2).

Lemma 3.4. Let ϕ(x) ∈ MSO and letQ be the query defined byϕ over a class C ⊆ AC.
If Q is r-local for some r ∈ N, then Q is FO-definable over C, in fact even by a local
first-order formula.

In other words, a local query Q is MSO-definable if, and only if, it is FO-definable.

Proof (Sketch). The proof is obtained on the basis of a decomposition argument for
MSO-types and the observation that MSO-formulas of quantifier rank q can count mul-
tiplicities of types only up to a threshold g(q). This can be used to translate r-local
MSO-formulae into FO-formulae by induction on the locality radius r. ��

4 Boundedness over Acyclic Structures

The goal of this section is to prove the following theorem, the main result of the paper.
Recall Definition 2.1 for the class of acyclic structuresAC.

Theorem 4.1. Let C ⊆ AC be an FO-definable subclass of AC and let ϕ(X,x) be a
first-order formula positive in the monadic second-variableX . Then boundedness of ϕ
in C is decidable.

The main ingredients for the proof are the following. In Section 4.2, we use Theorem 3.2
to show that deciding boundedness for arbitrary first-order formulae ϕ(X,x), positive
inX , can be decomposed into a sequence of boundedness tests for purely local formulae
ϕi(X,x) in certain projectively FO-definable subclasses C ⊆ AC.

To decide boundedness for local formulae ϕi(X,x), we show that this can further
be reduced to deciding whether the global relation ϕ∞(x) defined by ϕi(X,x) is local.
Locality of MSO-definable queries in MSO-definable subclasses of AC can be decided
via reduction to the MSO-theory of the ω-branching tree and Rabin’s theorem, see Sec-
tion 4.1.

4.1 Locality Testing for MSO-Queries

Theorem 4.2. Let C ⊆ AC be an MSO-definable subclass of AC and let Q be a query
that is MSO-definable over C. Then locality of Q over C is decidable. The decision
procedure is uniform in the MSO-formula defining the subclass C.

The remainder of this section is devoted to the proof of the theorem, which is based on
a reduction to Rabin’s following classical result.

Theorem 4.3 (Rabin). The MSO-theory of the infinite ω-branching tree is decidable.

Boundedness of Monadic FO over Acyclic Structures 577

We denote the infinite ω-branching tree as Tω, its root as λ. The first step towards the
proof of Theorem 4.2 is to show that there is a uniform MSO-interpretation that interprets
structures A ∈ C in colourings of Tω in a suitable way. We can then use the decidability
of the MSO-theory of Tω to check if the query is local. This method follows ideas from
[15,16] and in particular allows us to capture locality (boundedness) in the framework
of MSO over trees through a regular analogue of König’s lemma that is available in Tω.

Let C be an MSO-definable subclass of AC over a signature σ. Given a σ-structure
A ∈ AC and an element a ∈ A we encode A, a in a colouring of Tω by a suitable set
τ := τ(σ) of colours: every tree in the Gaifman graph G(A) is coded in a subtree rooted
at a successor of the root λ so that the distinguished element a is encoded by a direct
successor of λ and marked by a special colour. We refrain from giving details here as
the encoding is straightforward. It is important, however, that the encoding preserves
the distance between elements of the structure within each component of G(A).

The interpretation allows us to translate MSO-formulae over structures from AC to
MSO-formulae over encodings in Tω. In particular, there is an MSO-sentence ψ that is
true in a τ -expansion T of Tω if, and only if, T encodes some structure A ∈ C.

Let ϕ(x) be an MSO-formula defining a query Q over C (which again can be trans-
lated to a corresponding formula ϕ′(x) over τ -expansions of Tω). For an acyclic struc-
ture A with distinguished element a ∈ A and r ≥ 1 we let A|r := A|NA

r (a) denote
the initial segment of all nodes up to depth r. A set A′ ⊆ A is initial, if it contains a
and is connected (in the Gaifman graph). A′ is called local, if A′ ⊆ A|r for some r.
It is path-finite if it contains no infinite paths. Note that while it is MSO-definable that
a subset of Tω is initial or path-finite, locality is not (this follows from König’s lemma
together with the fact that every MSO-formula that is satisfiable in Tω is also satisfiable
in a finitely branching tree).

A regular expansion of Tω is one that realises only finitely many isomorphism types
of subtrees. The following regular analogue of König’s lemma is proved in [16].

Lemma 4.4. An initial subset D in a regular expansion (Tω, D) of Tω is path-finite if,
and only if, it is local.

Let ϕlocal(Z) be an MSO-formula that says of an inital subset Z of Tω rooted at some
immediate successor z of the root λ, that whenever encodings of two structures A,B ∈
C in Tω, whose distinguished elements a ∈ A and b ∈ B are represented by z, agree on
Z , then A |= ϕ[a] if, and only if, B |= ϕ[b]. Clearly, this is MSO-definable. Analogous
to the reasoning in [16], we can show the following lemma.

Lemma 4.5. Let λ be the root of Tω. The following are equivalent:
(i) ϕ(x) is local

(ii) for some r ∈ N and for D = Tω|r: Tω |= ϕlocal[D].
(iii) Tω |= ∃Z

(
Z is initial and path-finite ∧ ϕlocal(Z)

)
.

(iv) there is a regular expansion (Tω, D) of Tω with an initial, path-finiteD such that
Tω |= ϕlocal[D].

Proof. (i) =⇒ (ii) =⇒ (iii) are obvious. (iii) =⇒ (iv) is a well-known fact about
MSO. For (iv) =⇒ (i) use Lemma 4.4. �

578 S. Kreutzer, M. Otto, and N. Schweikardt

By Rabin’s theorem, part (iii) of the previous lemma, and hence locality of ϕ, is decid-
able. This completes the proof of Theorem 4.2.

4.2 Boundedness of Arbitrary Monadic FO-formulae

We show that the boundedness problem for arbitrary monadic first-order formulae over
acyclic structures can be reduced to the locality test for MSO-formulae as provided by
Theorem 4.2.

Let ϕ(X,x) ∈ FO be a formula, positive in X . By Theorem 3.2, ϕ is equivalent to∨
i(ϕi(X,x) ∧ψi(X)), where the ϕi(X,x) are local in x and the ψi are positive in X .

To simplify the presentation, we only consider the case where

ϕ ≡
(
ϕ1(X,x) ∧ ψ1(X)

)
∨
(
ϕ2(X,x) ∧ ψ2(X)

)
.

We can treat the ψi as guards, that enable or disable the contribution of ϕi to the fixed-
point induction, in the sense that certain ψi may be true already at the initial stage
(and stay true for the whole induction process) whereas others may only become true at
later stages. In this case, the corresponding ϕi only contribute to the induction process
beginning with these stages and can be neglected before.

Inductions over ϕ can therefore be decomposed into a sequence of phases. Let A be
a structure. We distinguish between several cases:
(0) A �|= ψ1[∅] and A �|= ψ2[∅]. Then ϕ∞(A) = ∅, so we can ignore this case.
(1) A |= ψ1[∅] and A |= ψ2[∅]. In this case, the induction on ϕ in A is equivalent to the

induction on (ϕ1 ∨ ϕ2), which is purely local.
(2) A |= ψ1[∅] and A �|= ψ2[ϕ∞(A)]. In this case, the induction on ϕ in A is equivalent

to the induction on ϕ1, as the guard ψ2 for ϕ2 will never become true.
(3) A |= ψ1[∅] and A |= ψ2[ϕ∞(A)]. Over A, the induction has two phases. It starts

with an induction on ϕ1. As soon as ψ2(Xα) is satisfied for a stage α, the induction
continues on ϕ1 ∨ ϕ2.

There are two more cases, just like (2) and (3) but with the roles of ϕ1/ψ1 and ϕ2/ψ2

exchanged (we suppress this duplication in the following).
To illustrate the possible interplay between the various phases, let us consider for-

mulae in positive Gaifman form of the kind

ϕ(X,x) = ψ0 ∧
[
Px∨

(
ϕ1(X,x)∧∃x(Xx∧Q1x)

)
∨
(
ϕ2(X,x)∧∃x(Xx∧Q2x)

)]
,

with local formulae ϕi(X,x), and with extra unary predicates P and Qi, which serve
to initialise the fixed point process and to trigger phases driven by ϕ1, ϕ2 or their com-
bination ϕ1 ∨ ϕ2. Static side conditions in ψ0 and the local formulae ϕi may be such
that, for instance, the induction starts on ϕ1 (e.g., ψ0 may force Q2 ∩ P = ∅), and that
the induction on ϕ1 alone would be unbounded while the induction on ϕ2 alone would
be bounded, but such that the unbounded induction on ϕ1 always triggers the induction
on ϕ2 (due to Q2-elements in the 17-th stage of ϕ1 in any model of ψ0 in which ϕ1

is unbounded, say). The interplay between ϕ1 and ϕ2 could now still be such that the
overall process is bounded or unbounded. It should be clear from this naive analysis of a
very simple family of examples that the full variety of phase patterns needs to be taken

Boundedness of Monadic FO over Acyclic Structures 579

into account and that several boundedness issues for purely local processes determine
the overall boundedness in a non-trival manner.

Let us proceed with the proof of Theorem 4.1. Considering the possible sources for
unboundedness of ϕ, it is clear that ϕ is unbounded if, and only if, at least one of the
following applies:

Case 1: ϕ1 ∨ ϕ2 is unbounded over C1 := {A ∈ AC : A |= (ψ1 ∧ ψ2)[∅]}.
Case 2: ϕ1 is unbounded over C2 := {A ∈ AC : A |= ψ1[∅] and A �|= ψ2[ϕ∞(A)]}.
Case 3: a) ϕ1 ∨ ψ2 is unbounded over C3 := {A ∈ AC : A |= ψ1[∅]}, or

b) ϕ1 ∨ ψ2 is bounded over C3, with some bound n ∈ N, and ϕ1 ∨ ϕ2 is
unbounded over C4 := {A ∈ AC : A |= ψ1[∅] and A |= ψ2[ϕn(A)]}.

Case 4: like 2 and 3 with the roles of ϕ1/ψ1 and ϕ2/ψ2 exchanged.

We further reduce the number of the cases that need to be considered.

Lemma 4.6. (1) ϕ1 is unbounded over C2 if, and only if, ϕ1 is unbounded over
C′2 := {A ∈ AC : (A, ∅) |= ψ1 and (A, P) �|= ψ2 for some fixed point P of ϕ1}.

(2) If ϕ1 ∨ ψ2 is unbounded over C3, then ϕ1 is unbounded over C2.
(3) If ϕ1 ∨ ψ2 is bounded over C3, then ϕ is unbounded over C3 if, and only if,

ϕ′ := ϕ1 ∨ ϕ2 ∨ Px is unbounded over
C′3 := {(A, P) : A ∈ AC,A |= ψ1[∅],A |= ψ2[P], P ⊆ ϕ∞[A]}.

Note that C′2 is projectively FO-definable, as the fact that P is a fixed point of ϕ1 is
FO-definable with a new relation for P . Both C′3 and C′2 are clearly MSO-definable.

Proof. (1) is trivial. For (2), assume ϕ1 ∨ ψ2 is unbounded over C3 but ϕ1 is bounded
over C2. Consider the theories T0 :=

{
∃x

(
ϕn+1(x) ∧ ¬ϕn(x)

)
: n ∈ N

}
and

T := T0 ∪ {¬ψ2(ϕn) : n ∈ N} ∪ (axiomatisation of C3).

T is consistent, as ϕ1 ∨ ψ2 is unbounded over C3. Note that T speaks about ϕ, not
ϕ1, but ϕn ≡ ϕn1 in models of T as T implies ψ1 and ¬ψ2(ϕn) for all n ∈ N. By
assumption, ϕ is bounded over C2 and hence T0 is not satisfiable in C2. Therefore,

every model of T satisfies ψ2(ϕ∞), (∗)

as ¬ψ2(ϕ∞) is the defining condition of the subclass C2 of C3. But in every model
A of ψ2(ϕ∞), (ϕ ∨ ψ2)∞(A) = (ϕ1 ∨ ψ2)∞(A) = A and with (4.2), therefore,
(ϕ ∨ ψ2)∞(A) = (ϕ1 ∨ ψ2)∞(A) = A in every model A of T . Furthermore, the
equivalence between the first and the second induction is even stage-by-stage.

Hence, in the model class of T , the fixed point (ϕ ∨ ψ2)∞ is trivially first-order
definable – it is defined by true. Therefore, by the Barwise-Moschovakis Theorem,
(ϕ ∨ ψ2) is bounded in models of T , contradicting T0.

(3) Note that the phase in the generation of ϕ∞ over some A ∈ C3 that is driven
by ϕ1 ∨ ϕ2 is stage-by-stage equivalent to the fixed point generation of (ϕ′)∞ over
(A, ϕn(A)) ∈ C′3, for the minimal n such that A |= ψ2[ϕn(A)]. Therefore boundedness
of ϕ over C3 trivially implies boundedness of ϕ′ over C′3. Conversely, by decomposition
into corresponding phases, boundedness of ϕ1 ∨ ψ2 and of ϕ′ over C′3 together imply
that ϕ is bounded over C3. �

580 S. Kreutzer, M. Otto, and N. Schweikardt

The desired decision procedure for boundedness of ϕ is built on a sequence of applica-
tions of decision procedures that detect (un)boundedness in the form of (non)locality.
Consider the individual boundedness issues in cases 1–3 above in the light of their re-
formulation in Lemma 4.6:

– Case 1 corresponds to a boundedness test for a purely local fixed point: ϕ1 ∨ ϕ2 is
purely local, and stage-by-stage equivalent with ϕ over the FO-definable subclass
C1 of AC. As C1 is elementary, by the Barwise-Moschovakis Theorem, bounded-
ness is equivalent to FO-definability of the fixed point. Further, as a bounded fixed
point over a purely local formula is local itself, boundedness of ϕ1 ∨ ϕ2 is equiv-
alent to local FO-definability. Finally, as C1 and the fixed point are MSO-definable,
local FO-definability of the fixed point is decidable according to Theorem 4.2 and
Lemma 3.4.

– Case 2 is similarly reduced to a boundedness test for a purely local fixed point over
the projective and MSO-definable class C′2 in part 1 of the lemma.

– Case 3a) is in fact subsumed by case 2, according to part 2 of the lemma.

For what remains (case 3b) we may restrict attention to the situation where ϕ1 ∨ ψ2 is
bounded over C3. The corresponding decision issue obtained in part 3 of Lemma 4.6
is further reduced to a locality issue that can be decided according to Theorem 4.2,
through condition (iii) in the following.

Claim 4.7. Let ϕ1 ∨ ψ2 be bounded over C3. Then the following are equivalent:
(i) ϕ is bounded over C3.

(ii) ϕ′ is bounded over C′3.
(iii) (ϕ′)∞ is local over C′3.

Proof. The equivalence between (i) and (ii) was dealt with in part 3 of Lemma 4.6. As
ϕ′ is purely local, boundedness clearly implies locality for the fixed point, i.e., (ii)⇒
(iii). Assume now (iii). Obviously, (ϕ′)∞ is MSO-definable and therefore FO-definable
due to locality, by Lemma 3.4. As ϕ1 ∨ ψ2 is bounded over C3, there is some n such
that for A ∈ C3, A |= ψ2[ϕ∞(A)] ⇐⇒ A |= ψ2[ϕn(A)]. Further, ϕ′ is stage-by-stage
equivalent to ϕ∨Px over C′3 and hence (ϕ∨Px)∞ is FO-definable over the elementary
subclass C′′3 := {(A, P) : A ∈ AC,A |= ψ1[∅],A |= ψ2[P], P = ϕn(A)} ⊆ C′3. By the
Barwise-Moschovakis theorem, therefore, ϕ ∨ Px is bounded over C′′3 , which implies
that ϕ is bounded over C3, since also ϕ1 ∨ ψ2 is bounded. �

It follows that testing for unboundedness of ϕ1 ∨ ϕ2 over C1;

else, for unboundedness of 1 ϕ1 over C′2;

else, for unboundedness of 1 ϕ′ over C′3,

fails if, and only if, ϕ is bounded over AC. In the given format, each one of these
unboundedness tests can be realised as a (non)locality test, which is effective through
Theorem 4.2. This cascade of locality tests can be adapted to the (more complex) phase
pattern of a formula in positive Gaifman form with more than two disjuncts. We also

1 and the mirror symmetric case with ϕ1/ψ1 exchanged for ϕ2/ψ2.

Boundedness of Monadic FO over Acyclic Structures 581

point out that all the arguments used relativise to FO-definable subclasses of AC. This
concludes the proof of Theorem 4.1. ��
Theorem 4.1 yields a decision procedure for the boundedness problem of FO on acyclic
structures. However, the running time of the procedure grows non-elementarily with
the formula size. There is no hope for an algorithm whose running time is bounded by
an elementary function. As the first-order satisfiability problem overAC is reducible to
the boundedness problem over AC, the non-elementary lower bound for satisfiability
on AC established in [6] gives us a non-elementary lower bound here.

5 Outlook

Given the decidability of the boundedness problem on acyclic structures, it is natural to
ask whether, for instance, the result also holds for the class of trees or extends to the
class of structures of treewidth at most k, for fixed k. We collect a few observations
to indicate that the results and the methods used here are indeed rather sensitive to the
underlying class of structures.

Remark 5.1. (a) Boundedness over trees (connected acyclic structures) does not im-
ply boundedness over all acyclic structures; similarly, boundedness over finite
acyclic structures does not imply boundedness over all acyclic structures.

(b) The Barwise-Moschovakis theorem is well known to fail over the class of all finite
structures. It also fails over the class of finite acyclic structures, over the class of
trees and over the class of finite trees.

(c) The connection between locality and FO-definability of Lemma 3.4. fails over simple
FO-definable classes of graphs of bounded treewidth.

Proof. For (a) consider, over acyclic structures or over trees, a reachability query (in it-
self unbounded) modified by side a condition that renders the process trivial unless there
are at least two nodes of degree 0 (impossible over trees), or unless there is precisely
one vertex of degree 1 (impossible in finite acyclic structures).

For (b) consider over finite forests the fixed point process that evaluates to the well-
founded part; while this process is unbounded, it evaluates to the full vertex set. Over
(finite or infinite) trees, the unbounded fixed point based on red(x)∨∃y(Exy ∧Xy)∨
∃y(root(y) ∧Xy) is in FO (equivalent to ∃x red(x)).

For (c) consider connectivity over the FO-definable class of graphs that are disjoint
unions of cycles and two-way infinite successor chains (treewidth 2). Clearly this query
is in MSO but neither local nor FO. Joining all the nodes in such graphs to one new
central vertex, one obtains an FO-definable class of graphs of treewidth 3, which is FO-
bi-interpretable with the original class. As all structures in this class have diameter 2,
any query is trivially local here. �

Clearly, these observations do not imply that boundedness is undecidable over corre-
sponding classes. However, we need to develop new tools to show decidability. This is
part of ongoing work.

As pointed out above, classes of bounded treewidth in particular provide an inter-
esting wider framework for the analysis of the boundedness problem, because of its

582 S. Kreutzer, M. Otto, and N. Schweikardt

relevance for other known decidable cases. Here, arguments based on compactness and
the Barwise-Moschovakis theorem are still available, and so is in principle the phase
analysis of Section 4.2. However, as indicated in (c) above, the direct link with locality
is lost (at a more technical level, distances and locality are not preserved in the pas-
sage between the structures themselves and their tree representations). The search for
alternative methods to decide FO-definability or boundedness in this context remains of
particular interest.

References

1. Atserias, A., Dawar, A., Grohe, M.: Preservation under extensions on well-behaved finite
structures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1437–1449. Springer, Heidelberg (2005)

2. Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms and unions
of conjunctive queries. Journal of the ACM 53(2), 208–237 (2006)

3. Barwise, J., Moschovakis, Y.: Global inductive definability. Journal of Symbolic Logic 43,
521–534 (1978)

4. Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and FOmod. In: Diekert,
V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 327–339. Springer, Heidelberg
(2005) Also see manuscript of journal paper

5. Benedikt, M., Segoufin, L.: Towards a characterization of order-invariant queries over tame
structures. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 276–291. Springer, Heidelberg
(2005)

6. Compton, K., Ward Henson, C.: A uniform method for proving lower bounds on the compu-
tational complexity of logical theories. In: Abramsky, S., Gabbay, D.M., Maibaum, T. (eds.)
Handbook of Logic in Computer Science. Logic and Algebraic Methods, vol. 5, pp. 129–216.
Oxford University Press, Oxford (2000)

7. Cosmadakis, S., Gaifman, H., Kanellakis, P., Vardi, M.: Decidable optimization problems for
database logic programs. In: Proc. STOC’88, pp. 477–490 (1988)

8. Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Approximation schemes for first-order
definable optimisation problems. In: Proc. LICS’06, pp. 411–420 (2006)

9. Gaifman, H.: On local and non-local properties. In: Stern, J. (ed.) Herbrand Symposium,
Logic Colloquium ’81, pp. 105–135. North-Holland, Amsterdam (1982)

10. Gaifman, H., Mairson, H., Sagiv, Y., Vardi, M.: Undecidable optimization problems for
database logic problems. Journal of the ACM 40, 683–713 (1993)

11. Hillebrand, G., Kanellakis, P., Mairson, H., Vardi, M.: Undecidable boundedness problems
for datalog programs. Journal of Logic Programming 25, 163–190 (1995)

12. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
13. Kolaitis, P., Otto, M.: On the boundedness problem for two-variable first-order logic. In:

Proc. LICS’98, pp. 513–524 (1998)
14. Kolaitis, P., Otto, M.: On the boundedness problem for fragments of first-order logic: unde-

cidability results. Unpublished draft (1999)
15. Otto, M.: Eliminating recursion in the μ-calculus. In: Meinel, C., Tison, S. (eds.) STACS 99.

LNCS, vol. 1563, pp. 531–540. Springer, Heidelberg (1999)
16. Otto, M.: The boundedness problem for monadic universal first-order logic. In: Proc.

LICS’06, pp. 37–46 (2006)
17. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Hand-

book of Formal Language Theory, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

Strong Price of Anarchy

for
Machine Load Balancing

Amos Fiat�, Haim Kaplan�, Meital Levy��, and Svetlana Olonetsky�

School of computer science, Tel Aviv University, Tel Aviv 69978, Israel
{fiat,haimk,levymeit,olonetsk}@post.tau.ac.il

Abstract. As defined by Aumann in 1959, a strong equilibrium is a
Nash equilibrium that is resilient to deviations by coalitions. We give
tight bounds on the strong price of anarchy for load balancing on related
machines. We also give tight bounds for k-strong equilibria, where the
size of a deviating coalition is at most k.

Keywords: Game theory, Strong Nash equilibria, Load balancing, Price
of Anarchy.

1 Introduction

Many concepts of game theory are now being studied in the context of computer
science. This convergence of different disciplines raises new and interesting ques-
tions not previously studied in either of the original areas of study. Much of this
interest in game theory within computer science is due to the seminal papers of
Nisan and Ronen [17] and Koutsoupias and Papadimitriou [14].

A Nash equilibrium ([16]) is a state in a noncooperative game that is stable
in the sense that no agent can gain from unilaterally switching strategies. There
are many “solution concepts” used to study the behavior of selfish agents in a
non-cooperative game. Many of these are variants and extensions of the original
ideas of John Nash from 1951.

One immediate objection to Nash equilibria as a solution concept is that
agents may in fact collude and jointly choose strategies so as to “profit”. There
are many possible interpretations of the statement that a set of agents “profit”
from collusion. One natural interpretation of this statement is the notion of a
strong equilibrium due to Aumann [5], where no coalition of players have any
joint deviation such that every member strictly benefits. Whereas mixed strategy
Nash equilibria always exist for finite games [16], this is not in general true for
strong equilibria.

� Research partially supported by the Israel Science Foundation and the German Israel
Foundation.

�� The research has been supported by the Eshkol Fellowship funded by the Israeli
Ministry of Science.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 583–594, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

584 A. Fiat et al.

Holzman and Law-Yone [13] characterized the set of congestion games that
admit strong equilibria. The class of congestion games studied was extended by
Rozenfeld and Tennenholtz in [18]. [18] also considered mixed strong equilib-
ria and correlated mixed strong equilibria under various deviation assumptions,
pure, mixed and correlated.

The term price of anarchy was coined by Koutsoupias and Papadimitriou [14].
This is the ratio between the cost of the worst-case Nash equilibria and the cost
of the social optimum. A related notion is the price of stability defined in [3],
the ratio between the cost of the best Nash equilibria and the cost of the social
optimum. These concepts have been extensively studied in numerous settings,
machine load balancing [14,15,10,7,9], network routing [19,6,8], network design
[4,11,1,3,12], etc.

Andelman et al. [2] initiated the study of the strong price of anarchy (SPoA),
the ratio of the worst case strong equilibria to the social optimum. The authors
also define the notion of a k-strong equilibrium, where no coalition of size up to
k has any joint deviation where all strictly benefit. Analogous definitions can be
made for the k-strong price of anarchy.

One may argue that the strong price of anarchy (which is never worse than
the price of anarchy) removes the element of poor coordination and is entirely
due to selfishness. Likewise, the k-strong price of anarchy measures the cost of
selfishness and restricted coordination (up to k agents at once).

Our work here is a direct continuation of the work of Andelman et al. [2], and
addresses many of the open problems cited there, in particular in the context
of a load balancing game. In this setting agents (jobs) choose a machine, and
job j placed on machine i contributes wj(i) to the load on machine i. Agents
seek machines with small load, and the social cost usually considered is the
makespan, i.e., the maximal load on any machine. Whereas [2] considered strong
price of anarchy and k-strong price of anarchy for unrelated machines, herein we
primarily consider the strong price of anarchy for related machines (machines
having an associated speed).

Our Results

1. Czumaj and Vocking [10] showed that the price of anarchy for load balancing
on related machine is Θ(logm/log logm), we show that the strong price of
anarchy for load balancing on related machine is Θ

(
logm/(log logm)2

)
. This

is our most technically challenging result.
2. We also give tight results for the problems considered by [2]:

(a) In [2] the strong price of anarchy for load balancing on m unrelated
machines was shown to lie between m and 2m − 1. We prove that the
true value is always m.

(b) In [2], the k-strong price of anarchy for load balancing of n jobs on m
unrelated machines is between O(nm2/k) andΩ(n/k). We prove that the
k-strong price of anarchy falls in between and is Θ(m(n−m+ 1)/(k −
m+ 1)).

Due to the space limit proofs of some lemma are omitted.

Strong Price of Anarchy for Machine Load Balancing 585

Preliminaries. A load balancing game consists of a set M = {M1, . . . ,Mm}
of machines , a set N = {1, . . . , n} of jobs (agents). We use the terms machine
i or machine Mi interchangeably. Each job j has a weight function wj() such
that wj(i) is the running time of job j on machine Mi. When the machines are
unrelated then wj() is an arbitrary positive real function. For related machines,
machine Mi has a speed v(i) and wj(i) = wj/v(i) where wj is the weight of job j.
In game theoretic terms, the set of strategies for job j is the set of machines M .
A state S is an assignment of jobs to machines. Let mS(j) be the machine chosen
by job j in state S. The load on machine Mi in state S is

∑
j|Mi=mS(j) wj(i).

Given a state S where job j is assigned to machine Mi, we say that the load
observed by job j is the load on machine Mi in state S. The makespan of a state
S is the maximum load of a machine in S. Jobs seek to minimize their observed
load. The state OPT (the social optimum) is a state with minimal makespan.
We also denote the makespan in state OPT by OPT, and the usage would be
clear from the context.

A strong equilibrium is a state where no group of jobs can jointly choose an
alternative set of strategies so that every job in the set has a reduced observed
load in the new state. In a k-strong equilibrium we restrict such groups to in-
clude no more than k agents. The strong price of anarchy is the ratio between
the makespan of the worst strong equilibrium and OPT. The k-strong price of
anarchy is the ratio between the makespan of the worst k-strong equilibrium and
OPT.

2 Related Machines

We assume that machines are indexed such that v(i) ≥ v(j) for i < j. We first
prove the lower bound and then the upper bound.

Theorem 1. The strong price of anarchy for m related machines and n jobs is
Ω
(
logm/(log logm)2

)
.

Proof. We partition the machines into �+ 1 groups. Let these groups be G0, G1,
. . ., G�. We further subdivide each group Gi, 0 ≤ i < �, into log � subgroups,
where all machines within the same subgroup have the same speed, but machines
from different subgroups of a group differ in speed. The group G� consists of a
single subgroup F� log �. In total, we have � log �+ 1 subgroups F0, F1, . . . , F� log �,
where subgroups F0, . . . , Flog �−1 are a partition of G0, Flog �, . . . , F2 log �−1 are
the subgroups of G1, etc.

Let mj denote the number of machines in subgroup Fj , 0 ≤ j ≤ � log �. Then
m0 = 1, and for subgroup Fj+1 such that Fj ⊂ Gi we define mj+1 = (�−i)×mj,
for 0 ≤ j < � log �. It follows that the number of machines in subgroup F� log � is
at least (�!)log � and therefore m ∼ (�!)log � and � ∼ logm/(log logm)2. We define
the speed of all machines in subgroup Fj to be 2(� log �−j).

Consider the following state, S. Each machine of groupGi is assigned �−i jobs.
Jobs that are assigned to machines in subgroup Fj have weight 2(� log �−j). As
the speed of such machines is 2(� log �−j), it follows that each such job contributes

586 A. Fiat et al.

one to the load of the machine it is assigned to. I.e., the load on all machines in
Gi is �− i. Machines of F� log � have no jobs assigned to them.

The load on the machines in groupG0 is � which is also the makespan in S. The
minimal makespan (OPT) is attained by moving the jobs assigned to machines
from Fj each to a separate machine of subgroup Fj+1, for 0 ≤ j < � log �. The
load on all machines is now 2� log �−j/2� log �−(j+1) = 2.

State S is a Nash equlibrium. A job assigned to a machine of subgroup Fj
has no incentive to migrate to a machine with a lower indexed subgroup since
the current load there is equal or higher to the current load it observes. There
is no incentive to migrate to a higher indexed subgroup as it observes a load of
at least j + 1 > j. We now argue that state S is not only a Nash Equilibrium
but also a strong Nash equilibrium.

First, note that jobs residing on machines of group Gi, 0 ≤ i ≤ �− 2, have no
incentive to migrate to machines of group Gj , for j ≥ i+2. This follows since the
speed of each machine in group Gj is smaller by a factor of more than 2log � = �
from the speed of any machine in group Gi. Thus, even if the job is alone on
such a machine, the resulting load is higher than the load currently observed by
the job (current load is ≤ �). Thus, any deviating coalition has the property that
jobs assigned to machines from group Gi may only migrate to machines from
groups Gj , for j ≤ i+ 1.

Suppose that jobs that participate in a deviating coalition are from machines
in groups Gi, Gi+1, . . ., Gj , 1 ≤ i ≤ j ≤ �. The load on machines from group
Gi holding participating jobs must strictly decrease since either jobs leave (and
the load goes down) or jobs from higher or equal indexed groups join (and then
the load must strictly go down too). If machines from group Gi have their load
decrease, and all deviating jobs belong to groups i through j, i < j, then there
must be some machine M ∈ Gp, i < p ≤ j, with an increase in load. Jobs can
migrate to machine M either from a machine in group Gp−1, or from a machine
in group Gj for some j ≥ p.

If a deviating job migrates from a machine in Gj for some j ≥ p then this
contradicts the increase in the load on M . The contradiction arises as such jobs
will only join the coalition if they become strictly better off, and for this to
happen the load on M should decrease.

However, this holds even if the deviating job migrates to M from a machine in
Gp−1. The observed load for this job prior to deviating was �−(p−1) and it must
strictly decrease. A job that migrates to machineM fromGp−1 increases the load
by an integral value. A job that migrates away from machine M decreases the
load by an integral value too. This implies that the new load on M must be an
integer no larger than �−(p−1), which contradicts the increase in load on M . ��

3 Upper Bound on Strong Price of Anarchy for Related
Machines

We assume that the speeds of the machines are scaled so that OPT is 1. Let S
be an arbitrary strong Nash equilibrium, and let �max be the maximum load of

Strong Price of Anarchy for Machine Load Balancing 587

a machine in S. Our goal is to give an upper bound on �max. When required,
we may assume that �max is a sufficiently large constant. Recall that machines
are ordered such that v(1) ≥ v(2) ≥ · · · ≥ v(m) > 0. Let �(i) be the load on
machine Mi, i.e., the total weight of jobs assigned to machine Mi is �(i)v(i).

3.1 Sketch of the Proof

We prove that m = Ω(�max�max log �max), which implies �max = O(logm/
(log logm)2). To show that m = Ω(�max

�max log �max) we partition the machines
into consecutive disjoint “phases” (Definition 1), with the property that the
number of machines in phase i is Ω(�) times the number of machines in phase
i− 1 (Lemma 1), where � is the minimal load in phases 1 through i.

For technical reasons we introduce shifted phases (s-phases, Definition 2)
which are in one-to-one correspondence to the phases. We focus on the s-phases
of faster machines, so that the total drop in load amongst the machines of these s-
phases is about �max/2. We next partition the s-phases into consecutive blocks.
Let δi be the load difference between slowest machine in block i − 1 and the
slowest machine in block i. By construction we get that

∑
δi = Θ(�max).

We map s-phases to blocks such that each s-phase is mapped to at most one
block as follows (Lemmas 4 and 5).

– If δi < 1/ log �max ⇒ we map a single (1 = �δi log �max�) s-phase to block i
– If δi ≥ 1/ log �max ⇒ we map Ω(δi log �max) s-phases to block i

Therefore the total number of s-phases is at least
∑
δi log �max = Ω(�max log �max).

Given the one-to-one mapping from s-phases to phases, this also gives us a lower
bound of Ω(�max log �max) on the number of phases.

Then we use Lemma 1 to conclude that the number of machines in phase
i is Ω(�max) times the number of machines in phase i − 1. This allows us to
conclude that the total number of machines m = Ω(�max�max log �max), or that
�max = O(logm/(log logm)2).

δ3 ? 1� log 4 ? 1� logδ1 > 1� log

B0 B1 B2

P (B1) P (B3) P (B4)

Fig. 1. The machines are sorted in order of decreasing speed (and increasing index),
and partitioned into s-phases. The s-phases are further partitioned into blocks Bi. The
s-phases that are mapped to block i are marked P (Bi).

588 A. Fiat et al.

3.2 Excess Weight and Excess Jobs

Given that the makespan of OPT is 1, the total weight of all jobs assigned to
machine σ in OPT cannot exceed v(σ), the speed of machine σ. We define the
excess weight on machine 1 ≤ σ ≤ m to be X(σ) = (�(σ) − 1)v(σ). (Note that
excess weight can be positive or negative).

Given a set R ⊂ {1, . . . ,m}, we define the excess weight on R to be

X(R) =
∑

σ∈R
X(σ). (1)

For clarity of exposition, we use intuitive shorthand notation for sets R forming
consecutive subsequences of 1, . . . ,m. In particular, we use the notation X(σ)
for X({σ}), X(≤ w) for X({σ|1 ≤ σ ≤ w}), X(w . . . y) for X({w ≤ σ ≤ y}),
etc.

Given that some set R has excess weight X(R) > 0, it follows that there must
be some set of jobs J(R), of total weight at least X(R), that are assigned to
machines in R by S, but are assigned to machines in {1, . . . ,m} − R by OPT.
Given sets of machines R and Q, let J(R �→ Q) be the set of jobs that are
assigned by S to machines in R but assigned by OPT to machines in Q, and
let X(R �→ Q) be the weight of the jobs in J(R �→ Q). Let R, R1, and R2 be a
partition of the set of machines then we have

X(R) = X(R �→ {1, . . . ,m} −R) = X(R �→ R1) +X(R �→ R2) . (2)

3.3 Partition into Phases

Definition 1. We partition the machines 1, . . . ,m into disjoint sets of consec-
utive machines called phases, Φ1, Φ2, . . ., where machines of Φi precede those of
Φi+1. We define ρ0 = 0 and ρi = max{j | j ∈ Φi} for i ≥ 1. Thus, it follows that
Φi = {ρi−1 + 1, . . . , ρi}. It also follows that machines in Φi are no slower than
those of Φi+1. Let ni be number of machines in the ith phase, i.e., ni = ρi−ρi−1,
for i ≥ 1.

To determine Φi it suffices to know ρi−1 and ρi. For i = 1 we define ρ1 = 1,
as ρ0 = 0 it follows that Φ1 = {1}. We define ρi+1 inductively using both ρi and
ρi−1 as follows.

ρi+1 = argminσ

{
X(≤ ρi �→> σ) < X(≤ ρi−1) +

X (Φi)
2

}
. (3)

The phases have the following properties.

Lemma 1. Let � be the minimal load of a machine in phases 1, . . . , i, (� = min
{�(σ)|1 ≤ σ ≤ ρi}), then ni+1 ≥ ni(�− 1)/2.

Lemma 2. For every i > j, X (Φi) > X (Φj).

Let � be the minimal load among machines 1, . . . , ρi. Let Γi be the subset of
Φi that have at least (�− 1)/2 of their load contributed by jobs of weight w ≤
v(ρi+1). Let v(Γi) be the average speed of the machines in Γi.

Strong Price of Anarchy for Machine Load Balancing 589

Lemma 3. For i > j, v(Γi)|Γi| ≥ v(ρj)nj(�− 1)/(�+ 3).

Proof. First we want to estimate X(Φi �→≥ ρi+1). By rewriting Equation (2) we
get that

X(Φi �→≥ ρi+1) = X(≤ ρi �→≥ ρi+1)−X(≤ ρi−1 �→≥ ρi+1) .

Since X(≤ ρi−1 �→≥ ρi+1) ≤ X(≤ ρi−1 �→> ρi), we also have that

X(Φi �→≥ ρi+1) ≥ X(≤ ρi �→≥ ρi+1)−X(≤ ρi−1 �→> ρi) . (4)

From the definition of ρi+1 follows that

X(≤ ρi �→≥ ρi+1) ≥ X(≤ ρi−1) +
X (Φi)

2
, (5)

Similarly, from the definition of ρi follows that

X(≤ ρi−1 �→> ρi) < X(≤ ρi−2) +
X (Φi−1)

2
. (6)

Substituting Equations (5) and (6) into Equation (4) we get

X(Φi �→≥ ρi+1) ≥ X(≤ ρi−1) +
X (Φi)

2
−
(
X(≤ ρi−2) +

X (Φi−1)
2

)

≥ X(≤ ρi−2) +X (Φi−1) +
X (Φi)

2
−
(
X(≤ ρi−2) +

X (Φi−1)
2

)

≥ X (Φi−1)
2

+
X (Φi)

2
. (7)

Let A(σ) be the total weight of jobs on machine σ with w(j) ≤ v(ρi+1) and
let A(Φi) =

∑
σ∈Φi

A(σ). Since every job in J(Φi �→≥ ρi+1) has weight of at
most v(ρi+1), it follows that X(Φi �→≥ ρi+1) ≤ A(Φi), and by Equation (7)

A(Φi) ≥
X (Φi−1)

2
+
X (Φi)

2
. (8)

We claim that every machine σ with A(σ) > 0 (i.e. the machine has at least
one job j with w(j) ≤ v(ρi+1)) has load of at most � + 1. To prove the claim,
let q ≤ ρi+1 be a machine that has load greater than � + 1 and a job j with
w(j) ≤ v(ρi+1), and let q′ be the machine among 1, . . . , ρi with load �. This state
is not a Nash equilibrium since if job j switches to machine q′ it would have a
smaller cost. We get that

A(Φi) ≤
∑

σ∈Γi

v(σ)(� + 1) +
∑

σ∈Φi−Γi

v(σ)
�− 1

2

=
∑

σ∈Γi

v(σ)
�+ 3

2
+

∑

σ∈Φi

v(σ)
� − 1

2

≤ v(Γi)|Γi|
�+ 3

2
+
X (Φi)

2
. (9)

590 A. Fiat et al.

Inequality (9) holds since v(Γi) is the average speed in Γi and � is the smallest
load of a machine in 1, . . . , ρi. Combining (9) and (8) we get that

v(Γi)|Γi|
�+ 3

2
+
X (Φi)

2
≥ X (Φi−1)

2
+
X (Φi)

2
, (10)

and therefore

v(Γi)|Γi|
� + 3

2
≥ X (Φi−1)

2
≥ X (Φj)

2
≥ v(ρj)nj

�− 1
2

. (11)

The first inquality in (11) follows from (10), the second follows from Lemma
2, and the third inequality follows since � is the smallest load of a machine in
1, . . . , ρi and since v(ρj) is the smallest speed in Φj . From (11) the lemma clearly
follows. ��

Recall that �max is the maximum load in S. Define k to be min{i|�(i) < �max/2}.
Let t be the phase such that ρt < k and ρt+1 ≥ k. Consider machines 1, . . . , ρt.
Let � be the minimal load of a machine in this set of machines. Then, � =
Θ(�max).

Definition 2. We define another partition of the machines into shifted phases
(s-phases) Ψ1, Ψ2, . . . based on the partition to phases Φ1, Φ2, . . . as follows. We
define ϕ0 = 0. Let ϕi be the slowest machine in Φi such that at least (� − 1)/2
of its load is contributed by jobs with weight w ≤ v(ρi+1) (there exists such a
machine by Lemma 3). We define Ψi = {ϕi−1 + 1, . . . , ϕi}.

Note that there is a bijection between the s-phases Ψ1, Ψ2, . . . and the phases
Φ1, Φ2, Furthermore, all machines in Φi such that at least (�− 1)/2 of their
load is contributed by jobs of weight ≤ v(ρi+1) are in Ψi.

Lemma 4. The load difference between machines ϕ2 and ϕt, �(ϕ2) − �(ϕt) >
�max/4 + 4.

We define zi+1 to be v(ϕi)/v(ϕi+1). Notice that zi+1 ≥ 1. Let Γ (b) ⊆ Ψb be a
subset of machines such that for every such machine, at least (� − 1)/2 of the
load is contributed by jobs with weight w ≤ v(ϕb+1). For two s-phases Ψa, and
Ψb the lemma below relates the difference in load of ϕa and ϕb, to the ratio of
speeds v(ϕa) and v(ϕb).

Lemma 5. Consider s-phases Ψa and Ψb such that a < b. Let � be the minimal
load in Ψa and Ψb. If v(ϕa)/v(ϕb) ≤ za+1(�− 1)/5 then �(ϕa) ≤ �(ϕb) + 4/zb+1.

Proof. Proof by contradiction, assume that �(ϕa) = �(ϕb) + α/zb+1, for some
α > 4, and that v(ϕa)/v(ϕb) ≤ za+1(� − 1)/5. We exhibit a deviating coalition
all of whose members reduce their observed loads, contradicting the assumption
that the current state is in strong equilibrium.

We observe that for every machine σ ∈ Γ (b) we have �(σ) ≤ �(ϕb)+1/zb+1. If
not, take any job j located on σ, such that w(σ) ≤ v(ϕb+1) and send it to machine
ϕb, the contribution of job j to the load of �(ϕb) is at most v(ϕb+1)/v(ϕb) =

Strong Price of Anarchy for Machine Load Balancing 591

1/zb+1, i.e., the current state is not even a Nash equilibrium. Similarly, we have
�(ϕb) ≤ �(σ) + 1/zb+1. (From this also follows that �(σ) < �(ϕa).)

We group jobs on ϕa in a way such that the current load contribution of each
group is greater than 1/(2za+1) and no more than 1/za+1. I.e., for one such group
of jobs G, 1/(2za+1) <

∑
j∈G wj/v(ϕa) ≤ 1/za+1. At least za+1(� − 1)/2 such

groups are formed. Every such group is assigned a unique machine in Γ (b) and
all jobs comprising the group migrate to this machine. Let Γ ⊆ Γ (b) be a subset
of machines that got an assignment, |Γ | = min{za+1(�− 1)/2, |Γ (b)|}. The load
contributed by migrating jobs to the target machine, σ ∈ Γ (b), is therefore

∑

j∈G

wj
v(σ)

≤
∑

j∈G

wj
v(ϕb)

,

we also know that v(ϕa)/v(ϕb) ≤ za+1(�− 1)/5 and
∑

j∈G wj/v(ϕa) ≤ 1/za+1,
this gives us that

∑

j∈G

wj
v(ϕb)

≤
∑

j∈G

wj
v(ϕa)

· v(ϕa)
v(ϕb)

≤ (�− 1)/5.

Therefore, after migration, the load on σ ∈ Γ (b) is ≤ �(σ) + (�− 1)/5 ≤ �(ϕa) +
(�− 1)/5. It is also at least �(ϕa) (otherwise S is not a Nash equilibrium).

Additionally, jobs will also migrate from machines σ ∈ Γ to machine ϕa (not
the same jobs previously sent the other way). We choose jobs to migrate from
σ ∈ Γ to ϕa, so that the final load on σ is strictly smaller than �(ϕa) and at
least �(ϕa) − 1/zb+1 = �(ϕb) + (α − 1)/zb+1. It has to be smaller than �(ϕa)
to guarantee that every job migrating from ϕa to σ observes a load strictly
smaller than the load it observed before the deviation. We want it to be at least
�(ϕb) + (α − 1)/zb+1, so that a job migrating to ϕa from σ would observe a
smaller load as we will show below. To achieve this, slightly more than (�− 1)/5
of the load of σ ∈ Γ has to migrate back to ϕa.

The jobs that migrate from σ ∈ Γ to ϕa are those jobs with load ≤ 1/zb+1

on σ. Therefore, each such job which leaves σ reduces the load of σ by at most
1/zb+1. Since the total load of these jobs on σ is (� − 1)/2 > (� − 1)/5, we can
successively send jobs from σ to ϕa until the load drops below to some value y
such that �(ϕb) + (α− 1)/zb+1 ≤ y < �(ϕb) + α/zb+1.

We argued that prior to any migration, the load �(σ) ≤ �(ϕb) + 1/zb+1 for
σ ∈ Γ (b). Following the migrations above, the new load �(σ) on machine σ is
�(σ) ≥ �(ϕb) + (α− 1)/zb+1. Thus, the load on every such machine has gone up
by at least (α− 2)/zb+1.

If |Γ | = za+1(�− 1)/2 the net decrease in load on machine ϕa is at least
∑

σ∈Γ

α− 2
zb+1

· v(σ)
v(ϕa)

≥
∑

σ∈Γ

α− 2
zb+1

· v(ϕb)
v(ϕa)

≥ za+1(�− 1)
2

· α− 2
zb+1

· 5
za+1(�− 1)

≥ 2.5(α− 2)
zb+1

>
α+ 1
zb+1

.

592 A. Fiat et al.

If |Γ | < za+1(�−1)/2, then Γ = Γ (b) and the net decrease in load on machine
ϕa is at least

∑

σ∈Γ (b)

α− 2
zb+1

· v(σ)
v(ϕa)

≥ α− 2
zb+1v(ϕa)

∑

σ∈Γ (b)

v(σ)

≥ α− 2
zb+1

· v(Γ (b))|Γ (b)|
v(ϕa)

≥ 2.5(α− 2)
zb+1

>
α+ 1
zb+1

.

Thus, the new load �(ϕa) on machine ϕa is at most

�(ϕa) < �(ϕb) + α/zb+1 − (α+ 1)/zb+1 = �(ϕb)− 1/zb+1,

which ensures that the jobs that migrate to machine ϕa could form a coalition,
benefiting all members, in contradiction to the strong equilibrium assumption.

��

We define a partition of the s-phases into blocks B0, B1, The first block B0

consists of the first two s-phases. Given blocks B0, . . . , Bj−1, define Bj as follows:
For all i, let ai be the first s-phase of block Bi and let bi be be the last s-phase
of block Bi. The first s-phase of Bj is s-phase bj−1 + 1, i.e., aj = bj−1 + 1.

To specify the last phase of Bj we define a consecutive set of s-phases denoted
by P1, where bj ∈ P1. The first s-phase in P1 is aj . The last s-phase of P1 is
the first phase, indexed p, following aj , such that v(ϕbj−1)/v(ϕp) > zaj (�−1)/5.
Note that P1 always contains at least two s-phases. Let m1 be an s-phase in
P1 \ {aj} such that zm1 ≥ zi for every i in P1 \ {aj}. We consider two cases:

– Case 1: zm1 ≥ log �. We define bj = m1 − 1. In this case we refer to Bj as a
block of a type I.

– Case 2: zm1 < log �. We define P2 to be the suffix of P1 containing all s-
phases i for which v(ϕbj−1)/v(ϕi) ≥ zaj ((� − 1)/5)2/3. Note that s-phase p
is in P2 and s-phase aj is not in P2. Let m2 be an s-phase in P2 such that
zm2 ≥ zi for every i in P2. We define bj to be m2 − 1. In this case we refer
to Bj as a block of type II.

If v(ϕbj−1)/v(ϕt) ≤ zaj (�− 1)/5 we do not define Bj and Bj−1 is the last block.
For each block Bj let P (Bj) be the s-phases which we map to Bj. In Case 1

we define P (Bj) = m1 = aj+1. In Case 2 we define P (Bj) = P2.

Lemma 6. The number of phases associated with block Bj, |P (Bj)|, is Ω(log �/
zaj+1).

Proof. If zm1 ≥ log � then P (Bj) consists of a single phase. As log �/zm1 < 1,
the claim trivially follows. Assume that zm1 < log �. Let s be the first s-phase in
P2, then

v(ϕbj−1)/v(ϕs−1) ≤ zaj

(
�− 1

5

)2/3

. (12)

Strong Price of Anarchy for Machine Load Balancing 593

Let k be the last s-phase of P2 (which is also the last s-phase of P1), we have
that

v(ϕbj−1)/v(ϕk) ≥ zaj

�− 1
5

. (13)

If we divide (13) by (12) we obtain that v(ϕk)/v(ϕs−1) ≥ (�− 1/5)1/3. Let q
be the number of s-phases in P2. Since zm2 ≥ zi for all i ∈ P2 it follows that
(zm2)q ≥

(
�−1
5

)1/3
. We conclude that q = Ω(log �/zm2) = Ω(log �/zaj+1), as

log x ≤ x for all x. ��

The following lemma shows each s-phase is mapped into at most one block.

Lemma 7. For every pair of blocks B, and B′ we have P (B)
⋂
P (B′) = ∅.

We now conclude the proof of the upper bound of the strong price of anarchy.
By definition, we have that v(ϕbj−1)/v(ϕbj) ≤ zaj (� − 1)/5, so using Lemma 5
we get that

�(ϕbj−1)− �(ϕbj) ≤ 4/zaj . (14)

Let f be the index of the last block. We have that v(ϕbf
)/v(ϕt) ≤ zbf+1(� −

1)/5, (where t is the last phase with minimal load > �max/2) so by Lemma
5, �(ϕbf

) ≤ �(ϕt) + 4. By Lemma 4, �(ϕ2) − �(ϕt) ≥ �max/4 + 4. Therefore,
�(ϕ2)− �(ϕbf

) ≥ �max/4. This together with Equation (14) gives that

�(ϕ2)−�(ϕbf
) =

∑

j=1,...,f

(
�(ϕbj−1)− �(ϕbj)

)
≤

∑

j=1,...,f

4/zbj+1 = Θ(�max) . (15)

Using Lemma 6 and Inequality (15) the total number of s-phases is
∑

i=1,...,f

Ω(log �)/zbi+1 = log �
∑

i=1,...,f

1/zbi+1 = Ω(�max log �max).

As described in the proof sketch this gives �max = O(logm/(log logm)2) as
required. We conclude:

Theorem 2. The strong price of anarchy for m related machines is

Θ
(
logm/(log logm)2

)
.

4 Unrelated Machines

Strong Price of Anarchy. We can show that the strong price of anarchy
for m unrelated machine load balancing is at most m, improving the 2m − 1
upper bound given by Andelman et al. [2]. Our new upper bound is tight since
it matches the lower bound shown in [2].

Theorem 3. The strong price of anarchy for m unrelated machine load balanc-
ing is at most m.

594 A. Fiat et al.

k-Strong Price of Anarchy. In this section we consider coalitions of size at
most k, where k ≥ m (for k < m the upper bound is unbounded). Andelman et
al. [2] show that for m machines and n ≥ m players the k-strong price of anarchy
is O(nm2/k) and Ω(n/k). We give a refined analysis:

Theorem 4. The k-strong price of anarchy for m unrelated machine load bal-
ancing, k ≥ m, and given n jobs, c = Θ(m(n − m)/(k − m)), more precisely,
(m− 1)(n−m+ 1)/(k −m+ 1) ≤ c ≤ 2m(n−m+ 1)/(k −m+ 2).

References

1. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On nash equilibria
for a network creation game. In: SODA, pp. 89–98 (2006)

2. Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. In: SODA (2007)
3. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,

T.: The price of stability for network design with fair cost allocation. In: FOCS,
pp. 295–304 (2004)

4. Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network design
with selfish agents. In: STOC, pp. 511–520 (2003)

5. Aumann, R.J.: Acceptable points in general cooperative n-person games. In:
Tucker, A.W., Luce, R.D. (eds.) Contribution to the Thoery of Games. Annals
of Mathematics Studies, 40, vol. IV, pp. 287–324 (1959)

6. Awerbuch, B., Azar, Y., Epstein, A.: Large the price of routing unsplittable flow.
In: STOC, pp. 57–66 (2005)

7. Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria.
In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 41–52.
Springer, Heidelberg (2003)

8. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: STOC, pp. 67–73 (2005)

9. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 345–357. Springer, Heidelberg (2004)

10. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: SODA, pp.
413–420 (2002)

11. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a net-
work creation game. In: PODC, pp. 347–351 (2003)

12. Fiat,A.,Kaplan,H.,Levy,M.,Olonetsky,S.,Shabo,R.:Onthepriceof stability forde-
signing undirected networks with fair cost allocations. In: ICALP, pp. 608–618 (2006)

13. Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games and
Economic Behavior 21(1-2), 85–101 (1997)

14. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: STACS, pp. 404–413
(1999)

15. Mavronicolas, M., Spirakis, P.: The price of selfish routing. In: STOC, pp. 510–519
(2001)

16. Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)
17. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In:

STOC (1999)
18. Rozenfeld, M.T.O.: Strong and correlated strong equilibria in monotone congestion

games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006.
LNCS, vol. 4286, pp. 74–86. Springer, Heidelberg (2006)

19. Roughgarden,T.,Tardos,E.:Howbadisselfishrouting?J.ACM49(2),236–259(2002)

Efficient Algorithms for

Constant Well Supported Approximate
Equilibria in Bimatrix Games�

Spyros C. Kontogiannis1,2 and Paul G. Spirakis2

1 Department of Computer Science, University Campus, 45110 Ioannina, Greece
kontog@cs.uoi.gr

2 Research Academic Computer Technology Institute, N. Kazantzaki Str., Patra
University Campus, 26500 Rio-Patra, Greece

{kontog,spirakis}@cti.gr

Abstract. In this work we study the tractability of well supported ap-
proximate Nash Equilibria (SuppNE in short) in bimatrix games. In view
of the apparent intractability of constructing Nash Equilibria (NE in
short) in polynomial time, even for bimatrix games, understanding the
limitations of the approximability of the problem is of great importance.

We initially prove that SuppNE are immune to the addition of ar-
bitrary real vectors to the rows (columns) of the row (column) player’s
payoff matrix. Consequently we propose a polynomial time algorithm
(based on linear programming) that constructs a 0.5−SuppNE for arbi-
trary win lose games.

We then parameterize our technique for win lose games, in order to
apply it to arbitrary (normalized) bimatrix games. Indeed, this new tech-

nique leads to a weaker φ−SuppNE for win lose games, where φ =
√

5−1
2

is the golden ratio. Nevertheless, this parameterized technique extends
nicely to a technique for arbitrary [0, 1]−bimatrix games, which assures
a 0.658−SuppNE in polynomial time.

To our knowledge, these are the first polynomial time algorithms pro-
viding ε−SuppNE of normalized or win lose bimatrix games, for some
nontrivial constant ε ∈ [0, 1), bounded away from 1.

Keywords: Bimatrix Games, Well Supported Approximate Equilibria.

1 Introduction

One of the most appealing concepts in game theory is the notion of a Nash
equilibrium: A collection of strategies for the players from which no player has an
incentive to unilaterally deviate. The extremely nice thing about Nash equilibria
is that they always exist in any finite k−person game in normal form [19]. This
is one of the most important reasons why Nash equilibria are considered to
be the prevailing solution concept for strategic games. The problem with Nash
� This work was partially supported by the 6th Framework Programme under contract

001907 (DELIS).

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 595–606, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

kontog@cs.uoi.gr
{kontog,spirakis}@cti.gr

596 S.C. Kontogiannis, and P.G. Spirakis

equilibria is that there can be exponentially many of them, of quite different
characteristics, even for bimatrix games. Additionally, we do not know yet how
to construct them (not even approximately). Therefore, k−NASH, the problem
of computing an arbitrary Nash equilibrium of a finite k−person game in normal
form, is a fundamental problem in algorithmic game theory and perhaps one of
the most outstanding problems at the boundary of P [21]. Its complexity has
been a long standing open problem, since the introduction of the pioneering
pivoting algorithm of Lemke and Howson [17]. Unfortunately, it was recently
shown by Savani and von Stengel [22] that this algorithm requires an exponential
number of steps, and its smoothed complexity is also superpolynomial. It is also
quite interesting that many (quite natural) refinements of k−NASH are known
to be NP−complete problems [13,7].

A flurry of results in the last two years has proved that k−NASH is indeed
PPAD−complete, even for four players [9], three players [12], and two play-
ers [4]. In particular, the result of Chen and Deng [4], complemented by that of
Abbott, Kane and Valiant [1], shows that 2−NASH is PPAD−complete even
for win lose bimatrix games. Essentially, it is now clear that the complexity class
PPAD, introduced by Papadimitriou [20], indeed captures the whole class of
finite 2−person games in normal form.

Due to the apparent hardness even of 2−NASH, approximate solutions to
Nash equilibria have lately attracted the attention of the research community.
There are two different notions of approximate Nash equilibria: Those which
require that each player gets the maximum possible payoff, within some additive
constant ε (denoted here by ApproxNE), and those which require that each
player is allowed to adopt wpp1 only actions that are approximate pure best
responses, ie, at most an additive term ε smaller than the payoff of a best response
strategy against the (fixed) strategy of the opponent (denoted here by SuppNE).
ApproxNE seem to be the dominant notion of approximate equilibria in the
literature, while SuppNE is a rather new notion (eg, see [5,6,10,16]). As it will
be explained later, SuppNE seem to be much harder notions of approximate
equilibria to construct. On the other hand they might be naturally motivated
by the players’ selfish behavior: Rather than demanding that a player adopts
wpp only pure best responses against the opponent’s strategy, we allow them
to choose approximate pure best responses. This is in contrast to the notion of
ApproxNE, in which the two players have no restriction in what kind of actions
they choose to play wpp, so long as their payoffs are close to their best response
payoffs. We would like to argue in this paper that SuppNE is a quite interesting
notion of approximate Nash equilibria, due to both its mathematical challenge
and also its additional property that the players are not allowed to adopt wpp
actions that are indeed meaningless to them.

The present paper is a work providing (to our knowledge) the first polyno-
mial time algorithms for SuppNE in arbitrary (normalized or win lose) bimatrix
games, for some constant that is clearly bounded away from the trivial constant
of 1. Indeed, for win lose games we provide an algorithm for 0.5−SuppNE, which

1 With positive probability.

Efficient Algorithms for Constant Well Supported Approximate Equilibria 597

is close to the strongest result of 0.38−ApproxNE for the much weaker notion of
approximate NE, provided in [11]. For arbitrary (normalized) bimatrix games,
we provide an algorithm for 0.658−SuppNE.

2 Preliminaries

2.1 Mathematical Notation

For any integer k ∈ N, [k] ≡ {1, 2, . . . , k}. We denote by M ∈ Fm×n any
m × n matrix whose elements have values in some set F . We also denote by
(A,B) ∈ (F×F)m×n anym×nmatrix whose elements are pairs of values from F .
Equivalently, this structure can be seen as a pair ofm×nmatrices A,B ∈ Fm×n.
Such a matrix is called a bimatrix and we denote the m× n matrix of the first
coordinates of its elements by A, while the matrix of the second coordinates of
its elements is B. A k×1 matrix is also considered to be an k-vector. Vectors are
denoted by bold small letters (eg, x,y). A vector having a 1 in the i-th position
and 0 everywhere else is denoted by ei. We denote by 1k (0k) the k-vector
having 1s (0s) in all its coordinates. The k × k matrix E = 1k · 1k

T ∈ {1}k×k
has value 1 in all its elements. For a pair of vectors x,y ∈ Rn, x � y denotes
their component–wise comparison. Matrices are denoted by capital letters (eg,
A,B,C, . . .), and bimatrices are denoted by ordered pairs of capital letters (eg,
(A,B), (R,C), . . .). For any m × n (bi)matrix M , Mj is its j-th column (as an
m × 1 vector), M i is the i-th row (as a (transposed) 1 × n vector) and Mi,j is
the (i, j)-th element.

For any integer r � 1, we denote by Δr ≡ {z ∈ Rr : z � 0; (1r)T z = 1} the
(r − 1)-simplex. The subset Δr(k) = {x ∈ Δr : kx ∈ Zr} denotes the points
in Δr whose elements are multiples of 1

k . Also, Δ̂r(k) = Δr

⋂{
0, 1

k

}r contains
the points in the (r − 1)−simplex that assign probability mass either zero or
1
k to each element. For any point z ∈ Δr, its support supp(z) is the set of
coordinates with positive value: supp(z) ≡ {i ∈ [r] : zi > 0}.

For an arbitrary logical expression E , we denote by P {E} the probability of
this expression being true, while I{E} is the indicator variable of whether this
expression is true or false. For any random variable x, E {x} is its expected value.

2.2 Game Theoretic Definitions and Notation

An m× n bimatrix game 〈A,B〉 is a 2−person game in normal form, that is
determined by the bimatrix (A,B) ∈ (R × R)m×n as follows: The first player
(called the row player) has an m−element action set [m], and the second player
(called the column player) has an n−element action set [n]. Each row (column)
of the bimatrix corresponds to a different action of the row (column) player. The
row and the column player’s payoffs are determined by the m× n real matrices
A and B respectively. In the special case that the payoff matrices have only
rational entries, we refer to a rational bimatrix game. If both payoff matrices
belong to [0, 1]m×n then we have a [0, 1]−(bimatrix) game (aka a normalized
bimatrix game). The special case of bimatrix games in which all elements of

598 S.C. Kontogiannis, and P.G. Spirakis

the bimatrix belong to {0, 1}×{0, 1}, is called a {0, 1}−(bimatrix) game (aka
a win lose game). A {0, 1}−bimatrix game having (for some integer λ � 1)
at most λ (1, 0)−elements per row and at most λ number (0, 1)−element per
column of the bimatrix, is called a λ−sparse game. A bimatrix game 〈A,B〉 is
called zero sum, if it happens that B = −A. In that case the game is solvable
in polynomial time, since the two players’ optimization problems form a primal–
dual linear programming pair [8, Ch.13.2]. In all cases of bimatrix games we
assume wlog2 that 2 � m � n.

Any probability distribution on the action set [m] of the row player, ie, any
point x ∈ Δm, is a mixed strategy for her. Ie, the row player determines
her action independently from the column player, according to the probability
distribution determined by x. Similarly, any point y ∈ Δn is a mixed strategy
for the column player. Each extreme point ei ∈ Δm (ej ∈ Δn) that enforces the
use of the i-th row (j-th column) by the row (column) player, is called a pure
strategy for her. Any element (x,y) ∈ Δm×Δn is a (mixed in general) strategy
profile for the players. We now define the set of approximate best responses for
the two players, that will help us simplify the forthcoming definitions:

Definition 1 (Approximate Best Responses). Fix any constant ε � 0, any
bimatrix game 〈A,B〉 and any profile (x,y). The sets of ε−approximate best
responses and ε−approximate pure best responses of the row player are
defined as: BR(ε,A,y) ≡

{
x ∈ Δm : xTAy � zTAy − ε, ∀z ∈ Δm

}
and PBR

(ε,A,y) ≡
{
i ∈ [m] : Aiy � Ary − ε, ∀r ∈ [m]

}
respectively. The sets of

approximate (pure) best responses of the column player are defined as:
BR(ε,BT ,x) ≡

{
y ∈ Δn : yTBTx � zTBTx− ε, ∀z ∈ Δn

}
and PBR

(ε,BT ,x) ≡
{
j ∈ [n] : BT

j x � BT
r x− ε, ∀r ∈ [n]

}
.

We now provide the definition of Nash Equilibria [19] wrt3 bimatrix games:

Definition 2 (Nash Equilibrium). For any bimatrix game 〈A,B〉, a profile
(x,y) is a Nash Equilibrium (NE in short) iff x ∈ BR(0, A,y) and y ∈
BR(0, BT ,x). Equivalently, supp(x) ⊆ PBR(0, A,y) and supp(y) ⊆ PBR
(0, BT ,x).

Due to the apparent difficulty in computing NE for arbitrary bimatrix games,
the recent trend is to look for approximate equilibria. The definition of the
approximate equilibria is then as follows:

Definition 3 (Approximate Nash Equilibria). For any ε � 0 and any bi-
matrix game 〈A,B〉, a profile (x,y) is: (a) An ε−approximate Nash Equi-
librium (ε−ApproxNE in short) iff each player chooses an ε−approximate best
response: [x ∈ BR(ε,A,y)] ∧

[
y ∈ BR(ε,BT ,x)

]
. (b) An ε−well–supported

Nash Equilibrium (ε−SuppNE in short) iff each player assigns positive proba-
bility only to ε−approximate pure best responses: supp(x) ⊆ PBR(ε,A,y) and
supp(y) ⊆ PBR(ε,BT ,x) .

2 Without loss of generality.
3 With respect to.

Efficient Algorithms for Constant Well Supported Approximate Equilibria 599

Clearly, any NE is both a 0−ApproxNE and a 0−SuppNE. On the other hand,
every ε−SuppNE is also ε−ApproxNE, but not necessarily vice versa. Indeed,
the only thing we currently know is that from arbitrary ε2

8n−ApproxNE one
can construct an ε−SuppNE in polynomial time [5]. It is also known that both
ε−ApproxNE and ε−SuppNE are not affected by shifting of the game by some
real constant. In Lemma 1 we refine this by showing that the addition of arbitrary
row vector rT to all the rows of A and the addition of arbitrary column vector
c to all the columns of B, does not affect the SuppNE of the game.

Remark: Note that both notions of approximate equilibria are defined wrt an
additive error term ε. Although (exact) NE are known not to be affected by any
positive scaling, it is important to mention that approximate notions of NE are
indeed affected. Therefore, from now on we adopt the commonly used assumption
in the literature (eg, [18,10,15,4,5,16]) that, when referring to ε−ApproxNE or
ε−SuppNE, the bimatrix game is considered to be a [0, 1]−bimatrix game.

Of particular importance are the so–called uniform strategies (and profiles) for
the players, initially proposed by [18]. The definition is as follows:

Definition 4 (Uniform Profiles). A point x ∈ Δr(k) is called a k−uniform
strategy. If x ∈ Δ̂r(k) then we refer to a strict k−uniform strategy. A
profile (x,y) ∈ Δm ×Δn for which x is a (strict) k−uniform strategy and y is
a (strict) �−uniform strategy, is called a (strict) (k, �)−uniform profile.

We shall denote by k−NASH the problem of constructing an arbitrary NE for a
finite k−player game in normal form.

3 Related Work

The computability of NE in bimatrix games has been a long standing open
problem for many years. The most popular algorithm for computing NE in these
games, is the algorithm of Lemke and Howson [17]. Unfortunately, it has been
recently proved that this pivoting algorithm can make an exponential number
of steps before finding a NE, no matter which starting point is chosen [22]. It
is also well known that various (quite natural) restrictions of the problem (eg,
uniqueness, bounds on support sizes, etc) lead to NP−hard problems [13,7].

In view of all the hardness results for 2−NASH mentioned in Section 1, un-
derstanding the limitations of the (in)approximability of the problem is quite
important. To our knowledge, the first result that provides ε−ApproxNE within
subexponential time, is the work of Lipton et al. [18]. In particular, for any con-
stant ε > 0, the authors prove the existence of an ε−ApproxNE for arbitrary
n× n bimatrix games, which additionally is a uniform profile that has supports
of size only O

(
log n
ε2

)
. This leads to a rather simple subexponential algorithm

for constructing ε−ApproxNE for [0, 1]−bimatrix games, by a simple support

600 S.C. Kontogiannis, and P.G. Spirakis

enumeration approach, up to sizes
⌈

logn
ε2

⌉
for each player. A completely analo-

gous result has also been proved in [16] also for ε−SuppNE, as a simple applica-
tion of Althöfer’s Approximation Lemma [2]. The support enumeration approach
still remains the fastest strategy to date, for the general problem of providing
either ε−ApproxNE or ε−SuppNE for any constant ε > 0.

With respect to the tractability of a FPTAS for approximate equilibria, [5]
proved that providing a FPTAS for 2−NASH is also PPAD−complete. Namely,
they proved that unless PPAD ⊆ P, there is no algorithm that constructs
ε−ApproxNE in time poly(n, 1/ε), for any ε = n−Θ(1). Moreover, they proved
that unless PPAD ⊆ RP, there is no algorithm that constructs a NE in time
poly(n, 1/σ), where σ is the size of the deviation of the elements of the bima-
trix. This latter result essentially states that even the smooth complexity of the
algorithm of Lemke and Howson is not polynomial.

Two parallel results [10,15] made progress in the direction of providing the
first ε−ApproxNE for [0, 1]−bimatrix games and some constant ε ∈ [0, 1). In par-
ticular, [10] gave a nice and simple 0.5−ApproxNE for [0, 1]−bimatrix games,
involving only two strategies per player. They also proposed an algorithm, which,
under a quite interesting graph theoretic conjecture, constructs in polynomial
time a non–trivial SuppNE. Unfortunately, the exact status of the conjecture
is still unknown. Independently, [15] provided a 3

4−ApproxNE, as well as a pa-
rameterized 2+λ

4 −ApproxNE for arbitrary [0, 1]−bimatrix games, where λ is the
minimum payoff of a player at a NE of the game. The currently best known
result is the polynomial–time construction of a 0.38−ApproxNE [11].

To our knowledge, the only polynomial time algorithm for constructing non–
trivial SuppNE for arbitrary [0, 1]−bimatrix games, was very recently presented
in [16]. The quality of this SuppNE depends on the girth of the Nash Dynamics
graph, in a properly constructed 0, 1−game. Indeed, this technique works partic-
ularly well in cases of bimatrix games corresponding to sparse 0, 1−games with
large girth, or 0, 1−games of constant girth.

As for random [0, 1]−bimatrix games, the work of Bárány, Vempala and Vetta
[3] consider the case where all the cells of the payoff matrices are (either uni-
form, or normal) iid4 random variables in [0, 1]. They analyze a simple Las
Vegas algorithm for finding a NE in such a game, by brute force on the sup-
port sizes, starting from smaller ones. The running time of their algorithm
is O

(
m2n log logn+ n2m log logm

)
, whp5. In [16] it was shown that a ran-

dom [0, 1]−bimatrix game has the (trivial to construct) uniform full mix as an

O
(√

log n
m

)
−SuppNE, under very mild assumptions on randomness, which only

require that each row (column) of the bimatrix has its cumulative expectation
sharply concentrated. Additionally, in the same work it was shown that whp a
random 0, 1−game either has a pure NE, or a 0.5−SuppNE with support size 2
for both players, (both detectable in polynomial time).

4 Independent, identically distributed.
5 With high probability, ie, with probability 1−m−c, for some constant c > 0.

Efficient Algorithms for Constant Well Supported Approximate Equilibria 601

4 Our Contribution and Roadmap

The contribution of this paper is the following: We initially construct a 0.5−
SuppNE for arbitrary {0, 1}−games, exploiting the tractability of zero sum
games (cf. Section 5). To our knowledge, this is the first constant SuppNE for
arbitrary win lose games. Essentially, we split evenly the divergence from a zero
sum game, between the two players. Then we solve this zero sum game in poly-
nomial time, using its direct connection to Linear Programming [8, Ch.13.2].
The computed NE of the zero sum game we consider, is indeed proved to be also
a 0.5−SuppNE for the initial {0, 1}−game.

Consequently (cf. Section 6) we propose a polynomial time algorithm for con-
structing a 0.658−SuppNE for any [0, 1]−bimatrix game. Again we make only
one call to a Linear Programming solver. Interestingly, we need to develop a
methodology that constructs φ−SuppNE for {0, 1}−games, where φ =

√
5−1
2 is

the golden ratio. This is clearly worse than the one obtained in the previous
section, but nevertheless is easily extended to [0, 1]−bimatrix games, with only
a small deterioration. Additionally, it demonstrates that the even split of the
divergence from a zero sum game (which is the optimum choice for win lose
games) is not the best choice in case of [0, 1]−bimatrix games in general.

5 Construction of a 0.5−SuppNE for {0, 1}−Games

In this section we provide a constant SuppNE for any {0, 1}−game, which di-
rectly translates to a constant SuppNE for arbitrary [0, 1]-bimatrix games, if one
exploits a nice observation of [10]. First of all we show that additive transforma-
tions have no effect on well supported equilibria. An analogous result was shown
for exact NE in [14]:

Lemma 1. Fix arbitrary [0, 1]−bimatrix game 〈A,B〉 and any real matrices
R,C ∈ Rm×n, such that ∀i ∈ [m], Ri = rT ∈ Rn and ∀j ∈ [n], Cj = c ∈ Rm.
Then, ∀ε ∈ (0, 1), ∀(x,y) ∈ Δm ×Δn, if (x,y) is an ε−SuppNE for 〈A,B〉 then
it is also an ε−SuppNE for 〈A+R,B + C〉.

Proof. Suppose that (x,y) is an ε−SuppNE for 〈A,B〉. We shall prove that it
is also a ε−SuppNE for 〈A + R,B + C〉. By the definition of SuppNE, it holds
that: (x,y) ∈ ε−SuppNE(A,B)⇔

⇔
{
∀i, r ∈ [m], xi > 0⇒ Aiy � Ary − ε ⇒ Aiy + rTy � Ary + rTy − ε
∀j, s ∈ [n], yj > 0⇒ BT

j x � BT
s x− ε⇒ BT

j x + cTx � BT
s x + cTx− ε

⇔
{
∀i, r ∈ [m], xi > 0⇒ (A+R)iy � (A+R)ry − ε
∀j, s ∈ [n], yj > 0⇒ (B + C)Tj x � (B + C)Ts x− ε

⇔ (x,y) ∈ ε−SuppNE(A+R,B+C)

Our next theorem constructs the “right” zero sum game that would stand be-
tween the two extreme zero sum games 〈A,−A〉 and 〈−B,B〉, wrt an arbitrary
{0, 1}−game 〈A,B〉.

602 S.C. Kontogiannis, and P.G. Spirakis

Theorem 1. For arbitrary {0, 1}−bimatrix game 〈A,B〉, there is a polynomial
time constructible profile that is a 1

2−SuppNE of the game.

Proof. Consider arbitrary {0, 1}−game 〈A,B〉 ∈ {(0, 0), (0, 1), (1, 0)}m×n. We
have excluded the (1, 1)−elements because these are trivial PNE of the game.
We transform the bimatrix (A,B) into the bimatrix (R,C) by subtracting 0.5
from all the possible payoffs in the bimatrix: R = A − 1

2E and C = B − 1
2E,

where E = 1 · 1T . We already know that this transformation does not affect the
quality of a SuppNE (cf. Lemma 1). Therefore, ∀ε ∈ [0, 1), each ε−SuppNE for
〈R,C〉 will also be an ε−SuppNE for 〈A,B〉.

We observe that the row player would never accept a payoff less than the
one achieved by the (exact) Nash equilibrium (x̂, ŷ) of the (zero sum) game
〈R,−R〉. This is because strategy x̂ is a maximin strategy for the row player,
and thus the row player can achieve a payoff of at least V̂I ≡ x̂TRŷ by adopting
x̂, for any possible column that the column player chooses wpp. Similarly, the
column player would never accept a profile (x,y) with payoff for her less than
ṼII ≡ x̃TCỹ, where (x̃, ỹ) is the (exact) NE of the zero sum game 〈−C,C〉. So,
we already know that any 0−SuppNE for 〈R,C〉 should assure payoffs at least
V̂I and at least ṼII for the row and the column player respectively. Clearly, (x̂, ỹ)
is a max

{
1
2 − V̂I ,

1
2 − ṼII

}
−ApproxNE of the game, but we cannot assure that

it is a nontrivial SuppNE of 〈R,C〉. Nevertheless, inspired by this observation,
we attempt to set up the right zero sum game that is somehow connected to
〈R,C〉, whose (exact) NE would provide a good SuppNE for 〈R,C〉. Therefore,
we consider an arbitrary zero sum game 〈D,−D〉, for which it holds that D =
R + X ⇔ X = D − R and −D = C + Y ⇔ Y = −(D + C) for some m × n
bimatrix (X,Y). Let again (x̄, ȳ) ∈ NE(D,−D). Then we have:

(x̄, ȳ) ∈ NE(D,−D) = NE(R+X,C + Y)⇔

⇔
{
∀i, r ∈ [m], x̄i > 0⇒ (R +X)iȳ � (R +X)rȳ
∀j, s ∈ [n], ȳj > 0⇒ (C + Y)Tj x̄ � (C + Y)Ts x̄

⇔
{
∀i, r ∈ [m], x̄i > 0⇒ Riȳ � Rrȳ − [X i −Xr]ȳ
∀j, s ∈ [n], ȳj > 0⇒ CT

j x̄ � CT
s x̄− [Yj − Ys]T x̄

Let Z ≡ −(R+C). Since D = R+X = −(−D) = −(C + Y)⇔ −Z = R+C =
−(X + Y), we can simply set X = Y = 1

2Z, and then we conclude that:

(x̄, ȳ) ∈ NE(D,−D)⇔
{
∀i, r ∈ [m], x̄i > 0⇒ Riȳ � Rrȳ − 1

2 · [Zi − Zr]ȳ
∀j, s ∈ [n], ȳj > 0⇒ CT

j x̄ � CT
s x̄− 1

2 · [Zj − Zs]T x̄

Observe now that, since R,C ∈
{(
− 1

2 ,−
1
2

)
,
(
− 1

2 ,
1
2

)
,
(

1
2 ,−

1
2

)}m×n, any row
of Z = −(R + C) is a vector in {0, 1}n, and any column of Z is a vector in
{0, 1}m. But it holds that ∀ẑ, z̃ ∈ {0, 1}k, ∀w ∈ Δk, (ẑ − z̃)Tw � 1Tw = 1.
So we can be sure that ∀i, r ∈ [m], ∀y ∈ Δn, [Zi − Zr]y � 1Ty = 1, and
∀j, s ∈ [n], ∀x ∈ Δm, [Zj − Zs]Tx � 1Tx = 1. Therefore we conclude that:

(x̄, ȳ) ∈ NE
(
R +

1
2
Z,C +

1
2
Z

)
⇒

{
∀i, r ∈ [m], x̄i > 0⇒ Riȳ � Rrȳ − 1

2
∀j, s ∈ [n], ȳj > 0⇒ CT

j x̄ � CT
s x̄− 1

2

Efficient Algorithms for Constant Well Supported Approximate Equilibria 603

⇒ (x̄, ȳ) ∈ 0.5−SuppNE(R,C) .

6 SuppNE for [0, 1]−Bimatrix Games

Given our result on {0, 1}−games, applying a Lemma of Daskalakis et al. [10,
Lemma 4.6] for constructing 1+ε

2 −SuppNE of a [0, 1]−bimatrix game 〈A,B〉 by
any ε−SuppNE of a properly chosen {0, 1}−game of the same size, we could
directly generalize our result on SuppNE for {0, 1}−bimatrix games to SuppNE
for any [0, 1]−bimatrix game:

Corollary 1. For any [0, 1]−bimatrix game 〈A,B〉, there is a 3
4−SuppNE that

can be computed in polynomial time.

The question is whether we can do better than that. Indeed we can, but we
first have to modify the rationale of the proof of Theorem 2. This way we shall
get a weaker SuppNE for {0, 1}−games, which we can nevertheless extend to
[0, 1]−bimatrix games with only a small deterioration. The next theorem demon-
strates the parameterized method for {0, 1}−games, which assures a φ−SuppNE.

Theorem 2. For any {0, 1}−bimatrix game, there is a polynomial–time con-
structible ε(δ)−SuppNE for any δ ∈ (0, 1), where ε(δ) � max

{
δ, 1−δ

δ

}
.

Proof. Again we try to find a zero sum game that lies somehow between 〈R,−R〉
and 〈−C,C〉 and indeed provides a guaranteed SuppNE for 〈R,C〉. Therefore,
we fix a constant δ ∈ (0, 1) (to be determined later). Consequently, we consider
the matrix Z = −(R+C) ∈ {0, 1}m×n, indicating (with 1s) the elements of the
bimatrix (R,C) that are (− 1

2 ,−
1
2)−elements (ie, the (0, 0)−elements of initial

bimatrix (A,B)). All the other elements are 0s. We now consider the zero sum
bimatrix game 〈R + δZ,−(R + δZ)〉, which is solvable in polynomial time (by
use of linear programming). We denote with (x̄, ȳ) the (exact) NE of this game.
Exploiting the definition of NE we have:

(x̄, ȳ) ∈ NE(R+ δZ,−(R+ δZ))⇔

⇔
{
∀i, r ∈ [m], x̄i > 0⇒ (R+ δZ)iȳ � (R + δZ)rȳ
∀j, s ∈ [n], ȳj > 0⇒ (−R− δZ)Tj x̄ � (−R− δZ)Ts x̄

⇔
{
∀i, r ∈ [m], x̄i > 0⇒ Riȳ + δZiȳ � Rrȳ + δZrȳ
∀j, s ∈ [n], ȳj > 0⇒ (1 − δ)RTj x̄ + δ(R+ Z)Tj x̄�(1− δ)RTs +δ(R+ Z)Ts x̄

⇔
{
∀i, r ∈ [m], x̄i > 0⇒ Riȳ + δZiȳ � Rrȳ + δZrȳ
∀j, s ∈ [n], ȳj > 0⇒ −(1− δ)RTj x̄ + δCT

j x̄ � −(1− δ)RTs x̄ + δCT
s x̄

⇔
{
∀i, r ∈ [m], x̄i > 0⇒ Riȳ � Rrȳ − δ[Zi − Zr]ȳ � Rrȳ − ε(δ)
∀j, s ∈ [n], ȳj > 0⇒ CT

j x̄ � CT
s x̄− 1−δ

δ · [RTs −RTj]x̄ � CT
s x̄− ε(δ)

where we exploited the fact that C = −(R+ Z), and we denote

ε(δ) ≡ max
i,r∈[m],j,s∈[n],x∈Δm,y∈Δn

{
δ ·

[
Zi − Zr

]
y,

1− δ
δ
·
[
RTs −RTj

]
x
}

(1)

604 S.C. Kontogiannis, and P.G. Spirakis

Obviously, for any δ ∈ (0, 1] it holds that (x̄, ȳ) is an ε(δ)−SuppNE for 〈R,C〉.
We already proved that ∀i, r ∈ [m], ∀y ∈ Δn, [Zi − Zr]y � 1Ty = 1. Similarly,
every column of R is a vector from

{
− 1

2 ,
1
2

}m. But the difference û − ũ of
any vectors û, ũ ∈

{
− 1

2 ,
1
2

}m is a vector from {−1, 0, 1}m. Therefore, ∀û, ũ ∈{
− 1

2 ,
1
2

}m
, ∀x ∈ Δm, (û− ũ)Tx � 1Tx = 1. So, ∀δ ∈ (0, 1], ε(δ) � max

{
δ, 1−δ

δ

}
.

Remark: If we simply set δ = 1−δ
δ =

√
5−1
2 , we conclude that (x̄, ȳ) is a

0.618−SuppNE for 〈R,C〉, and therefore for 〈A,B〉. Of course, this golden ra-
tio SuppNE is inferior to the previously constructed 0.5−SuppNE for {0, 1}−
bimatrix games. But it extends nicely to [0, 1]−games, using the bound of equa-
tion (1).

Now we extend our technique for {0, 1}−games to a technique for arbitrary
[0, 1]−bimatrix games:

Theorem 3. For any [0, 1]−bimatrix game, a
(√

11
2 − 1

)
−SuppNE is

constructible in polynomial time.

Proof. We transform our initial [0, 1]−bimatrix game 〈A,B〉 to the correspond-
ing [− 1

2 ,
1
2]−bimatrix game 〈R,C〉 where R = A− 1

2E and C = B− 1
2E, without

affecting the quality of the produced SuppNE. Our steps are in complete analogy
as in the proof of Theorem 2.

Let’s assume that we look for some ζ−SuppNE of 〈R,C〉. It is clear that the
existence of any element (R,C)i,j ∈ [12 −ζ,

1
2]× [12 −ζ,

1
2] would indicate a (pure)

profile (ei, ej) that is already a ζ−SuppNE. Since these are detectable in time
O(nm), we suppose wlog that for each element of the bimatrix (R,C), it holds
that (Ri,j < 1

2 − ζ) ∨ (Ci,j < 1
2 − ζ).

We again try to find a zero sum bimatrix game that lies between 〈R,−R〉,
and 〈−C,C〉, by using a constant δ ∈ (0, 1] (to be determined later). Due to
the same reasoning as in the proof of Theorem 2, we conclude that any (x̄, ȳ) ∈
0−SuppNE(R + δZ,−(R+ δZ)) is actually an ε(δ)−SuppNE for 〈R,C〉, where
ε(δ) is defined in equation (1), since there was no use (up to that point) of the
fact that indeed we had a {0, 1}−bimatrix game.

Now, in order to find an upper bound in ε(δ), we first observe that ∀j, s ∈
[n], Rs, Rj ∈ [− 1

2 ,
1
2]m, and therefore, ∀x ∈ Δm, (Rs −Rj)Tx � 1. Similarly, for

Z we observe that ∀(i, j) ∈ [m]× [n],

−1
2

� Ri,j , Ci,j <
1
2
− ζ ⇒ −1 + 2ζ < Zi,j = −(Ri,j + Ci,j) � 1

−1
2

� Ri,j <
1
2
− ζ � Ci,j � 1

2
⇒ −1 + ζ < Zi,j = −(Ri,j + Ci,j) � ζ

So, we conclude that Z ∈ (−1 + ζ, 1]m×n and therefore, ∀i, r ∈ [m], ∀y ∈
Δn, (Zi − Zr)y � 1 − (−1 + ζ) = 2 − ζ. So, we have already proved that
∀δ ∈ (0, 1], ε(δ) � max{(2− ζ)δ, 1−δ

δ }. We assure that (2− ζ)δ � 1−δ
δ by simply

choosing δ∗ =
√

8−4ζ−1
2(2−ζ) . Then ε∗ = ε(δ∗) �

√
8−4ζ−1

2 . We want this to be at most

Efficient Algorithms for Constant Well Supported Approximate Equilibria 605

Table 1. Synopsis of results for SuppNE in win lose and normalized bimatrix games

GT [16] LP Random [16]

Win Lose

1− 2/g

λ−sparse with large
girth g, ie, λ = o(g) o(1)

0.5
whp, either ∃ PNE
or ∃ 0.5−SuppNE

with support sizes 2

Normalized

1− 1/g

λ−sparse win lose
image with large
girth

1+o(1)
2

√
11
2 − 1

Uniform full mix is whp

O
��

log m
m

�
−SuppNE

equal to ζ, our initial goal. Therefore, we choose ζ �
√

8−4ζ−1
2 ⇔ 4ζ2+8ζ−7 � 0.

From this last inequality, our best choice is ζ∗ =
√

11
2 − 1 and we are done.

Remark: It is worth mentioning that if we had applied our technique to the
first algorithm for computing 0.5−SuppNE in {0, 1}−games, then this would
lead to a 0.667−SuppNE for the [0, 1]−bimatrix game 〈A,B〉 which is strictly
worse than our current result. Ie, equidistribution (between the two players) of
the divergence from the zero sum game is not the right choice for the general
algorithm.

7 Conclusions

In this work we have made substantial progress towards the construction of
SuppNE in bimatrix games. Namely, we propose efficient algorithms for the con-
struction of 0.5−SuppNE for win lose bimatrix games and 0.658−SuppNE for ar-
bitrary [0, 1]−bimatrix games. These are complementary results to a recent work
of ours [16], where we provided SuppNE for both {0, 1}− and [0, 1]−bimatrix
games, whose quality depends on the girth of the Nash Dynamics graph. That
(combinatorial) approach proved to be extremely good in sparse {0, 1}−games
with large girth in the Nash Dynamics graph. Our new (LP based) approach
proposed in the present paper, always produces a constant SuppNE, regardless
of the structure of the Nash Dynamics graph of the game. The summary of
results for SuppNE is presented in Table 1.

References

1. Abbott, T., Kane, D., Valiant, P.: On the complexity of two-player win-lose games.
In: Proc. of the 46th IEEE Symp. on Found. of Comp. Sci (FOCS ’05), pp. 113–122.
IEEE Computer Society Press, Los Alamitos (2005)

2. Althöfer, I.: On sparse approximations to randomized strategies and convex com-
binations. Linear Algebra and Applications 199, 339–355 (1994)

3. Bárány, I., Vempala, S., Vetta, A.: Nash equilibria in random games. In: Proc. of
the 46th IEEE Symp. on Found. of Comp. Sci (FOCS ’05), pp. 123–131. IEEE
Computer Society Press, Los Alamitos (2005)

606 S.C. Kontogiannis, and P.G. Spirakis

4. Chen, X., Deng, X.: Settling the complexity of 2-player nash equilibrium. In: Proc.
of the 47th IEEE Symp. on Found. of Comp. Sci (FOCS ’06), pp. 261–272. IEEE
Computer Society Press, Los Alamitos (2006)

5. Chen, X., Deng, X., Teng, S.H.: Computing nash equilibria: Approximation and
smoothed complexity. In: Proc. of the 47th IEEE Symp. on Found. of Comp. Sci
(FOCS ’06), pp. 603–612. IEEE Computer Society Press, Los Alamitos (2006)

6. Chen, X., Deng, X., Teng, S.H.: Sparse games are hard. In: Spirakis, P.G., Mavron-
icolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 262–273.
Springer, Heidelberg (2006)

7. Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. In: Proc. of
the 18th Int. Joint Conf. on Art. Intel (IJCAI ’03), pp. 765–771. Morgan Kaufmann,
San Francisco (2003)

8. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton, NJ (1963)

9. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a
nash equilibrium. In: Proc. of the 38th ACM Symp. on Th. of Comp (STOC ’06).
Assoc. of Comp. Mach, pp. 71–78. ACM Press, New York (2006)

10. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate equilibria.
In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS,
vol. 4286, pp. 297–306. Springer, Heidelberg (2006)

11. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate nash equi-
librium. In: Proc. of the 8th ACM Conf. on El. Commerce (EC ’07) (to appear,
2007)

12. Daskalakis, C., Papadimitriou, C.: Three player games are hard. Technical Report
TR05-139, Electr. Coll. on Comp. Compl. (ECCC) (2005)

13. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considera-
tions. Games and Economic Behavior 1, 80–93 (1989)

14. Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games.
In: Proc. of the 18th ACM-SIAM Symp. on Discr. Alg (SODA ’07) (2007)

15. Kontogiannis, S., Panagopoulou, P., Spirakis, P.: Polynomial algorithms for ap-
proximating nash equilibria in bimatrix games. In: Spirakis, P.G., Mavronicolas,
M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286–296. Springer,
Heidelberg (2006)

16. Kontogiannis, S., Spirakis, P.: Well supported approximate equilibria in bimatrix
games: A graph theoretic approach. Technical report, EU Project DELIS – Dy-
namically Evolving Large Scale Information Systems (January 2007)

17. Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. Journal of
the Society for Industrial and Applied Mathematics 12, 413–423 (1964)

18. Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proc. of the 4th ACM Conf. on El. Commerce (EC ’03). Assoc. of Comp. Mach.,
pp. 36–41. ACM Press, New York (2003)

19. Nash, J.: Noncooperative games. Annals of Mathematics 54, 289–295 (1951)
20. Papadimitriou, C.: On the complexity of the parity argument and other inefficient

proofs of existence. J. Comput. System Sci. 48, 498–532 (1994)
21. Crhistos Papadimitriou. Algorithms, games and the internet. In: Proc. of the 33rd

ACM Symp. on Th. of Comp. (STOC ’01), pp. 749–753 (2001)
22. Savani, R., von Stengel, B.: Hard-to-solve bimatrix games. Econometrica 74(2),

397–429 (2006)

Equational Systems and Free Constructions

(Extended Abstract)

Marcelo Fiore and Chung-Kil Hur�

Computer Laboratory, University of Cambridge

Abstract. The purpose of this paper is threefold: to present a general
abstract, yet practical, notion of equational system; to investigate and
develop a theory of free constructions for such equational systems; and
to illustrate the use of equational systems as needed in modern applica-
tions, specifically to the theory of substitution in the presence of variable
binding and to models of name-passing process calculi.

1 Introduction

The import of equational theories in theoretical computer science is by now
well established. Traditional applications include the initial algebra approach
to the semantics of computational languages and the specification of abstract
data types pioneered by the ADJ group [11], and the abstract description of
powerdomain constructions as free algebras of non-determinism advocated by
Plotkin [13,16] (see also [1]). While these developments essentially belong to
the realm of universal algebra, more recent applications have had to be based
on the more general categorical algebra. Examples include theories of abstract
syntax with variable binding [6,8], the algebraic treatment of computational
effects [17,18], and models of name-passing process calculi [5,21].

In theaboveandmostotherapplicationsof equational theories, theexistenceand
constructionof initialand/or freealgebras,andconsequentlyofmonads,playsacen-
tral role; as so does the study of categories of algebras. These topics are investigated
here in the context of equational systems, a very broad notion of equational theories.
Examplesof equational systems includeenrichedalgebraictheories [14,20],algebras
for a monad, monoids in a monoidal category, etc. (see Section 3).

The original motivation for the development of the theory of equational sys-
tems arose from the need of a mathematical theory readily applicable to two
further examples of equational systems: (i) Σ-monoids (see Section 6.1), which
are needed for the initial algebra approach to the semantics of languages with
variable binding and capture-avoiding simultaneous substitution [6]; and
(ii) π-algebras (see Section 6.2), which provide algebraic models of the finitary
π-calculus [21]. Indeed, these two examples respectively highlight two inadequa-
cies of enriched algebraic theories in applications: (i) the explicit presentation
of an enriched algebraic theory may be hard to give, as it is the case with
� Research supported by a Samsung Scholarship from the Samsung Foundation of

Culture.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 607–618, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

608 M. Fiore and C.-K. Hur

Σ-monoids; and (ii) models may require a theory based on more than one en-
richment, as it is the case with π-algebras.

Further benefits of equational systems over enriched algebraic theories are that
the theory can be developed for cocomplete, not necessarily locally presentable,
categories (examples of which are the category of topological spaces, the cate-
gory of directed-complete posets, and the category of complete semi-lattices),
and that the concept of equational system is straightforwardly dualizable: a co-
equational system on a category is simply an equational system on the opposite
category (thus, for instance, comonoids in a monoidal category are coalgebras
for a coequational system). On the other hand, the price paid for all this gener-
ality is that the important connection between enriched algebraic theories and
enriched Lawvere theories [19] is lost for equational systems.

An equational system S = (C � F 2 L = R : D) is defined as a parallel pair
L,R : F -Alg→ D-Alg of functors between categories of algebras over a base
category C . In this context, the endofunctor F on C , which generalizes the
notion of algebraic signature, is called a functorial signature; the functors L,R
over C , generalize the notion of equation, and are called functorial terms; the
endofunctor D on C corresponds to the arity of the equation. The category of
S-algebras is the equalizer S-Alg ↪→ F -Alg of L,R. Thus, an S-algebra is an
F -algebra (X, s : FX → X) such that L(X, s) = R(X, s) as D-algebras on X .

We have learnt during the course of this work that variations on the concept
of equational system have already been considered in the literature. For instance,
Fokkinga [7] introduces the more general concept of law between transformers, but
only studies initial algebras for the laws that are equational systems; Cı̂rstea [3] in-
troduces the concept of coequation between abstract cosignatures, which is equiv-
alent to our notion of coequational system, and studies final coalgebras for them;
Ghani, Lüth, De Marchi, and Power [10] introduce the concept of functorial co-
equational presentations, which is equivalent to our notion of coequational system
on a locally presentable base category with an accessible functorial signature and
an accessible arity endofunctor, and study cofree constructions for them.

Our theory of equational systems (and its dual), which we present in Sections 4
and 5, is more general and comprehensive than that of [7] and [3]; and we relate
it to that of [10] in the Concluding Remarks (Section 7).

Free constructions for equational systems are investigated in Section 4. For an
equational system S = (C � F 2 L = R : D), the existence of free S-algebras on
objects in C is considered in two stages: (i) the construction of free F -algebras
on objects in C , and (ii) the construction of free S-algebras over F -algebras.
The former captures the construction of freely generated terms with operations
from the functorial signature F ; the latter that of quotienting F -algebras by
the equation L = R and congruence rules. We give two sufficient conditions
for the existence of free S-algebras on F -algebras. The first condition can be
used to deduce the existence of free algebras for enriched algebraic theories, but
it applies more generally. The second condition may be applied to functorial
signatures and arities that are not accessible. The proofs of these results provide
constructions of free algebras that may lead to explicit descriptions. As a concrete

Equational Systems and Free Constructions 609

example of this situation, we observe that for the functorial signature Σλ of the
λ-calculus, the initial Σλ-monoid satisfying β, η equations consists of λ-terms
(up to α-equivalence) quotiented by the β, η equalities (see Section 6.1).

Monads and categories of algebras for equational systems are discussed in
Section 5. In the vein of the above results, we give two sufficient conditions
under which the monadicity and cocompleteness of categories of algebras follow.
As an application, we observe that the category of π-algebras is monadic and
cocomplete (see Section 6.2).

2 Algebraic Equational Theories

To set our work in context, we briefly review the classical concept of algebraic
equational theory and some aspects of the surrounding theory.

An algebraic equational theory consists of a signature defining its operations
and a set of equations describing the axioms that it should obey.

A signature Σ is given by a set of operators O together with a function
|− |: O → N giving an arity to each operator. The set of terms TΣ(V) on a set
of variables V is built up from the variables and the operators of the signature
Σ by the following grammar

t ∈ TΣ(V) ::= v | o(t1, . . . , tk)

where v ∈ V , o is an operator of arity k, and ti ∈ TΣ(V) for all i = 1, . . . , k.
An equation of arity V , written V 2 l = r, for a signature Σ is a pair of terms

l, r ∈ TΣ(V).
An algebraic equational theory T = (Σ,E) is given by a signature Σ together

with a set of equations E.
An algebra for a signature Σ is a pair (X, �−�X) consisting of a carrier set X

together with interpretation functions �o�X : X |o| → X for each operator o in Σ.
By structural induction, such an algebra induces interpretations �t�X : XV → X
of terms t ∈ TΣ(V) as follows:

�t�X =

⎧
⎪⎨

⎪⎩

XV
πv �� X , for t = v ∈ V

XV
〈�t1�X ,...,�tk�X〉 �� Xk

�o�X �� X , for t = o(t1, . . . , tk)

An algebra for the theory T = (Σ,E) is an algebra for the signature Σ
that satisfies the constraints given by the equations in E, where a Σ-algebra
(X, �−�X) is said to satisfy the equation V 2 l = r whenever �l�Xx = �r�Xx for
all x ∈ XV .

An homomorphism of T-algebras from (X, �−�X) to (Y, �−�Y) is a function
h : X → Y between their carrier sets that commutes with the interpretation of
each operator; that is, such that h(�o�X(x1, . . . , xk)) = �o�Y

(
h(x1), . . . , h(xk)

)
.

Algebras and homomorphisms form the category T-Alg.
The existence of free algebras for algebraic theories is one of the most significant

properties that they enjoy. For an algebraic theory T = (Σ,E), the free algebra
over a setX has as carrier the set TΣ(X)/∼E of equivalence classes of terms onX

610 M. Fiore and C.-K. Hur

under the equivalence relation∼E defined by setting t ∼E t′ iff t is provably equal
to t′ by the equations given in E and the congruence rules. The interpretation
of each operator on TΣ(X)/∼E is given syntactically: �o�([t1]∼E , . . . , [tk]∼E) =
[o(t1, . . . , tk)]∼E . This construction gives rise to a left adjoint FT to the forgetful
functor UT : T-Alg→ Set. Moreover, the adjunction is monadic: T-Alg is equiv-
alent to the category of algebras for the associated monad on Set.

We recall the notion of algebra for an endofunctor and how it generalizes that
of algebra for a signature.

An algebra for an endofunctor F on a category C is a pair (X, s) of a carrier ob-
jectX in C together with a structure algebra map s : FX → X . A homomorphism
of F -algebras from (X, s) to (Y, t) is a map h : X → Y in C such that h ·s = t ·Fh.
F -algebras and homomorphisms form the categoryF -Alg, and the forgetful func-
tor UF : F -Alg→ C maps an F -algebra (X, s) to its carrier objectX .

As it is well-known, every signature can be turned into an endofunctor on Set
preserving its algebras. Indeed, for a signature Σ, one defines the corresponding
endofunctor as FΣ(X) =

∐
o∈ΣX

|o|, so that Σ-Alg and FΣ-Alg are isomorphic.
In this view, we will henceforth take endofunctors as a general abstract notion
of signature.

Definition 2.1 (Functorial signature). A functorial signature on a category
is an endofunctor on it.

3 Equational Systems

We motivate and subsequently present an abstract notion of equation for func-
torial signatures, leading to the concept of equational system. Free constructions
for equational systems are considered in the following section.

Let t ∈ TΣ(V) be a term on a set of variables V for a signature Σ. Recall
from the previous section that for every Σ-algebra (X, �−�X), the term t gives
an interpretation function �t�X : XV → X . Thus, the term t determines a func-
tion t̃ assigning to a Σ-algebra (X, �−�X) the D-algebra (X, �t�X), for D the
endofunctor (−)V on Set. Note that the function t̃ does not only preserves car-
rier objects but, furthermore, by the uniformity of the interpretation of terms,
that a Σ-homomorphism (X, �−�X) → (Y, �−�Y) is also a D-homomorphism
(X, �t�X) → (Y, �t�Y). In other words, the function t̃ extends to a functor
Σ-Alg → D-Alg over Set, i.e. a functor preserving carrier objects and ho-
momorphisms. These considerations lead us to define abstract notions of term
and equations as follows.

Definition 3.1 (Functorial terms and equations). A functorial term T of
arity D for a functorial signature F on a category C , consists of an endofunctor
D on C and a functor T : F -Alg→ D-Alg over C , that is, a functor such that
UD · T = UF . A functorial equation is given by a pair of functorial terms of the
same arity.

We are now ready to define equational systems, our abstract notion of equational
theory.

Equational Systems and Free Constructions 611

Definition 3.2 (Equational systems). An equational system
S = (C � F 2 L = R : D)

is given by a category C and a functorial equation L = R of arity D for a
functorial signature F .

We have restricted attention to equational systems subject to a single equation.
The consideration of multi-equational systems (C � F 2 {Li = Ri : Di}i∈I) sub-
ject to a set of equations in what follows is left to the interested reader. We
remark however that our development is typically without loss of generality;
as, whenever C has I-indexed coproducts, a multi-equational system as above
can be expressed as the equational system (C � F 2 [Li]i∈I = [Ri]i∈I :

∐
i∈I Di)

with a single equation.
Recall that an equation l = r in an algebraic theory is interpreted as the con-

straint that the interpretation functions associated with the terms l and r coin-
cide. Hence, for an equational system S = (C � F 2 L = R : D), it is natu-
ral to say that an F -algebra A satisfies the functorial equation L = R whenever
L(A) = R(A), and consequently define the category of algebras for the equational
system as the full subcategory of F -Alg consisting of the F -algebras that satisfy
the functorial equationL = R. Equivalently, we introduce the following definition.

Definition 3.3. For an equational system S = (C � F 2 L = R : D), the
category S-Alg of S-algebras is the equalizer of L,R : F -Alg → D-Alg (in the
large category of locally small categories over C).

Examples of equational systems together with their induced categories of alge-
bras follow.

1. The equational system ST associated to the algebraic theory T = (Σ,E) is
given by (Set � FT 2 LT = RT : DT), with FTX =

∐
o∈ΣX

|o|, DTX =∐
(V �l=r)∈E X

V , and

LT(X, �−�X) =
(
X,

[�l�X
]
(l=r)∈E

)
,

RT(X, �−�X) =
(
X,

[�r�X
]
(l=r)∈E

)
.

It follows that T-Alg is isomorphic to ST-Alg.
2. More generally, consider an enriched algebraic theory T = (C , B,E, σ, τ)

on a locally finitely presentable category C enriched over a suitable cate-
gory V , see [14]. Recall that this is given by functors B,E : |Cfp| → C0

and a pair of morphisms σ, τ : FE → FB between the free finitary mon-
ads FB and FE on C respectively arising from B and E. The equational
system ST associated to such an enriched algebraic theory T is given by
(C0 � (GB)0 2 σ0 = τ0 : (GE)0), where GB and GE are the free finitary
endofunctors on C respectively arising from B and E, and where σ and τ are
respectively the functors corresponding to σ and τ by the bijection between
morphisms FE → FB and functors GB-Alg ∼= C FB → C FE ∼= GE-Alg
over C . It follows that (T-Alg)0 is isomorphic to ST-Alg.

3. The definition of Eilenberg-Moore algebras for a monad T = (T, η, μ) on a
category C with binary coproducts can be directly encoded as the equational

612 M. Fiore and C.-K. Hur

system ST = (C � T 2 L = R : D) with D(X) = X + T 2X and

L(X, s) = (X, [s · ηX , s · μX]) ,
R(X, s) = (X, [idX , s · Ts]) .

It follows that ST-Alg is isomorphic to the category C T of Eilenberg-Moore
algebras for T.

4. The definition of monoid in a monoidal category (C ,⊗, I, α, λ, ρ) with binary
coproducts yields the equational system SMon(C) = (C � F 2 L = R : D)
with F (X) = (X ⊗X) + I, D(X) =

(
(X ⊗X) ⊗X

)
+ (I ⊗X) + (X ⊗ I),

and
L(X, [m, e]) = (X,

[
m · (m⊗ idX) , λX , ρX

]
) ,

R(X, [m, e]) = (X,
[

m · (idX ⊗m) · αX,X,X , m · (e⊗ idX) , m · (idX ⊗ e)
]
) .

It follows that SMon(C)-Alg is isomorphic to the category of monoids and
monoid homomorphisms in C .

4 Free Constructions for Equational Systems

We investigate sufficient conditions for the existence of free algebras for equa-
tional systems; that is, for the existence of a left adjoint to the forgetful functor
US : S-Alg → C , for S an equational system. Since, by definition, the forgetful
functor US decomposes as S-Alg � �

JS
�� F -Alg UF

�� C , we will concentrate on
obtaining a left adjoint to the embedding JS. Conditions for the existence of a
left adjoint to UF have already been studied in the literature (see e.g. [2]).

Theorem 4.1. Let S = (C � F 2 L = R : D) be an equational system. If C is
cocomplete, and F and D preserve colimits of α-chains for some infinite limit
ordinal α, then the embedding S-Alg ↪→ F -Alg has a left adjoint.

Theorem 4.2. Let S = (C � F 2 L = R : D) be an equational system. If
C is well-copowered and cocomplete, and F preserves epimorphisms, then the
embedding S-Alg ↪→ F -Alg has a left adjoint.

Corollary 4.1. Let S = (C � F 2 L = R : D) be an equational system. If
C is cocomplete, F preserves epimorphisms and colimits of ω-chains, and D
preserves epimorphisms, then the embedding S-Alg ↪→ F -Alg has a left adjoint.
Furthermore the free algebra functor is constructed in ω steps.

These results are proved by performing an iterative, possibly transfinite, con-
struction that associates a free S-algebra to every F -algebra. The cocompleteness
of the base category allows one to perform the construction, whilst the other con-
ditions guarantee that the process will eventually stop. We present the construc-
tion in the simplest case, viz. that of Corollary 4.1. To this end, for an F -algebra
(X, s), let L(X, s) = (X, l : DX → X) and R(X, s) = (X, r : DX → X), and
consider the following diagram

Equational Systems and Free Constructions 613

FX
Fe0 ��

s

��

s0

���
��

��
��

� FX1

s1

���
��

��
��

�
······ FXi

Fei ��

si

�����
��

��
� FXi+1

si+1

�����
��

��
�

······ FX ′

∃!s′

���
�
�

DX
l ��
r

�� X
e0 �� X1

e1 �� X2 ······ Xi+1
ei+1 �� Xi+2 ······ X ′

(1)

where e0 is a coequalizer of l, r and where (ei+1, si+1) is a pushout of (si, F ei)
for all i ≥ 0. Further, let X ′ be a colimit of the ω-chain 〈ei〉, so that FX ′ is
a colimit of the ω-chain 〈Fei〉, and define the algebra map s′ to be the unique
mediating morphism between them. It follows that (X ′, s′) is a free S-algebra on
the F -algebra (X, s).

The intuition behind the construction is that of first quotienting the carrier
object by the equation L = R, and then by congruence rules as much as needed.
If free algebras are constructed in ω steps, then, roughly speaking, they arise by
quotienting a finite number of times.

Finally, we remark that in the presence of binary coproducts the problem of
finding free algebras reduces to that of finding initial algebras.

Proposition 4.1. Let S = (C � F 2 L = R : D) be an equational system on
a category C with binary coproducts. An S-algebra is free over A ∈ C iff it is
an initial SA-algebra for SA = (C � (A+ F) 2 L · UA = R · UA : D) where UA

denotes the forgetful functor (A+ F)-Alg→ F -Alg.

5 Categories of Algebras for Equational Systems

We consider monads and categories of algebras for equational systems, and give
some basic applications of our results.

Theorem 5.1. Let S = (C � F 2 L = R : D) be an equational system with C
cocomplete.

1. If F and D preserve colimits of α-chains for some infinite limit ordinal α,
then the forgetful functor US : S-Alg → C is monadic and S-Alg is cocom-
plete.

2. If C is well-copowered, F preserves epimorphisms, and the forgetful functor
US : S-Alg→ C has a left adjoint, thenUS is monadic and S-Alg is cocomplete.

Proposition 5.1. Let S = (C � F 2 L = R : D) be an equational system. If the
functors F and D preserve I-indexed colimits for a small category I and US has
a left adjoint, then the induced monad on C also preserves I-indexed colimits.

We revisit the examples of equational systems given in Section 3 in the light of
the above results.

1. For the equational system ST = (Set � FT 2 LT = RT : DT) representing an
algebraic theory T, the category ST-Alg is monadic over Set and cocomplete
by Theorem 5.1(1); as Set is cocomplete and FT and DT preserve colimits
of ω-chains.

614 M. Fiore and C.-K. Hur

2. For the equational system ST = (C0 � (GB)0 2 σ0 = τ0 : (GE)0) represent-
ing an enriched algebraic theory T = (C , B,E, σ, τ), the category ST-Alg is
monadic over C0 and cocomplete by Theorem 5.1(1); as C0 is locally finitely
presentable and thus cocomplete, and (GB)0 and (GE)0 are finitary and
thus preserve colimits of ω-chains. Furthermore, the monad arising from the
monadicity of ST-Alg is finitary by Proposition 5.1 as so are the functors
(GB)0 and (GE)0.

3. One may apply Theorem 5.1(1) to the equational system ST representing a
monad T = (T, η, μ) on a category C with binary coproducts as follows. If C
is cocomplete and T preserves colimits of ω-chains, then ST-Alg is monadic
over C and cocomplete.
As another example, consider the powerset monad P = (P, {− },∪) on Set.
Since Set is cocomplete and well-copowered, and the powerset functor P pre-
serves epimorphisms, by Theorem 4.2, the embedding SetP ↪→ P -Alg has a
left adjoint. We also see that the forgetful functor SetP → Set has a left ad-
joint from the fact that P is a monad. Therefore, SetP, which is isomorphic
to the category of complete semi-lattices, is cocomplete (by Theorem 5.1(2)).

4. To the equational system SMon(C) of monoids in a monoidal category C
with binary coproducts, we can apply Theorem 5.1(1) as follows. If C is
cocomplete and the tensor product ⊗ : C × C → C preserves colimits of
ω-chains, then SMon(C)-Alg is monadic over C and cocomplete.

6 Two Applications

We consider applications of equational systems to the theory of abstract syntax
supporting variable binding and substitution [6], and to algebraic models of the
π-calculus [21].

6.1 Σ -Monoids

Following [6], we introduce the concept of Σ-monoid, for a functorial signature
Σ with a pointed strength, and consider it from the point of view of equational
systems. The theory of equational systems is then used to provide an explicit
description of freeΣ-monoids. We then show that, for Σλ the functorial signature
of the lambda calculus, the β, η identities are straightforwardly expressible as
functorial equations. The theory of equational systems is further used to relate
the arising algebraic models by adjunctions.

Let Σ be a functorial signature on a monoidal category C = (C ,⊗, I, α, λ, ρ).
A pointed strength for Σ is a natural transformation

stX,(Y,y:I→Y) : Σ(X)⊗ Y .→ Σ(X ⊗ Y)

between functors C×(I/C)→ C satisfying coherence conditions similar to those
of strength [15]:

ρΣA = Σ(ρA) · stA,(I,idI): Σ(A)⊗ I → ΣA ,

stA,(B⊗C,(b⊗c)·ρI
−1) · αΣA,B,C

=Σ(αA,B,C)· stA⊗B,(C,c) · (stA,(B,b) ⊗ idC):(Σ(A) ⊗B)⊗ C→Σ(A⊗ (B ⊗ C))

Equational Systems and Free Constructions 615

for all A ∈ C and (B, b : I → B), (C, c : I → C) ∈ I/C .
For a functorial signature Σ with a pointed strength st on a monoidal cate-

gory C , the category of Σ-monoids Σ-Mon(C) has objects given by quadruples
(X, s,m, e) where (X, s) is a Σ-algebra and (X,m, e) is a monoid in C satisfying
the following compatibility law

m · (s⊗ idX) = s ·Σ(m) · stX,(X,e) : Σ(X)⊗X → X ;
morphisms are maps of C which are bothΣ-algebra and monoid homomorphisms.

For C with binary coproducts, the equational system MΣ of Σ-monoids is
defined as (C � FΣ 2 LΣ = RΣ : DΣ), with FΣX = Σ(X) + (X ⊗ X) + I,
DΣX =

(
(X ⊗X)⊗X

)
+ (I ⊗X) + (X ⊗ I) + (Σ(X)⊗X), and

LΣ(X, [s, m, e])
=(X, [m · (m⊗ idX) , λX , ρX , m · (s⊗ idX)])

RΣ(X, [s, m, e])
=(X, [m · (idX ⊗m) · αX,X,X , m · (e⊗ idX) , m · (idX ⊗ e) , s ·Σ(m) · stX,(X,e)]).

The functoriality of LΣ and RΣ follows from the naturality of α, λ, ρ, and st. The
isomorphism of MΣ-Alg and Σ-Mon(C) follows trivially from their definitions.

Consequently, one can apply the theory of equational systems developed in
this paper to the algebra of Σ-monoids. For instance, by Theorem 4.1, if C is
cocomplete, and the functorial signature Σ and the tensor product ⊗ preserve
colimits of ω-chains, then there exists a free Σ-monoid over every object in
C . While this only shows the existence of free Σ-monoids, when the monoidal
structure is closed, we can go further and give an explicit description of free
Σ-monoids using the fact that in this case the initial Σ-monoid exists if so
does the initial (I +Σ)-algebra μX. I+ΣX , and has carrier object μX. I +ΣX
equipped with an appropriate Σ-monoid structure, see [6]. Indeed, by Proposi-
tion 4.1, a free Σ-monoid over A ∈ C is an initial MA

Σ-algebra for the equational
system MA

Σ = (C � (A+ FΣ) 2 LΣ · UA = RΣ · UA : DΣ), where UA denotes
the forgetful functor (A+FΣ)-Alg→ FΣ-Alg. Furthermore, one can readily es-
tablish the isomorphism MA

Σ-Alg ∼= M(A⊗−)+Σ-Alg, where the pointed strength
st′X,(Y,y) for (A⊗−) +Σ(−) is given by the composite
(
(A⊗X) + Σ(X)

)
⊗ Y

∼=
(
(A⊗X)⊗ Y) + Σ(X)⊗ Y

αA,X,Y +stX,(Y,y) �� (A⊗ (X ⊗ Y)
)

+ Σ(X ⊗ Y) .

Thus, we have the following result.

Proposition 6.1. For C a monoidal closed category with binary coproducts, the
free Σ-monoid on A ∈ C exists if so does the initial

(
I+(A⊗−)+Σ(−)

)
-algebra

μX. I +A⊗X +ΣX, and has carrier object μX. I +A⊗X +ΣX equipped
with an appropriate Σ-monoid structure.

As a concrete example, we now consider the λ-calculus. A λ-model [6] is a Σλ-
monoid for the functorial signature ΣλX = XV + X2 with a suitable pointed
strength on the presheaf category SetF, where F is the (essentially small) cat-
egory of finite sets and functions, equipped with the substitution monoidal struc-
ture (•, V). The operations of a Σλ-monoid (X, [abs, app, sub, var] :

616 M. Fiore and C.-K. Hur

XV + X2 + (X •X) + V → X) provide interpretations of λ-abstraction (abs :
XV → X), application (app : X2 → X), capture-avoiding simultaneous substi-
tution (sub : X •X → X), and variables (var : V → X). The initial λ-model has
carrier object μX. V +XV +X2, and provides an abstract notion of syntax for
the λ-calculus. A syntactic description of free Σλ-monoids has been considered
by Hamana in [12].

The β, η identities for a λ-model on X are expressed by the following equa-
tions in the internal language

(β) f : XV , x : X 2 app(abs(f), x) = sub
(
f〈x〉

)
: X

(η) x : X 2 abs
(
λv : V. app(x, var v)

)
= x : X

where the map −〈=〉 : XV × X → X •X embeds XV ×X into X •X . These
internal equations provide functorial equations on λ-models, and yield a further
equational system MΣλ/β,η. From two applications of Corollary 4.1, we obtain
the following adjoint situations:

MΣλ/β,η-Alg � � ��⊥ MΣλ
-Alg

		
� � ��⊥

(
Σλ(−) + (− • −) + V

)
-Alg

		
��⊥ SetF

		

Further, by examining the construction (1) for the free MΣλ/β,η-algebra on
the initial MΣλ

-algebra, one sees that the presheaf of (α-equivalence classes of)
λ-terms is first quotiented by the β, η identities, and then by the congruence
rules for the operations abs, app, and sub as much as needed. Thus, the initial
MΣλ/β,η-algebra is the presheaf of β, η-equivalence classes of λ-terms.

6.2 Pi-calculus Algebras

We briefly discuss π-algebras, an algebraic model of the finitary π-calculus in-
troduced by Stark in [21], as algebras for an equational system. The existence
of free models is deduced from the theory of equational systems.

We need consider the presheaf category SetI, for I the (essentially small) cat-
egory of finite sets and injections, with the symmetric monoidal closed structure
(1,⊗,�) induced by the symmetric monoidal structure (∅,3) on I by Day’s
construction [4].

A π-algebra is an object A ∈ SetI together with operations choice : A2 → A,
nil : 1→ A, out : N ×N ×A→ A, in : N ×AN → A, tau : A→ A, and new :
(N � A) → A satisfying the equations of [21, Sections 3.1–3.3 and 3.5]. These
algebras, and their homomorphisms, form the category PI(SetI).

The equational theory for π-algebras is expressed entirely in the internal lan-
guage of SetI (see also [5]). For example, the equation establishing the inactivity
of a process that inputs on a restricted channel is given by

p : (AN)N 2 new
(
ν(λx : N. in(x, p x))

)
= nil : A

where ν : AN → (N � A) is the composite

AN
upA

upN

�� (N � A)N�N ideN �� (N � A)1 ∼= �� (N � A)

for upX and eX respectively the monoidal transposes of

Equational Systems and Free Constructions 617

X ⊗N idX⊗ ! �� X ⊗ 1 ∼= �� X and 1⊗X ∼= �� X .
All these internal equations yield functorial equations, and induce an equational
system Sπ.

Since every endofunctor of Sπ is finitary, the following result follows from
Theorem 5.1(1).

Proposition 6.2. The category of π-algebras PI(SetI) ∼= Sπ-Alg is cocomplete
and monadic over SetI.

The above discussion also applies more generally, to axiomatic settings as in [5]
and, in particular, to π-algebras over the Schanuel topos, ωCpoI, etc.

7 Concluding Remarks

Our theoretical development also includes the organization of equational systems
over a base category into a category. The consideration of colimits, in particular
coequalizers, of equational systems led us to introduce the more general con-
cept of iterated equational system, for which the whole theory of equational sys-
tems generalizes. As an additional result, we have that the category of iterated
equational systems over a cocomplete base category is itself cocomplete. This,
together with the fact that it embeds the category of accessible monads on the
base category as a full subcategory which is closed under colimits, proves that
the category of accessible monads on a cocomplete category is also cocomplete.
Details will appear elsewhere.

Our theory of equational systems dualizes to one for coequational systems.
Besides this being of interest in its own right, we note that the proof of the
dual of Theorem 4.2, together with the construction of cofree coalgebras for
endofunctors by terminal sequences of Worrell [22], gives a construction of cofree
coalgebras for coequational systems on a locally presentable base category with
an accessible functorial signature that preserves monomorphisms. This result is
a variation of a main result of the theory developed by Ghani, Lüth, De Marchi,
and Power in [10] (see e.g. their Lemmas 5.8 and 5.14); which is there proved by
means of the theory of accessible categories without assuming the preservation
of monomorphisms but assuming an accessible arity endofunctor.

GhaniandLüth [9]giveanabstractpresentationof termrewritingviacoinserters
in the context of algebraic theories on the category of preorders. In this vein, we
have developed a theory of free constructions for inequational systems in a preorder-
enriched setting, and we are considering applications to higher-order rewriting.

Acknowledgements. We are grateful to Sam Staton for discussions.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, pp. 1–168. Oxford
University Press, Oxford (1994)

618 M. Fiore and C.-K. Hur

2. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1985)
3. Ĉırstea, C.: An algebra-coalgebra framework for system specification. In: Proc. 3rd

International Workshop on Coalgebraic Methods in Computer Science. ENTCS,
vol. 33, pp. 80–110. Elsevier, Amsterdam (2000)

4. Day, B.: On closed categories of functors. In: Reports of the Midwest Category
Seminar IV. LNM, vol. 137, pp. 1–38. Springer, Heidelberg (1970)

5. Fiore, M., Moggi, E., Sangiorgi, D.: A fully abstract model for the π-calculus.
Information and Computation 179(1), 76–117 (2002)

6. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proc.
14th IEEE Symp. Logic in Computer Science, pp. 193–202. IEEE Computer Society
Press, Los Alamitos (1999)

7. Fokkinga, M.: Datatype laws without signatures. Mathematical Structures in Com-
puter Science 6(1), 1–32 (1996)

8. Gabbay, M.J., Pitts, A.: A new approach to abstract syntax with variable binding.
Formal Aspects of Computing 13, 341–363 (2001)

9. Ghani, N., Lüth, C.: Rewriting via coinserters. Nordic Journal of Computing 10(4),
290–312 (2003)

10. Ghani, N., Lüth, C., De Marchi, F., Power, A.J.: Dualising initial algebras. Math-
ematical Structures in Computer Science 13(2), 349–370 (2003)

11. Goguen, J., Thatcher, J., Wagner, E.: An initial algebra approach to the specifi-
cation, correctness and implementation of abstract data types. In: Yeh, R. (ed.)
Current Trends in Programming Methodology: Software Specification and Design,
vol. IV, chapter 5, pp. 80–149. Prentice Hall, Englewood Cliffs (1978)

12. Hamana, M.: Free Σ-monoids: A higher-order syntax with metavariables. In: Wei-
Ngan Chin (ed.) Second Asian Symp. Programming Languages and Systems.
LNCS, vol. 3302, pp. 348-363. Springer, Heidelberg (2004)

13. Hennessy, M., Plotkin, G.: Full abstraction for a simple parallel programming lan-
guage. In: Becvar, J. (ed.) Mathematical Foundations of Computer Science. LNCS,
vol. 74, pp. 108–120. Springer, Heidelberg (1979)

14. Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalizers, and pre-
sentations of finitary enriched monads. Journal of Pure and Applied Algebra 89,
163–179 (1993)

15. Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23 (1972)
16. Plotkin, G.: Domains. Pisa Notes on Domain Theory (1983)
17. Plotkin, G., Power, A.J.: Algebraic operations and generic effects. Applied Cate-

gorical Structures 11(1), 69–94 (2003)
18. Plotkin,G.,Power,A.J.:Computationaleffectsandoperations:Anoverview.In:Proc.

Workshop onDomains VI.ENTCS, vol. 73, pp. 149–163. Elsevier, Amsterdam(2004)
19. Power, A.J.: Enriched Lawvere theories. Theory and Applications of Categories 6,

83–93 (1999)
20. Robinson, E.: Variations on algebra: Monadicity and generalisations of equational

theories. Formal Aspects of Computing 13(3–5), 308–326 (2002)
21. Stark, I.: Free-algebra models for the π-calculus. In: Sassone, V. (ed.) FOSSACS

2005. LNCS, vol. 3441, pp. 155–169. Springer, Heidelberg (2005)
22. Worrell, J.: Terminal sequences for accessible endofunctors. In: Proc. 2nd Interna-

tional Workshop on Coalgebraic Methods in Computer Science. ENTCS, vol. 19,
Elsevier, Amsterdam (1999)

Categorical Views on Computations on Trees

(Extended Abstract)

Ichiro Hasuo1, Bart Jacobs1, and Tarmo Uustalu2

1 Institute of Computing and Information Sciences, Radboud University Nijmegen,
Postbus 9010, NL-6500 GL Nijmegen, The Netherlands

http://www.cs.ru.nl/~{ichiro, bart}
2 Institute of Cybernetics at Tallinn University of Technology,

Akadeemia tee 21, EE-12618 Tallinn, Estonia
http://www.cs.ioc.ee/~tarmo

Abstract. Computations on trees form a classical topic in computing.
These computations can be described in terms of machines (typically
called tree transducers), or in terms of functions. This paper focuses
on three flavors of bottom-up computations, of increasing generality. It
brings categorical clarity by identifying a category of tree transducers
together with two different behavior functors. The first sends a tree
transducer to a coKleisli or biKleisli map (describing the contribution
of each local node in an input tree to the global transformation) and the
second to a tree function (the global tree transformation). The first be-
havior functor has an adjoint realization functor, like in Goguen’s early
work on automata. Further categorical structure, in the form of Hughes’s
Arrows, appears in properly parameterized versions of these structures.

1 Introduction

Tree transformations are functions sending trees to trees. Such transformations
are of broad interest in computing, notably in language processing, and are often
studied in relation to certain types of realizing machines. They form a classical
topic.

In this paper we aim at a systematic study of phenomena and constructions
related to bottom-up tree transformations. We first sketch two motivating obser-
vations: these will later be given detailed accounts.

Behavior-realization adjunction. It is a fundamental idea in computer science
that we associate with a “computable” function a “machine” which realizes it.
Those machines which realize tree transformations are often called tree trans-
ducers and have been extensively studied as a continuation of automata theory:
see [10,11,2] and also more recently [1].

Here comes our first question. What do we mean by saying “a machine c
realizes a transformation l”? Given a transformation l, is there a machine which
realizes it? Is there a canonical choice among such realizers? We shall answer
these questions, following the idea of Goguen’s behavior-realization adjunction [3]
for (a more elementary setting of) automata, see also [9].

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 619–630, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

620 I. Hasuo, B. Jacobs, and T. Uustalu

Tree functions from local behaviors. We start with relabeling bottom-up tree
transformations that only change labels on each node of an input tree, like l on
the left.

a4

a2

a0 a1

a3 l�−→
b4

b2
b0 b1

b3

a4

a2

a0 a1

a3 k�−→ b4
(1)

Now let us consider another function k which operates on the same input trees
as l does but returns the root label of the output tree of l. That is, k = ε ◦ l
where ε extracts the root label. It may seem that k (which shall be called a local
behavior) carries less information than l does—ε throws information away. But
when l is relabeling bottom-up we can recover l from k.

Our main contribution is to give an account of some classes of tree transfor-
mations in terms of diagrams like this:

TT
LBeh

��
Real

��

4

TF
��
TF↑

� � �� TF
LBeh

W

��
(2)

Here, TF and LBeh are two behavior functors from the category of tree trans-
ducers (“machines”) to tree functions and to local behaviors. For relabelings,
the functor W is an isomorphism: this embodies the equivalence of the two
behaviors TF and LBeh as hinted at above; for more general types of tree trans-
formations, it will be epi. The category TF↑ is included in TF of tree functions
in general: we shall give a categorical characterization of being “bottom-up”.
The local behaviors are coKleisli maps of certain comonads, in one case biKleisli
maps of a distributive law of a comonad over a monad, and agree with the idea
of comonadic notions of computation as those that send “values-in-contexts”
to “values” [13,12] (the latter reference deals with attribute grammars, another
type of tree computations). The behavior-realization adjunction is presented as
Real 4 LBeh .

In each of the Sects. 2–4, we shall develop a situation like (2) for a specific class
of tree transformations—and hence a corresponding class of tree transducers.
Namely, relabeling bottom-up tree transducers in Sect. 2; rebranching bottom-
up tree transducers in Sect. 3, and bottom-up tree transducers in full generality
in Sect. 4. In Sect. 5 we generalize our categorical formulation in an orthogonal
direction: we uncover further compositional structures using Hughes’s Arrows [5],
and thus a way to view tree transformations as “structured computations” in
programming semantics.

2 Relabeling Bottom-Up Tree Transducers

In this section we will consider a class of tree transducers (TTs) that operate
on well-founded trees of a fixed branching type F (a set functor), with labels

Categorical Views on Computations on Trees 621

at their nodes taken from a parameter set, or alphabet. These transducers take
A-labeled trees to B-labeled trees for fixed alphabets A,B, but Section 5 will
sketch a properly parameterized version. They work bottom-up by only changing
the labels of an input tree and are thus shape-preserving.

For this class of TTs, we shall turn the informal diagram (2) from the intro-
duction into the diagram below. It has: two behavior functors LBeh and TF ; a
functor W establishing equivalence of two kinds of behavior; and an adjunction
Real 4 LBeh .

TT(A,B)

LBeh
��

Real
��

4

TF
		

TF↑(A,B) � � �� TF(A,B)

LBeh(A,B)
W

∼=

(3)

That the branching type of our trees is expressed by a set functor F generalizes
more traditional universal-algebraic signatures, given by a set Σ of operations
f, each with an arity |f| ∈ N. Such a signature yields a functor Z �→

∐
f∈Σ Z

|f|.
The A-labeled trees of the branching type F (for brevity, we also say A-trees)
live in the initial algebra of the functor A×F , whose carrier we denote by DA,
leaving F implicit. The algebra structure A × FDA

∼=→ DA will be denoted by
σA. Obviously D1 is the set of unlabelled trees or tree-shapes.

Definition 2.1. A (relabeling bottom-up) tree transducer (TT) is a function
A×FX c→ B×X in Sets, where the set X is called the state space. A morphism
of such TTs from A× FX c→ B ×X to A× FY d→ B × Y is a function f : X →
Y satisfying (B × f) ◦ c = d ◦ (A× Ff).

TTs and morphisms between them form a category which we denote by TT
(A,B), leaving again the dependence on F implicit. Obviously, TT(A,B) is
nothing but the comma category (A× F ↓ B ×).

Example 2.2. The operation of a TT is best described on an example. As the
branching type F we take 1+()2, describing well-founded binary trees. Consider
a TT A× (1 +X2) c→ B ×X and the leftmost tree below as an input.

a4

a2

a0 a1

a3 	
(b0, x0) (b1, x1)

(b3, x3) 	
(b4, x4)

(b2, x2)

(b0, x0) (b1, x1)

(b3, x3)

The bottom-up computation starts at the leaves: let (a0, κ1(∗)) c�→ (b0, x0),
where κ1, κ2 are coproduct injections. This assigns a label b0 and a state x0 to
the corresponding leaf of the output tree. Similar mappings at the other leaves
lead to the middle tree. At the inner position of a2, the label on the output tree
is determined by the input label a2 as well as by the states x0, x1 of the successor
nodes. They are already available precisely because we proceed in a bottom-up
manner. Now we get (b2, x2) from the outcome (a2, κ2(x0, x1)) c�→ (b2, x2). We
continue this way and get the tree on the right from (a4, κ2(x2, x3)) c�→ (b4, x4).

622 I. Hasuo, B. Jacobs, and T. Uustalu

By forgetting about the states xi, we finally obtain the output tree of the com-
putation. It is obvious that the shape of the input tree is preserved. This will
change in the next section.

For a TT c, we shall now define two behaviors TF (c) and LBeh(c). The former
is a function that carries an A-tree to a B-tree; the latter carries an A-tree to
an element in B, as hinted at in the introduction.

Definition 2.3. A TT A × FX c→ B × X induces its tree function behavior
TF (c) : DA→ DB and its local behavior LBeh(c) : DA→ B via the following
two diagrams, both using the initiality of σA.

A× FDA ��				

∼=σA
��

A× F (DB ×X)

c̆
��

A× FDA ��				

∼=σA
��

A× F (B ×X)
A× Fπ2��

A× FX
c��

DA

TF (c) ��

��							 DB ×X
π1��

DA ��							

LBeh(c) ��

B ×X
π1��

DB B

where the algebra structure c̆ on the left is given by the composite

A× F (DB ×X)
〈Fπ1,Fπ2〉−→ A× FDB × FX c−→ B × FDB ×X σB−→ DB ×X

the underlining indicating what the maps act on.

The mapping A �→ DA carries a comonad structure. It is the cofree recursive
comonad on F [14]. A local behavior LBeh(c) : DA→ B is a morphism A→ B
in the coKleisli category of the comonad D. This is a general phenomenon.

By a simple diagram chase it can be seen that a morphism of TTs is indeed
a “behavior-preserving map” wrt. the above two behaviors.

Lemma 2.4. Assume we have a morphism f from one TT c to another d. Then
LBeh(c) = LBeh(d) and TF (c) = TF (d). ��

In Example 2.2 we have illustrated how a TT acts in a bottom-up fashion on
trees. Before we can show that the TF behavior from Def. 2.3 is indeed “bottom-
up” we need a characterization of bottom-up tree functions. Intuitively, these
are the functions l : DA→ DB such that:

l

(a

t1 t2

)
is of the form

l(t1) l(t2)
.

Categorical Views on Computations on Trees 623

The following definition captures this intuition in categorical terms.

Definition 2.5. A tree function l : DA→ DB is said to be (relabeling) bottom-
up if it is a morphism of coalgebras, as in:

FDA
Fl �� FDB

A× FDA
π2

��

B × FDB
π2

��

DA
l ��

∼= σ−1
A

��

DB

∼= σ−1
B

��
(4)

Lemma 2.6. For a TT A × FX c→ B ×X, the induced tree function TF (c) :
DA→ DB is bottom-up. ��

Now we can define the three semantic domains appearing in (3). We write:

– LBeh(A,B) for the set of mapsDA→ B, i.e., LBeh(A,B)=HomC(DA,B);
– TF(A,B) for the set of maps DA→ DB, i.e., TF(A,B) = HomC(DA,DB);
– TF↑(A,B) ↪→ TF(A,B) for the subset of bottom-up maps DA→ DB.

These three sets are considered as discrete categories. This enables us to consider
behavior mappings as functors from TT(A,B), in a degenerate fashion.

Lemma 2.7. The mappings LBeh and TF in Def. 2.3 extend to functors

LBeh : TT(A,B)→ LBeh(A,B) and TF : TT(A,B)→ TF(A,B) .

The functor TF factors through the embedding TF↑(A,B) ↪→ TF(A,B). ��

A realization functor Real : LBeh(A,B) → TT(A,B) is defined to send a
local behavior k : DA → B to the TT 〈k,DA〉 ◦ σA : A × FDA → B × DA.
This TT has a canonical state space, namely the set DA of all A-trees; in all
but degenerate cases, this state space is infinite. In fact Real yields the initial
realization and we get a behavior-realization adjunction in the spirit of [3].

Theorem 2.8. We have Real 4 LBeh, and since the category LBeh(A,B) is
discrete, this adjunction is actually a coreflection.

Proof. The statement is equivalent to the following. For a given local behavior
DA

k→ B, the realization Real(k) is the initial one among those which yield k as
their LBeh behavior. Let A× FX c→ B ×X be one of such TTs. The following
fact is shown by diagram chasing.

DA
f→ X is a morphism of TTs from Real(k) to c if and only if 〈k, f〉 is

an algebra homomorphism from the initial algebra σA to c ◦ (A×Fπ2) :
A× F (B ×X)→ B ×X .

Initiality of σA yields existence and uniqueness of such f , hence the initiality of
Real(k). ��

624 I. Hasuo, B. Jacobs, and T. Uustalu

Next we shall establish an isomorphism between the two (local and tree func-
tion) behaviors, which we already discussed in the introduction. By Lemma 2.7,
Theorems 2.8 and 2.9 we have established the situation (3).

Theorem 2.9. The following composite W of functors is an isomorphism.

W =
(
LBeh(A,B) Real−→ TT(A,B) TF−→ TF↑(A,B)

)

Proof. The functor W sends a map k : DA→ B to its coKleisli extension Dk ◦
δA : DA → DDA → DB. Let E : TF↑(A,B) → LBeh(A,B) be the functor
carrying a bottom-up tree function l : DA → DB to εB ◦ l : DA → DB → B.
Thus E post-composes the tree function with extraction of the root label. Then
E ◦ W = Id because D is a comonad. For the opposite direction W ◦ E = Id,
bottom-upness is crucial. ��

3 Rebranching Bottom-Up Tree Transducers

In this section we pursue the same idea as in the previous section, but for a
more general class of bottom-up TTs, namely rebranching TTs. They no longer
preserve tree shapes, in fact they take trees of one branching type F to trees of a
possibly different branching type G, by reorganizing the branching of any node
of the input tree from type F to type G.

We shall establish the following situation, which is almost the same as (3). The
main differences are: 1) the fixed parameters are now functors F,G for branching
types (instead of sets A,B of labels) meaning that we consider transformations of
F -branching trees (F -trees for short) into G-trees; 2) the isomorphism between
LBeh and TF↑ is not present.

TT(F,G)

LBeh
��

Real
��

4
TF

TF↑(F,G) � � �� TF(F,G)

LBeh(F,G) W

�� �����������
(5)

A novelty in this section is what we call “placeholders-via-naturality”. TTs
are conventionally systems of transition rules in which placeholders appear ex-
plicitly. In our categorical approach, they have quite a different presentation as
natural transformations (Def. 3.1). The correspondence between these seemingly
different notions will be described via the Yoneda lemma.

Let us first present the conventional notion of rebranching TTs. Let Σ and
Δ be universal-algebraic signatures: we consider transformations of Σ-trees into
Δ-trees. Conventionally, a rebranching TT with a state space X is presented as
an element of the set

∏
f∈Σ

(
X |f| −→ (

∐
g∈Δ |f||g|)×X

)
. (6)

It is illustrative to think of the cardinality |f| as a set {y1, . . . , y|f|} of placeholders,
of the set X |f| on the left as the set of graphs of functions from |f| to X and of the

Categorical Views on Computations on Trees 625

set |f||g| on the right as the set of length-|g| lists over |f|. For example, assume that
some f is binary and a TT (6) carries (f, ((y1, x1), (y2, x2))) to ((g, (y2, y1, y1)), x)
with a ternary g. This is understood graphically as follows.

f

x1 y1 x2 y2

�−→ x g

y2 y1 y1

(7)

This is “bottom-up” because the state x is determined by the states x1, x2

assigned to its successor nodes. Placeholders y1, y2 designate how the subtrees
are reorganized in the bottom-up construction of a tree function behavior l.

f

t1 t2

l�−→ g

l(t2) l(t1) l(t1)

The name rebranching comes from the fact that, on the right hand side of (7),
exactly one function symbol occurs, so that a layer in a input tree is sent to
exactly one layer of the output tree, and only the branching within the layer
changes. In Sect. 4 we will abandon also this requirement.

We now present our categorical definition of TTs.

Definition 3.1. A (rebranching bottom-up) TT is a natural transformation
F (×X)

γ
=⇒ G ×X between set functors. The set X is called its state space.

A morphism of TTs from F (×X)
γ

=⇒ G ×X to F (× Y) δ=⇒ G × Y is
a function f : X → Y satisfying (G × f) ◦ γ = δ ◦ F (× f). We denote by
TT(F,G) the category of TTs and morphisms.

This categorical formulation may seem very different from the conventional one
(6). But somewhat remarkably the two agree for functors arising from traditional
signatures.

Let F,G be induced by universal-algebraic signatures Σ,Δ: namely, F =∐
f∈Σ()|f| and G =

∐
g∈Δ()|g|. The following calculation shows the equiva-

lence between (6) and Def. 3.1 via the Yoneda lemma.
∏

f∈Σ
(
X |f| → (

∐
g∈Δ |f||g|)×X

)

=
∏

f∈Σ
(
G|f| ×X

)X|f|

by definition of G

=
∏

f∈Σ
(

()|f| ⇒ (G ×X)X
|f|)

by Yoneda

=
∏

f∈Σ
(

(×X)|f| ⇒ G ×X
)

by ×X |f| 4 ()X
|f|

=
(∐

f∈Σ(×X)|f|
)
⇒ G ×X

= F (×X)⇒ G ×X by definition of F .

On the third line the set of placeholders (the first occurrence of |f| on the second
line) is absorbed into naturality, hence “placeholders-via-naturality”.

We now proceed to the tree function behavior of our TTs. The tree functions
here take F -trees to G-trees. Going slightly more general than necessary for this

626 I. Hasuo, B. Jacobs, and T. Uustalu

section (but preparing for the next), we write F ∗Z for the carrier of the initial
(Z+F)-algebra, i.e., the set of unlabelled F -trees with variables (graft-points)
from a set Z. For the algebra structure F (F ∗Z) ∼=→ F ∗Z we write αFZ . F -trees
simpliciter (i.e., those without variables) arise as the special case F ∗0. The set
(or discrete category) of tree functions F ∗0→ G∗0 will be denoted by TF(F,G).

Definition 3.2. A TT F (×X)
γ⇒ G ×X induces its tree-function behavior

TF (γ) ∈ TF(F,G) by the following algebra initiality diagram.

FF ∗0 ��						

∼=αF0
��

F (G∗0×X)
γG∗0��

GG∗0×X
αG0 ×X∼= ��

F ∗0
γ̃

��							

TF (γ)
��

G∗0×X
π1��

G∗0

(8)

Here again, similarly to the situation for relabelings, not all the tree functions
F ∗0→ G∗0 are induced by a TT but only “bottom-up” ones are.

Definition 3.3. A tree function F ∗0 l→ G∗0 is said to be (rebranching) bottom-
up, if there exists a natural transformation called a witness F (×F ∗0) ω=⇒ G
which makes the following diagram commute.

GF ∗0
Gl �� GG∗0

F (F ∗0× F ∗0)
ωF∗0

��

FF ∗0
F 〈id, id〉 ��

F ∗0
(αF0)−1 ∼=��

l
�� G∗0

∼= (αG0)−1

��

(9)

By TF↑(F,G) we denote the set (discrete category) of tree functions F ∗0→ G∗0
which are rebranching bottom-up. We have TF↑(F,G) ↪→ TF(F,G).

Witnesses are not necessarily unique. A simple example is the tree function that
sends an unlabelled binary tree to the unlabelled unary tree of its height.

Lemma 3.4. For a TT F (×X)
γ⇒ G ×X, the induced tree function TF (γ) :

F ∗0→ G∗0 is (rebranching) bottom-up.

Proof. Take ω = π1 ◦ γ ◦ F (× (π2 ◦ γ̃)), where γ̃ is from (8). ��

Definition 3.5. Given a TT F (×X)
γ⇒ G ×X, we define its local behavior

LBeh(γ) to be F (× F ∗0) ω⇒ G from the proof of Lemma 3.4.

Categorical Views on Computations on Trees 627

In Sect. 2 we observed that a local behavior DA → B is a coKleisli map. This
is also the case in this section. In fact, the mapping F �→ F (F ∗0 ×) extends
to a comonad on the functor category [Sets,Sets], so that any natural transfor-
mation F (F ∗0×) ω⇒ G is therefore a coKleisli map from F to G. We denote
their set (discrete category) by LBeh(F,G).

Lemma 3.6. The operations LBeh and TF in Definitions 3.5 and 3.2 extend
to functors LBeh : TT(F,G)→ LBeh(F,G) and TF : TT(F,G)→ TF↑(F,G).

��

Theorem 3.7. We have an adjunction (actually a coreflection) Real 4 LBeh,
where the realization functor for local behaviors Real : LBeh(F,G)→ TT(F,G)
sends a local behavior F (× F ∗0) ω⇒ G to a TT with Z-components

F (Z × F ∗0)
〈ωZ ,Fπ2〉→ GZ × FF ∗0

GZ×αF
0→ GZ × F ∗0 . ��

Proposition 3.8. The functor W = (LBeh(F,G) Real→ TT(F,G) TF→ TF↑
(F,G)) is an epimorphism. ��

4 Relayering Bottom-Up Tree Transducers

In this section we will consider our most general class of bottom-up tree trans-
formations, which can send a layer in an input tree to a truncated subtree in
the output tree. For reasons of space, we must be fairly brief. We establish the
same situation as in the previous section, except that we do not have to single
out any condition of bottom-upness of tree functions. As we do not restrict state
spaces to be finite, any tree function can arise as the behavior of a relayering
bottom-up TT.

A categorical presentation of relayering TTs is obtained much like that of
rebranching TTs in Sect. 3, using “placeholders-via-naturality”. We recall the
notation F ∗Z for the carrier of the initial (Z+F)-algebra. It is now important
for us that the functor F ∗ carries a monad structure, in particular a multiplica-
tion μF : F ∗F ∗ ⇒ F ∗ that can be defined via initiality.

Definition 4.1. A (relayering bottom-up) TT is a natural transformation of
the form F (×X)

γ
=⇒ G∗ ×X. Such TTs form a category TT(F,G) together

with an obvious notion of morphism.

The difference from Def. 3.1 is that we have G∗ instead of G in the codomain.
This corresponds to allowing terms over placeholders rather than applications
of single function symbols in the right-hand sides of transition rules (7): for
example,

f

x1 y1 x2 y2
�−→ x g

g′

y2 y1

y1 y2

(10)

628 I. Hasuo, B. Jacobs, and T. Uustalu

Definition 4.2. A TT F (×X)
γ⇒ G∗ ×X induces its tree-function behavior

TF (γ) : F ∗0→ G∗0 by the following algebra initiality diagram.

FF ∗0 ��						

∼=αF0
��

F (G∗0×X)
γG∗0��

G∗G∗0×X
μG0 ×X��

F ∗0
γ̃

��							

TF (γ)
��

G∗0×X
π1��

G∗0

(11)

For relayering TTs any tree function is bottom-up: a tree function l : F ∗0→ G∗0
is realized by the TT whose Z-component is

F (Z × F ∗0) Fπ2−→ FF ∗0
αF

0−→ F ∗0
〈l,F∗0〉−→ G∗0× F ∗0 G∗!×F∗0−→ G∗Z × F ∗0 ,

where ! denotes the empty map 0 → Z. This realization however does not give
an adjunction.

The local behavior induced by a TT γ is a natural transformation LBeh(γ) :
F (× F ∗0) ⇒ G∗ . Such natural transformations are biKleisli maps of a dis-
tributive law of the comonad F �→ F (× F ∗0) of the previous section over the
free monad delivering monad F �→ F ∗. We denote their set (discrete category)
by LBeh(F,G).

For a realization functor for local behaviors Real : LBeh(F,G) → TT(F,G)
we obtain an adjunction (actually a coreflection) Real 4 LBeh , similarly to the
rebranching case.

5 Allowing Parameters to Vary

In Sect. 2 we saw the fundamental diagram (3) relating tree transducers, local
behaviors and tree functions. In that diagram we kept the alphabets A,B fixed.
In this section we shall identify additional mathematical structure that emerges
by allowing the alphabets to vary. For this purpose we utilize the notion of
Arrows—as introduced by Hughes [5], but described more abstractly as monoids
in categories of bifunctors in [4]—and also Freyd categories (or as fibered spans).

Arrows were devised for the purpose of reconciling impure “structured com-
putations” with purely functional computation. Commonly an Arrow A(−,+)
is a bifunctor Cop × C → Sets: in this case A(A,B) is the set of structured
computations (of the kind designated by A) from the type A to B. Since we
want to consider TT(A,B) of relabeling transducers as a category of struc-
tured computation, we shall use Cat-valued Arrows instead: these are bifunctors
Cop×C→ Cat with additional structure arr and >>>.1 The notion of Cat-valued
Arrows are in fact the same thing as Freyd categories [8] (enriched by Cat in

1 For the sake of brevity, we ignore here the compatibility with products which is
usually given by an operation first.

Categorical Views on Computations on Trees 629

a suitable way): this was shown in [7]. Moreover, a Cat-valued Arrow—as a bi-
functor Cop×C→ Cat—induces a fibered span via the generalized Grothendieck
construction (see, e.g., [6, Ch. 9]).

In the remainder of the section we shall parameterize the diagram (3) and
obtain the corresponding situation for Arrows. In this case we have C = Sets as
the base category. We do this only for relabelings due to limited space.

The bifunctor TT(−,+) is such that TT(A,B) is the category of relabelings
from A-trees to B-trees. It sends a morphism (α, β) : (A,B)→ (C,D) in Cop ×
C—hence α : C → A and β : B → D—to the functor TT(A,B) → TT(C,D)
given as follows. On objects:

(
A× FX c→ B ×X

)
�−→

(
C × FX α×FX−→ A× FX c→ B × FX β×FX−→ D × FX

)

and on morphisms it is the identity.
Interestingly, there is also a monoid structure TT ⊗TT >>>→ TT arr← I on the

bifunctor TT—this makes TT an Arrow (see [4]). We shall describe it a bit
more concretely. For TTs A × FX c−→ C × X and C × FY d−→ B × Y with
matching output/input, their composition c >>>d has X × Y as its state space:

A× F (X × Y)
〈Fπ1,Fπ2〉−→ A× FX × FY c−→ C ×X × FY d−→ B ×X × Y .

The operation arr for TT carries a morphism A
f→ B in C to a TT with a trivial

state space 1: namely A × F1 π1→ A
f→ B

∼=→ B × 1. It is easy to check that arr
and >>> satisfy the appropriate naturality and monoid equations.

Just like TT(−,+) carries the structure of an Arrow we can identify similar
structure on LBeh(−,+), TF(−,+) and TF↑(−,+). It then turns out that the
diagram (3), but then without the fixed alphabets, also exists in parameterized
form, even with preservation of this Arrow structure. For example, the behavior-
realization adjunction is now described as an adjunction between Arrows.

Theorem 5.1. We have the following situation in the 2-category Arrow.

TT(−,+)

LBeh
��

Real
��

4

TF
		

TF↑(−,+) � � �� TF(−,+)

LBeh(−,+)
W

(12)

��

6 Conclusions and Future Work

We have given a categorical account of three classes of bottom-up tree trans-
formations. Notably, we have generalized traditional signatures to functors and
replaced traditional descriptions of TTs based on placeholder notation with nat-
ural transformations, winning simplicity and clarity. In future work, we will

630 I. Hasuo, B. Jacobs, and T. Uustalu

elaborate on our basic picture in a form where, in addition to “extensional” tree
functions, we also have “intensional” tree functions, capable of tracking which
node in an input tree goes where in the output tree. And we will also include
top-down computations, using the theory of containers, as well as bottom-up
and top-down computations with look-ahead.

Acknowledgement. T. Uustalu was partially supported by the Estonian Science
Foundation grants No. 5567 and 6940.

References

1. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications. Book draft (2005)

2. Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison.
Math. Syst. Theory 9(3), 198–231 (1975)

3. Goguen, J.: Minimal realization of machines in closed categories. Bull. Amer. Math.
Soc. 78(5), 777–783 (1972)

4. Heunen, C., Jacobs, B.: Arrows, like monads, are monoids. In: Brookes, S., Mislove,
M. (eds.) Proc. of 22nd Conf. on Math. Found. of Program. Semantics, MFPS-
XXII. Electr. Notes in Theor. Comput. Sci., vol. 158, pp. 219–236. Elsevier, Ams-
terdam (2006)

5. Hughes, J.: Generalising monads to arrows. Sci. of Comput. Program. 37(1–3),
67–111 (2000)

6. Jacobs, B.: Categorical Logic and Type Theory. North-Holland, Amsterdam (1999)
7. Jacobs, B., Hasuo, I.: Freyd is Kleisli, for arrows. In: McBride, C., Uustalu, T.

(eds.) Proc. of Wksh. on Mathematically Structured Functional Programming,
MSFP ’06, Electron. Wkshs. in Comput. Sci., BCS (2006)

8. Power, J., Robinson, E.: Premonoidal categories and notions of computation. Math.
Struct. in Comput. Sci. 7(5), 453–468 (1997)

9. Rosebrugh, R.D., Sabadini, N., Walters, R.F.C.: Minimal realization in bicategories
of automata. Math. Struct. in Comput. Sci. 8(2), 93–116 (1998)

10. Rounds, W.C.: Mappings and grammars on trees. Math. Syst. Theory 4(3), 257–
287 (1970)

11. Thatcher, J.W.: Generalized sequential machine maps. J. Comput. Syst. Sci. 4(4),
339–367 (1970)

12. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. In: van Eekelen,
M. (ed.) Trends in Functional Programming 6, Intellect, pp. 145–162 (2007)

13. Uustalu, T., Vene, V.: The essence of dataflow programming. In: Horváth, Z. (ed.)
CEFP 2005. LNCS, vol. 4164, pp. 135–167. Springer, Heidelberg (2006)

14. Uustalu, T., Vene, V.: The dual of substitution is redecoration. In: Hammond, K.,
Curtis, S. (eds.) Trends in Functional Programming 3, Intellect, pp. 99–110 (2002)

Holographic Algorithms: The Power of

Dimensionality Resolved

Jin-Yi Cai1,� and Pinyan Lu2,��

1 Computer Sciences Department, University of Wisconsin
Madison, WI 53706, USA

jyc@cs.wisc.edu
2 Department of Computer Science and Technology, Tsinghua University

Beijing, 100084, P.R. China
lpy@mails.tsinghua.edu.cn

Abstract. Valiant’s theory of holographic algorithms is a novel method-
ology to achieve exponential speed-ups in computation. A fundamental
parameter in holographic algorithms is the dimension of the linear ba-
sis vectors. We completely resolve the problem of the power of higher
dimensional bases. We prove that 2-dimensional bases are universal for
holographic algorithms.

1 Introduction

Complexity theory has learned a great deal about the nature of efficient com-
putation. However if the ultimate goal is to gain a fundamental understanding
such as what differentiates polynomial time from exponential time, we are still
a way off. In fact, in the last 20 years, the most spectacular advances in the field
have come from discovering new and surprising ways to do efficient computa-
tions. The theory of holographic algorithms introduced recently by Valiant [18]
is one such new methodology which gives polynomial time algorithms to some
problems which seem to require exponential time.

To describe this theory requires some background. At the top level it is a
method to represent computational information in a superposition of linear vec-
tors, somewhat analogous to quantum computing. This information is manipu-
lated algebraically, but in a purely classical way. Then via a beautiful theorem
called the Holant Theorem [18], which expresses essentially an invariance of ten-
sor contraction under basis transformations [2], this computation is reduced to
the computation of perfect matchings in planar graphs. It so happens that count-
ing perfect matchings for planar graphs is computable in polynomial time by the
elegant FKT method [11,12,15]. Thus we obtain a polynomial time algorithm.
The whole exercise can be thought of as an elaborate scheme to introduce a cus-
tom made process of exponential cancellations. The end result is a polynomial
time evaluation of an exponential sum which expresses the desired computation.
� Supported by NSF CCR-0511679.

�� Supported by the National Natural Science Foundation of China Grant 60553001 and
the National Basic Research Program of China Grant 2007CB807900,2007CB807901.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 631–642, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

632 J.-Y. Cai and P. Lu

On a more technical level, there are two main ingredients in the design of a
holographic algorithm. First, a collection of planar matchgates. Second, a choice
of linear basis vectors, through which the computation is expressed and inter-
preted. Typically there are two basis vectors n and p in dimension 2, which
represent the bit values 0 and 1 respectively, and their tensor product will rep-
resent a combination of 0-1 bits. It is the superpositions of these vectors in
the tensor product space that are manipulated by a holographic algorithm in
the computation. This superposition gives arise to exponential sized aggregates
with which massive cancellations take place. In this sense holographic algorithms
are more akin to quantum algorithms than to classical algorithms in their design
and operation.

No polynomial time algorithms were known previously for any of the prob-
lems in [18,2,1,21], and some minor variations are NP-hard. These problems
may also appear quite restricted. Here is a case in point. Valiant showed [21]
that the problem #7Pl-Rtw-Mon-3CNF is solvable in P by this method. This
problem is a restrictive Satisfiability counting problem. Given a planar read-
twice monotone 3CNF formula, it counts the number of satisfying assignments,
modulo 7. However, it is known that even for this restricted class of Boolean
formulae, the counting problem without the modulo 7 is #P-complete. Also, the
counting problem modulo 2 (denoted as #2Pl-Rtw-Mon-3CNF) is ⊕P-complete
(thus NP-hard by randomized reductions). The ultimate power of this theory is
unclear.

It is then natural to ask, whether holographic algorithms will bring about
a collapse of complexity classes. Regarding conjectures such as P �= NP un-
dogmatically, it is incumbent for us to gain a systematic understanding of the
capabilities of holographic algorithms. This brings us closer to the fundamen-
tal reason why these algorithms are fascinating—its implication for complexity
theory. The fact that some of these problems such as #7Pl-Rtw-Mon-3CNF
might appear a little contrived is beside the point. When potential algorithmic
approaches to P vs. NP were surveyed, these algorithms were not part of the
repertoire; presumably the same “intuition” for P �= NP would have applied
equally to #7Pl-Rtw-Mon-3CNF and to #2Pl-Rtw-Mon-3CNF.

In holographic algorithms, since the underlying computation is ultimately
reduced to perfect matchings, the linear basis vectors which express the com-
putation are necessarily of dimension 2k, for some integer k. This k is called
the size of the basis. Most holographic algorithms so far [18,2,1,21] use bases of
size 1. Surprisingly Valiant’s algorithm for #7Pl-Rtw-Mon-3CNF used a basis of
size 2. Utilizing bases of a higher dimension has always been a theoretical possi-
bility, which may further extend the reach of holographic algorithms. Valiant’s
algorithm makes it realistic.

It turns out that for #7Pl-Rtw-Mon-3CNF one can design another holographic
algorithm with a basis of size 1 [4]. Subsequently we have proved [6] the surprising
result that any basis of size 2 can be replaced by a suitable basis of size 1 in
a holographic algorithm. In this paper we completely resolve the problem of
whether bases of higher dimensions are more powerful. They are not.

Holographic Algorithms: The Power of Dimensionality Resolved 633

Our starting point is a theorem from [6] concerning degenerate tensors of
matchgates. For bases of size 2 we were able to find explicit constructions of
certain gadgets from scratch. But this approach encountered major difficulties
for arbitrary size k. The underlying reason for this is that for larger matchgates
there is a set of exponential sized algebraic constraints called matchgate identi-
ties [17,1,3] which control their realizability. This additional constraint is absent
for small matchgates. The difficulty is finally overcome by deriving a tensor
theoretic decomposition. This reveals an internal structure for non-degenerate
matchgate tensors. We discover that for any basis of size k, except in a degen-
erate case, there is an embedded basis of size 1. To overcome the difficulty of
realizability, we make use of the given matchgates on a basis of size k, and “fold”
these matchgates onto themselves to get new matchgates on the embedded basis
of size 1. These give geometric realizations, by planar graphs, of those tensors
in the decomposition which were defined purely algebraically. Thus we are able
to completely bypass matchgate identities here. In the process, we gain a sub-
stantial understanding of the structure of a general holographic algorithm on a
basis of size k.

This paper is organized as follows. In Section 2, we give a brief summary of
background information. In Section 3, we give a structural theorem for valid
bases, the tensor theoretic decomposition, and prove two key theorems for the
realizability of generators. In Section 4, we prove a realizability theorem for
recognizers. This leads to the main theorem.

2 Background

Let G = (V,E,W) be a weighted undirected planar graph. A generator match-
gate Γ is a tuple (G,X) where X ⊆ V is a set of external output nodes. A
recognizer matchgate Γ ′ is a tuple (G, Y) where Y ⊆ V is a set of external input
nodes. The external nodes are ordered counter-clockwise on the external face.
Γ (or Γ ′) is called an odd (resp. even) matchgate if it has an odd (resp. even)
number of nodes.

Each matchgate is assigned a signature tensor. A generator Γ with n output
nodes is assigned a contravariant tensor G of type

(
n
0

)
. Under the standard basis,

it takes the form G with 2n entries, where

Gi1i2...in = PerfMatch(G− Z).

Here PerfMatch is the sum of all weighted perfect matchings, and Z is the
subset of the output nodes having the characteristic sequence χZ = i1i2 . . . in. G
is called the standard signature of the generator Γ . We can view G as a column
vector (whose entries are ordered lexicographically according to χZ).

Similarly a recognizer Γ ′ = (G′, Y) with n input nodes is assigned a covariant
tensor R of type

(
0
n

)
.

Because of the parity constraint of perfect matchings, half of all entries of a
standard signature G (or R) are zero. Therefore, we can use a tensor in V n−1

0 (or

634 J.-Y. Cai and P. Lu

V 0
n−1) to represent all the information contained in G (or R). More precisely,

we have the following definition (we only need for the generators).

Definition 1. If a generator matchgate Γ with arity n is even (resp. odd), a
condensed standard signature G

�

of Γ is a tensor in V n−1
0 , and G

�

α = Gαb (resp.

G
�

α = Gαb), where G is the standard signature of Γ , α ∈ {0, 1}n−1 and b = ⊕α
is the sum of the bits of α mod 2, i.e., the parity of the Hamming weight of α.

A basis T contains 2 vectors (t0, t1) (also denoted as (n, p)), each of them has
dimension 2k (size k). We use the following notation: T = (tαi) = [nα, pα], where
i ∈ {0, 1} and α ∈ {0, 1}k. We follow the convention that upper index α is for
row and lower index i is for column (see [8]). We assume rank(T) = 2 in the
following discussion because a basis of rank(T) ≤ 1 is useless. Under a basis T ,
we can talk about non-standard signatures (or simply signatures).

Definition 2. The contravariant tensor G of a generator Γ has signature G
under basis T iff G = T⊗nG is the standard signature of the generator Γ .

Definition 3. The covariant tensor R of a recognizer Γ ′ has signature R under
basis T iff R = RT⊗n, where R is the standard signature of the recognizer Γ ′.

We have
Gα1α2···αn =

∑

i1,i2,...,in∈{0,1}
Gi1i2···in tα1

i1
tα2
i2
· · · tαn

in
(1)

Ri1i2···in =
∑

α1,α2,...,αn∈{0,1}k

Rα1α2···αn
tα1
i1
tα2
i2
· · · tαn

in
(2)

Definition 4. A contravariant tensor G ∈ V n
0 (resp. a covariant tensor R ∈

V 0
n) is realizable on a basis T iff there exists a generator Γ (resp. a recognizer
Γ ′) such that G (resp. R) is the signature of Γ (resp. Γ ′) under basis T .

For a string α ∈ {0, 1}n, we use the notation wt(α) to denote its Hamming
weight. A signature G or R on index α = α1α2 . . . αn, where each αi ∈ {0, 1}k,
is symmetric iff the value of Gα or Rα only depends on the number of k-bit
patterns of αi, i.e., it is symmetric under permutations of the blocks αi. For
k = 1 it only depends on the Hamming weight wt(α) of its index α. For k = 1, we
can denote a symmetric signature by the notation [z0, z1, . . . , zn], where i is the
Hamming weight, and zi is the value of the signature for an index of wt(α) = i.
We note that k = 1 always for signatures other than standard signatures.

A matchgrid Ω = (A,B,C) is a weighted planar graph consisting of a disjoint
union of: a set of g generators A = (A1, . . . , Ag), a set of r recognizers B =
(B1, . . . , Br), and a set of f connecting edges C = (C1, . . . , Cf), where each Ci
edge has weight 1 and joins an output node of a generator with a input node of a
recognizer, so that every input and output node in every constituent matchgate
has exactly one such incident connecting edge.

Let G(Ai, T) be the signature of generator Ai under the basis T and R(Bj , T)
be the signature of recognizerBj under the basis T . And Let G =

⊗g
i=1G(Ai, T)

Holographic Algorithms: The Power of Dimensionality Resolved 635

and R =
⊗r

j=1 R(Bj , T). Then Holant(Ω) is defined to be the contraction of
these two product tensors, where the corresponding indices match up according
to the f connecting edges in C. We note that for a holographic algorithm to
use a basis of size k > 1, each matchgate of arity n in the matchgrid has kn
external nodes, grouped in blocks of k nodes each. These k nodes are connected
in a block-wise fashion between matchgates, where the combinations of tensor
products of the 2k-dimensional basis vectors are interpreted as truth values.

Theorem 1 (Valiant). For any matchgrid Ω over any basis T , let G be its
underlying weighted graph, then

Holant(Ω) = PerfMatch(G).

There is a subtlety for the universal bases collapse theorem. It turns out that
if we only focus on the recognizers, bases of size k > 1 are in fact provably
more powerful than bases of size 1. It is only in the context of simultaneous
realizability of both generators and recognizers that we are able to achieve this
universal collapse. The first crucial insight is to isolate certain degenerate bases.

Definition 5. A basis T is degenerate iff tα = (tα0 , t
α
1) = 0 for all wt(α) even

(or for all wt(α) odd).

Definition 6. A generator tensor G ∈ V n
0 (dim(V) = 2) is degenerate iff it

has the following form (where Gi ∈ V is a arity 1 tensor):

G = G1 ⊗G2 ⊗ · · · ⊗Gn. (3)

Degenerate generators can be completely decoupled. A holographic algorithm
that uses only degenerate generators has no connections between its various
components and hence is essentially trivial.

In [6], we proved the following theorem. The proof uses matchgate identities.

Theorem 2. If a basis T is degenerate and rank(T) = 2, then every generator
G ∈ V n

0 realizable on the basis T is degenerate.

3 Valid Bases

Definition 7. A basis T is valid iff there exists some non-degenerate generator
realizable on T .

Our starting point is a careful study of high dimensional valid bases.

Corollary 1. A valid basis is non-degenerate.

Theorem 3. For every valid basis T = [n, p], (nα, pα) and (nβ , pβ) are linearly
dependent, for all wt(α),wt(β) having the same parity.

636 J.-Y. Cai and P. Lu

Proof: Since T = [n, p] is valid, by definition, there exists a non-degenerate
generator G which is realizable on T . From Corollary 1, we know that T = [n, p]
is non-degenerate.

Let α0, β0 be two arbitrary indices of even weight and α1, β1 be two arbitrary

indices of odd weight. Let T0 =
[(
nα0

nβ0

)
,

(
pα0

pβ0

)]
and T1 =

[(
nα1

nβ1

)
,

(
pα1

pβ1

)]
.

Then we need to prove det(T0) = det(T1) = 0.
According to the parity of the arity n and the parity of the matchgate realizing

G, we have 4 cases:

Case 1: even n and odd matchgate
From the parity constraint, we have T⊗n

0 G = 0 and T⊗n
1 G = 0. Since G �≡ 0 (i.e.,

G is not identically 0), we have det(T0) = det(T1) = 0. Note that det(T⊗n) =
(det(T))n2n−1

.

Case 2: odd n and odd matchgate
From the parity constraint, we have T⊗n

0 G = 0. Since G �≡ 0, we have det(T0) =
0. Since the basis is non-degenerate, from the definition, there exists a α such
that wt(α) is even and (nα, pα) �= (0, 0).

From the parity constraint, for all t ∈ [n] = {1, . . . , n}, we have

(T⊗(t−1)
1 ⊗ (nα, pα)⊗ T⊗(n−t)

1)G = 0. (4)

Let Gt be the tensor of type V n−1
0 defined by

G
i1i2...in−1
t = nαGi1i2...it−10itit+1...in−1 + pαGi1i2...it−11itit+1...in−1 ,

where i1, i2, . . . , in−1 = 0, 1. Then equation (4) translates to T⊗(n−1)
1 Gt = 0.

If ∀t ∈ [n] we have Gt ≡ 0, then we claim G is symmetric and degenerate.
To see this, first suppose pα �= 0. Then for all i1, i2, . . . , in = 0, 1, Gi1i2...in =
G00...0(−nα/pα)wt(i1i2...in). This is clearly symmetric, and degenerate by (3).
The proof is similar if nα �= 0. Since by assumption (nα, pα) �= (0, 0), it follows
that G is degenerate. This is a contradiction.

Therefore there exists some t ∈ [n] such that Gt �≡ 0. Then from T
⊗(n−1)
1 Gt =

0, we have det(T1) = 0.

Case 3: odd n and even matchgate
This is similar to Case 2. We apply the argument for T0 to T1, and apply the
argument for T1 to T0.

Case 4: even n and even matchgate
This case is also similar to Case 2 and Case 3. We simply apply the same argu-
ment for T1 as in Case 2 and the same argument for T0 as in Case 3. ��

From this theorem, we know that for any valid basis T = [nα, pα] (where α ∈
{0, 1}k), there exist non-zero vectors (nα0 , pα0), and (nα1 , pα1), where α0, α1 ∈
{0, 1}k, and wt(α0) is even and wt(α1) is odd, such that every other (nα, pα) is a
scalar multiple of one of these two vectors (the one with the same parity). More
precisely, we define n̂b = nαb and p̂b = pαb for b = 0, 1, then there exist λα for all
α ∈ {0, 1}k, such that (nα, pα) = λα(n̂⊕α, p̂⊕α), where ⊕α is the parity of wt(α).

Holographic Algorithms: The Power of Dimensionality Resolved 637

Note that (n̂0, p̂0), (n̂1, p̂1) are linearly independent, otherwise rank(T) < 2.
Therefore each is determined up to a scalar multiplier. This justifies the following

Definition 8. We call T̂ =
[(
n̂0

n̂1

)
,

(
p̂0

p̂1

)]
an embedded size 1 basis of T .

Now suppose a non-degenerate generator G is realizable on a valid basis T =
[nα, pα], (where α ∈ {0, 1}k), and T̂ = (t̂αi) is an embedded size 1 basis of T .

Substituting (tα0 , t
α
1) = λα(t̂⊕α0 , t̂⊕α1) in (1), we have

Gα1α2···αn =
∑

i1,i2,··· ,in∈{0,1}
Gi1i2···in tα1

i1
tα2
i2
· · · tαn

in

=
∑

i1,i2,··· ,in∈{0,1}
Gi1i2···inλα1 t̂⊕α1

i1
λα2 t̂⊕α2

i2
· · ·λαn t̂⊕αn

in

= λα1λα2 · · ·λαn

∑

i1,i2,··· ,in∈{0,1}
Gi1i2···in t̂⊕α1

i1
t̂⊕α2
i2
· · · t̂⊕αn

in
.

We define a tensor Ĝ ∈ V n
0 as follows: For j1, j2, . . . , jn = 0, 1,

Ĝj1j2···jn =
∑

i1,i2,··· ,in∈{0,1}
Gi1i2···in t̂j1i1 t̂

j2
i2
· · · t̂jnin . (5)

Then we have

Gα1α2···αn = λα1λα2 · · ·λαnĜ⊕α1⊕α2···⊕αn . (6)

The decomposition (6) is pregnant with structural information (see discussion
in [7]). Starting with any non-degenerate G which is realizable on a valid basis
T , we defined its embedded size 1 basis T̂ , (λα) and Ĝ by (5). But we note that
(5) and (6) are satisfied for every generator (we only need one non-degenerate
G to establish T̂). Then regarding (6) we have the following key theorems:

Theorem 4. (λα) (where α ∈ {0, 1}k) is a condensed signature of some gener-
ator matchgate with arity k + 1.

Theorem 5. Ĝ is a standard signature of some generator matchgate of arity n.

The proofs of Theorems 4 and 5 are both constructive. We make one more
definition. Since the basis T is non-degenerate, there exist β0 and β1, such that
wt(β0) is even, wt(β1) is odd, and λβ0λβ1 �= 0. We also assume β0 and β1 is such
a pair with minimum Hamming distance. To simplify notations in the following
proof, we assume β0 = 00 · · · 0 and β1 = 11 · · · 100 · · ·0 (where there are a 1s, a
is odd). This simplifying assumption is without loss of generality; we omit this
justification here and it can be found in the full paper [7].

Let c0 = λβ0 = λ00···000···0 and c1 = λβ1 = λ11···100···0. In this setting, for any
pattern γ strictly between β0 and β1 (if any), if αr = γ for some r ∈ [n], then
by (6)

Gα1α2···αn = 0. (7)

638 J.-Y. Cai and P. Lu

1

1

1

)1,(i

)2,(i

)3,(i

)4,(i

)5,(i

)1,(ai

),(ai

)1,(+ai

)2,(+ai

),(ki

''i
'i

1/1 c 0/1 c

Fig. 1. Modify the i-th
block of Γ to get the i-
th external node of �Γ

1

1

1

)1,2(

)2,2(

)3,2(

)4,2(

)5,2(

)1,2(a

),2(a

)1,2(+a

)2,2(+a

),2(k

''2
)'1(+k

1/1 g 0/1 g

Fig. 2. Modify the sec-
ond block of Γ to get the
(k + 1)-th external node
of Γλ

1

1

1

)1,(i

)2,(i

)3,(i

)4,(i

)5,(i

)1,(ai

),(ai

)1,(+ai

)2,(+ai

),(ki

''i

1

Fig. 3. Modify the i-th
block of Γ when ji = 1.
All the nodes are viewed
as internal in Γλ.

Since G is realizable on T , G is the standard signature of some matchgate Γ
with arity nk. For convenience, we label its ((i− 1)k+ j)-th external node by a
pair of integers (i, j) ,where i ∈ [n], j ∈ [k].

Proof of Theorem 5: For every i ∈ [n], do the following modifications to the
k nodes (i, j) of the i-th block of external nodes in Γ , where j ∈ [k] (see Fig. 1):

– Connect (i, l) with (i, l+ 1) by an edge of weight 1, for l = 2, 4, . . . , a− 1.
– Add two new nodes i′ and i′′.
– Connect (i, 1) and i′′ by an edge of weight 1/c1.
– Connect i′′ and i′ by an edge of weight 1/c0.

After all these modifications, viewing the n nodes i′ (one node stemming from
each block, i ∈ [n]) as external nodes and all other nodes as internal nodes, we
have a matchgate Γ̂ with arity n. Now we prove that Ĝ is the standard signature
of this matchgate Γ̂ .

Denote the standard signature of Γ̂ temporarily as (Γ̂ j1j2···jn). For an arbi-
trary pattern j1j2 · · · jn ∈ {0, 1}n, we consider the value Γ̂ j1j2···jn . For r ∈ [n],
there are two cases:

– Case 1: jr = 0. In this case, we keep the external node r′. Any perfect
matching will take the edge (r′′, r′), this contributes a factor of 1/c0. As a
result, the node (r, 1) must match with some node in the original Γ . And
from (7), the only possible non-zero pattern of this block of G is β0 = 00 . . .0.
(This means that the perfect matchings will not take any of the new weight
1 edges.)

– Case 2: jr = 1. In this case, we remove the external node r′. Any perfect
matching will take the edge between (r, 1) and r′′, this contributes a factor
of 1/c1. As a result, the node (r, 1) will be removed from the original Γ . And

Holographic Algorithms: The Power of Dimensionality Resolved 639

from (7), the only possible non-zero pattern of this block of G is β1. (This
means that the perfect matchings will take all of the new weight 1 edges.)

To sum up,

Γ̂ j1j2···jn =
1
cj1

1
cj2
· · · 1

cjn
Gβj1βj2 ···βjn .

Together with (6), we know this is exactly Ĝ. This completes the proof. ��

Before we prove Theorem 4, we have the following claim. The proof is omitted
here and can be found in the full paper [7].

Claim 1. For any standard signature with more than one non-zero entries, there
exist two non-zero entries Gα and Gβ such that the Hamming distance between
α and β is 2.

Proof of Theorem 4: Here we start with a non-degenerate G. By Claim 3, for
notational simplicity we assume G0 = Ĝ00j3j4···jn �= 0 and G1 = Ĝ11j3j4···jn �= 0.
Other cases can be proved similarly. We are given the planar matchgate Γ with
standard signature G. We carry out the following transformations of Γ :

– Do nothing to the first block. However, for convenience, we rename the first
k nodes as 1′, 2′, . . . , k′.

– Change the second block as in Figure 2, where g0 = G0λ
β0λβj3 · · ·λβjn and

g1 = G1λ
β1λβj3 · · ·λβjn . Note that g0, g1 �= 0. It has a new external node

(k + 1)′.
– For i ≥ 3 and ji = 0, do nothing to the i-th block.
– For i ≥ 3 and ji = 1, change the i-th block as in Figure 3.

After all these changes, we will consider the k+ 1 nodes i′ (where i ∈ [k+ 1],
the first k nodes all stem from the first block, and (k+1)′ stems from the second
block) as the new external nodes and all other nodes as internal nodes. In this
way we obtain a planar matchgate Γλ with arity k+ 1. Now we prove that λα is
the condensed standard signature of Γλ.

First we show that Γλ is an even matchgate. Let x be the number of nodes in
Γ and y = wt(j3j4 · · · jn). Since

Gβ0β0βj3βj4 ···βjn = λβ0λβ0λβj3λβj4 · · ·λβjn Ĝ00j3...jn �= 0,

we know x − ya is even. Given that a is odd, we can count mod 2, and get
x+ y+ 2 ≡ x− ya ≡ 0 mod 2. Since x+ y+ 2 is exactly the number of nodes in
Γλ, we know Γλ is an even matchgate.

For α ∈ {0, 1}k and wt(α) is even, we consider Γα0
λ at the (k+ 1)-bit pattern

α0. Consider each block in turn in Γ . The first block clearly should be given the
k-bit pattern α. The only possible non-zero value concerning the second block
is to take the edge (2′′, (k + 1)′) with weight 1/g0, and assign the all-0 pattern
β0 to (2, 1), (2, 2), . . . , (2, k). This follows from (7). Similarly for the i-th block,
where i ≥ 3, we must assign the pattern βji . Hence, applying (6) we get,

Γα0
λ =

1
g0
Gαβ0βj3βj4 ···βjn =

1
g0
λαλβ0λβj3λβj4 · · ·λβjnG0 = λα.

640 J.-Y. Cai and P. Lu

Similarly, for α ∈ {0, 1}k and wt(α) is odd,

Γα1
λ =

1
g1
Gαβ1βj3βj4 ···βjn =

1
g1
λαλβ1λβj3λβj4 · · ·λβjnG1 = λα.

This completes the proof. ��

4 Collapse Theorem

By (5) and Theorem 5, we have

Theorem 6. If a generator is realizable on a valid basis T , then it is also real-
izable on its embedded size 1 basis T̂ .

Now we prove the collapse result on the recognizer side.

Theorem 7. If a recognizer R is realizable on a valid basis T , then it is also
realizable on its embedded size 1 basis T̂ .

Proof: Since T is a valid basis, from Section 3, we have its embedded size 1 basis
T̂ , and the tensor (λα). By the proof of Theorem 4 we have an even matchgate
Γλ whose condensed signature is λα.

Let Γ ′ be a matchgate realizing R, R = RT⊗n. Γ ′ has kn external nodes.
For every block of k nodes in Γ ′, we use the matchgate Γλ from Section 3 to

extend Γ ′ to get a new matchgate Γ̂ ′ of arity n (see Figure 4).

Fig. 4. Extend the i-th block of recognizer Γ ′ by a copy of Γλ. We rename the (k+1)-th

node of this copy of Γλ as i∗, which is the i-th external node of the new recognizer �Γ ′.

The idea is that, for each block of k external nodes in Γ ′, we take one copy
of Γλ and fold it around so that in a planar fashion its first k external nodes are
connected to the k external nodes in Γ ′ in this block. The (k + 1)-st external
node of this copy of Γλ becomes a new external node of Γ̂ ′. Altogether Γ̂ ′ has n
external nodes 1∗, 2∗, . . . , n∗.

Holographic Algorithms: The Power of Dimensionality Resolved 641

Since Γλ is an even matchgate, when the node i∗ is either left in (set to 0) or
taken out (set to 1), the only possible non-zero patterns within the i-th copy of
Γλ are all αi ∈ {0, 1}k with the same parity.

It follows that the following exponential sum holds, for all i1, i2, . . . , in = 0, 1:

R̂i1i2...in =
∑

⊕αr=ir

Rα1α2···αn
λα1λα2 · · ·λαn .

where R̂ is the standard signature of Γ̂ ′, and R is the standard signature of Γ ′.

We want to prove that R̂ in the basis T̂ = (t̂il) =
[(
n̂0

n̂1

)
,

(
p̂0

p̂1

)]
and R in the

basis T = (tαl) give the same recognizer R.
Recall that tαl = λα t̂⊕αl . Now from (2) we have

Rl1l2···ln =
∑

αr∈{0,1}k

Rα1α2···αn
tα1
l1
tα2
l2
· · · tαn

ln

=
∑

ir∈{0,1}

∑

⊕αr=ir

Rα1α2···αn
tα1
l1
tα2
l2
· · · tαn

ln

=
∑

ir∈{0,1}

∑

⊕αr=ir

Rα1α2···αn
λα1 t̂⊕α1

l1
λα2 t̂⊕α2

l2
· · ·λαn t̂⊕αn

ln

=
∑

ir∈{0,1}
t̂i1l1 t̂

i2
l2
· · · t̂inln

∑

⊕αr=ir

Rα1α2···αn
λα1λα2 · · ·λαn

=
∑

ir∈{0,1}
t̂i1l1 t̂

i2
l2
· · · t̂inln R̂i1i2···in .

The last equation shows that R is also the signature of Γ̂ ′ under basis T̂ . This
completes the proof. ��

From Theorems 6 and 7, we can prove the following main theorem. See [7].

Theorem 8. (Bases Collapse Theorem) Any holographic algorithm on a basis of
any size which employs at least one non-degenerate generator can be efficiently
transformed to an holographic algorithm in a basis of size 1. More precisely,
if generators G1, G2, . . . , Gs and recognizers R1, R2, . . . , Rt are simultaneously
realizable on a basis T of any size, and not all generators are degenerate, then
all the generators and recognizers are simultaneously realizable on a basis T̂ of
size 1, which is the embedded basis of T .

We remark that a holographic algorithm which only uses degenerate generators
is trivial. From Theorem 8, what can be computed in P-time by holographic algo-
rithms in arbitrary dimensional bases can also be done with bases of size 1. This
rules out infinitely many theoretical possibilities. Regarding holographic algo-
rithms over size 1 basis, we have already built a substantial theory [5]. Therefore
this is an important step towards the understanding of the ultimate capability
of holographic algorithms.

642 J.-Y. Cai and P. Lu

References

1. Cai, J-Y., Choudhary, V.: Some Results on Matchgates and Holographic Algo-
rithms. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051(Part I), pp. 703–714. Springer, Heidelberg (2006) Also available
at Electronic Colloquium on Computational Complexity TR06-048, 2006

2. Cai, J-Y., Choudhary, V.: Valiant’s Holant Theorem and Matchgate Tensors (Ex-
tended Abstract). In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS,
vol. 3959, pp. 248–261. Springer, Heidelberg (2006) Also available at Electronic
Colloquium on Computational Complexity Report TR05-118

3. Cai, J-Y., Choudhary, V., Lu, P.: On the Theory of Matchgate Computations. To
appear in CCC 2007

4. Cai, J-Y., Lu, P.: On Symmetric Signatures in Holographic Algorithms. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 429–440. Springer,
Heidelberg (2007)

5. Cai, J-Y., Lu, P.: Holographic Algorithms: From Art to Science. To appear in
STOC 2007. Also available at Electronic Colloquium on Computational Complexity
Report TR06-145

6. Cai, J-Y., Lu, P.: Bases Collapse in Holographic Algorithms. To appear in CCC
2007. Also available at Electronic Colloquium on Computational Complexity Re-
port TR07-003

7. Cai, J-Y., Lu, P.: Holographic Algorithms: The Power of Dimensionality Resolved.
Available at Electronic Colloquium on Computational Complexity Report TR07-020

8. Dodson, C.T.J., Poston, T.: Tensor Geometry. Graduate Texts in Mathematics,
2nd edn., vol. 130. Springer, Heidelberg (1991)

9. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(2000)

10. Jerrum, M.: Two-dimensional monomer-dimer systems are computationally in-
tractable. J. Stat. Phys. 48, 121–134 (1987) erratum. 59, 1087-1088 (1990)

11. Kasteleyn, P.W.: The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961)
12. Kasteleyn, P.W.: Graph Theory and Crystal Physics. In: Harary, F. (ed.) Graph

Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)
13. Knill, E.: Fermionic Linear Optics and Matchgates. At

http://arxiv.org/abs/quant-ph/0108033
14. Murota,K.:Matrices andMatroids for SystemsAnalysis. Springer,Heidelberg (2000)
15. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics – an exact

result. Philosophical Magazine 6, 1061–1063 (1961)
16. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial

time. SIAM Journal of Computing 31(4), 1229–1254 (2002)
17. Valiant, L.G.: Expressiveness of Matchgates. Theoretical Computer Science 281(1),

457–471 (2002)
18. Valiant, L.G.: Holographic Algorithms (Extended Abstract). In: Proc. 45th IEEE

Symposium on Foundations of Computer Science, pp. 306–315 (2004) A more de-
tailed version appeared in Electronic Colloquium on Computational Complexity
Report TR05-099

19. Valiant, L.G.: Holographic circuits. In: Proc. 32nd International Colloquium on
Automata, Languages and Programming, pp. 1–15 (2005)

20. Valiant, L.G.: Completeness for parity problems. In: Proc. 11th International Com-
puting and Combinatorics Conference, pp. 1–8 (2005)

21. Valiant, L.G.: Accidental Algorithms. In: Proc. 47th Annual IEEE Symposium on
Foundations of Computer Science, pp. 509–517 (2006)

http://arxiv.org/abs/quant-ph/0108033

Reconciling Data Compression and

Kolmogorov Complexity

Laurent Bienvenu1 and Wolfgang Merkle2

1 Laboratoire d’Informatique Fondamentale, Université de Provence, Marseille, France
laurent.bienvenu@lif.univ-mrs.fr

2 Institut für Informatik, Ruprecht-Karls-Universität Heidelberg, Germany
merkle@math.uni-heidelberg.de

Abstract. While data compression and Kolmogorov complexity are both
about effective coding of words, the two settings differ in the following re-
spect. A compression algorithm or compressor, for short, has to map a
word to a unique code for this word in one shot, whereas with the standard
notions of Kolmogorov complexity a word has many different codes and
the minimum code for a given word cannot be found effectively. This gap
is bridged by introducing decidable Turing machines and a corresponding
notion of Kolmogorov complexity, where compressors and suitably nor-
malized decidable machines are essentially the same concept.

Kolmogorov complexity defined via decidable machines yields charac-
terizations in terms of the intial segment complexity of sequences of the
concepts of Martin-Löf randomness, Schnorr randomness, Kurtz random-
ness, and computable dimension. These results can also be reformulated
in terms of time-bounded Kolmogorov complexity. Other applications
of decidable machines are presented, such as a simplified proof of the
Miller-Yu theorem (characterizing Martin-Löf randomness by the plain
complexity of the initial segments) and a new characterization of com-
putably traceable sequences via a natural lowness notion for decidable
machines.

1 Introduction

The Kolmogorov complexity of a word w with respect to a Turing machine M is
defined to be the length of the shortest input on which M halts and outputs w.
This shortest input is often thought as the “best compression” of w relatively to
M . However, as pointed out by Shen [14]: “[...] in the framework of Kolmogorov
complexity we have no compression algorithm and deal only with the decompres-
sion algorithm.” In this paper, we address Shen’s remark and have a look at
effective randomness from an actual compression viewpoint.

First, in Section 2, we introduce a formal notion of compressor. Among the
many possible formalizations of the notion of compressor, we study one that is
natural and captures the main properties of “real world” compressors. We then
argue that compression obtained by compressors in our sense is essentially the
same as dealing with Kolmogorov complexity defined via decidable machines,
i.e., by Turing machines that have computable domains.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 643–654, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

644 L. Bienvenu and W. Merkle

In the following sections, the theory of decidable machines is developed in a
framework of algorithmic randomness. In Section 3, we review the celebrated
characterization of Martin-Löf randomness in terms of prefix-free Kolmogorov
complexity due to Schnorr and the more recent characterizations of Schnorr
and Kurtz randomness in terms of bounded machines due to Downey and Grif-
fiths [2]. We give identical or very similar charaterizations of all three notions
of randomness in terms of decidable machines; to the best of our knowledge,
this is the first time that all three notions are characterized using a single type
of Turing machine. Similary, we argue that the characterization of computable
Hausdorff dimension in terms of computable machines due to Downey et al. [1]
extends to decidable machines. In Section 4, all the mentioned charaterizations
are transferred to standard time-bounded Kolmogorov complexity by arguing
that the latter is closely related to Kolmogorov complexity defined via decidable
machines.

In Section 5, we use the characterization of Martin-Löf randomness in terms of
decidable machines in order to give a simplified proof of the recent Miller-Yu the-
orem, which characterizes Martin-Löf randomness in terms of plain Kolmogorov
complexity of initial segments.

Finally, in Section 6, we consider lowness notions. A sequence A is called low
and order-low for prefix-free decidable machines in case Kolmogorov complexity
with respect to such machines, when relativized to oracle A, changes by less than
a constant and by less than any computable order, respectively. We obtain that
any sequence is order-low for decidable machines if the sequence is computably
traceable, which then implies some known facts on lowness for Schnorr and Kurtz
randomness. Furthermore, exactly the computable sequences are low for prefix-
free decidable machines. In what follows several proofs will be omitted due to
lack of space.

We conclude the introduction by reviewing some standard concepts and no-
tation that will be used in the sequel. A word is a finite binary sequence, the
empty word, the unique word of length 0, is denoted by λ; the set of all words
is denoted by 2∗. Unless explicitely stated differently, a sequence is an infinite
binary sequence, and we write 2ω for the set of all sequences (sometimes also
referred to as Cantor space).We denote by & the prefix relation on 2∗ ∪ 2ω. For
every word u and for every set of words A, let

[u] = {R ∈ 2ω : u&R} and [A] =
⋃
u∈A[u] .

Recall that Lebesgue measure on Cantor space is the unique probability measure
μ on Cantor space such that for all words u holds μ([u]) = 2−|u|.

Following Li and Vitanyi [9], we denote by C(u) and K(u) the plain and the
prefix Kolmogorov complexity of a word u. For every Turing machine M which
computes a partial function from words to words and for any word u, we denote
by CM (u) the natural number inf{|p| : M(p) = u}. If M is assumed to have
prefix-free domain, we write KM in place of CM .

Reconciling Data Compression and Kolmogorov Complexity 645

2 Compressors and Decidable Machines

The intuitive understanding of a compressor is a procedure that maps a word
to a code for that word, where the mapping is one-to-one and hence in principle
invertible. For compressors that are to be applied in practice, in addition one will
surely require that coding and decoding are efficient and that redundant sources
will be mapped to reasonably short codes; however, these latter requirements will
not be considered here. We consider a most general notion of compressor where
one simply requires that the compressor yields an effective bijection between a
computable set of words and a computable set of codes.

Definition 1. A compressor is a partial computable function Γ : 2∗ → 2∗

such that Γ is one-to-one and the domain and range of Γ are computable. A
compressor is prefix-free if its range is prefix-free.

By Definition 1, a compressor may be undefined on some strings, but such strings
can be recognized effectively. Furthermore, the definition ensures that decom-
pression can be performed effectively, i.e., given a string u = Γ (v) in the range
of Γ , the unique preimage v of u can be found effectively. Here again, some
strings can be invalid for the decompression process, i.e., they do not represent
a compressed string, but these strings can also be recognized effectively. Most
actual compressors (e.g., gzip) are indeed compressors in our sense.

Compressors as just defined and Kolmogorov complexity both are about ef-
fective coding of words. The main difference is that a compressor has to produce
a code for a word in one shot and in fact every word has at most a single code.
For the standard notions of Kolmogorov complexity, on the other hand, a word
has several codes. While decoding is effective and the set of pairs of codes and
coded words is computably enumerable, in general there is no effective way to go
from a word to its shortest code. So if we want to have a notion of Kolmogorov
complexity that corresponds to the type of coding done by compressors, we have
to define Kolmogorov complexity with respect to a restricted class of Turing
machines.

Definition 2. A Turing machine that computes a partial function on the set of
words is called decidable if its domain is decidable.

Decidable Turing machines can be normalized in the sense that superfluous codes
are removed and possessing a code becomes a computable property.

Definition 3. A decidable Turing machine M is called normalized if the range
of M is decidable and for all words w there is at most one word p where M(p)=w.

As usual, a Turing machine is called prefix-free if its domain is prefix-free.

Proposition 4. Given a decidable Turing machine M one can effectively find a
decidable Turing machine M ′ that is normalized such that for all words w holds
KM ′ (w) ≤ KM (w) + 1. In addition, if M is prefix-free, then M ′ can be chosen
to be prefix-free, too.

646 L. Bienvenu and W. Merkle

Proof. For a given decidable Turing machine M , define M ′ as follows. For any
word w, in case there is some word p where M(p) = w and |p| ≤ 2|w|, let pw
be the least such word and let M ′(0pw) = w. If there is no such word p,
let M ′(1|w|0w) = w. ��

Proposition 5 shows that compressors and normalized decidable Turing machines
are essentially the same. Recall that the inverse of a partial function f from words
to words that is one-to-one is the partial function f−1 : v �→ min{u : f(u) = v}.

Proposition 5. For any compressor Γ , the inverse mapping Γ−1 is just the
partial function computed by some normalized decidable Turing machine. For
any normalized decidable Turing machine M the inverse mapping M−1 is a
compressor. The same correspondence is given for the subclasses of prefix-free
compressors and prefix-free decidable machines.

Proof. It suffices to observe that both compressors and normalized decidable
Turing machines are by definition just partial computable bijections between a
decidable domain and a decidable range. ��

In the sequel, we will derive several results on decidable Turing machines, how-
ever, by the close correspondence with compressors, all these results could be
reformulated in terms of compressors. For further use, recall the notion of com-
putable Turing machine, as introduced by Downey and Griffiths.

Definition 6 (Downey and Griffiths). A Turing machine that computes a
partial function on the set of words is called computable if its domain D is
prefix-free and [D] has computable Lebesgue measure.

Observe that any computable Turing machine is in particular decidable; the con-
verse is false even when attention is restricted to prefix-free Turing machines.
Downey and Griffiths [2] introduced the notion of computable machine in order
to give a machine characterization of Schnorr randomness and Kurtz random-
ness. In Section 3, we will give alternative characterizations of these randomness
notions in terms of decidable machines.

3 Characterizing Randomness Notions by Decidable
Machines

We first review the notions of a Martin-Löf random, a Schnorr random, and a
Kurtz random sequence, and then we characterize these notions in terms of the
complexity of initial segments with respect to decidable machines.

Definition 7. A Martin-Löf test is a uniformly recursively enumerable se-
quence V0, V1, . . . of sets of words where [Vn] has Lebesgue measure at most 2−n.
A Schnorr test is a Martin-Löf test where in addition the Lebesgue measure
of [Vn] is exactly 2−n. A Kurtz test is a Martin-Löf test where in addition the
sets [Vn] are finite and a canonical index for Vn can be computed from n.

Reconciling Data Compression and Kolmogorov Complexity 647

A sequence V0, V1, . . . of sets of words covers a sequence X if X is contained
in the intersection of the open sets [Vn] (i.e., if X has a prefix in every set Vi).
A sequence R is Martin-Löf random if it cannot be covered by a Martin-Löf
test. A sequence R is Schnorr random if it cannot be covered by a Schnorr
test. A sequence R is Kurtz random if it cannot be covered by a Kurtz test.

In the above definition of a Schnorr test, the measure condition on the uniformly
recursively enumerable family V0, V1, . . . actually implies that this family is
uniformly computable. This is no longer true in the case of Martin-Löf tests:
some are not uniformly computable. However, it is well-known that every Martin-
Löf test can be turned into an equivalent Martin-Löf test that is uniformly
computable.

Lemma 8. For every Martin-Löf test V0, V1, . . . there exists a Martin-Löf test
U0, U1, . . . such that [Un] = [Vn] for all n and where the set {(u, n) : u ∈ Vn} is
decidable. (We will call a Martin-Löf test with the latter property a decidable

Martin-Löf test.)

One of the most celebrated results in algorithmic randomness is Schnorr’s char-
acterization of Martin-Löf randomness in terms of prefix-free Kolmogorov com-
plexity. Propositions 10 and 11 assert that very similar characterizations are true
in a setting of prefix-free decidable machines.

Theorem 9 (Schnorr). A sequence R is Martin-Löf random if and only if
K(R[0..n]) ≥ n−O(1).

Proposition 10. A sequence R is Martin-Löf random if and only if for all
prefix-free decidable machines M , KM (R[0..n]) ≥ n−O(1).

Proposition 11. There exists a prefix-free decidable machine M such that any
sequence R is Martin-Löf random if and only if KM (R[0..n]) ≥ n−O(1).

The implications from left to right in Propositions 10 and 11 are immediate from
Schnorr’s theorem because for any prefix-free machine M there is a constant d
such that for all words u holds K(u) ≤ KM (u)+d. The proof of the other direction
is similar to the proof of the corresponding implication in Schnorr’s theorem, i.e.,
one applies the Kraft-Chaitin Theorem in order to go from a Martin-Löf test
that covers a set X to a prefix-free machine that has short codes for the prefixes
of X ; in order to actually obtain prefix-free decidable machines, it suffices to
start with a decidable Martin-Löf test according to Lemma 8, where in the case
of Proposition 11 this test is chosen to be universal.

Downey and Griffiths [2] characterized Schnorr randomness by the complexity
of initial segements with respect to computable machines; Proposition 13 states
a related characterization in terms of decidable Turing machines. In connection
with the latter, recall that a function h : N → N is called an order if h is
nondecreasing and unbounded.

Proposition 12 (Downey and Griffiths). A sequence R is Schnorr random
iff for every computable Turing machine M holds KM (R[0..n]) ≥ n+ O(1).

648 L. Bienvenu and W. Merkle

Proposition 13. A sequence R is Schnorr random iff for every computable or-
der h and for every prefix-free decidable Turing machine M ,

KM (R[0..n]) ≥ n− h(n) + O(1) .

Downey and Griffiths [2] also used computable machines to give a machine
characterization of Kurtz randomness. Proposition 15 asserts a completely sim-
ilar characterization in terms of decidable machines, where interestingly the
prefix-free property makes no difference. Furthermore, the last condition in
Proposition 15 gives a characterization of Kurtz randomness similar to the char-
acterization of Schnorr randomness in Proposition 13.

Proposition 14 (Downey and Griffiths)
The following assertions are equivalent.

(i) R is not Kurtz random.
(ii) There exists a computable machine M and a computable function f : N→ N

such that KM (R[0..f(d)]) ≤ f(d)− d holds for all d.

Proposition 15. The following assertions are equivalent.

(i) R is not Kurtz random.
(ii) There exists a prefix-free decidable machine M and a computable function

f : N→ N such that KM (R[0..f(d)]) ≤ f(d)− d holds for all d.
(iii) There exists a decidable machine M and a computable function f : N→ N

such that CM (R[0..f(d)]) ≤ f(d)− d holds for all d.
(iv) There exists a decidable machine M and a computable order h such that

CM (R[0..n]) ≤ n− h(n) holds for all n.

A characterization of computable dimension in terms of computable machines
has been obtained by Downey et al. [1], and we conclude this section by a similar
characterization in terms of decidable machines. In the context of time-bounded
complexity, an equivalent formulation of the latter characterization has been
previously demonstrated by Hitchcock [5], see Proposition 20.

Proposition 16. For every sequence R holds

dimcomp(R) = inf
M

lim inf
n→+∞

CM (R[0..n])
n

,

where the infimum is over all decidable Turing machines M .

4 Time-Bounded Kolmogorov Complexity

Since a decidable Turing machine is required to have a computable domain, it
is not hard to show that a decidable Turing machine is the same as a Turing
machine that obeys a time bound t but is not required to be defined on all inputs,
i.e., on any input p the machine runs for at most t(|p|) steps and then either

Reconciling Data Compression and Kolmogorov Complexity 649

produces an output or alternatively may decide not to terminate. In contrast to
this, time-bounded Kolmogorov complexity is usually defined in terms of time-
bounded machines where the time-bound is required with respect to the length
of the output, that is the machine may again be undefined on certain inputs, but
whenever the machine outputs a word w then the corresponding computation
runs for at most t(|w|) many steps.

Definition 17. Fix an additively optimal machine U . For any computable func-
tion t : N→ N and any word w, let

Ct(w) = min{|p| : U(p) outputs w after at most t(|w|) steps of computation}.

Kt(w) is defined similarly, taking U optimal among the prefix-free machines.

Lemma 18. For every decidable machine M , there exists a computable time
bound t such that Ct ≤ CM + O(1). For every prefix-free decidable machine M ,
there exists a computable time bound t such that Kt ≤ KM + O(1).

The converse of Lemma 18 is not true, but the following weaker statement will
be sufficient for our purposes.

Lemma 19. For every computable time bound t and every computable order h,
there exists a decidable machine M such that for every word w and all k ∈ N,

Ct(w) ≤ |w| − k =⇒ CM (w) ≤ |w| − k + h(k) .

A similar statement holds for Kt and prefix-free decidable machines.

By Lemma 18 and Lemma 19, all our previous results can be interpreted in
terms of time-bounded Kolmogorov complexity.

Proposition 20. (a) A sequence R is Martin-Löf random iff for every com-
putable time bound t, Kt(R[0..n]) ≥ n+ O(1).
(b) There exists a computable time bound t0 such that every sequence R is
Martin-Löf random iff Kt0(R[0..n]) ≥ n+ O(1).
(c) A sequence R is Schnorr random iff for every computable time bound t and
every computable order g, Kt(R[0..n]) ≥ n− g(n) + O(1).
(d) A sequence R is Kurtz random iff for every computable time bound t and
every computable order g, Kt(R[0..n]) ≥ n− g(n) for infinitely many n(and this
equivalence remains true with Ct in place of Kt).
(e) For every sequence R, dimS(R) = inf lim inf K

t(R[0..n])
n , the infimum being

taken over all computable time bounds t (and this equation remains true with Ct

in place of Kt).

Assertion (e) was proved earlier by Hitchcock [5]. Assertion (c) is an improvement
of a result of Lathrop and Lutz [8], who demonstrated that the right-hand side
condition is necessary for R to be computably random.

650 L. Bienvenu and W. Merkle

5 The Miller-Yu Theorem

After Schnorr [13] characterized Martin-Löf randomness in terms of the prefix
Kolmogorov complexity of initial segments, the question whether there is a sim-
ilar characterization in terms of plain complexity remained open for more than
three decades until recently Miller and Yu [11] gave a positive answer. A simpli-
fied proof of their result is obtained by using the characterization of Martin-Löf
randomness via prefix-free decidable machines from Proposition 11.

Proposition 21 (Miller and Yu). There is a computable function G : N→ N

such that the sum
∑

n∈N
2−G(n) converges and such that for any sequence R the

following assertions are equivalent.

(i) R is Martin-Löf random.
(ii) For every computable function g : N→ N such that

∑
n∈N

2−g(n) converges
it holds that C(R[0..n− 1]) ≥ n− g(n)−O(1).

(iii) It holds that C(R[0..n− 1]) ≥ n−G(n) −O(1).

Proof. For completeness, we review the standard proof of the implication (i)→(ii).
If (ii) is false, then there is a computable function g where

∑
n∈N

2−g(n) converges
and such that for arbitrarily large d there is some n where

C(R[0..n− 1]) ≤ n− g(n)− d . (1)

But for any such d and n, inequality (1) remains true with g(n) replaced by K(n)
because K(n) ≤ g(n) + O(1) holds by the Kraft-Chaitin Theorem [3] and as-
sumption on g. Hence for any such d and n, the prefix w of R of length n has a
prefix-free code of length at most n− d/2 + O(1), which consists of a prefix-free
code for n of length K(n), followed by a prefix-free code for n−K(n)−C(w) plus
a plain code for w of length C(w). Consequently, R is not Martin-Löf random.

We now construct a computable function G with the required convergence
property, where the implication (ii)→(iii) is then immediate, and we conclude
by giving an alternative proof of (iii)→(i). Let M be the prefix-free decidable
machine of Proposition 11. For all n, c ∈ N, let Acn = {u : |u| = n and KM (u) ≤
|u| − c} and acn = Card(Acn). Furthermore, let bcn = 2cacn and bn =

∑
c∈N

bcn;
observe that the sums of the latter type are actually finite because Acn is empty
for c > n. This way we have

∑

n∈N

bn
1

2n
=

∑

n,c∈N

bcn
1
2n

=
∑

n,c∈N

acn
1

2n−c
≤ 1 , (2)

where the equalities hold by definition and the inequality holds because M is
prefix-free. Now, if we let G(n) = n − log(b1 + ... + bn), then G is computable
and by definition of G and elementary rearrangements of terms one obtains

∑

n∈N

2−G(n) ≤
∑

n∈N

b1 + · · ·+ bn
2n

≤ 2
∑

n∈N

bn
2n
≤ 2 .

Reconciling Data Compression and Kolmogorov Complexity 651

Next consider any word w in Acn. Since the Acn’s are uniformly computable, the
word w can be obtained effectively from a description that contains c together
with the index of w in the enumeration of the union of the sets Ac0, Ac1, . . . where
the elements of Acn are enumerated before those of Acn+1. Hence it holds that

C(w) ≤ 2 log c+ log(ac1 + ac2...+ acn) + O(1)
≤ 2 log c+ log(2−cb1 + 2−cb2 + ...+ 2−cbn) + O(1) (3)
≤ n−G(n)− c+ 2 log c+ O(1) ≤ n−G(n)− c/2 + O(1) ,

where the second and third inequality hold by definition of the bn’s and of G,
respectively. Now if the sequence R is not Martin-Löf random, then by Propo-
sition 11 and definition of the Acn’s, there are arbitrarily large c such that for
some n the prefix w of R of length n is in Acn and thus w and c satisfy the chain
of inequalities (3), hence (iii) is false. ��

6 Lowness and Order-Lowness

In the area of algorithmic randomness, various lowness notions have been studied
and have been shown to interact interestingly with each other and with other
notions [3,12]. In general, a sequence A is called low for a certain concept, if
the concept does not change (or at least does not change significantly) when
the concept is relativized to the sequence A. For example, a sequence A is low
for K if the the standard prefix-free Kolmogorov complexity K and it relativized
version with oracle A differ at most by some additive constant. In connection
with complexity notions that are not defined via a universal machine, such as
Kolmogorov complexity defined in terms of prefix-free decidable machines, low-
ness usually means that for any machine of the given type with oracle there is
another machine without oracle such that complexity with respect to the latter
is not significantly larger than complexity with respect to the former. Note in
this connection that a prefix-free decidable machine with oracle A is an ora-
cle Turing machine with oracle A that on oracle A has prefix-free domain that
can be computed with oracle A; we write KA

M for the corresponding relativized
notion of Kolmogorov complexity.

Definition 22. A sequence A is low for prefix-free decidable machines

if for every prefix-free decidable machine M with oracle A, there exists a prefix-
free decidable machine M ′ such that for all words w,

KM ′(w) ≤ KA
M (w) + O(1).

A sequence A is order-low for prefix-free decidable machines if for
every prefix-free decidable machine M with oracle A and any computable order h,
there exists a prefix-free decidable machine M ′ such that for all words w,

KM ′(w) ≤ KA
M (w) + h(KA

M (w)) + O(1). (4)

652 L. Bienvenu and W. Merkle

The notion of order-low is similar to a lowness notion for standard prefix-free
Kolmogorov complexity that has been introduced and has been shown to be
equivalent to strong jump-traceability by Figueira, Nies, and Stephan [4]. Some-
what similar to their equivalence result, we obtain a characterization of com-
putable traceability in terms of order-lowness for prefix-free decidable machines.
Recall the concept of computable traceability.

Definition 23. A sequence A is computably traceable if there is a computable
order h such that for any function f that is computable with oracle A there is a
computable sequence of canonical indices for finite sets F0, F1, . . . where for all i,

(i) f(i) ∈ Fi, and (ii) |Fi| ≤ h(i).

Proposition 24. A sequence A is computably traceable if and only if A is order-
low for prefix-free decidable machines.

Terwijn and Zambella [16] observed that the notion of computable traceability is
robust in the following sense. The notion remains the same if in its definition it
is required that for any computable order h and any function f computable in A
there is a trace F0, F1, . . . with f(i) ∈ Fi and |Fi| ≤ h(i); that is, if according
to Definiton 23 a sequence A is computably traceable with respect to some
computable order h, then the sequence is computably traceable with respect to
any computable order h. Indeed, the definition holds then even with respect to
any order that is computable in A, because by Remark 25, for any computably
traceable sequence A and any order g computable in A there is a computable
order h where h(n) ≤ g(n) for all n.

Recall that by definition sequence A is hyperimmune-free, if for any func-
tion f that is computable with oracle A there is a computable function g such
that f(n) ≤ g(n) for all n. Furthermore, observe that every computably traceable
sequence A is hyperimmune-free, where it suffices to let g(n) be the maximum
value in Fi where F0, F1, . . . is a computable trace for a given function f that is
computable in A.

Remark 25. For any hyperimmume-free sequence A, thus in particular for any
computably traceable sequence A, and for any order h that is computable in A
there is a computable order g such that for all n holds g(n) ≤ h(n) (in fact, this
property characterizes the hyperimmune-free sequences).

For a proof, h being given, consider the A-computable function f defined by:
f(k) = max{n : h(n) ≤ k}. If A is hyperimmune-free, there is a computable
function f ′ such that for all n, f(n) ≤ f ′(n), and we can assume that f ′ is
increasing. Set g(k) = max{n : f ′(n) ≤ k} for all k. Since f ′ is computable and
increasing, g is a computable order. Moreover, for all n, g(n) ≤ h(n). Indeed,
suppose that for some n, one has g(n) > h(n). Then:

n ≥ f ′(g(n)) > f ′(h(n)) ≥ f(h(n)) ≥ n

(the inequalities following from the definition of g, the fact that f ′ is increasing,
the fact that f ′ ≥ f and the definition of f respectively), a contradiction.

Reconciling Data Compression and Kolmogorov Complexity 653

Remark 26. The concept of order-low for prefix-free decidable machines is not
changed if one requires in its definition just that (4) is satisfied for some fixed
computable order in place of all such orders. For a proof, observe that the equiv-
alence in Proposition 24 extends to the altered concepts by literally the same
proof, and conclude using Remark 25.

Remark 27. The concept of order-low for prefix-free decidable machines is not
changed if one requires in the definition of a sequence A being order-low that (4)
is not just satisfied for all computable orders but for all orders that are computable
with oracle A. For a proof it suffices to observe that if a sequence A is order-low,
then A is computably traceable by Proposition 24, hence by Remark 25 for any
A-computable order there is a computable order that grows at least as slowly.

Proposition 24 and the assertions of Remarks 26 and 27 remain true when consid-
ering dedicable machines (and corresponding notions of order lowness) in place
of prefix-free decidable machines.

Terwijn and Zambella [16] and Kjos-Hanssen, Nies, and Stephan [7] demon-
strated that the class of computably traceable sequences coincides with the class
of sequences that are low for Schnorr null tests and with the class of sequences
that are low for Schnorr randomness, respectively. Furthermore, it is known
that the computably traceable sequences form a strict subclass of the class of
sequences that are low for Kurtz randomness [15]. We obtain part of these results
as a corollary to Propositions 13, 15, and 24.

Corollary 28. Any computably traceable sequence A is low for Schnorr ran-
domness and low for Kurtz randomness.

Proof. Let A be a computably traceable sequence, and R a Schnorr random se-
quence. We shall prove that R is A-Schnorr random. LetM be a prefix-free decid-
able machine with oracle A, and h be an A-computable order. Up to normalizing
M as we did in the proof of Proposition 4, let us suppose that KA

M (w) ≤ 2|w|
for all words w. By Remark 25, there exists a computable order g such that
g ≤ h/2. Set g′(n) = g(n/2) for all n, and notice that g′ is a computable or-
der. By Proposition 24, let M ′ be a prefix-free decidable machine such that
KM ′ ≤ KA

M + g′(KA
M) + O(1). Since R is Schnorr random, by Proposition 13,

KM ′(R[0..n]) ≥ n− g(n)−O(1) for all n. Hence

KA
M (R[0..n]) ≥ n− g(n)− g′(KA

M (R[0..n]))−O(1)
≥ n− g(n)− g′(2n)−O(1)
≥ n− 2g(n)−O(1)
≥ n− h(n)−O(1)

By Proposition 13 (relativized to A), R is A-Schnorr random. The proof for
Kurtz randomness is similar. ��

Finally, the following proposition shows that, in contrast to order-lowness, low-
ness for decidable machines is a trivial lowness notion.

654 L. Bienvenu and W. Merkle

Proposition 29. A sequence is low for prefix-free decidable machines if and
only if the sequence is computable.

Proof. Let A be a sequence that is low for prefix-free decidable machines. By
Proposition 10, A is low for Martin-Löf randomness, hence Δ0

2 (see [12]). More-
over, since A is low for prefix-free decidable machines, it is in particular order-
low, which by Proposition 24 implies that A is computably traceable. As a Δ0

2

computably traceable sequence is necessarily computable, we are done. ��

References

1. Downey, R., Merkle, W., Reimann, J.: Schnorr dimension. Mathematical Structures
in Computer Science 16, 789–811 (2006)

2. Downey, R., Griffiths, E.: On Schnorr randomness. Journal of Symbolic Logic 69(2),
533–554 (2004)

3. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Manuscript
(2007)

4. Figueira, S., Nies, A., Stephan, F.: Lowness properties and approximations of
the jump. In: WOLLIC 2005. Electronic Notes in Theoretical Computer Science,
vol. 143, pp. 45–57. Elsevier, Amsterdam (2006)

5. Hitchcock, J.M.: PhD dissertation, Iowa State University (2003)
6. Hitchcock, J.M., Lutz, J.H.: Why computational complexity requires stricter mar-

tingales. Theory of computing systems 39(2), 277–296 (2006)
7. Kjos-Hanssen, B., Nies, A., Stephan, F.: Lowness for the class of Schnorr random

reals. SIAM Journal on Computing 35(3), 647–657 (2005)
8. Lathrop, J., Lutz, J.: Recursive computional depth. Information and Computa-

tion 153, 137–172 (1999)
9. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-

tions, 2nd edn. Springer, Heidelberg (1997)
10. Martin-Löf, P.: The definition of random sequences. Information and Control 9(6),

602–619 (1966)
11. Miller, J.S., Yu, L.: On initial segment complexity and degrees of randomness.

Transactions of the American Mathematical Society (To appear)
12. Nies, A.: Lowness properties and randomness. Advances in Mathematics 197, 274–

305 (2005)
13. Schnorr, C.-P.: A unified approach to the definition of random sequences. Mathe-

matical Systems Theory 5, 246–258 (1971)
14. Shen, A.: Algorithmic Information Theory and Kolmogorov Complexity. Lecture

notes of an introductory course. Uppsala University Technical Report, 2000-034,
Available online at http://www.it.uu.se/publications/reports/2000-034.

15. Stephan, F., Yu, L.: Lowness for weakly 1-generic and Kurtz-random. In: Cai, J.-Y.,
Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 756–764. Springer,
Heidelberg (2006)

16. Terwijn, S., Zambella, D.: Computable randomness and lowness. Journal of Sym-
bolic Logic 66(3), 1199–1205 (2001)

http://www.it.uu.se/publications/reports/2000-034.

Size Competitive Meshing Without Large

Angles�

Gary L. Miller, Todd Phillips, and Donald Sheehy

Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA 15213

{glmiller,tp517,dsheehy}@cs.cmu.edu

Abstract. We present a new meshing algorithm for the plane, Overlay
Stitch Meshing (OSM), accepting as input an arbitrary Planar Straight
Line Graph and producing a triangulation with all angles smaller than
170◦. The output triangulation has competitive size with any optimal
size mesh having equally bounded largest angle. The competitive ratio
is O(log(L/s)) where L and s are respectively the largest and smallest
features in the input. OSM runs in O(n log(L/s) + m) time/work where
n is the input size and m is the output size. The algorithm first uses
Sparse Voronoi Refinement to compute a quality overlay mesh of the
input points alone. This triangulation is then combined with the input
edges to give the final mesh.

1 Introduction

The meshing problem is to take as input a domain containing a collection of
features and return a triangulation of the domain. In 2D, the features are sim-
ply points and non-crossing edges; a planar straight line graph (PSLG). The
design of a meshing algorithm involves analysis of four fundamental properties
of the algorithm and its outputs. First, the output mesh must be conforming,
so that all the vertices and edges should appear as a union of simplices in the
final mesh. Secondly, all the triangular elements should have some guarantee of
element quality. Third, the number of output triangles should be asymptot-
ically competitive with any optimal triangulation that is conforming and good
quality, so that we have an output size competitive algorithm. Finally the
algorithm should be work efficient. This paper will only be concerned with the
2D meshing problem.

The 2D meshing problem was first posed by Bern, Eppstein, and Gilbert[1]
who proposed a quadtree algorithm. Ruppert[2] gave an O(n2) time constant
size competitive algorithm for the meshing problem using Delaunay refinement.
Mitchell and Vavasis[3] extended the quadtree algorithm to 3D and proved that
the Bern, Eppstein, and Gilbert algorithm was in fact also a constant size com-
petitive algorithm. In order for these algorithms to be constant factor compet-
itive algorithms, two critical assumptions are made. First, element quality is
� This work was supported in part by the National Science Foundation under grants

CCR-0122581.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 655–666, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

656 G.L. Miller, T. Phillips, and D. Sheehy

defined by the absence of arbitrarily small angles in any triangle. Secondly, an
input PSLG with small angles is not permitted. Our main goal is to develop
algorithms and techniques that will allow an arbitrary PSLG as input, relaxing
the latter assumption. Note that this also forces us to abandon the former as-
sumption, since any small input angle will require new small output angles to
conform [4].

An alternative setting employs a definition of element quality that allows
small angles, but bounds all angles strictly away from 180◦, prohibiting arbi-
trarily large angles. Many meshing applications require only this weaker quality
guarantee. Babuška and Aziz showed that only large angles affect interpolation
error [5, 6], while Boman, Hendrickson, and Vavasis showed that only large angles
effect their reduction of a elliptic problem to the solution of a Laplacian problem
[7, 8]. An algorithm operating under weaker quality constraints is accordingly
able to produce meshes with fewer added vertices (in theory and practice).

In this work, we present and analyze the Overlay Stitch Meshing algorithm
(OSM), a new no-large-angle meshing algorithm for conforming to an arbitrary
PSLG in 2D. For practical inputs, OSM achieves the best known competitive
guarantees on output size relative to the optimal no-large-angle conforming
mesh. The algorithm outputs a mesh with no angle larger than 170◦. In addition
to having good theoretical guarantees, the algorithm is remarkably straightfor-
ward and runs in time O(n log(L/s) +m).

1.1 Preliminaries

We will use a few standard definitions in our analysis.

Definition 1. The spread, L/s, of a PSLG is the ratio of the input diameter
(L) to the smallest distance between any two disjoint input features (s).

Definition 2. The gap-ratio, ΓM (x), at a location x relative to a point set
M . ΓM (x) = R(x)/r(x), where R(x) is the radius of the largest disc containing
x but not intersecting M\x, and r(x) is the nearest neighbor of x in M\x. At
the boundary of our geometric domain, we require that x and the center of the
largest disc be contained in the convex closure of M . For shorthand, we say a
mesh M has gap-ratio quality Γ if ∀ x, ΓM (x) ≤ Γ .

Note that if some mesh M has some constant gap-ratio quality Γ , then it has
no arbitrarily small or large angles.

Definition 3. The local feature size, lfsM (x), at a point x relative to a PSLG
M is given by the radius of the smallest disc centered at x that intersects two
disjoint features (segments or vertices) of M . When M is suppressed, lfs(x) will
be with reference to the input PSLG. Additionally, lfs0(x) is the radius of an
identically defined disc intersecting two vertices of the input, ignoring segments.

Given these definitions, we state our main result:

Theorem 1. On input a PSLG Algorithm Overlay Stitch Meshing generates
a conforming triangulation T with no angle greater than 170◦. The size of

Size Competitive Meshing Without Large Angles 657

|T | ≤ c log(L/s) · OPT where OPT is the size of an optimal conforming tri-
angulation with all angle bound away from 180◦ and c is some fixed constant.

1.2 Related Work

The present work derives from two disjoint lines of past research, well-graded
meshes and no-large-angle triangulation. Both lines of research trace their lineage
back to the same motivating problem, that of producing quality meshes for
finite-element simulations. However, the methods, guarantees, and final output
provided by each field are drastically different.

Well-graded meshing algorithms attempt to produce meshes in which the
length of each edge is proportional to the lfs at its end points. These algorithms
generally fall into two categories, structured and unstructured, as typified by
Quadtree methods [1] and Delaunay refinement methods [2, 4] respectively.

One significant property of most well-graded meshing algorithms is that they
provide guarantees regarding both the largest and the smallest angles in the
resulting mesh. A bound on the smallest angle is a sufficient but not necessary
condition for a mesh to have no large angles. However, many Delaunay refinement
algorithms are only guaranteed to terminate for inputs where all input angles
are at least 60◦. Several algorithms avoid this restriction by severely weakening
the smallest output angle guarantee in order to guarantee termination [9].

Significant research has been done on how to extend well-graded meshing
algorithms to efficiently handle small input angles, most of which is based on
extending the “concentric shelling” method proposed by Ruppert in [2]. The
main idea requires that if two edges share a vertex, then the splitting of these
edges should be identical, effectively “protecting” the region inside the small
angle. Extensions of the protective region approach to 3D have so far been quite
involved, and output size guarantees fairly weak [10, 11, 12]. The immediate
consequence of concentric shelling is that the size and grading of the output
mesh depends on the smallest angle in the input PSLG.

Even in the absence of small input angles, well-graded meshing techniques
often produce meshes whose size is linearly dependent on the spread (L/s) of
the underlying vertex input set. Generally, the spread is assumed to be some
polynomial in the size of the input.

Because of the blowup in size associated with well-graded meshing, much
research has focused on the problem of eliminating large angles. Bern, Dobkin,
and Eppstein give an algorithm that produces a no-large-angle mesh of a simple
polygon using O(n logn) triangles; or O(n3/2) triangles for polygons with holes
[13]. This result was later improved by Bern, Mitchell, and Ruppert who gave
an algorithm that produces a nonobtuse triangulation of a polygon with holes
using O(n) triangles [14]. For arbitrary planar straight line graphs, there is a
lower bound attributed to Paterson that says Ω(n2) triangles may be necessary.

An algorithm of Mitchell [15] produces a triangulation with bounded angles
and at most O(n2 logn) vertices. This was later improved by Tan [16] who im-
proved the angle bounds to 11

15π and the size bounds to O(n2) vertices. The latter

658 G.L. Miller, T. Phillips, and D. Sheehy

result is within a constant factor of worst-case optimal. Both of these algorithms
use the method of propagating paths in which a bad angle is subdivided, possi-
bly creating a new large angle elsewhere. The methods and analysis depend on
bounding the length of the paths of bad angles as they propagate though the tri-
angulation. We present a much simpler algorithm that gives a triangulation with
angles bounded below 170◦ of size O(logL/s)-competitive with any triangulation
achieving this angle bound. For inputs that admit a small no-large-angle trian-
gulation, this improves on the worst-case optimal bound of O(n2). It is possible
that propagating path algorithms also produce competitively sized meshes but a
competitive analysis has proven difficult, even using the lower bound techniques
of this paper.

The main technology used in OSM is a well-graded overlay mesh on just the
input vertices. The input edges are then stitched in. The use of an axis-aligned
overlay grid was introduced by Baker et al [17] and later extended by Dey [18].
The same paradigm can be traced in structured meshing algorithms that use a
quadtree as an overlay and then stitch in the input edges [1]. In this paper, we
use an unstructured triangular mesh as our overlay.

2 The OSM Algorithm

The algorithm has three phases: the Overlay mesh phase, the Stitching phase,
and the Completion phase. In the first phase, a standard point set meshing algo-
rithm is run on the input vertices to form the overlay mesh. In the second phase,
the input segments are stitched into the mesh, carefully choosing to add vertices
at some intersections of the overlay mesh and the input segments. The Stitching
phase will leave some non-triangular faces. In the last phase, the Completion
phase, these leftover faces are triangulated to minimize the largest angle. See
Figure 1.

Fig. 1. The basic stages of overlay meshing: At left, an overlay mesh is generated that
does not yet conform to input segments (shown dashed). Center, the input segments
are stitched into the mesh by adding some intersections and discarding some overlay
edges. At right, the triangulation is completed.

2.1 Phase 1: The Overlay Mesh

The overlay mesh is constructed on the input vertices using the Sparse Voronoi
Refinement meshing algorithm, applied to point sets [19]. The output is a De-
launay mesh conforming to the input vertices. The overlay mesh has gap-ratio

Size Competitive Meshing Without Large Angles 659

quality Γ , for a constant parameter Γ > 1. No angle in the overlay mesh will be
smaller than θ1 = arcsin(1/2Γ). The size of the mesh (in terms of vertices) will
be guaranteed to be O

(∫
Ω

1
(lfs0(z))2

dz
)

.
The choice of SVR as a meshing algorithm for the overlay mesh is not nec-

essarily critical for Overlay Stitch Meshing. SVR is used because of the strong
runtime guarantees and the tightest analyzed bounds on Γ when applied to point
sets. Any point set meshing algorithm could be used, so long as it outputs in a
Delaunay mesh with guarantees on Γ and output size. The usual method is to
set Γ = 1 + ε for some small constant ε, yielding a θ1 slightly less than 30◦.

2.2 Phase 2: Stitching in Edges

We now wish to begin conforming to the input segments. We can look at all
the intersections between overlay edges and input segments, and we will classify
every intersection as good or bad. A good intersection is approximately perpen-
dicular, meaning that the segment and overlay edge meet at angles larger than
θ1. A bad intersection is approximately parallel (angles smaller than θ1).

If an overlay edge crosses no segment, or crosses any segment with a good
intersection, it will be kept. Overlay edges that cross segments at solely bad
intersections will be discarded. The intuition here is that if an edge of the overlay
mesh intersects input segments only in a parallel fashion, then we can use the
input segments instead, so we throw out the overlay edge.

We have kept some overlay edges that cross input segments. We will then add
Steiner points that subdivide input segments where they intersect these crossing
edges (at good or bad intersections). We also now add all the subdivided input
segments to the mesh. The result is not, in general, a triangulation, although it
does now conform to the input.

Stitching in edges
1: for all input segments e do
2: Compute intersections of e with overlay mesh edges
3: if some overlay edge e′ intersects e at an angle greater than θ1 then
4: mark e′ as kept.
5: /* Insert the ‘good’ intersections */
6: for all intersections do
7: if the overlay edge at the intersection is marked as kept then
8: insert the intersection point into the mesh splitting corresponding input seg-

ment.
9: else

10: Remove the overlay edge at the intersection from the mesh.
11: /* Recover the input */
12: for all input subsegments e do
13: insert e into the mesh

2.3 Phase 3: Completing the Mesh

After the edges are stitched in, all that remains is to add enough edges to get
back to a triangulation. Each remaining non-triangular face is triangulated to

660 G.L. Miller, T. Phillips, and D. Sheehy

minimize the maximum angle. Lemma 1 implies that this last step can naively
be done efficiently because all of the non-triangular faces have at most six sides.
Theorem 2 will show that these faces can always be triangulated to have no large
angles.

Lemma 1. After the stitching phase, all faces have at most 6 sides.

A rigorous proof of Lemma 1 would proceed by first considering the case where
no overlay edges are discarded. Then we can inductively remove the discarded
edges, preserving the bound of six sides to every face.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. A sample run of OSM. In box (a), an input PSLG is given. The input contains
both a small angle and a narrow pair of edges. In (b), the first phase of OSM constructs
a quality overlay mesh on the input points, ignoring the input segments, and adding
Steiner points where necessary. In (c), the input is intersected with the overlay mesh and
one bad intersection is identified. Box (d) shows the (not yet triangular) mesh after the
stitching phase. The remaining non-triangular faces highlighted in (e) are triangulated
in the completion phase (f). The final mesh is shown in (g) and the remaining small
angle triangles are shown in (h).

3 Output Angle Guarantees

The purpose of this section is to prove that the maximum angle in the out-
put mesh is bounded from above by a constant π − θ2 that is independent
of the smallest input angle. Here, θ2 is a constant depending only on θ1, the
smallest angle in the overlay mesh. This result is stated formally below as The-
orem 2. If our overlay mesh has Γ = 1 + ε, then we find that θ1 ≥ 29.9◦, and
θ2 = arcsin(1/(4 + 2 cos θ1 +O(ε))) ≥ 10◦. First, we prove an important lemma
regarding the angles at vertices inserted during the stitching phase.

Lemma 2. If an overlay mesh edge e intersects an input segment f1 at an angle
greater than θ1 then no input segment f2 can intersect e at an angle less than
θ2 = arcsin

(
1

2Γ (2Γ+cos θ1)

)
.

Size Competitive Meshing Without Large Angles 661

Proof. Let F1 and F2 be the lines containing edges f1 and f2 respectively, and
let v = F1 ∩ F2. The statement is trivial if F1, F2 are parallel or identical, so we
may assume that v is a single point.

Without loss of generality, let us assume that the edge e is horizontal and v
lies below the line containing e. Also, by symmetry, we may assume that the
small angle intersections we are worried about are on the left.

Figure 3 (Left) shows the edge e with the circumcircle C1 of a triangle con-
taining it. The gap ratio guarantees that there is an empty ball C2 centered
at a with radius at least 1/Γ times the radius of C1. The point d is the lower
intersection of these two circles. In the figure θ1 = ∠abd. The line L2 contains
bd and the line L1 is parallel to L2 passing through a. The point c is the lower
intersection of L1 and C2.

Since f1 passes through e at an angle greater than θ1, v must lie below L1. In
order for f2 to intersect e at an angle less than θ1, v must lie above L2. Thus we
see that the intersection v must lie somewhere in the shaded region. Therefore
the smallest possible angle between f2 and e occurs if v = c and the angle is:

∠abc ≥ arcsin
(

sin θ1
2Γ + cos θ1

)
= arcsin

(
1

2Γ (2Γ + cos θ1)

)

The preceding Lemma ensures that if OSM chooses not to discard an edge of
the overlay mesh, then that edge will not create any large angles. We can now
proceed to the main theorem about the output angle guarantees.

Theorem 2. All angles in the final mesh are bounded from above by π − θ2,
where θ2 = arcsin

(
1

2Γ (2Γ+cos θ1)

)
is the lower bound on the angle of intersection

between a kept edge of the overlay mesh and an input edge. For Γ = 1 + ε, this
gives a largest angle of at most 170◦.

Proof. We need to consider the angles at two types of vertices, those vertices
that appear in the overlay mesh and those that are added during the stitching
phase. In the latter case, we were careful only to add vertices when the angles of
intersection met this criterion. Thus, although we may have added more edges
incident to such vertices in order to get a triangulation, the maximum angle
at such vertices clearly achieves the desired bound. In the case of a vertex v
from the overlay mesh, we have to be a little more careful. The overlay mesh
itself satisfied this property so all large angles at overlay vertices must arise from
discarded overlay edges. The completion phase of the algorithm returns the min-
max angle triangulation of the non-triangular phases. It will suffice to show that
there exists some triangulation that guarantees no large angles.

Observe that any input edge e crossing a triangle t of the overlay mesh can
cause at most one edge of t to be discarded. This is because θ1 = arcsin

(
1

2Γ

)
is

a lower bound on the smallest angle in the overlay mesh, and thus the largest
angle is at most π−2θ1. It follows that at least one of these edges must intersect
e at an angle greater than θ1 and therefore will not be discarded. This fact
implies that when an edge gets discarded, we can replace it with one that has
been rotated by at most θ1. This is illustrated in Figure 3 (Right). The resulting

662 G.L. Miller, T. Phillips, and D. Sheehy

v

a

C1

C2

be

c

dL1

L2

θ1

f1

f2

Kept Edge

Discarded Edge

New Edge

Input Edge

v

Overlay Triangle

Fig. 3. Left. Circumball C1 and gap radius ball C2 for an edge e and its endpoint
a respectively. The lines L1 and L2 are parallel. The point v must be in the shaded
region. Right. The input edge causes exactly one edge of the overlay triangle to be
discarded and replaced with a new edge whose angle with the discarded edge is less
than θ1. The angles at v are changed by at most θ1.

largest angle at v is at most π−θ1. Now, if we look at the edges ordered radially
around v, we see that no two adjacent edges can be rotated apart from each
other. This is because if two edge of the triangle t are discarded then they both
get replaced with edges that terminate on the third edge and thus lie entirely
within the triangle. Thus the angle at v is strictly smaller in this case.

4 Size of the Triangulation

In this section we show that the size of the output mesh is determined only by
the local feature size of the input PSLG.

Lemma 3. For any input edge e, the number of triangles in the overlay mesh
intersecting e is

O

(∫

z∈e

1
lfs0(z)

dz

)
. (1)

Proof. Let t1, . . . , tk be a minimal ordered sequence of adjacent triangles in the
overlay mesh that covers e. Assign heights to the vertices of t2, . . . , tk so that
the highest point of ti is one more than the highest point of ti−1. Set the heights
for t1 to be 0, 0, 1. Let ei = e ∩ ti be the subsegment of e contained in triangle
ti. We consider the lifted version of e, call it e+, to be the polygonal chain in R3

on the surface of these lifted triangles whose segments project down onto e.
Observe that the gradient of a lifted triangle t cannot be too steep because

both the smallest angle of t and the maximum height difference between vertices
of t are bounded by constants. The maximum difference between the height of
the vertices of a triangle is bounded by the degree of vertices. Thus the gradient
of t is bounded by γ

r where r is the radius of the circumcircle of t and γ > 0 is
a constant. Here, the constant γ depends only on the gap ratio Γ of the overlay
mesh and the maximum degree of any vertex in the overlay mesh which is also
a constant because the overlay mesh has small angle guarantees.

Size Competitive Meshing Without Large Angles 663

0
0

1

2
3

4
5

x e0 ll/2

Fig. 4. Left. An edge cuts through the overlay triangulation. Heights are assigned to
the vertices so that the maximum height is exactly the number of triangles cut. Right
An edge with an empty lens around it. The radius of the circle centered at x is the
height of the triangle at x. This guarantees that the circle is contained entirely within
the lens.

Let ei be the subsegment of e lying in triangle ti. The change in height along
e+i is at most |ei| γri

where ri is the circumradius of triangle ti. Thus, the total
change in height k along e+ is bounded as follows.

k ≤
k∑

i=1

|ei|
γ

ri
≤ γ

k∑

i=1

∫

ei

1
ri
dx (2)

The triangles ti are part of a well graded mesh and therefore, lfs0(x) = cri for
all x ∈ ti and some constant c. So, we can rewrite the above inequality as follows
to complete the proof.

k ≤ γ
k∑

i=1

∫

ei

c

lfs0(x)
dx = cγ

∫

e

1
lfs0(x)

dx (3)

Theorem 3. The number of Steiner points added during the course of the al-
gorithm is

O

(∫

Ω

1
(lfs0(z))2

dz +
∫

E

1
lfs0(z)

dz

)
. (4)

where E is the set of input edges and Ω is the input domain (i.e. the plane).

Proof. We look at the two phases of OSM where vertices are added. First, in the
construction of the overlay mesh, the number of points added isO

(∫
Ω

1
(lfs0(z))2

dz
)

,
as guaranteed by the SVR algorithm for point set meshing [19].

Second, in the stitching phase, we choose a subset of the intersections along
each edge with the overlay mesh. It follows from Lemma 3 that the total number
of intersections is O

(∫
E

1
lfs0(z)dz

)
. Therefore, it follows that the subset of these

that we keep also achieves this bound. The statement of the theorem follows
directly from summing the Steiner points added in each phase.

664 G.L. Miller, T. Phillips, and D. Sheehy

4.1 Competitive Results

The α-lens is the main tool we will use to analyze the optimal mesh for a given
maximum angle guarantee. Recall that an α-lens on a line segment xy is the set
of all points z such that ∠xzy ≥ α. A lens is the intersection of two disks with the
same radius. We note one important fact about α-lenses: If ab is a subsegment
of xy then the α-lens around ab is strictly contained in the α-lens around xy.

Theorem 4. The output of OSM is a mesh with no large angles that is at most
O(log(L/s)) times the size of any mesh achieving the same maximum angle
guarantee for some fixed constant c.

Proof. Just as in Theorem 3, we will consider the Steiner points added during
the Overlay phase separate from those added during the Stitching phase. The
Overlay phase only adds O(n log(L/s)) and any mesh conforming to the input
has size Ω(n) so we need only worry about Steiner points added during the
Stitching phase.

Suppose we have an optimal size mesh MOPT with the property that no angle
is greater than some constant α. For any edge e in MOPT , the α-lens around e
contains no other vertices of MOPT . This is just another way of stating the no
large angle property. In particular, the edges e that are subsegments of input
edges have α-lenses that contain no input vertices.

In order to prove that OSM is log(L/s)-competitive, it will suffice to prove
that OSM stitches at most log(L/s) Steiner points on any input subsegment
of MOPT . Recall that lfs0(x) is the radius of the smallest circle centered at x
containing two input vertices. In general, lfs0 is lower bounded by s, the distance
between the two closest vertices in the mesh. We get a better lower bound on lfs0

near input edges from the fact that the lenses around the input subsegments of
MOPT contain no input vertices. We will use both of these lower bounds on lfs0

to upper bound the integral from Theorem 3. Recall that this integral bounds
the number of stitch vertices added on any edge.

For a particular input subsegment e in MOPT , we parameterize e on the
interval [0, l] where l is the length of e as in Figure 4. To compute the lower bound
on lfs0(x) for x ∈ [0, l/2] it suffices to show that there is an circle centered at
x that contains no input vertices. We first inscribe an isosceles triangle into the
top half of the α-lens around e. The altitude of the triangle at x is tan−1(α/2)x.

Consider the circle C centered at x with radius tan−1(α/2)x. Observe that
the top edge of the inscribed triangle cuts off some half α′-lens from the circle
C and some half α′′-lens from the original lens around e. Observe that α′ = α′′

and thus the smaller lens is entirely contained in the larger. It follows that the
circle C is contained entirely within the α-lens around e and thus, C contains
no input vertices. Therefore, lfs0(x) ≥ tan−1(α/2)x for all x ∈ e.

We can now use our bound on lfs0 to bound the size integral from Theorem 3
as follows.
∫ l

0

1
lfs0(x)

dx ≤ 2

(∫ s

0

1
s
dx+

∫ l
2

s

1
lfs0(x)

dx

)

≤ 2+2 tanα/2
∫ l

2

s

1
x
dx ∈ O(log

L

s
)

Size Competitive Meshing Without Large Angles 665

5 Conclusions

5.1 Size Bounds in Terms of n

To better understand the size guarantees of OSM in relation to previous results
that only analyze worst case performance, we can compute two coarse upper
bounds on the mesh size.

First, we see that the mesh size is O(n2 log(L/s)). This follows from the fact
that the overlay mesh is of size O(n log(L/s)). There are at most O(n) edges so
the stitching phase adds at mostO(n2 log(L/s)) points. When L/s ∈ O(poly(n)),
this bound exactly matches the O(n2 logn) of Mitchell on triangulating with no
large angles from [15].

Alternatively, one could recompute the sizing integral from Theorem 3 using
s as a lower bound on lfs0. The result is an O(n(L/s)) upper bound on the mesh
size. So, when L/s ∈ O(n), the output size is O(n2), matching the bound of
Tan [16]. Certain pathological examples such as Paterson’s example (see [13])
requiring Ω(n2) Steiner points can be drawn so that L/s ∈ O(n). Thus, OSM is
worst case optimal when the input vertices have linear spread.

For reasonable inputs where L/s ∈ O(poly(n)), Theorem 4 implies that the
output of OSM is O(log n)-competitive. For inputs that admit O(n) no-large-
angle meshes, this is a factor of n/ logn better than the Tan guarantee[16].

5.2 Work Efficiency

Overlay Stitch Meshing can be easily implemented to run in time and space
O(n log(L/s)+m). The runtime of the SVR algorithm used in the overlay phase
was analyzed in [19]. This stage is the majority of the work. Simple arguments
can show that the stitching and completion phases can be implemented as O(m)
post-processes. In the case of input withO(poly(n)) spread, this is asymptotically
optimal work.

5.3 Extensions

The most obvious extension is into three and higher dimensions. Obtaining good
guarantees on output size for meshing algorithms in three dimensions remains
an interesting open problem [10, 11, 12]. For the general input case, unstruc-
tured meshing research has focused on concentric shelling techniques that have
complicated implementations and have yielded no strong sizing results.

References

[1] Bern, M., Eppstein, D., Gilbert, J.R.: Provably Good Mesh Generation. Journal
of Computer and System Sciences 48(3), 384–409 (1994)

[2] Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. J. Algorithms 18(3), 548–585 (1995)

[3] Mitchell, S., Vavasis, S.: Quality mesh generation in three dimensions. In: Proc.
8th ACM Symp. Comp. Geom., pp. 212–221. ACM Press, New York (1992)

666 G.L. Miller, T. Phillips, and D. Sheehy

[4] Shewchuk, J.R.: Delaunay Refinement Algorithms for Triangular Mesh Genera-
tion. Computational Geometry: Theory and Applications 22(1–3), 21–74 (2002)

[5] Babuška, I., Aziz, A.K.: On the Angle Condition in the Finite Element Method.
SIAM Journal on Numerical Analysis 13(2), 214–226 (1976)

[6] Guattery, S., Miller, G.L., Walkington, N.: Estimating interpolation error: A com-
binatorial approach. In: Tenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Baltimore, ACM and SIAM, pp. 406–413 (1999)

[7] Boman, E., Hendrickson, B., Vavasis, S.: Solving elliptic finite element systems in
near-linear time with support preconditioners (2004)

[8] Miller, G., Vavasis, S.: Only large angles mater. Private communications (2005)
[9] Pav, S.E.: Delaunay Refinement Algorithms. PhD thesis, Department of Mathe-

matics, Carnegie Mellon University, Pittsburgh, Pennsylvania (2003)
[10] Cheng, S.-W., Poon, S.-H.: Graded Conforming Delaunay Tetrahedralization with

Bounded Radius-Edge Ratio. In: Proceedings of the Fourteenth Annual Sympo-
sium on Discrete Algorithms, Baltimore, Maryland. Society for Industrial and
Applied Mathematics, pp. 295–304 (2003)

[11] Pav, S.E., Walkington, N.J.: Robust Three Dimensional Delaunay Refinement.
In: Thirteenth International Meshing Roundtable, Williamsburg, Virginia, Sandia
National Laboratories, pp. 145–156(2004)

[12] Cheng, S.W., Dey, T.K., Ramos, E.A., Ray, T.: Quality Meshing for Polyhedra
with Small Angles. In: Proceedings of the Twentieth Annual Symposium on Com-
putational Geometry, Brooklyn, New York. Association for Computing Machinery,
pp. 290–299 (2004)

[13] Bern, M.W., Dobkin, D.P., Eppstein, D.: Triangulating polygons without large
angles. Int. J. Comput. Geometry Appl. 5, 171–192 (1995)

[14] Bern, M.W., Mitchell, S.A., Ruppert, J.: Linear-size nonobtuse triangulation of
polygons. Discrete & Computational Geometry 14(4), 411–428 (1995)

[15] Mitchell, S.A.: Refining a triangulation of a planar straight-line graph to eliminate
large angles. In: 34th Annual Symposium on Foundations of Computer Science,
Palo Alto, California, pp. 583–591. IEEE, Los Alamitos (1993)

[16] Tan, T.S.: An optimal bound for high-quality conforming triangulations. GEOM-
ETRY: Discrete and Computational Geometry 15 (1996)

[17] Baker, B.S., Grosse, E., Rafferty, C.S.: Nonobtuse triangulation of polygons. Dis-
crete Comput. Geom. 3(2), 147–168 (1988)

[18] Dey, T.K.: Good triangulations in the plane. In: CCCG: Canadian Conference in
Computational Geometry (1990)

[19] Hudson, B., Miller, G., Phillips, T.: Sparse Voronoi Refinement, Technical Re-
port CMU-CS-06-132, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania (2006)

A Fully Abstract Trace Semantics for General

References

J. Laird�

Dept. of Informatics, University of Sussex, UK
jiml@sussex.ac.uk

Abstract. We describe a fully abstract trace semantics for a functional
language with locally declared general references (a fragment of Standard
ML). It is based on a bipartite LTS in which states alternate between pro-
gram and environment configurations and labels carry only (sets of) basic
values, location and pointer names. Interaction between programs and
environments is either direct (initiating or terminating subprocedures)
or indirect (by the overwriting of shared locations): actions reflect this
by carrying updates to the shared part of the store.

The trace-sets of programs and contexts may be viewed as determin-
istic strategies and counter-strategies in the sense of game semantics: we
prove soundness of the semantics by showing that the evaluation of a pro-
gram in an environment tracks the interaction between the corresponding
strategies. We establish full abstraction by proving a definability result:
every bounded deterministic strategy of a given type is the trace-set of
a configuration of that type.

1 Introduction

The conjunction of functional programming and general references is a power-
ful one — for example, it can describe both object-oriented and aspect-oriented
[11] computation by translation. So it is not, perhaps, surprising that the be-
haviour of functional programs with locally bound references is difficult to reason
about; they may exhibit a variety of subtle phenomena such as aliassing, and
self-referencing and self-updating variables. In some respects, the higher-order
“pointer-passing” exhibited by such programs is analogous to process-passing in
a concurrent setting. The most significant differences between pointer-passing
and process-passing are that the former typically takes place sequentially, be-
tween a program and its environment rather than between processes in parallel,
and that pointers and locations may be passed through the medium of the store,
where they persist until overwritten. In this paper, we describe a labelled tran-
sition system for a sequential functional language with general references which
captures these aspects of reference passing, and use it to give a sound, complete
and direct characterization of contextual equivalence.

� Supported by UK EPSRC grant GR/S72181.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 667–679, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

668 J. Laird

Another objective of this research is develop the correspondence between la-
belled transition systems and another, more abstract form of trace-based rep-
resentation of references. Game semantics has been used to give a denotational
model [1] of essentially the same functional language with general references as
the the one studied here. The principal difference is that the language in [1]
includes “bad references” — objects of reference type which do not behave as
location names — due to the encoding of imperative variables as read-write
methods rather than pointers. Because of this it does not precisely characterize
the way names may be passed between functions and used to interact via the
store in languages like Standard ML with only good variables. By passing loca-
tion names directly, we are able to capture interaction via the shared part of the
store, yielding a full abstraction result for such a language.

The languages modelled here and in [1] are equivalent when restricted to terms
of purely functional type (which in any case suffice to represent bad variables).
We first present a basic trace semantics which is sound and complete for this
fragment, and in which there is a simple correspondence between actions over
a given type, and moves in the corresponding game, which extends to relate
(α-equivalence classes of) traces to justified, well-bracketed sequences (using
pointer-names to determine justification pointers) and deterministic trace-sets
to strategies. We prove a game-semantics-style “definability result”, showing that
every bounded “deterministic strategy” is the trace-set of a term.

The full LTS is based on the same set of actions and so is a conservative
extension of the basic one as far as the functional fragment is concerned. It
accounts for interaction through the store by adding an update of every shared
location (as a pointer or atomic value) to each action. The soundness, definability
and full abstraction results extend straightforwardly to this setting.

Labelled transition systems for similar functional languages have been pre-
sented, including one for a language with (global) general references [6]. In this
system, labels carry the contexts which are used to test the term; in the one
describe here, labels are more basic, containing only (sets of) atomic values, and
so the resulting trace semantics could be said to be more abstract. In this respect
it resembles the triggering semantics of the higher-order π-calculus [10], which
motivated its development. There are close parallels with the trace semantics of
a core fragment of Java presented in [7], including the use of a merge operation
on context stacks.

We may compare labelled transition systems with various approaches to rea-
soning about contextual equivalence in functional-imperative languages, such as
the bisimulation based methods of Koutavas and Wand [8], which are sound
and complete for an (untyped) language similar to the one described here, or
the Hoare-logic style approach of Honda, Berger and Yoshida [3]. These could
be seen as characterizing equivalence using a more restricted set of contexts,
but trace semantics actually gives an explicit description of the (observationally
relevant) behaviour of a term.

The correspondence between game semantics and pointer-based evaluation of
functional languages was first investigated in [4], where the interaction between

A Fully Abstract Trace Semantics for General References 669

the strategies denoting two terms of the λ-calculus was shown to corespond to
the “run” of the Krivine abstract machine evaluating the application of one to
the other. This is very similar to the proof of a result used here to establish
that trace inclusion is a precongruence: that the result of evaluating a program
in a given environment is determined by the “parallel composition” of their
traces. Another route to a trace-based representation of functional programs is by
representing them as terms of the π-calculus, for which a sequential fragment has
been identified by typing [2] and the connections with game semantics examined
in [5].

2 A Functional Language with General References

The language we study, L, is a small fragment of Standard ML. It is essentially
the language modelled in [1], without bad variables (and restricted to the ground
types com and bool, for simplicity) — a simply-typed functional language with
assignment, dereferencing and declaration of general references. Thus types are
given by the grammar:

T ::= com | bool | T ⇒ T | var[T]

Terms are those of the simply-typed λ-calculus over these types, with the fol-
lowing constants:

Assignment assignT : var[T]⇒ T ⇒ com
Dereferencing !T : var[T]⇒ T
Variable declaration refT : T ⇒ var[T]
Conditional IfT : bool⇒ T ⇒ T ⇒ T
Equality Testing eqT : var[T]⇒ var[T]⇒ bool
Basic Values () : com and tt, ff : bool

We assume that each variable has a unique type, so that any well-formed termM
has a unique type ty(M) (although we shall generally omit typing annotations
where they are not necessary). We sugar the language by writing M := N
for (assignM)N , M ;N for (λx.N)M with x not free in N , new x := M.N for
(λx.N) (refM) (or just new x.N if M is an arbitrary value, which we may select
at any type), Ω for (new x.x := λy.(!x ()).!x) (), and M = N for (eqM)N .

A key distinction will be between functional values (i.e. values of function
type), which are λ-abstractions, function-constants and pointer names (variables
of function-type) — and non-functional values, which are location names (vari-
ables of reference type) and the basic values (), tt, ff. We mark this distinction
by using F,G for functional values and v, u, w for non-functional values; the two
notions of value are given by the following grammars:

F,G := x | λx.N | ! | If | eq | assign | (eq v) | assign v
v, u ::= a | () | tt | ff
where x ranges over pointer names and a over location names. We write V, U
for values of arbitrary type. Atomic values, for which we write φ, ψ, are basic
values, pointer or location names.

670 J. Laird

Our LTS for L is based on a small-step operational semantics (Table 1). Terms
are evaluated in an environment consisting of a set of pointers B — a finite par-
tial function from pointer names to functional values and a store S — a finite
partial function from location names to values. Non-functional values may be
substituted directly, but substitution of a functional value is via a freshly gener-
ated pointer name bound to it. The reduction rules are based on typed evaluation
contexts given by the following grammar:

E[]T := []T | F E[]T | E[]T M

By typing the “hole”, we ensure that any typable context ET [] has a unique
type ty(ET []). Throughout, we adopt the convention that in any rule C −→ C′,
any variable mentioned explicitly in C′ which is not mentioned explicitly in C
is assumed to be fresh — i.e. not occurring free or bound in C. We write M ⇓ if

Table 1. Reduction Rules for Program Evaluation

E[(λx.M) v];B;S −→ E[M [v/x]];B;S E[(λx.M) F];B;S −→ E[M [y/x]];B, (y, F);S
E[x V];B, (x, F);S −→ E[F V];B, (x, F);S E[ref V];B;S −→ E[a];B;S, (a, V)
E[!l];B;S, (l, V) −→ E[V];B;S, (l, V) E[l := U];B;S, (l, V) −→ E[()];B;S, (l, U)
E[l = l];B;S −→ E[tt];B;S E[l = m];B;S −→ E[ff];B;S
E[If tt];B;S −→ E[λx.λy.x];B;S E[If ff];B;S −→ E[λx.λy.y];B;S

M ; ; −→∗ ();B;S for some B,S. We define standard notions of observational
approximation and equivalence: M � N if C[M] ⇓ implies C[N] ⇓ for all com-
patible closing contexts C[] : com. Our full abstraction result is given for closed
terms, although the extension to terms with free variables is straightforward —
note that M � N if and only if λx.M � λx.N . We may prove the following
Context Lemma using standard techniques.

Lemma 1. For any closed M,N : T , M � N if for every evaluation context
E[]T : com, and store S, E[M]; ;S ⇓ implies E[N]; ;S ⇓.

3 Trace Semantics

We shall develop our trace semantics for L by first giving a basic LTS, and prov-
ing that it yields a sound and complete model of the functional fragment of L—
i.e. for terms of type T , where T contains no reference type as a subtype. We shall
then extend the LTS by adding a “shared store” component to its actions, and
show that the resulting semantics is sound and complete for all terms of L. This
two-stage presentation of the trace semantics allows us to capture two aspects of
behaviour in L separately — first, the control-flow between programs at function
types, and then shared access to the store. It also allows a clearer perspective on
the correspondence with the game semantics of general references. Note that we

A Fully Abstract Trace Semantics for General References 671

can give a conservative translation of L (except for equality testing on reference
names) into the functional fragment by representing the references as objects
of functional type with the correct assignment/dereferencing behaviour (this is
how references are represented in the games model [1]): for example we may
replace var[T] with the type bool⇒ T ⇒ T and give the following macros for
assignment, dereferencing and declaration.

– assign �→ λx.λy.((x tt) y); ()
– ! �→ λy.((y ff) c) (where c is an arbitrary value)
– ref �→ λx.new n := x.λy.λz.If y then (n := z); z else !n

The translation becomes fully abstract if we include a bad variable constructor
mkvar : (bool⇒ T ⇒ T)⇒ var[T] with the appropriate operational behaviour
making var[T] a retract of bool⇒ T ⇒ T .

The trace semantics is given by a bipartite LTS in which nodes are partitioned
between program-configurations and environment-configurations. The former are
tuples (M ;B;S;O; I; E) consisting of a programM , internal pointersB and store
S, a set of “output pointers” O, a set of typed “input pointer” names I and an
“execution stack” E of evaluation contexts, the sets dom(B), dom(O), I being
pairwise disjoint. An environment-configuration E is a tuple (B;S;O; I; E) —
there is no program.

The type of the program configuration (M ;B;S;O; I; E) is (ty(M); dom(O); I;
ty(E)), where ty(E) is the sequence of hole and result types of the evaluation
contexts on E — i.e. ty(E1[]S1): . . . : ty(En[]Sn)| = S1 · ty(E1[]S1) · . . . Sn ·
ty(En[]Sn). The type of an environment configuration (B,S;O; I; E) is the tu-
ple (dom(O), I, ty(E)). A configuration is functional if none of its subtypes is a
reference type.

The actions of the LTS are either unlabelled (silent) or labelled. The unla-
belled actions are the reductions of the small-step semantics — i.e.:

M ;B;S−→M ′;B′;S′
M ;B;S;O;I;E−→M ′;B′;S′;O;I;E

Labelled actions come in complementary pairs α, α (an input action and an out-
put action). We write s⊥ for the trace in which each output action is swapped for
its corresponding input and vice-versa. Input actions send E-configurations to P -
configurations and output actions send P -configurations to E-configurations and
so traces alternate between them. Actions take one of the following two forms.

– Query: x〈φ〉, x〈φ〉, where x : is a pointer name and φ is an atomic value.
– Response: 〈φ〉, 〈φ〉, where φ is an atomic value.

In each case the atomic value inside the angled brackets is either non-functional
(a value passed directly) or functional (a freshly generated pointer name which
can be used to pass information back to the generating term). Thus there are
eight transitions (input/output, functional/non-functional query/response) gen-
erated as follows:

Query Output. A program which encounters an output pointer name uses it
to send a query containing its argument to the environment, and pushes the

672 J. Laird

evaluation context onto the execution stack. If the argument to the pointer
is non-functional it is passed directly. If it is functional, it is passed as a fresh
output pointer.

E[x v];B,S;O; I, x; E x〈v〉−→ B;S;O; I, x;E[]: E ,

E[x F];B;S;O; I, x; E x〈y〉−→ B;S;O, (y, F); I, x;E[]: E

Query Input. An environment which receives a query x〈φ〉 evolves into a pro-
gram by following the input pointer x and applying the result to φ.

B;S;O, (x, F); I; E x〈u〉−→ F u;B;S;O, (x, F); I; E ,

B;S;O, (x, F); I; E x〈y〉−→ F y;B;S;O, (x, F); I, y; E

Response Output. A program which produces a value passes this as a re-
sponse action, either directly (non-functional values) or as a pointer to which
it is bound.

v;B;S;O; I; E 〈v〉−→ B;S;O; I; E

F ;B;S;O; I; E 〈y〉−→ B;S;O, (a, F); I; E

Response Input. An environment which receives a response evolves into a
program by placing it inside an evaluation context popped from the top of
the stack.

B;S;O; I;E[]: E 〈v〉−→ E[v];B;S;O; I; E
B;S;O; I;E[]: E 〈y〉−→ E[y];B;S;O; I, y; E

We obtain a bipartite LTS with the same set of labels, but having configuration
types as nodes, by simply restricting each configuration in the above actions to
its type — i.e.

M ;B;S;O;I;E α→B,S;O′;I′;E ′

(ty(M);dom(O);I;ty(E)) α→(dom(O′);I′;ty(E ′))
B;S;O;I;E α→M ;B;S;O′;I′;E ′

(dom(O);I;ty(E)) α→(ty(M);dom(O′);I′;ty(E ′))

Our full abstraction result is proved for sets of complete traces: a trace s is
complete for a program-configuration with stack E if the number of response
actions in s is (one) greater than the number of queries plus the depth of the
stack E . An environment-trace is complete if the number of responses is equal
to the number of queries plus the depth of the stack. It is straightforward to
show that if C s⇒ C′ then s is complete if and only if C′ is an environment-
configuration with empty stack. We write [[C]] (resp. [[θ]]) for the set of complete
traces of the configuration C (resp configuration type θ). By definition, if C : θ
then [[C]] ⊆ [[θ]]. Moreover, we will show that if s ∈ [[θ]] then there exists C : θ
with s ∈ [[C]]. For a closed term M : T we define [[M]] = [[M ; ; ; ; ; ε]] — in
this case a trace is complete if the number of responses is one greater than the

A Fully Abstract Trace Semantics for General References 673

number of queries. As an example, we give the derivation of a complete trace —
〈y〉y〈g〉g〈tt〉〈()〉〈()〉 — of λf.(f tt): (bool⇒ com)⇒ com:

λf.(f tt); ; ; ; ; ε
〈y〉−→ ; ; (y, λf.(f tt)); ; ε

y〈g〉−→ (λf.(f tt)) g; ; ; (y, λf.(f tt)); g; ε
−→ h tt; (h, g); ; (y, λf.(f tt)); g; ε −→ (λz.z) (g tt); (h, g); ; (y, λf.(f tt)); g; ε
g〈tt〉−→ (h, g); ; (y, λf.(f tt)); g; λz.z []

〈()〉−→ (λz.z) (); (h, g); ; (y, λf.(f tt)); g; ε

−→ (); (h, g); ; (y, λf.(f tt)); g; ε
〈()〉−→ (h, g); ; (y, λf.(f tt)); g; ε.

We will not examine the correspondence between the set of traces of a term
and its denotation as a strategy in the games model of [1] in detail. How-
ever, readers familiar with game semantics may note that there is a simple
correspondence between (α-equivalence classes of) traces and well-bracketed al-
ternating justified sequences in dialogue games: we replace each output/input
query/response with a Player/Opponent Question/Answer, and add a “justifi-
cation pointer” from each query x〈φ〉 or x〈φ〉 to the query/response in which x
was introduced (if any), and from each response to the pending question. This
correspondence sends the trace-set of each term to (the complete sequences of) a
deterministic strategy on the associated “arena”. We may show that it preserves
the meaning of functional L-terms.

3.1 Soundness and Completeness

We will now prove inequational soundness for terms in the functional fragment
— i.e. [[M]] ⊆ [[N]] implies M � N . To show that complete trace inclusion is
a precongruence, we prove that the “parallel composition” of two compatible
functional configurations produces the response 〈()〉 if and only if evaluating
them in combination converges to ().

Definition 1. Let P = (M ;B;S;O; I; E) be a functional program-configuration,
and E = (B′;S′;O′; I ′; E ′) a functional environment-configuration. We say that
P and E are compatible if:

1. dom(O) = I ′ and dom(O′) = I,
2. dom(B) ∩ dom(B′) = dom(S) ∩ dom(S′) = ∅
3. ty(M) · ty(E) = ty(E ′) · com or ty(M) · ty(E) · com = ty(E ′).

if P and E are compatible, we write P |E ↓ if there exists a trace (a witness) s
such that s〈()〉 ∈ [[P]] and s⊥ ∈ E or s ∈ [[P]] and s⊥〈()〉 ∈ E.

Definition 2. The merge of P and E is a program-in-environment defined:
P �E = (E �E ′)[M];B,B′,O,O′;SS′, where (E �E ′)[] — the unfolding of E , E ′
— is an evaluation context, defined (up to α-equivalence) as follows:

– (E � ε)[] = []
– (E �E[]: E ′) = (E ′ � E)[λx.E[x]] (where x is not free in E[]).

We need to show that if P,E are compatible configurations then P |E ↓ if
and only if P � E ⇓. We prove this by altering the operational semantics

674 J. Laird

so that it is equivalent with respect to termination, but more closely tracks
the interaction between term and environment. Specifically, we replace the rule
E[x V];B, (x, F);S −→ E[F V];B, (x, F);S with two rules, depending on whet-
her the value V is functional or non-functional.

E[x v];B, (x, F);S −→ (λz.E[z]) (F v);B, (x, F);S
E[xG];B, (x, F);S −→ (λz.E[z]) (F y);B, (x, F), (y,G);S

Writing M ;B;S ⇓′ if M ;B;S reduces to ();B′;S′ under the modified rules, we
may prove equivalence to the original notion of termination using a simulation
relation between the two reduction systems.

Proposition 1. For any program-in-environment M ;B;S ⇓ if and only if
M ;B;S ⇓.

Proposition 2. If P,E are compatible configurations then P |E ↓ if and only if
P �E ⇓′.

Proof. We prove the implication from left to right by induction on the length of
the witness s to P |E ↓. If this is the empty trace then 〈()〉 is a complete trace
in [[P]] and the empty trace is a complete trace in [[E]] — i.e. E = E ′ = ε and
so (E � E ′)[M] = M and M,B,S � (),B′′,′ xs′′ and so (E � E ′)[M],B ∪ B′,O ∪
O′,S∪S′ ⇓ as required. Otherwise s = αt and P � P ′ α−→ E′ and E α−→ P ′′ for
some P ′′, E′ such that P ′′|E′ ↓, and so P ′′ �E′ ⇓ by hypothesis. By considering
each pair of actions α, α, we show that P � E � P ′′|� E′ and so P � E ⇓ as
required.

We prove the implication from right to left by induction on the length of the
reduction of P � E to (). If (E � E ′)[M] = () then the witness to P |E ↓ is ε.
If P −→ P ′ then we may apply the induction hypothesis to P ′, E. Otherwise,
P

α−→ E′ and E α−→ P ′. By considering the possible α, we show that P �E −→
P ′ � E′ and hence P ′|E′ ↓ by hypothesis, and so P |E ↓ as required.

Proposition 3 (Soundness). If [[M]] ⊆ [[N]] then M � N .

Proof. Suppose M �� N . Then by the Context Lemma there exists E[];B;S such
that E[M];B;S ⇓ and E[N];B;S �⇓. Hence there exists s〈()〉 ∈ [[B;S; ; ;E[]]]
such that s⊥ ∈ [[M]] and s⊥ �∈ N — i.e. [[M]] �⊆ [[N]] as required.

We now show that our trace semantics is complete for functional terms by prov-
ing a definability result: every bounded α-equivalence class of complete traces
over a given configuration type which branches only on input actions is the set
of traces generated by a configuration of the corresponding type.

Definition 3. A strategy on a configuration type θ is a subset σ ⊆ [[θ]] which
is closed under α-equivalence 1 and complete prefixes, and which branches only
on input actions — i.e. if sαt, s′α′t ∈ σ and s ∼α s′ is even-length then sa ∼α
s′a′. A strategy on a program-configuration type is a p-strategy, a strategy on an
environment-configuration type is an e-strategy.
1 Traces in [[θ]] are α-equivalent if they are obtainable by permutation of variables not

in θ.

A Fully Abstract Trace Semantics for General References 675

It is straightforward to show that if C: θ then [[C]] is a strategy on θ.

Proposition 4. For any configuration type θ, every bounded strategy σ on θ is
the trace of a configuration Cσ of type θ.

Proof. By induction on the maximum length of trace, with the additional hy-
pothesis that if Cσ = (Mσ;Bσ;Oσ; Iσ; Eσ) or (Bσ;Oσ; Iσ; Eσ) then B = ∅ and:

– Oσ = {(xi, λz.!qi z) | i ≤ m}, where each qi is a distinct location name.
– Eσ = (λz.!rn z) []: . . . : (λz.!r1 z) [], where each ri is a distinct location name.
– dom(Sσ) = {qi | i ≤ m} ∪ {rj | j ≤ n}

So suppose σ is a p-strategy, then either σ = {ε} (in which case set M = Ω)
or σ = {ε} ∪ α · τ , where τ is an e-strategy, which is definable as above by
hypothesis. We define Oσ,Bσ, Eσ as above, set Sσ = Sτq1, . . . qm, r1, . . . , rn and
define Mσ by analysis of α:

– If α = y〈xm+1〉 then Mσ = (λz.!rn+1 z) (y λz.!qm+1 z).
– If α = y〈v〉 then Mσ = (λz.!rn+1 z) (y v).
– If α = 〈xm+1〉 then Mσ = λz.!qm+1 z
– If α = 〈v〉 then Mσ = v.

Then Cσ
α−→ C′, for some C′ which is trace-equivalent to τ .

An action α is enabled at θ if there exists s such that αs ∈ [[θ]]. If σ is an
e-strategy, let σ̂ be the function from enabled actions to p-strategies defined
σ̂(α) = {s | αs ∈ σ}. By inductive hypothesis, for each enabled action α, σ̂(α) is
definable as a configuration of the specified kind. We define Oσ,Bσ, Eσ as above,
and define Sσ (with dom(Sσ) = {q1, . . . , qm, rn}) as follows: Let assign(φ,m, n) =
q1 := S

�σ(xi〈φ〉)(q1); . . . ; qm := S
�σ(xi〈φ〉)(qm); rn := S

�σ(xi〈φ〉)(rn). For each xi :
Si ⇒ Ti ∈ dom(O),

– If Si = com, then Sσ(qi) = λz.assign((),m, n);M
�σ(xi〈()〉)

– If Si : bool then Sσ(qi) =
If z then assign(tt,m, n);M

�σ(xi〈tt〉) else assign(ff,m, n);M
�σ(xi〈ff〉)

– Sσ(qi) = λy.assign(y,m, n);M
�σ(xi〈y〉) otherwise.

Suppose L = S · T · L′. Let Sσ(ri) = λx.Ω for i < n and:

– If S : com then Sσ(rn) = λz.assign((),m, n);M
�σ(〈()〉),

– If S : bool then let Sσ(rn) =
λz.If z then assign(tt,m, n−1);M

�σ(〈tt〉) else assign(ff,m, n−1);M
�σ(〈ff〉),

– Sσ(rn) = λy.assign(y,m, n− 1);M
�σ(〈y〉) otherwise.

Then for each α there exists C′ such that Cσ
α−→ C′, where C′ is trace-equivalent

to C
�σ(α).

We may now complete the proof of full abstraction.

Proposition 5. For any closed terms M,N : T , if M � N then [[M]] ⊆ [[N]].

676 J. Laird

Proof. Suppose [[M]] �⊆ [[N]]. Let s be a minimal length complete sequence in
[[M]] such that s �∈ [[N]]. It is straightforward to show that if t ∈ [[Γ ;Δ;T ;L]]
then t⊥〈()〉 ∈ [[Δ;Γ ;T : L · com]], and so in particular s⊥〈()〉 ∈ [[; ;T · com]].
So by Proposition 4, there exists a configuration E = (;S; ; ;E[]T) such that
[[E]] consists of the complete prefixes of {s⊥〈()〉}. Then (M, ; ; ;)|E ↓ and
(N ; ; ; ;)|E �↓, and so E[M]; ;S ⇓ and E[M]; ;S �⇓. Then if the location
names occurring in E[],S are l1, . . . , lk, and dom(S) = (lj1 , . . . , ljn), the required
separating context is new l1 . . . new lk.lj1 := S(lj1); . . . ; ljn := S(ljn);E[].

4 Trace Semantics: Reference Types

The basic LTS fails to capture the behaviour of terms at reference types be-
cause it takes no account of implicit interaction between program and environ-
ment through shared locations in the store. We extend our LTS so that it is
sound and complete for terms of all types by retaining the same basic set of
actions but extending them with a component characterizing the action of the
term/environment on shared locations. Since programs of purely functional type
never can share the name of any location with the environment, the store com-
ponent for such terms is always empty, so this is (essentially) a conservative
extension of the basic LTS as far as such terms are concerned.

We extend the notion of configuration with a set of shared location names N ,
i.e. a program-configuration is a tuple (M ;B;S;O; I; E ;N) and an environment-
configuration a tuple (B;S;O; I; E ;N), with N ⊆ dom(S)2 in each case. We add
the set of shared names to the configuration type — i.e. (M ;B;S;O; I; E ;N)
has type (ty(M); dom(O); I; ty(E);N).

Labels of the extended LTS are pairs (α,X), where α is an output/input
query/response and X is a closed, atom-valued store — a finite partial function
from location names to atomic values (basic values, location names, or (fresh)
pointer names) such that

– if (a, b) ∈ X , where b is a location name, then b ∈ dom(X).
– if (a, x), (b, y) ∈ X , where x, y are pointer names then a �= b implies x �= y.

The complement of (α,X) is (α,X). For output actions (α,X) from a program
configuration with store S, the store component X is generated by:

– updating the set of shared location names (to include the primary content
of the action if it is a location name, and any names now accessible through
the store),

– for every shared location l containing a non-functional value, setting X (l) =
S(m).

– for every shared location m containing a functional value, generating a fresh
output pointer y to S(m), and setting X (m) = y.

2 Note that this condition will not always be fulfilled, e.g. if a configuration shares a
name for an unassigned location. But it must hold in any configuration reachable
from a closed term.

A Fully Abstract Trace Semantics for General References 677

The store component of an input action is used to update the store and set of
shared names.

Definition 4. Given a (finite) set of location names N , an action α and a store
S, we define the set acc(N , α,S) of names in S accessible from (N , α) to be the
least set containing N and the content of α (if it is a location name), and such
that for any location names (l,m) ∈ S, l ∈ acc(N ,S) implies m ∈ acc(N ,S).
Given a set S of location names, we write Sfn for the subset of S consisting of
names of locations storing values of functional type and Snf for the subset of
names of non-functional type, Sfn for Sdom(S)fn and Snf for Sdom(S)nf .

We may now define the actions of the extended LTS. Unlabelled actions are still
the reductions of the operational semantics. For each basic output transition
M ;B;S;O; I; E α−→ B;S;O′; I; E ′ we define an action:

M ;B;S;O; I; E ;N (α,X)−→ B;S;O′, {(X (a),S(a)) | a ∈ N ′
fn}; I; E ′;N ′

where N ′ = acc(N , α,S) and X is any atom-valued store such that dom(S′) =
dom(S), Xnf = Snf , and ran(Xfn) ∩ (dom(B) ∪ dom(O) ∪ I) = ∅.
For each basic input transition B;S;O; I; E α−→ M ;B;S;O; I′; E ′ we define an
action:

B;S;O; I; E ;N (α,X)−→ M ;B;S[X];O; I ′, ran(Xfn); E ′; dom(X)

where X is any closed atom-valued store such that: N ⊆ dom(X), if α contains
a location l then l ∈ dom(X), and ran(Xfn) ∩ (dom(B) ∪ dom(O) ∪ I′) = ∅.

As in the previous section, the LTS restricts to configuration types, with the
same notion of complete trace.

We may establish full abstraction by extending the proofs of soundness and
completeness for the functional fragment. We modify the notion of compatibil-
ity of configurations P = (M ;B;S;S; I; E ;N) and E = (B′;S′;O′; I ′; E ;N ′)
(Def. 1) by replacing the requirement (2) that S and S′ should be disjoint with
dom(S) ∩ dom(S′) = N ′ = N . We redefine the merge operation: P � E =
(E � E ′)[M];B,B′,O,O′;S′[S].

To adapt the proof of Proposition 2, we once again modify the operational
semantics so that it is equivalent to the original with respect to termination, but
more closely reflects interaction in the new LTS. Specifically, we replace the rules
for evaluating function application with the following reductions which rebind
all locations in the store to fresh pointers: — i.e. we replace each rule of the form
E[F V];B;S −→M ′;B′;S, where F is a pointer name or λ-abstraction, with:

E[F V];B;S −→M ′;B′, {(S′(a),S(a)) | a ∈ dom(S)fn};S′

where S′ is any atom-valued store with dom(S′) = dom(S), S′nf = Snf and
ran(Sfn) ∩ dom(B′) = ∅.

Proposition 6. If P,E are compatible configurations then P |E ↓ if and only if
P �E ⇓.

678 J. Laird

Proof. We prove that reduction of P �E with respect to the modified semantics
tracks the interaction of [[P]] and [[E]] as in the proof of Proposition 2.

To prove completeness, we extend the proofs of definability for bounded strate-
gies (Proposition 4) to the extended LTS. Again, the proofs are based on those
for the functional fragment.

Proposition 7. For any configuration type θ, every bounded strategy σ on θ is
the trace of a configuration Cσ of type θ.

Proof. (sketch) Following the proof of Proposition 4, p-strategies are defined
as programs, and e-strategies as values in the store, whilst output pointers and
evaluation contexts on the stack just dereference the associated private locations.

If σ = {(α,X) · τ is a p-strategy, where τ is a (definable) e-strategy then the
term Mσ is the assignment of X (a) to each location a ∈ dom(X)nf , followed by
the assignment of λz.(!q a) (where q is a distinct location q) to each location
a ∈ dom(X)fn, followed by the appropriate term producing the action α.

If σ is an e-strategy, then for each pointer location q associated with a given
action α, Sσ(q) is a function which dereferences every accessible shared location,
and so determines the shared store X 3, and becomes M

�σ(α,X).

Inequational soundness and completeness follow from Propositions 6 and 7 as in
the functional case.Thus we have proved:

Theorem 1 (Full Abstraction). M � N if and only if [[M]] ⊆ [[N]].

References

1. Abramsky, S., Honda, K., McCusker, G.: A fully abstract games semantics for
general references. In: LICS 1998. Proceedings of the 13th Annual Symposium on
Logic In Computer Science (1998)

2. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-calculus. In: Abram-
sky, S. (ed.) TLCA 2001. LNCS, vol. 2044, Springer, Heidelberg (2001)

3. Berger, M., Honda, K., Yoshida, N.: An observationally complete program logic for
imperative higher-order functions. In: Proceedings of LICS 2005, IEEE Computer
Society Press, Los Alamitos (2005)

4. Danos, V., Herbelin, H., Regnier, L.: Games semantics and abstract machines.
In: LICS 1996. Proceedings of the eleventh International Symposium on Logic In
Computer Science (1996)

5. Hyland, J.M.E., Ong, C.-H.L.: Pi-calculus, dialogue games and PCF. In: Proceed-
ings of the 7th ACM Conference on Functional Programming Languages and Com-
puter Architecture, pp. 96–107. ACM Press, New York (1995)

6. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: Pro-
ceedings of LICS 1999, IEEE Press, Los Alamitos (1999)

3 Note that because a name may only be (indirectly) shared through location of more
complex type, there is still a bound on the number of distinct shared stores which
are enabled.

A Fully Abstract Trace Semantics for General References 679

7. Jeffrey, A., Rathke, J.: Java jr.: Fully abstract trace semantics for a core java
language. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 423–438. Springer,
Heidelberg (2005)

8. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order
imperative programs. In: Proceedings of POPL ’06, pp. 141–152 (2006)

9. Laird, J.: A game semantics of names and pointers. To appear in Annals of Pure
and Applied Logic (2006)

10. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, University of Edinburgh (1993)

11. Sanjabi, S., Ong, C.-H.L.: Fully abstract semantics of additive aspects by transla-
tion. To appear in proc. AOSD ’07 (2007)

Aliased Register Allocation

for Straight-Line Programs Is NP-Complete

Jonathan K. Lee, Jens Palsberg, and Fernando Magno Quintão Pereira

UCLA, University of California, Los Angeles
{jkenl,palsberg,fernando}@cs.ucla.edu

Abstract. Register allocation is NP-complete in general but can be
solved in linear time for straight-line programs where each variable has
at most one definition point if the bank of registers is homogeneous. In
this paper we study registers which may alias: an aliased register can
be used both independently or in combination with an adjacent regis-
ter. Such registers are found in commonly-used architectures such as x86,
the HP PA-RISC, the Sun SPARC processor, and MIPS floating point.
In 2004, Smith, Ramsey, and Holloway presented the best algorithm for
aliased register allocation so far; their algorithm is based on a heuristic
for coloring of general graphs. Most architectures with register aliasing
allow only aligned registers to be combined: for example, the low-address
register must have an even number. Open until now is the question of
whether working with restricted classes of programs can improve the com-
plexity of aliased register allocation with alignment restrictions. In this
paper we show that aliased register allocation with alignment restrictions
for straight-line programs is NP-complete.

1 Introduction

Register Allocation. Programmers write most software in high-level program-
ming languages such as C, C++, and Java, and use compilers to translate their
programs to a growing variety of hardware, including multicore platforms, graph-
ics processing units, and network processors. To achieve high execution speed, pro-
grammers rely on compilers to optimize the program structure and to use regis-
ters and memory in clever ways. The latter task, known as register allocation, has
grown steadily in significance because of the widening gap between the short time
to access a register and the longer time to access memory. Today, the register allo-
cator may be among the most important and most complicated parts of a compiler.
For example, our experiments with the gcc compiler on the StrongARM architec-
ture shows that a good register allocator typically improves execution speed by
a factor of 2.5. A register allocator can also be a significant part of the code of a
compiler implementation: 10% for lcc [9] and 12% for gcc 2.95.2.

Most programs use more variables than the number of registers on the target
computer. The core of the register allocation problem is to determine whether all
the program variables can be placed in machine registers. The reason why a regis-
ter allocator may be able to place a high number of variables in a small number of

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 680–691, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Aliased Register Allocation for Straight-Line Programs Is NP-Complete 681

registers is that some variables are not live at the same time and so they can share
a register. When the need for registers exceeds the number of available registers,
the register allocator faces the difficult task of choosing which variables will be
placed in registers and which variables will be spilled, that is, placed in memory.
In this paper we focus on the core register allocation problem and do not discuss
spilling of variables.

Chaitin et al. [6] showed that the core register allocation problem is NP-complete
by a reduction from the graph coloring problem. The essence of Chaitin et al.’s
proof is that every graph is the interference graph of some program. Chaitin et
al.’s proof assumes a homogeneous bank of registers, where each register can be
used to hold the value of any program variable.

EAX EBX ECX EDX

AX BX CX DX

ALAH BLBH CLCH DLDH

32 bits

16 bits

8 bits

Aliased Registers. In this paper we study register allocation for hardware in
which the bank of registers is not homogeneous. We focus on aliased registers:
when an assignment to one register name can affect the value of another, such
register names alias [19]. For example, the figure above shows the set of general
purpose registers used in the x86 architecture. The x86 architecture has four gen-
eral purpose 16-bit registers that can also be used as eight 8-bit registers. Each
8-bit register is called a low address or a high address. The initial bits of a 16-bit
register must be aligned with the initial bits of a low-address 8-bit register. The
x86 architecture allows the combination of two 8-bit registers into one 16 bit reg-
ister. Another example of aliased registers is the combination of two aligned single
precision floating-point registers to form one double-precision register. Examples
of architectures with such aliased registers include early versions of HP PA-RISC,
the Sun SPARC, and the ARM processors. For a different kind of architecture,
Scholz and Eckstein [18] describe experiments with the Carmel 20xxDSP Core,
which has six 40 bit accumulators that can also be used as six 32-bit registers or
as twelve 16-bit aligned registers.

Architectures that allow unaligned pairing exist but are rare. Some models even
allow registers wrapping around, that is, the last and the first registers in the bank
combine to form one double register. An example of this type of architecture is the
ARM VFP coprocessor.

Aliased Register Allocation. We will refer to register allocation for hardware
with aliased registers as aliased register allocation.

Several research groups have proposed solutions to the aliased register allo-
cation problem. Some of the solutions are based on heuristics for graph color-
ing [4,5,15,16,17,19], while others are based on integer linear programming [1,10,
12,13,14,18] which is flexible enough to describe many architecture irregularities
but leads to compile times that are worst-case exponential in the size of the input
program.

Our Results. We prove that the core aliased register allocation problem with
alignment restrictions is NP-complete for straight-line programs where each

682 J.K. Lee, J. Palsberg, and F.M.Q. Pereira

variable has at most one definition point. A straight-line program is a sequence
of instructions without jumps. Our proof consists of three steps, from 3-SAT via a
flow problem and then a coloring problem to our register allocation problem. Our
coloring problem without alignment restrictions is equivalent to the shipbuilding
problem; Stockmeyer proved that the shipbuilding problem is NP-complete [11,
Application 9.1, p.204]. While we can easily reduce the aligned coloring problem
to the unaligned coloring problem (and thereby give an alternative proof of Stock-
meyer’s theorem), we have been unsuccessful in doing a reduction in the opposite
direction. The aligned case is more restricted than the unaligned case; yet our re-
sult shows that the complexity of aliased register allocation in the aligned case is
NP-complete.

Our result and Stockmeyer’s result may be surprising because straight-line pro-
grams where each variable has at most one definition point are extremely sim-
ple. For a homogeneous bank of registers, the core register allocation problem for
straight-line programs can be solved in linear time. Our results show that register
aliasing is sufficient to bump the complexity to NP-complete.

Related Work. At least two other important register allocation problems are
NP-complete for straight-line programs: register allocation with precolored regis-
ters [3]; and the placement of load and store instructions to transfer values to and
from memory [8]. Our proof was inspired in part by a paper of Biró, Hujter, and
Tuza [3] who showed how to relate a coloring problem to a flow problem. They used
a flow algorithm to solve the precoloring extension problem for interval graphs.
Our proof was also inspired by a paper by Even, Itai and Shamir [7] who proved
NP-completeness for the multicommodity flow problem.

Rest of the Paper. In Section 2 we define our register allocation problem and
in Section 3 we define a coloring problem and reduce it to the register allocation
problem. In Section 4 we introduce the notion of colored flow for simple graphs,
and in Section 5 we reduce the flow problem to the coloring problem. In Section
6 we show how to reduce 3-SAT to the flow problem. The proofs are in the full
version of the paper which is available from our website.

2 Aliased Register Allocation for Straight-Line Programs

Programs. We will define a family of programs that compute with short values
and long values. A short value can be represented with half as many bits as a long
value. We use v to range over program variables; a variable is either of type short
or of type long. A variable of type short can only hold short values, and a variable
of type long can only hold long values. We define a statement by this grammar:

(Statement) S ::= short v = (definition of v)
| long v = (definition of v)
| = v (use of v)

A statement either defines a variable or uses a variable. We define a straight-line
program to be a sequence of statements with the property that each variable is

Aliased Register Allocation for Straight-Line Programs Is NP-Complete 683

defined only once and used at least once, and every use of a variable comes after
its definition.

In program S1; . . . ;Sq, a variable v is live at statement Sj, if v is defined at
Si, i ≤ j and v is used at Sk, j < k [2]. Let i be the index of the statement that
defines v, and let k be the index of the last statement that uses v. The live range
of v is the half open interval [i, k[, which includes i and excludes k.

If v1, v2 are variables and their live ranges have a nonempty intersection, then
we say that v1, v2 interfere [6].

Aliased Register Allocation. Suppose we have a machine with 2K registers
that each can hold a short value. The registers are called r0, . . . , r2K−1; we call
them short registers. Suppose further that any two registers r2i, r2i+1, where i ∈
0..K−1, can be used to hold a long value. Notice the restriction that two registers
can hold a long value only if the indices are consecutive and the first index is even;
we call this restriction the alignment restriction. The alignment restriction models,
for example, the rule for how a programmer can use the 8-bit registers on the x86.
For example, r4, r5 can hold a long value, while r7, r8 cannot. We say that the two
numbers 2i, 2i+1 are aligned, and that the two registers r2i, r2i+1 are aligned. We
use the notation that for a natural number i, 2i = 2i+ 1 and 2i+ 1 = 2i.

We will study the problem of mapping program variables to machine registers:

Core aliased register allocation with alignment restrictions

(Caraar):

Instance: a straight line program with s short variables and l long vari-
ables, and a number 2K of available short registers r0, . . . , r2K−1.
Problem: Can each short variable be mapped to one of the short registers
and can each long variable be mapped to a pair r2i, r2i+1, i ∈ 0..K − 1, of
short registers, such that variables with interfering live ranges are assigned
registers that are all different?

3 Interval Graphs and Aligned 1-2-Coloring

Interval Graphs. We recall the definitions of an intersection graph and an in-
terval graph [11, p.9].

Let S be a family of nonempty sets. The intersection graph of S is obtained by
representing each set in S by a vertex and connecting two vertices by an edge if
and only if their corresponding sets intersect. An interval graph is an intersection
graph of a family of subintervals of an interval of the real numbers. We will examine
interval graphs with two kinds of intervals, called short and long intervals; we call
such graphs aliased interval graphs.

Aligned 1-2 Coloring. We will study a variant of graph coloring which we call
aligned 1-2-coloring. We will use natural numbers as colors; for example, if we have
2K colors, then we will use 0, 1, . . . , 2K−1 as the colors. We will color each vertex,
that is, each interval. We will use the terms “short interval” and “short vertex”
interchangeably; and similarly for “long interval” and “long vertex”. We define a
1-2-coloring to be a mapping that assigns one color to each short vertex and two

684 J.K. Lee, J. Palsberg, and F.M.Q. Pereira

0

1

2

3

4

A B C D E

EA

B

C

D

0

1

2

3

4

A B C D

A B

CD

0

1

2

3

4

5

A B C D E

E

A B

C

D

(a) (b) (c)

Fig. 1. Aliased interval graphs

colors i, i+ 1, i ∈ 0..2K − 2, to each long vertex such that adjacent vertices have
colors that are all different. We define an aligned 1-2-coloring to be a 1-2-coloring
that assigns two aligned colors to each long vertex.

Aligned 1-2-coloring of aliased interval graphs (A12CAIG):

Instance: an aliased interval graph and a number 2K of colors.
Problem: Find an aligned 1-2-coloring that uses 2K colors.

We will show that A12CAIG is NP-complete.

From aligned 1-2 coloring to aliased register allocation. We now present
a reduction of aligned 1-2-coloring of aliased interval graphs to aliased register
allocation with alignment restrictions. The key step is to show that any aliased
interval graph is the interference graph of one of our straight-line programs. We
first define a convenient representation of interval graphs. We say that an interval
graph is program like if (1) all the intervals are of the form [u, v[, (2) the start and
end points of the intervals form the set 1..2q, where q is the number of intervals,
(3) no two intervals start at the same point, (4) no two intervals end at the same
point, and (5) no interval starts in the point where another interval ends.

Proposition 1. A graph is an interval graph if and only if it is a program-like
interval graph.

From a program-like interval graph H , we construct a program P = S1; . . . ;S2q

as follows. Define

∀i ∈ 1..2q : Si =

⎧
⎨

⎩

short vI = if the short interval I begins at i
long vI = if the long interval I begins at i
= vI if the interval I ends at i

Lemma 1. H is the interference graph of P .

Example. Let us explain why aligned 1-2-coloring is a nontrivial problem. Fig-
ure 1 shows three aliased interval graphs; each graph is displayed both as a collec-
tion of intervals and in a conventional way. In the left part of each figure, we use
fat lines to denote long intervals and we use dashed lines to denote short intervals.
In the right part of each figure, we use shaded boxes to denote “long” vertices
(representing long intervals) and we use white boxes to denote “short” vertices
(representing short intervals).

Aliased Register Allocation for Straight-Line Programs Is NP-Complete 685

A standard interval graph has the property that the size of the largest clique is
equal to the minimal number of colors [11, p.17]. Aligned coloring of an aliased
interval graph does not necessarily have that property. For example, Figure 1(a)
shows a graph for which the minimal 1-2-coloring uses four colors:A = {0, 1}, B =
2, C = 3, D = 0, E = {1, 2}, while the minimal aligned 1-2-coloring uses five
colors: A = {0, 1}, B = 2, C = 3, D = 4, E = {0, 1}. Notice that the largest
clique is of size 3; even if we treat long variables as counting as two nodes, the
largest clique is of size 4.

A standard interval graph has the property that we can optimally color the
graph by applying greedy coloring to any perfect elimination ordering of the ver-
tices. (In a perfect elimination ordering, the neighbors of a node v that come before
v in the ordering form a clique [11, p.82].) An aliased interval graph does not nec-
essarily have that property. For example, Figure 1(b) shows a graph for which we
have the perfect elimination ordering 〈A,B,C,D〉 that leads greedy coloring to
produce an aligned 1-2-coloring with five colors:A = 0, B = 1, C = 2, D = {4, 5}.
If we drop the alignment restriction, greedy coloring again produces a 1-2-coloring
with five colors: A = 0, B = 1, C = 2, D = {3, 4}. However, in both the aligned
and unaligned cases, there exists an optimal assignment using just four colors:
A = 0, B = 2, C = 1, D = {2, 3}.

We might try an algorithm that first applies greedy coloring to the short in-
tervals and then proceeds to color the longs. That does not necessarily lead to an
optimal 1-2-coloring. For example, Figure 1(b) shows a graph for which we have
already studied the perfect elimination ordering 〈A,B,C,D〉 in which all the short
intervals come before the long intervals. So, we will get the same suboptimal col-
orings as above.

Alternatively, we might try to first apply greedy coloring to the long intervals,
and then proceed to color the shorts. That method is not optimal either. For ex-
ample, Figure 1(c) shows a graph for which the “longs-first” method produces
the 1-2-coloring A = {0, 1}, B = {2, 3}, C = {4, 5}, D = {0, 1}, E = 6. Notice
that the 1-2-coloring is also an aligned 1-2-coloring. However, in both the aligned
and unaligned cases, an optimal assignment uses just six colors: A = {0, 1}, B =
{2, 3}, C = {4, 5}, D = {2, 3}, E = 0.

None of the simple methods work because the aligned and unaligned 1-2-coloring
problems are NP-complete.

4 Simple Graphs, Straight Cuts, and Colored Flows

Let (V,E,Source,Sink , c) be a directed graph with vertex set V , edge set E, dis-
tinguished vertices Source,Sink ∈ V , and a capacity function c : E → Nat , where
Nat denotes the natural numbers.

A flow is a function f : E → Nat , such that

∀(u, v) ∈ E : f(u, v) ≤ c(u, v) (Capacity)
∀v ∈ V \ {Source,Sink} : Σ(u,v)∈Ef(u, v) = Σ(v,w)∈Ef(v, w) (Conservation)

686 J.K. Lee, J. Palsberg, and F.M.Q. Pereira

The value of a flow is the sum of the flows of the edges that reach Sink . A max-
imal flow is flow f such that for any flow g, the value of g is less than or equal to
the value of f .

We define a set of vertices S to be backwards closed if ∀v ∈ S : if (u, v) ∈ E, then
u ∈ S. We also define a set of vertices T to be forwards closed if ∀u ∈ T : if (u, v) ∈
E, then v ∈ T . A cut (S, T) is a partition of V such that Source ∈ S,Sink ∈ T ,
S ∩ T = ∅, and S ∪ T = V . The capacity of a cut (S, T), written c(S, T) is given
by the formula: c(S, T) = Σ(u,v)∈E,u∈S,v∈T c(u, v), which says that the capacity
of the cut is the sum of the capacities of the edges that cross the cut from S to T .
A straight cut is a cut (S, T) such that S is backwards closed and T is forwards
closed. We define a simple graph to be an acyclic graph (V,E,Source,Sink , c) in
which Source has no incoming edges, Sink has no outgoing edges, and where all
the straight cuts have the same capacity.

Part (a) of the figure below shows a simple graph. Each dashed line marks a
straight cut. Each edge with nonunit capacity is marked with a small bar and its
capacity; unlabeled edges have unit capacity.

A
B

D
C

EF

2

A
B

D C

EF

2
01

2

3

1

3

3

1

3

0

(a) (b)

Lemma 2. All straight cuts have the same capacity if and only if ∀v ∈ V \
{Source,Sink} :

∑
(u,v)∈E c(u, v) =

∑
(v,w)∈E c(v, w).

Lemma 3. In a simple graph, c is the maximal flow.

We say that an element of 0..K−1 is a color. We define a colored flow for a simple
graph with every straight cut of capacity K as a function h : E →
20..K−1 such that λe.|h(e)| is a flow and for any straight cut (S, T), we have
∪(u,v)∈E,u∈S,v∈Th(u, v) = 0..K−1. Thus, for any straight cut, every color is used
exactly once in the coloring of the edges that cross the cut. Notice that every color
is used at most once because the straight cut has capacity K. We use Lemma 3
to justify the terminology that a maximal colored flow is a colored flow with the
property that λe.|h(e)| = c.

Part (b) of the figure above shows an example of colored flow.

Lemma 4. For a simple graph, h is a colored flow if and only if λe.|h(e)| is a flow,
∀v ∈ V \ {Source,Sink} : ∪(u,v)∈Eh(u, v) = ∪(v,w)∈Eh(v, w), and ∃ straight cut
(S, T) such that ∪(u,v)∈E,u∈S,v∈Th(u, v) = 0..K − 1.

Aligned colored flow. Suppose we have a simple graph (V,E,Source,Sink , c)
with all straight cuts of capacity 2K, a function A : E → Boolean, and a number
2K of colors 0, . . . , 2K−1. We define an aligned colored flow to be a colored flow h
such that ifA(e) = true and 2 ≤ c(e), then ∃i : 0 ≤ i ≤ K−1∧{2i, 2i+1} ⊆ h(e).
Intuitively, the function A indicates that an edge e with a capacity of at least two
requires h to assign e the colors 2i and 2i+ 1, among others.

Aliased Register Allocation for Straight-Line Programs Is NP-Complete 687

Maximal, aligned colored flow:

Instance: (G, 2K,A), where G is a simple graph (V,E,Source,Sink , c)
with all straight cuts of capacity 2K, and A : E → Boolean.
Problem: Find a maximal, aligned colored flow that uses 2K colors.

5 FromMaximal, Aligned Colored Flow to Aligned 1-2
Coloring

In this section we present a reduction of the maximal, aligned colored flow problem
to aligned 1-2-coloring of aliased interval graphs. Let (G, 2K,A) be an instance of
the maximal, aligned colored flow problem, where G = (V,E,Source,Sink , c).
From (G, 2K,A) we construct an aliased interval graph H in the following way.

First we sort V into a topological order with Source first and Sink last. We can
do that because G is a simple graph so Source has no incoming edges and Sink
has no outgoing edges.

Next we define an injective function � : V → Nat such that if v1 is less than v2
in the topological ordering, then �(v1) < �(v2). The numbers assigned by � to the
vertices ofG will be the start and end points of the intervals inH . The intervals of
H are defined as follows. For each (u, v) ∈ E such that A(u, v) = true, we create
one long interval [�(u), �(v)[and c(u, v) − 2 short intervals [�(u), �(v)[. For each
(u, v) ∈ E such that A(u, v) = false, we create c(u, v) short intervals [�(u), �(v)[.

Lemma 5. (G, 2K,A) has a maximal, aligned colored flow if and only ifH has an
aligned 1-2-coloring.

6 From 3-SAT toMaximal, Aligned Colored Flow

In this section we present a reduction of 3-SAT to the maximal, aligned colored
flow problem. Let F = ∧mj=1cj , cj = lj1 ∨ lj2 ∨ lj3 be a formula with n Boolean
variables x1, . . . , xn andm clauses c1, . . . , cm; each literal, lj1 or lj2 or lj3, is either
a variable or the negation of a variable, and in each clause the three literals are
distinct. Let pi be the number of occurrences of xi, and let qi be the number of
occurrences of x̄i. We index a certain set of vertices using i and k, where 1 ≤ i ≤ n
and 1 ≤ k ≤ pi+1. We index another set of vertices using i and h, where 1 ≤ i ≤ n
and 1 ≤ h ≤ qi + 1. For convenience, we define p0 = 0 and q0 = 0.

From F we construct a simple graph G = (V,E,Source,Sink , c). The graph is
akin to the graph used by Even, Itai and Shamir [7, Section 4] in their proof of NP-
completeness for the multicommodity flow problem. Figure 2 shows a listing of the

Vertex Cap Vertex Cap Vertex Cap Vertex Cap Vertex Cap Vertex Cap

Source 0 S 2 cj 6 xik 2 x̄ih 2 ai 2

Sink 2K T 2 si0 2 sik 2 s̄ih 2 bi 2

Fig. 2. Vertices with incomming capacities; K = 3m + 3n + 1

688 J.K. Lee, J. Palsberg, and F.M.Q. Pereira

S a1 b1 a2 b2 a3 b3 T

s21s20s12s11s10 s30s23s22 s31 s32

x12 x21 x22 x23 x32

s11 s12

x11 x12 x31 x32

c2c1

s31 s32

6 6

2 2 2 2

2

2 2 2 2 2 2 2 2 2 2 2

x21

s21

2

Sink

Source (3,1) (3,1)

(1,1) (1,1)

(1,1) (1,1)

(2,1) (2,1) (2,2) (2,2)

(3,1) (3,1)

(1) (1)

(2) (2)

(3) (3)
(1) (1)

(2) (2)

(3) (3)

(1) (1)

(2) (2)

(3) (3)

(1)

(1) (1,1)

(1,1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1,1)

(1,1)

(1,1)

(2,2)(2,2)

(3,1)

(3,1)

(3,1)

(3,1)

(3,1)

(3)

(3)

(3)

(3)

(3,1)

(3,1)

(3,1)

(3,1)

(2,1)

(2,1)

(2,1)

(2,1)

(2,1) (2,1)

(1,1)

(1,1)

(1,1)

(1)

(1,1)

(1,1)

(2,2)

(2,2)

(2,2)

(2,2)

(2)

(2) (2)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(2)

(2)

(2)

(2)

(1)

(3,1)

(2)

(2)

(2)

(2)

(3)

x11 x31

Fig. 3. Construction of a simple graph from (x1 ∨x2 ∨x3)∧ (x̄1 ∨x2 ∨ x̄3). Edges with
a labeled capacity require aligned colors. The edge labels are explained in Figure 5(a).

vertices in V , along with, for each vertex, the sum of the capacities of the in-going
edges (which, because the graph is simple, is equal to the sum of the capacities of
the outgoing edges, for all vertices except Source, Sink). Figure 4 shows a listing
of the edges in E. Figure 4 also shows a set of colors for each edge; we will need
that later. Figure 3 illustrates the graph constructed from the formula (x1 ∨ x2 ∨
x3)∧(x̄1∨x2∨ x̄3). Let us now briefly walk through the construction of the graph.
We denote an edge from u to v with a capacity c as (u c→v)

We have the vertices Source, Sink, two vertices S and T , one vertex cj for each
clause, and vertices si0, xik, sik, x̄ih, s̄ih, ai, bi, for each variable xi. For each vari-
able xi, we construct a lobe. We add the edges (xiu

1→ xi(u+1)), 1 ≤ u ≤ pi to form
an upper path. We construct a lower path with the edges (x̄iv

1→ x̄i(v+1)), 1 ≤
v ≤ qi. We connect theses paths to ai and bi to form the lobe by adding the edges
(ai

1→ xi1), (ai
1→ x̄i1), (xi(pi+1)

1→ bi), and (x̄i(qi+1)
1→ bi).

Next we are going to make several edges that have alignment requirements. For
each sik, we create an edge (Source 2→ sik) with a capacity two. Likewise for all the
si0 and the s̄ih vertices. Next we will add an edge (Source 2→ S) also with capacity
of two. In total we have made a capacity of 2(3m+ 3n+ 1) leaving the source. We
want to make G simple, so there must be capacities of two leaving each of these
vertices and eventually reaching the Sink. We will create some more aligned edges
which will now connect certain vertices to Sink. For each of the cj vertices, we
create the edges (cj

6→ Sink) with a capacity of six and finally we add (T 2→ Sink)
with a capacity of two. Now all that remains to make the graph simple is to connect
the S, sik, and s̄ih vertices to T, cj, and Sink.

Aliased Register Allocation for Straight-Line Programs Is NP-Complete 689

Edge Color Edge Color

xiu
1→ xi(u+1) ψ(xi) ? α(i, u) : θ si0

1→ Sink γ(i)

x̄iv
1→ x̄i(v+1) ψ(xi) ? θ : β(i, v) si0

1→ ai γ(i)

ai
1→ xi1 ψ(xi) ? γ(i) : θ bi

1→ Sink ψ(xi) ? δ(i) : η(i)

ai
1→ x̄i1 ψ(xi) ? θ : γ(i) siu

1→ xiu α(i, u)

xi(pi+1)
1→ bi ψ(xi) ? δ(i) : θ si(pi+1)

1→ xi(pi+1) δ(i)

x̄i(qi+1)
1→ bi ψ(xi) ? θ : η(i) s̄iv

1→ x̄iv β(i, u)

Source 2→ siu α(i, u), α(i, u) s̄i(qi+1)
1→ x̄i(qi+1) η(i)

Source 2→ si(pi+1) δ(i), δ(i) si(pi+1)
1→ Sink δ(i)

Source 2→ s̄iv β(i, u), β(i) s̄i(qi+1)
1→ Sink η(i)

Source 2→ s̄i(qi+1) η(i), η(i) siu
1→ cj α(i, u)

if occ(u, xi, cj)

Source 2→ si0 γ(i), γ(i) s̄iv
1→ cj β(i, u)

if occ(v, x̄i, cj)

Source 2→ S θ, θ xi(u+1)
1→ cj ψ(xi) ?

if occ(u, xi, cj), (u �= pi) α(i, u) : α(i, u + 1)

cj
6→ Sink See Figure 5(b) xi(pi+1)

1→ cj ψ(xi) ?
if occ(pi, xi, cj) α(i, pi) : δ(i)

T 2→ Sink θ, θ̄ x̄i(v+1)
1→ cj ψ(xi) ?

if occ(v, x̄i, cj), (v �= qi) β(i, v) : β(i, v + 1)

S 1→ T θ̄ x̄i(qi+1)
1→ cj ψ(xi) ? η(i) : β(i, qi)

if occ(qi, x̄i, cj)

bl
1→ al+1 θ xi1

1→ Sink ψ(xi) ? γ(i) : α(i, 1)

S 1→ a1 θ x̄i1
1→ Sink ψ(xi) ? γ(i) : β(i, 1)

bn
1→ T θ

Fig. 4. Edge construction; ψ(xi)?dT : dF denotes that if ψ(xi) = true then the assigned
color is dT and if ψ(xi) = false then the assigned color is dF . 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤
u ≤ pi, 1 ≤ v ≤ qi, 1 ≤ l ≤ n − 1. An expression occ(u, xi, cj) means that the uth

occurrence of xi appears in cj .

We will first add edges to send the current excess capacity at S to T . We will
add a direct edge (S 1→ T) to get one unit to T . To get the other unit to T , we will
connect the lobes serially, by adding the edges (bl, al+1), 1 ≤ l ≤ n−1. Finally, we
add (S 1→ a1) and (bn

1→ T), resulting in a path to send the other unit of capacity
to T and two units of capacity reaching Sink.

The ai and bi vertices still have an imbalance of capacity and must have edges
to supply capacity or drain it. To correct for these imbalances, we add the edges
(si0

1→ Sink), (si0
1→ ai), and (bi

1→ Sink). This results in a current total of 2n+2
units of capacity reaching Sink, and the vertices on the lobe balanced.

We will now connect the remaining sik and s̄ih vertices to the cj vertices and
Sink. We add the edges (sik

1→ xik) and (s̄ih
1→ x̄ih) which will send one unit of

capacity from each of these vertices to the corresponding vertices on the lobe. The
other units from the sik and s̄ih vertices will be sent to either some cj vertex or
directly to Sink. We add the edges (si(pi+1)

1→ Sink) and (s̄i(qi+1)
1→ Sink), which

now results in an additional 2n units of capacity reaching Sink for a running total

690 J.K. Lee, J. Palsberg, and F.M.Q. Pereira

α(i, k) = 2(Σi
z=1pz−1 + k − 1)

β(i, h) = 2(Σn
z=1pz + Σi

z=1qz−1

+h− 1)

γ(i) = 2(3m + i− 1)

δ(i) = 2(3m + n + i− 1)

η(i) = 2(3m + 2n + i− 1)

θ = 2(3m + 3n)

Condition Colors

xi is uth occ., ψ(xi) = T α(i, u), α(i, u)

xi is uth occ., ψ(xi) = F, α(i, u + 1),

u �= pi α(i, u)

xi is pth
i occ., ψ(xi) = F δ(i), α(i, pi)

x̄i is vth occ., ψ(xi) = F β(i, v), β(i, v)

x̄i is vth occ., ψ(xi) = T, β(i, v + 1),

v �= qi β(i, v)

x̄i is qth
i occ., ψ(xi) = T η(i), β(i, qi)

Fig. 5. (a) Abbreviations. (b) For each literal in cj , the set of colors in h(cj
6→ Sink).

of 4n+ 2. The remaining vertices add an edge (siu
1→ cj) if the uth appearance of

xi occurs in cj . For the s̄iv vertices, we add similar edges. From these edges we get
3m units of capacity reaching Sink, because each of these edges corresponds to a
clause, and each clause has exactly three literals in it. All that remains is to drain
the single unit of capacity currently residing at the xik and x̄ih vertices and we will
have our simple graph. We add the edges (xi(u+1)

1→ cj) if the uth appearance of
xi occurs in cj as well as (xi(v+1)

1→ cj) if the vth appearance of x̄i occurs in cj .
This results in another 3m units of capacity reaching Sink. Finally, the last 2n
units will be supplied by the edges (xi1

1→ Sink) and (x̄i1
1→ Sink).

Lemma 6. G is simple.

Let A : E → Boolean be given by mapping each edge e to the Boolean value ob-
tained by computing 2 ≤ c(e), where c is the capacity function specified implicitly
in Figure 4.

Lemma 7. F is satisfiable if and only if (G, 2(3m + 3n + 1), A) has a maximal,
aligned colored flow.

7 Main Result and Conclusion

Theorem 1. For straight-line programs, the core aliased register allocation prob-
lem with alignment restrictions is NP-complete.

Proof. Firstly, we see the problem is in NP because a register assignment can be
verified in polynomial time. We have a chain of reductions from 3-SAT to maximal,
aligned colored flow (Lemma 7), from maximal, aligned colored flow to aligned 1-2
coloring (Lemma 5), and from aligned 1-2 coloring to aliased register allocation
(Lemma 1). �

We have shown that aliased register allocation with alignment restrictions is diffi-
cult, even for straight-line programs where each variable has at most one definition
point. Our result confirms the need for the heuristics and worst-case exponential
time methods that are used today.

Aliased Register Allocation for Straight-Line Programs Is NP-Complete 691

In this paper we have considered register allocation as a decision problem. We
can also view register allocation as an optimization problem: minimize the number
of registers. Open problem: give nontrivial upper and lower bounds on the approx-
imability of our register allocation problem. For example, is our register allocation
problem APX-hard?

References

1. Appel, A.W., George, L.: Optimal spilling for CISC machines with few registers. In:
PLDI, pp. 243–253. ACM Press, New York (2001)

2. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java. Cambridge
University Press, Cambridge (2002)

3. Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. I:Êinterval graphs. In: Dis-
crete Mathematics, p. 267. ACM Press, New York (1992) Special volume (part 1)
to mark the centennial of Julius Petersen’s Die theorie der regularen graphs

4. Briggs, P.: Register Allocation via Graph Coloring. PhD thesis, Rice University
(1992)

5. Briggs, P., Cooper, K., Torczon, L.: Coloring register pairs. ACM Letters on Pro-
gramming Languages 1(1), 3–13 (1992)

6. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Computer Languages 6, 47–57 (1981)

7. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, vol. 5(4) (1976)

8. Farach, M., Liberatore, V.: On local register allocation. In: 9th ACM-SIAM sym-
posium on Discrete Algorithms, pp. 564–573. ACM Press, New York (1998)

9. Fraser, C., Hanson, D.: A Retargetable C Compiler: Design and Implementation.
Addison-Wesley, Reading (1995)

10. Fu, C., Wilken, K.D.: A faster optimal register allocator. In: Internation Symposium
on Microarchitecture, pp. 245–256. ACM Press, New York (2002)

11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier,
Amsterdam (2004)

12. Goodwin, D.W., Wilken, K.D.: Optimal and near-optimal global register allocations
using 0-1 integer programming. SPE 26(8), 929–965 (1996)

13. Hirnschrott, U., Krall, A., Scholz, B.: Graph coloring vs. optimal register allocation
for optimizing compilers. In: JMLC, pp. 202–213. Springer, Heidelberg (2003)

14. Kong, T., Wilken, K.D.: Precise register allocation for irregular architectures. In:
Internation Symposium on Microarchitecture, pp. 297–307. ACM Press, New York
(1998)

15. Koseki, A., Komatsu, H., Nakatani, T.: Preference-directed graph coloring. In:
PLDI, pp. 297–307. ACM Press, New York (2002)

16. Nickerson, B.R.: Graph coloring register allocation for processors with multi-register
operands. In: PLDI, pp. 40–52 (1990)

17. Runeson, J., Nystrom, S.-O.: Retargetable graph-coloring register allocation for ir-
regular architectures. In: SCOPES, pp. 240–254. Springer, Heidelberg (2003)

18. Scholz, B., Eckstein, E.: Register allocation for irregular architectures. In:
LCTES/SCOPES, pp. 139–148. ACM Press, New York (2002)

19. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring
register allocation. In: PLDI, pp. 277–288 (2004)

Conservative Ambiguity Detection

in Context-Free Grammars

Sylvain Schmitz

Laboratoire I3S, Université de Nice - Sophia Antipolis & CNRS, France
schmitz@i3s.unice.fr

Abstract. The ability to detect ambiguities in context-free grammars
is vital for their use in several fields, but the problem is undecidable
in the general case. We present a safe, conservative approach, where the
approximations cannot result in overlooked ambiguous cases. We analyze
the complexity of the verification, and provide formal comparisons with
several other ambiguity detection methods.

1 Introduction

Syntactic ambiguity allows a sentence to have more than one syntactic interpre-
tation. A classical example is the sentence “She saw the man with a telescope.”,
where the phrase “with a telescope” can be associated to “saw” or to “the man”.
The presence of ambiguities in a context-free grammar (CFG) can severely ham-
per the reliability or the performance of the tools built from it. Sensitive fields,
where CFGs are used to model the syntax, include for instance language acqui-
sition [1], RNA analysis [2,3], controlled natural languages [4], or programming
languages [5,6,7].

While proven undecidable [8,9], the problem of testing a context-free grammar
for ambiguity can still be tackled approximatively. The approximations may re-
sult in two types of errors: false negatives if some ambiguities are left undetected,
or false positives if some detected “ambiguities” are not actual ones.

In this paper, we present a framework for the conservative detection of am-
biguities, only allowing false positives. Our general approach is that of the ver-
ification of an infinite system: we build a finite approximation of the grammar
(Section 3) and check for ambiguities in this abstract structure (Section 4).
The driving purpose of the paper is to establish the following theoretical
results:

– An approximation model for CFGs, based on the quotienting of a graph of
all the derivation trees of the grammar, which we call its position graph, into
a nondeterministic finite automaton (NFA) (Section 3.2).

– The soundness of the verification we run on the resulting NFA. Although the
ambiguity of our NFA is already a conservative test for ambiguities in the
original grammar (Section 4.1), our verification improves on this immediate
approach by ignoring some spurious paths (Section 4.2). The complexity of

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 692–703, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Conservative Ambiguity Detection in Context-Free Grammars 693

S

VPNP

pn

She
v

saw
NP

NP PP

NPpr

with

d n

telescopea

d n

manthe

PP

NPpr

with

d n

telescopea

S

VPNP

pn

She

v

saw
NP

d n

manthe

VP

Fig. 1. Two trees yielding the sentence “She saw the man with a telescope.” with G1.

the algorithm is bounded by a quadratic function of the size of our NFA
(Section 4.4).

– Formal comparisons with several ambiguity checking methods: the bounded-
length detection schemes [10,1,6,11] (which are not conservative tests), the
LR-Regular condition [12], and the horizontal and vertical ambiguity condi-
tion [3] (Section 5); these comparisons rely on the generality of our approx-
imation model.

The proofs of our results can be found in a companion research report [13], and
we report on the experimental results of a prototype implementation of our al-
gorithm in a different publication [7]. Let us proceed with an overview of our
approach to ambiguity detection in the coming section.

2 Outline

Ambiguity in a CFG is characterized as a property of its derivation trees: if
two different derivation trees yield the same sentence, then we are facing an
ambiguity. Considering again the classical ambiguous sentence “She saw the man
with a telescope.”, a simple English grammar G1= 〈N,T, P, S〉 that presents this
ambiguity could have the rules in P

S−→NP VP , NP−→d n |pn |NP PP , VP−→v NP |VP PP , PP−→pr NP , (G1)

where the nonterminals in N , namely S , NP , VP , and PP , stand respectively
for a sentence, a noun phrase, a verb phrase, and a preposition phrase, whereas
the terminals in T , namely d, n, v, pn , and pr , denote determinants, nouns,
verbs, pronouns, and prepositions.1 The two interpretations of our sentence are
mirrored in the two derivation trees of Figure 1.
1 We denote in general terminals in T by a, b, . . . , terminal strings in T ∗ by u, v, . . . ,

nonterminals by A, B, . . . , symbols in V = T ∪N by X, Y , . . . , strings in V ∗ by α,
β, . . . , and rules in P by i, j or by indices 1, 2, . . . ; ε denotes the empty string, and
k : x the prefix of length k of the string x.

694 S. Schmitz

2.1 Bracketed Grammars

Tree structures are easier to handle in a flat representation, where the structural
information is described by a bracketing [14]: each rule i = A

i−→α of the grammar
is surrounded by a pair of opening and closing brackets di and ri.

Formally, our bracketed grammar of a context-free grammar G = 〈N,T, P, S〉
is the context-free grammar Gb = 〈N,Tb, Pb, S〉 where Tb = T ∪ Td ∪ Tr with
Td = {di | i ∈ P} and Tr = {ri | i ∈ P}, and Pb = {A i−→diαri | A i−→α ∈ P}. We
denote derivations in Gb by =⇒b. We define the homomorphism h from V ∗

b to V ∗

by h(di) = ε and h(ri) = ε for all i in P , and h(X) = X otherwise, and denote
by δb (resp. wb) a string in V ∗

b (resp. T ∗
b) such that h(δb) = δ (resp. h(wb) = w).

Using the rule indices as subscripts for the brackets, the two trees of Figure 1
are represented by the following two sentences of the bracketed grammar for G1

′:2

d1 d2 d4 pn r4 d6 v d5 d3 d n r3 d8 pr d3 d n r3 r8 r5 r6 r2 $ r1 (1)
d1 d2 d4 pn r4 d7 d6 v d3 d n r3 r6 d8 pr d3 d n r3 r8 r7 r2 $ r1. (2)

The existence of an ambiguity can be verified by checking that the image of
these two different sentences by h is the same string pn v d n pr d n.

2.2 Super Languages

In general, an ambiguity in a grammar G is thus the existence of two different
sentences wb and w′

b of Gb such that w = w′. Therefore, we can design a conser-
vative ambiguity verification if we approximate the language L(Gb) with a super
language and look for such sentences in the super language.

There exist quite a few methods that return a regular superset of a context-
free language [15]; we present in the next section a very general model for such
approximations. We can then verify on the NFA we obtain whether the original
grammar might have contained any ambiguity. In Section 4, we exhibit some
shortcomings of regular approximations, and present how to compute a more
accurate context-free super language instead.

3 Position Graphs and Their Quotients

3.1 Position Graph

Let us consider again the two sentences (1) and (2) and how we can read them
step by step on the trees of Figure 1. This process is akin to a left to right walk
in the trees, between positions to the immediate left or immediate right of a tree
node. For instance, the dot in

d1 d2 d4 pn r4 d6 v d5 d3 d n r3·d8 pr d3 d n r3 r8 r5 r6 r2 $ r1 (3)

identifies a position between NP and PP in the middle of the left tree of Figure 1.
2 The extended version G′= 〈N ′, T ′, P ′, S′〉 of a CFG G= 〈N, T, P, S〉 adds a new start

symbol S′ to N , an end of sentence symbol $ to T , and a new rule S′ 1−→S$ to P .

Conservative Ambiguity Detection in Context-Free Grammars 695

d n

manthe

S

VPNP

pn

She

d2 r2

r4d4 r6d6

v

saw
NP

NP PP

NPpr

with

d n

telescopea

d3

d3

d5

d8

r3

r8r3

r5
PP

NPpr

with

d n

telescopea

d3

d8

r3

r8r6d6

r3d3

d7
r7

S

VPNP

pn

She

d2 r2

r4d4

v

saw
NP

d n

manthe

VP

Fig. 2. Portions of the position graph of G1 corresponding to the two trees of Figure 1

Transitions from one position to the other can then be performed upon read-
ing the node label, upon deriving from this node, or upon returning from such
a derivation. We have thus three types of transitions: symbol transitions ↩

X−→,
derivation transitions ↩

di−→, and reduction transitions ↩
ri−→, where i is a rule num-

ber. The set of all these positions in all parse trees along with the transition
relation is a position graph. Figure 2 presents two portions of the position graph
for G1; the position identified by the dot in (3) is now a vertex in the left graph.

Although a dotted sentence of Gb like (3) suffices to identify a unique posi-
tion in the derivation tree for that sentence, it is convenient to know that this
position is immediately surrounded by the NP and PP symbols. We therefore
denote by xbdi(αub ·α′

u′
b
)rix′b the position identified by xbdiub·u′brix′b such that

the derivations

S′ =⇒∗
b xbAx

′
b

i=⇒b xbdiαα
′rix

′
b, α =⇒∗

b ub and α′ =⇒∗
b u

′
b (4)

hold in G′b. Using this notation, the position identified by (3) is denoted by

d1 d2 d4 pn r4 d6 v d5(NP
d3 d n r3· PP

d8 pr d3 d n r3 r8
)r5 r6 r2 $ r1. (5)

Definition 1. The position graph Γ = 〈N , ↩−→〉 of a grammar G associates the
set N of positions with the relation ↩−→ labeled by elements of Vb, defined by

xbdi(αub ·Xα′

vbu′
b
)rix′b ↩

X−→ xbdi(αX
ubvb ·α′

u′
b
)rix′b iff X ∈ V,X =⇒∗

b vb,

xbdi(αub · Bα′

vbu′
b
)rix′b ↩

dj−→ xbdiubdj(· βvb
)rju′brix

′
b iff B

j−→β and β =⇒∗
b vb,

xbdiubdj(βvb ·)rju′brix′b ↩rj−→ xbdi(αB
ubvb ·α′

u′
b
)rix′b iff B

j−→β, α =⇒∗
b ub and α′ =⇒∗

b u
′
b.

We label paths in Γ by the sequences of labels on the individual transitions. We
denote the two sets of positions at the beginning and end of the sentences by
μs = {d1(· S$

wb$
)r1 | S =⇒∗

b wb} and μf = {d1(S
wb · $$)r1 | S =⇒∗

b wb}. For each

sentence wb of Gb, a νs in μs is related to a νf in μf by νs ↩
S−→ νf .

696 S. Schmitz

The parsing literature classically employs items to identify positions in gram-
mars; for instance, [NP 5−→NP·PP] is the LR(0) item [16] corresponding to po-
sition (5). There is a direct connection between these two notions: items can be
viewed as equivalence classes of positions—a view somewhat reminiscent of the
tree congruences of Sikkel [17].

3.2 Position Equivalences

In order to look for ambiguities in our grammar, we need a finite structure instead
of our infinite position graph. This is provided by an equivalence relation between
the positions of the graph, such that the equivalence classes become the states
of a nondeterministic automaton.

Definition 2. The nondeterministic position automaton Γ/≡ of a context-free
grammar G using the equivalence relation ≡ is a tuple 〈Q, V ′

b , R, qs, {qf}〉 where

– Q = [N]≡∪{qs, qf} is the state alphabet, where [N]≡ is the set of equivalence
classes [ν]≡ over N modulo the equivalence relation ≡,

– V ′
b is the input alphabet,

– R in Q (V ′
b ∪ {ε})×Q is the set of rules {qχ 2 q′ | ∃ν ∈ q and ν′ ∈ q′, ν ↩χ−→

ν′} ∪ {qsε 2 [νs]≡ | νs ∈ μs} ∪ {[νf]≡ε 2 qf | νf ∈ μf} ∪ {qf$ 2 qf}, and
– qs and qf are respectively the initial and the final state.

If the chosen equivalence relation is of finite index, then the nondeterministic
position automaton is finite. For instance, an equivalence relation that results
in a NFA similar to a nondeterministic LR(0) automaton [18,19]—the main
difference being the presence of the ri transitions—is item0 defined by

xbdi(αub·α′

u′
b
)rix′b item0 ybdj(βvb·β′

v′
b
)rjy′b iff i = j and α′ = β′. (6)

The equivalence classes in [N]item0 are the LR(0) items. Figure 3 presents the
nondeterministic automaton for G1 resulting from the use of item0 as equivalence
relation. Some plain ε-transitions and states of form ·A and A· were added in
order to reduce clutter in the figure. The addition of these states and transitions
results in a O(|G|) bound on the size of Γ/item0 [18]. Our position (5) is now in
the equivalence class represented by the state labeled by NP−→NP·PP .

Let us denote by � the relation between configurations of a NFAA = 〈Q,Σ,R,
qs, F 〉, such that qaw � q′w if and only if there exists a rule qa 2 q′ in R. The
language recognized by A is then L(A) = {w ∈ Σ∗ | ∃qf ∈ F, qsw �∗ qf}.
Theorem 1. Let G be a context-free grammar and ≡ an equivalence relation on
N . The language generated by Gb is included in the terminal language recognized
by Γ/≡, i.e. L(Gb) ⊆ L(Γ/≡) ∩ T ∗

b .

4 Ambiguity Detection

We are now in position to detect ambiguities on a finite, regular structure that
approximates our initial grammar.

Conservative Ambiguity Detection in Context-Free Grammars 697

qf

$

NP−→·d n

NP−→d·n

d

n

NP−→d n·

NP VP
S−→·NP VP S−→NP·VP S−→NP VP··S

·VP

VP−→·VP PP

VP−→VP·PP

VP−→VP PP·
VP·

VP−→·v NP

VP−→v·NP

VP−→v NP·

S′−→·S$ S′−→S·$

PP−→·pr NP

PP−→pr NP·
PP·

·NP

NP·

ε

ε

ε

ε

ε

ε

ε

ε

ε

pr
v

d7

r7r8

d8

r6

d6

ε

r5

NP−→·NP PP

NP−→NP·PP

NP−→NP PP·

d5

ε

NP−→·pn

pn

NP−→pn·

d4

r4 ε

ε

ε

ε

εqs

S·ε

ε
d2 r2

ε

ε

d3

r3

NP
NP

VP

PP

S

PP−→pr·NP

·PP

NP

PP

Fig. 3. The nondeterministic position automaton for G1 using item0

4.1 Regular Ambiguity Detection

Our first conservative ambiguity checking procedure relies on Theorem 1. Fol-
lowing the arguments developed in Section 2.2, an ambiguity in G implies the
existence of two sentences wb and w′

b in the regular super language L(Γ/≡)∩T ∗
b

such that w = w′. We call a CFG with no such pair of sentences regular ≡-
unambiguous, or RU(≡) for short.

The existence of such a pair of sentences can be tested in O(|Γ/≡|2) using
accessibility relations like the ones developped in Section 4.3. How good is this
algorithm? Being conservative is not enough for practical uses; after all, a pro-
gram that always answers that the tested grammar is ambiguous is a conservative
test. The regular ambiguity test sketched above performs unsatisfactorily: when
using the item0 equivalence, it finds some LR(0) grammars ambiguous, like for
instance G2 with rules

S−→aAa |bAa, A−→c. (G2)

The sentences d2ad4cr4ar2 and d2ad4cr4ar3 are both in L(Γ2/ item0) ∩ T ∗
b .

The LR algorithm [16] hints at a solution: we could consider nonterminal
symbols in our verification and thus avoid spurious paths in the NFA. A single
direct step using a nonterminal symbol represents exactly the context-free lan-
guage derived from it, much more accurately than any regular approximation
we could make for this language.

4.2 Common Prefixes with Conflicts

Let us consider again the two sentences (1) and (2), but let us dismiss all the di
symbols; the two sentences (7) and (8) we obtain are still different:

pn r4 v d n r3 pr d n r3 r8 r5 r6 r2 $ r1 (7)
pn r4 v d n r3 r6 pr d n r3 r8 r7 r2 $ r1. (8)

698 S. Schmitz

They share a longest common prefix pn r4 v d n r3 before a conflict3 between pr
and r6.

Observe that the two positions in conflict could be reached more directly in
a NFA by reading the prefix NP v NP . We obtain the two sentential forms

NP v NP pr d n r3 r8 r5 r6 r2 $ r1 (9)
NP v NP r6 pr d n r3 r8 r7 r2 $ r1. (10)

We cannot however reduce our two sentences to two identical sentential forms:
our common prefix with one conflict pn r4 v d n r3 r6 would reduce to a different
prefix NP VP , and thus we do not reduce the conflicting reduction symbol r6.

The remaining suffixes pr d n r3 r8 r5 r6 r2 $ r1 and pr d n r3 r8 r7 r2 $ r1 share
again a longest common prefix pr d n r3 r8 before a conflict between r5 and r7;
the common prefix reduces to PP , and we have the sentential forms

NP v NP PP r5 r6 r2 $ r1 (11)
NP v NP r6 PP r7 r2 $ r1. (12)

Keeping the successive conflicting reduction symbols r5, r6 and r7, we finally
reach a common suffix r2 $ r1 that cannot be reduced any further, since we
need to keep our conflicting reductions. The image of our two different reduced
sentential forms (11) and (12) by h is a common sentential form NP v NP PP $,
which shows the existence of an ambiguity in our grammar.

We conclude from our small example that, in order to give preference to the
more accurate direct path over its terminal counterpart, we should only follow
the ri transitions in case of conflicts or in case of a common factor that cannot
be reduced due to the earlier conflicts. This general behavior is also the one
displayed by noncanonical parsers [20].

4.3 Accessibility Relations

We implement the idea of common prefixes with conflicts in the mutual ac-
cessibility relations classically used to find common prefixes [21, Chapter 10].
Mutual accessibility relations are used to identify couples of states accessible
upon reading the same language from the starting couple (qs, qs), which brings
the complexity of the test down to a quadratic function in the number of tran-
sitions, and avoids the potential exponential blowup of a NFA determinization.

The case where reduction transitions should be followed after a conflict is
handled by considering pairs over B×Q instead of Q: the boolean tells whether
we followed a di transition since the last conflict. In order to improve readability,
we write qχ 2 q′ for q and q′ in B × Q if their states allow this transition to
occur. The predicate �q in B denotes that we are allowed to ignore a reduction
transition. Our starting couple (qs, qs) has its boolean values initially set to
true.
3 Our notion of conflict coincides with that of LR(0) conflicts when one employs item0.

Conservative Ambiguity Detection in Context-Free Grammars 699

Definition 3. The primitive mutual accessibility relations over (B×Q)2 are

shift. mas defined by (q1, q2) mas (q3, q4) if and only if there exists X in V such
that q1X 2 q3 and q2X 2 q4

epsilon. mae=mael ∪ maer where (q1, q2) mael (q3, q2) if and only if q1di 2 q3
or q1ε 2 q3 and �q3 and symmetrically for maer, (q1, q2) maer (q1, q4) if and
only if q2di 2 q4 or q2ε 2 q4, and �q4,

reduction. mar defined by (q1, q2) mar (q3, q4) if and only if there exists i in P
such that q1ri 2 q3 and q2ri 2 q4, and furthermore ¬ �q1 or ¬ �q2, and then
¬ �q3 and ¬ �q4,

conflict. mac=macl ∪ macr with (q1, q2) macl (q3, q2) if and only if there exist
i in P , q4 in Q and z in T ∗

d · T ′ such that q1ri 2 q3, q2z �+ q4 and ¬ �q3,
and symmetrically for macr, (q1, q2) macr (q1, q4) if and only if there exist i
in P , q3 in Q and z in T ∗

d · T ′ such that q2ri 2 q4, q1z �+ q3, and ¬ �q4.

The global mutual accessibility relation ma is defined as mas ∪ mae ∪ mar ∪ mac.

These relations are akin to the item construction of a LR parser: the relation
mas corresponds to a shift, the relation mae to an item closure, the relation mar
to a goto, and the relation mac to a LR conflict.

Let us call a grammar G such that (qs, qs) (mae ∪ mas)∗◦ mac ◦ ma∗ (qf , qf)
does not hold in Γ/≡ noncanonically ≡-unambiguous, or NU(≡) for short.

Theorem 2. Let G be a context-free grammar and ≡ a position equivalence
relation. If G is ambiguous, then G is not NU(≡).

4.4 Complexity

The complexity of our algorithm depends mostly on the equivalence relation we
choose to quotient the position graph. Supposing that we choose an equivalence
relation ≡ of finite index and of decidable computation of complexity C(Γ/≡),
then we need to build the image ma∗ ({(qs, qs)}). This step and the search for
a conflict in this image can both be performed in time O(|Γ/≡|2). The overall
complexity of our algorithm is thus O(C(Γ/≡) + |Γ/≡|2).

The complexity C(Γ/item0) of the construction of the collapsed position graph
Γ/item0 is linear with the size of the resulting nondeterministic position automa-
ton. The overall complexity of our ambiguity detection algorithm when one uses
item0 is therefore O(|G|2).

5 Formal Comparisons

We compare here our ambiguity detection algorithm with some of the other
means to test a context-free grammar for ambiguity we are aware of. We first
establish the edge of our algorithm over the regular ambiguity test of Section 4.1.
The comparison with LR-Regular testing requires the full power of our method,
and at last, the horizontal and vertical ambiguity detection technique is shown
to be incomparable with our own.

700 S. Schmitz

5.1 Regular Ambiguity

Theorem 3, along with the example of G2, shows a strict improvement of our
method over the simple algorithm discussed in Section 4.1.

Theorem 3. If G is RU(≡), then it is also NU(≡).

5.2 Bounded Length Detection Schemes

Many algorithms specifically designed for ambiguity detection look for ambigu-
ities in all sentences up to some length [10,1,6,11]. As such, they fail to detect
ambiguities beyond that length: they allow false negatives. Nonetheless, these
detection schemes can vouch for the ambiguity of any string shorter than the
given length; this is valuable in applications where, in practice, the sentences
are of a small bounded length. The same guarantee is offered by the equivalence
relation prefixm defined for any fixed length m by4

xbdi(αub ·α′

u′
b
)rix′b prefixm ybdj(βvb ·β′

v′
b
)rjy′b iff m :b xbub = m :b ybvb. (13)

Provided that G is acyclic, Γ/prefixm is finite.

Theorem 4. Let wb and w′
b be two bracketed sentences in L(Γ/prefixm) ∩ T ∗

b

with w = w′ and |w| ≤ m. Then wb and w′
b are in L(Gb).

Outside of the specific situation of languages that are finite in practice, bounded
length detection schemes can be quite costly to use. The performance issue can
be witnessed with the two families of grammars Gn3 and Gn4 with rules

S−→A |Bn, A−→Aaa |a, B1−→aa, B2−→B1B1, . . . , Bn−→Bn−1Bn−1 (Gn3)

S−→A |Bna, A−→Aaa |a, B1−→aa, B2−→B1B1, . . . , Bn−→Bn−1Bn−1, (Gn4)

where n ≥ 1. In order to detect the ambiguity of Gn4 , a bounded length algorithm
would have to explore all strings in {a}∗ up to length 2n + 1. Our algorithm
correctly finds Gn3 unambiguous and Gn4 ambiguous in time O(n2) using item0.

5.3 LR(k) and LR-Regular Testing

Conservative algorithms do exist in the programming language parsing commu-
nity, though they are not primarily meant as ambiguity tests. Nonetheless, a full
LALR or LR construction is often used as a practical test for non ambiguity [2].
The LR(k) testing algorithms [16,18,19] are much more efficient in the worst case
and provided our initial inspiration. Our position automaton is a generalization
of the item grammar or nondeterministic automaton of these works, and our
test looks for ambiguities instead of LR conflicts. Let us consider again Gn3 : it
requires a LR(2n) test for proving its unambiguity, but it is simply NU(item0).
4 The bracketed prefix m :b xb of a bracketed string xb is defined as the longest string

in {yb | xb = ybzb and |y| = m} if |x| > m or simply xb if |x| ≤ m.

Conservative Ambiguity Detection in Context-Free Grammars 701

One of the strongest ambiguity tests available is the LR-Regular condition
[12,22]: instead of merely checking the k next symbols of lookahead, a LRR parser
considers regular equivalence classes on the entire remaining input to infer its
decisions. Given Π a finite regular partition of T ∗ that defines a left congruence
∼=, a grammar G is LR(Π) if and only if S=⇒

rm

∗δAx=⇒
rm
δαx, S=⇒

rm

∗γBy=⇒
rm
γβy =

δαz and x ∼= z (modΠ) imply A−→α = B−→β, δ = γ and y = z.
Our test for ambiguity is strictly stronger than the LR(Π) condition with the

equivalence relation itemΠ=item0 ∩ lookΠ , where lookΠ is defined by

xbdi(αub·α′

u′
b
)rix′b lookΠ ybdj(βvb·β′

v′
b
)rjy′b iff u′x′ ∼= v′y′ (mod Π). (14)

Theorem 5. If G is LR(Π), then it is also NU(itemΠ).

Let us consider now the grammar with rules

S−→AC |BCb, A−→a, B−→a, C−→cCb |cb. (G5)

Grammar G5 is not LRR: the right contexts cnbn$ and cnbn+1$ of the reduc-
tions using A−→a and B−→a cannot be distinguished by regular covering sets.
Nevertheless, our test on Γ5/ item0 shows that G5 is not ambiguous

5.4 Horizontal and Vertical Ambiguity

Brabrand et al. [3] recently proposed an ambiguity detection scheme also based
on regular approximations of the grammar language. Its originality lies in the
decomposition of the ambiguity problem into two (also undecidable) problems,
namely the horizontal and vertical ambiguity problems. The detection method
then relies on the fact that a context-free grammar is unambiguous if and only
if it is horizontal and vertical unambiguous. The latter tests are performed on a
regular approximation of the grammar [23].

Definition 4. The automaton Γ/≡ is vertically ambiguous if and only if there

exist an A in N with two different productions A i−→α1 and A
j−→α2, and the brack-

eted strings xb, x′b, ub, u
′
b, wb, and w′

b in T ∗
b with w = w′ such that

[xbdi(·α1
ub

)rix′b]≡wb �∗ [xbdi(α1
ub ·)rix′b]≡ and

[xbdj(·α2
u′

b
)rjx′b]≡w

′
b �∗ [xbdj(α2

u′
b ·)rjx′b]≡.

The automaton Γ/≡ is horizontally ambiguous if and only if there is a production
A

i−→α in P , a decomposition α = α1α2, and the bracketed strings xb, x′b, ub, u
′
b,

vb, v′b, wb, w
′
b, and yb in T ∗

b with v = v′ and w = w′ such that

[xbdi(·α1α2
ubu

′
b

)rix′b]≡vbybwb �∗ [xbdi(α1
ub ·α2

u′
b
)rix′b]≡ybwb �∗ [xbdi(α1α2

ubu
′
b
·)rix′b]≡

[xbdi(·α1α2
ubu′

b
)rix′b]≡v

′
bybw

′
b �∗ [xbdi(α1

ub ·α2
u′

b
)rix′b]≡w

′
b �∗ [xbdi(α1α2

ubu′
b ·)rix′b]≡.

702 S. Schmitz

Theorem 6. Let G be a context-free grammar and Γ/≡ its position automaton.
If G is RU(≡), then Γ/≡ is horizontally and vertically unambiguous.

Theorem 6 shows that the horizontal and vertical ambiguity criteria result in
a better conservative ambiguity test than regular ≡-ambiguity, although at a
higher price: O(|G|5) in the worst case. Owing to these criteria, the technique of
Brabrand et al. accomplishes to show that the palindrome grammar with rules

S−→aSa |bSb |a |b |ε (G6)

is unambiguous, which seems impossible with our scheme. On the other hand,
even when they employ unfolding techniques, they are always limited to regular
approximations, and fail to see that the LR(0) grammar with rules

S−→AA, A−→aAa |b (G7)

is unambiguous. The two techniques are thus incomparable, and could benefit
from each other.

6 Conclusion

As a classical undecidable problem in formal languages, ambiguity detection in
context-free grammars did not receive much practical attention. Nonetheless,
the ability to provide a conservative test could be applied in many fields where
context-free grammars are used. This paper presents one of the few conservative
tests explicitly aimed towards ambiguity checking, along with the recent work
of Brabrand et al. [3].

The ambiguity detection scheme we presented here provides some insights on
how to tackle undecidable problems on approximations of context-free languages.
The general method can be applied to different decision problems, and indeed
has also been put to work in the construction of an original parsing method [24]
where the amount of lookahead needed is not preset but computed for each
parsing decision. We hope to see more applications of this model in the future.

Acknowledgements. The author is highly grateful to Jacques Farré for his invalu-
able help at all stages of the preparation of this work. The author also thanks
the anonymous referees for their numerous helpful remarks.

References

1. Cheung, B.S.N., Uzgalis, R.C.: Ambiguity in context-free grammars. In: SAC’95,
pp. 272–276. ACM Press, New York (1995), doi:10.1145/315891.315991

2. Reeder, J., Steffen, P., Giegerich, R.: Effective ambiguity checking in biosequence
analysis. BMC Bioinformatics 6, 153 (2005)

3. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free gram-
mars. Technical Report RS-06-09, BRICS, University of Aarhus (May 2006)

4. AeroSpace and Defence Industries Association of Europe: ASD Simplified Technical
English, Specification ASD-STE100 (2005)

Conservative Ambiguity Detection in Context-Free Grammars 703

5. Kuich, W.: Systems of pushdown acceptors and context-free grammars. Elektron-
ische Informationsverarbeitung und Kybernetik 6(2), 95–114 (1970)

6. Schröer, F.W.: AMBER, an ambiguity checker for context-free grammars. Techni-
cal report, compilertools.net (2001)

7. Schmitz, S.: An experimental ambiguity detection tool. In: Sloane, A., Johnstone,
A., eds.: LDTA’07, To appear in Electronic Notes in Theoretical Computer Science
(2007)

8. Cantor, D.G.: On the ambiguity problem of Backus systems. Journal of the
ACM 9(4), 477–479 (1962)

9. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages.
In: Braffort, P., Hirshberg, D. (eds.) Computer Programming and Formal Systems.
Studies in Logic, pp. 118–161. North-Holland Publishing, Amsterdam (1963)

10. Gorn, S.: Detection of generative ambiguities in context-free mechanical languages.
Journal of the ACM 10(2), 196–208 (1963)

11. Jampana, S.: Exploring the problem of ambiguity in context-free grammars. Mas-
ter’s thesis, Oklahoma State University (July 2005)

12. Culik, K., Cohen, R.: LR-Regular grammars—an extension of LR(k) grammars.
Journal of Computer and System Sciences 7, 66–96 (1973)

13. Schmitz, S.: Conservative ambiguity detection in context-free grammars. Technical
Report I3S/RR-2006-30-FR, Laboratoire I3S, Université de Nice - Sophia Antipolis
& CNRS (September 2006)

14. Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. Journal of Com-
puter and System Sciences 1, 1–23 (1967)

15. Nederhof, M.J.: Regular approximation of CFLs: a grammatical view. In: Bunt,
H., Nijholt, A. (eds.) Advances in Probabilistic and other Parsing Technologies,
pp. 221–241. Kluwer Academic Publishers, Boston, MA (2000)

16. Knuth, D.E.: On the translation of languages from left to right. Information and
Control 8(6), 607–639 (1965)

17. Sikkel, K. (ed.): Parsing Schemata - a framework for specification and analysis of
parsing algorithms. Texts in Theoretical Computer Science - An EATCS Series.
Springer, Heidelberg (1997)

18. Hunt III, H.B., Szymanski, T.G., Ullman, J.D.: Operations on sparse relations and
efficient algorithms for grammar problems. In: 15th Annual Symposium on Switching
and Automata Theory, pp. 127–132. IEEE Computer Society, Los Alamitos (1974)

19. Hunt III, H.B., Szymanski, T.G., Ullman, J.D.: On the complexity of LR(k) testing.
Communications of the ACM 18(12), 707–716 (1975), doi:10.1145/361227.361232

20. Szymanski, T.G., Williams, J.H.: Noncanonical extensions of bottom-up
parsing techniques. SIAM Journal on Computing 5(2), 231–250 (1976),
doi:10.1137/0205019

21. Sippu, S., Soisalon-Soininen, E.: Parsing Theory, Vol. II: LR(k) and LL(k) Parsing.
In: Simple Program Schemes and Formal Languages. LNCS, vol. 20, Springer,
Heidelberg (1990)

22. Heilbrunner, S.: Tests for the LR-, LL-, and LC-Regular conditions. Journal of
Computer and System Sciences 27(1), 1–13 (1983)

23. Mohri, M., Nederhof, M.J.: Regular approximations of context-free grammars
through transformation. In: Junqua, J.C., van Noord, G. (eds.) Robustness in
Language and Speech Technology, pp. 153–163. Kluwer Academic Publishers, Dor-
drecht (2001)

24. Gálvez, J.F., Schmitz, S., Farré, J.: Shift-resolve parsing: Simple, linear time,
unbounded lookahead. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS,
vol. 4094, pp. 253–264. Springer, Heidelberg (2006)

Lower Bounds for Quantile Estimation

in Random-Order and Multi-pass Streaming

Sudipto Guha1,� and Andrew McGregor2

1 University of Pennsylvania
sudipto@cis.upenn.edu

2 University of California, San Diego
andrewm@ucsd.edu

Abstract. We present lower bounds on the space required to estimate
the quantiles of a stream of numerical values. Quantile estimation is
perhaps the most studied problem in the data stream model and it is
relatively well understood in the basic single-pass data stream model
in which the values are ordered adversarially. Natural extensions of this
basic model include the random-order model in which the values are
ordered randomly (e.g. [21,5,13,11,12]) and the multi-pass model in which
an algorithm is permitted a limited number of passes over the stream
(e.g. [6,7,1,19,2,6,7,1,19,2]). We present lower bounds that complement
existing upper bounds [21,11] in both models. One consequence is an
exponential separation between the random-order and adversarial-order
models: using Ω(polylog n) space, exact selection requires Ω(log n) passes
in the adversarial-order model while O(log log n) passes are sufficient in
the random-order model.

1 Introduction

One of the principal theoretical motivations for studying the data stream model
is to understand the impact of the order of the input on computation. While an
algorithm in the RAM model can process the input data in an arbitrary order, a
key constraint of the data stream model is that any algorithm must process (in
small space) the input data in the order in which it arrives. Parameterizing the
number of passes that an algorithm may have over the data establishes a spec-
trum between the RAM model and the one-pass data stream model. How does
the computational power of the model change along this spectrum? Furthermore,
what role is played by the ordering of the stream?

These issues date back to one of the earliest papers on the data stream model
in which Munro and Paterson considered the problems of sorting and selection
in limited space [21]. They showed that Õ(n1/p) space was sufficient to find
the exact median of a sequence of n numbers given p passes over the data.
However, if the data was randomly ordered, Õ(n1/(2p)) space sufficed. They

� This research was supported by in part by an Alfred P. Sloan Research Fellowship
and by NSF Awards CCF-0430376, and CCF-0644119.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 704–715, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Lower Bounds for Quantile Estimation in Random-Order 705

also showed lower bounds for deterministic algorithms that stored the stream
values as indivisible objects and uses a comparison based model. Specifically,
they showed that all such algorithms required Ω(n1/p) space in the adversarial-
order model and that single-pass algorithms that maintain a set of “elements
whose ranks among those read thus far are consecutive and as close to the
current median as possible” require Ω(

√
n) space in the random-order model.

They also conjectured the existence of an algorithm in the random-order model
that used O(log logn) passes and O(polylogn) space to compute the median
exactly. Median finding or quantile estimation has since become one of the most
extensively studied problems in the data stream model [17,18,10,9,14,4,23,3].
However, it was only recently shown that there does indeed exist an algorithm
which uses O(log logn) passes andO(polylog n) space in the random-order model
[11]. This result was based on a single-pass algorithm in the random-order model
that, with high probability, returned an element of rank n/2 ± O(n1/2+ε) and
used poly(ε−1, logn) space. In contrast, any algorithm in the adversarial-order
model requires Ω(n1−δ) space to find an element of rank n/2 ± nδ. These two
facts together showed that the random-order model is strictly more powerful
than the adversarial-order model.

Based on the algorithms of Munro and Paterson, it seemed plausible that
any p pass algorithm in the random order stream model can be simulated by
a 2p pass algorithm in the adversarial streaming model. This was conjectured
by Kannan [15]. Further support for this conjecture came via work initiated by
Feigenbaum et al. [8] that considered the relationship between various property
testing models and the data-stream model. It was shown in Guha et al. [13] that
several models of property testing can be simulated in the single-pass random-
order stream model while it appeared that a similar simulation in the adversarial-
model required two passes. While this appeared to support the conjecture, the
conjecture remained unresolved.

In this paper we show that the conjecture is false. In fact, the separation
between the random-order model and the adversarial-order model can be expo-
nential. We show that using p passes, Ω(n1/ppΘ(1))-space is required to com-
pute the median exactly. This is a fully general lower bound as opposed to the
lower bound for a restricted class of algorithms presented in [21]. Our proof is
information-theoretic and uses a reduction from the communication complexity
of a generalized form of pointer-chasing for which we prove the first lower-bound.
It is also possible to establish a weaker lower bound using our reduction com-
bined with the round-elimination lemma of Miltersen et al. [20] or the standard
form of pointer-chasing considered by Nisan and Widgerson [22] as opposed our
new lower bound for generalized pointer-chasing. We omit the details but stress
that our communication complexity result for generalized pointer chasing is nec-
essary to prove the stronger bound. Furthermore, we believe that this result may
be useful for obtaining improved lower-bounds for other streaming problems.

A final question is whether it is possible to significantly improve upon the al-
gorithm presented in [11] for the random-order model. In particular, does there
exist a one-pass sub-polynomial approximation in O(polylog n)-space? We show

706 S. Guha and A. McGregor

that this is not the case and, in particular, a single-pass algorithm returning the
exact median requires Ω(

√
n) space in the random-order model. This result is

about fully general algorithms in contrast to the result by Munro and Paterson
[21]. We note that this is the first unqualified lower bound in the random-order
model. The proof uses a reduction from communication complexity but devi-
ates significantly from the usual form of such reductions because of the novel
challenges arising when proving a lower bound in the random-order model as
opposed to the adversarial-model.

1.1 Summary of Results and Overview

Our two main results of this paper are lower-bounds for approximate median
finding in the random-order stream model and the multi-pass stream models.

In Section 3, we prove that any algorithm that returns an nδ-approximate
median of a randomly ordered stream with probability at least 3/4 requires
Ω(

√
n1−3δ/ logn) space. This rules out sub-polynomial approximation using

poly-logarithmic space.
In Section 4, we prove that any algorithm that returns an nδ-approximate

median in k passes of an adversarially ordered stream requires Ω(n(1−δ)/kk−6)
space. This disproves the conjecture that stated that any problem that could be
solved in k/2 passes of a randomly ordered stream could be solved in at most k
passes of an adversarially ordered stream [15].

We also simplify and improve the upper bound in [11] and show that there
exists a single pass algorithm using O(1) words of space that, given any k, returns
an element of rank k ± O(k1/2 log2 k) if the stream is randomly ordered. This
represents an improvement in terms of space use and accuracy. However, this
improvement is not the focus of the paper and can be found in Appendix A.

2 Preliminaries

We start by clarifying the definition of an approximate quantile of a multi-set.

Definition 1 (Rank and Approximate Selection). The rank of an item x
in a set S is defined as, RankS(x) = |{x′ ∈ S|x′ < x}| + 1. Assuming there
are no duplicate elements in S, we say x is an Υ -approximate k-rank element in
S if, RankS(x) = k ± Υ . If there are duplicate elements in S then we say x is
an Υ -approximate k-rank element if there exists some way of ordering identical
elements such that x is an Υ -approximate k-rank element.

3 Random Order Lower-Bound

In this section we will prove a lower bound of the space required to nδ-approximate
the median in a randomly ordered stream. Our lower-bound will be based on a
reduction from the communication complexity of indexing [16]. However, the re-
duction is significantly more involved then typical reductions because different

Lower Bounds for Quantile Estimation in Random-Order 707

segments of a stream can not be determined independently by different players if
the stream is in random order.

Let Alice have a binary string σ of length s′ = εn−δ
√
n2/(100 ln(2/ε)) and let

Bob have an index r ∈ [s′] where ε and n2 will be specified shortly. It is known
that for Bob to learn σr with probability at least 3/4 after a single message from
Alice then the message Alice sends must be Ω(s′) bits. More precisely,

Theorem 1. There exists a constant c∗ such that R1
1/4(Index) ≥ c∗s′.

The basic idea of our proof is that if there exists an algorithm A that computes
the median of a randomly ordered stream in a single pass then this gives rise
to a 1-way communication protocol that solves Index. The protocol is based
upon simulating A on a stream of length n where Alice determines the first
n1 = n − c∗n1−δ/(4 logn) elements and Bob determines the remaining n2 =
c∗n1−δ/(4 logn) elements. The stream consists of the following sets of elements:

1. S: A set of s = nδs′ elements
⋃
j∈[nδ]{2i+σi : i ∈ [s′]}. Note that each of the

s′ distinct elements occurs nδ times. We refer to S as the “special” elements.
2. X : x = (n+ 1)/2− r copies of 0.
3. Y : y = (n− 1)/2− s+ r copies of 2s+ 2.

Note that any nδ-approximate median of U = S ∪X ∪ Y is 2r + σr.
The difficulty in the proof comes from the fact that the probability that A

finds an nδ-approximate median depends on the random ordering of the stream.
Hence, it would seem that Alice and Bob need to ensure that the ordering of U
in the stream is chosen at random. Unfortunately that is not possible without
excessive communication between Alice and Bob. Instead we will show that
it is possible for Alice and Bob to generate a stream in “semi-random” order
according to the following notion of semi-random.

Definition 2 (ε-Generated Random Order). Consider a set of elements
{x1, . . . , xn}. Then σ ∈ Symn defines a stream 〈xσ(1), . . . , xσ(n)〉 where Symn

is the set of all permutations on [n]. We say the ordering of this stream is ε-
Generated Random is σ is chosen according to some distribution ν such that
‖μ− ν‖1 ≥ ε where μ is the uniform distribution over all possible orderings.

The importance of this definition is captured in the following simple lemma.

Lemma 1. Let A be a randomized algorithm that estimates some property of
a randomly ordered stream such that the estimate satisfies some guarantee with
probability at least p. Then the estimate returned by running A on a stream in
ε-generated random order satisfies the same guarantees with probability at least
p− ε.

Proof. We say the A succeeds if the estimate returns satisfies the required guar-
antees. Let Prμ,coin (·) denote the probability of an event over the internal coin
tosses of A and the ordering of the stream when the stream order is chosen ac-
cording to distribution μ. Similarly define Prν,coin (·) where ν is any distribution
satisfying ‖μ− ν‖1 ≤ ε.

708 S. Guha and A. McGregor

Pr
μ,coin

(A succeeds) =
∑

σ∈Symn

Pr
μ

(σ) Pr
coin

(A succeeds|σ) ≤ Pr
ν,coin

(A succeeds) + ε .

Consequently, if we can show that Alice and Bob can generate a stream that is
in O(ε)-generation random order then by appealing to Lemma 1 we can complete
the proof.

Let A be a set of n1 elements in U and B = U \A be a set of n2 elements. A
will be chosen randomly according to one of two distributions. We consider the
following families of events.

Et = {a : |A ∩X | = |A ∩ Y |+ t} and Ss1 = {a : |A ∩ S| = s1}.

We define two distributions μ and μ′. Let μ be the distribution where A is
chosen uniformly at random from all subsets of size n1 of U . Note that,

Pr
μ

(Ss1) =
(
n1

s1

)(
n2

s2

)
/
(
n

s

)

Pr
μ

(Et|Ss1) =
(

n1 − s1
(n1 − s1)/2− t/2

)(
n2 − s2

x− (n1 − s1)/2 + t/2

)
/
(
n− s
x

)

Pr
μ

({a}|Et, Ss1) =
{ 1

|Et∩Ss1 |
if a ∈ Et ∩ Ss1

0 otherwise

where s1 + s2 = s. Note that the above three equations fully specify μ since

Pr
μ

({a}) =
∑

t,s1

Pr
μ

({a}|Et, Ss1) Pr
μ

(Et|Ss1) Pr
μ

(Ss1) .

Let μ′ be a distribution onAwhere Prμ′ (Ss1) = Prμ (Ss1), Prμ′ ({a}|Et, Ss1) =
Prμ ({a}|Et, Ss1) and,

Pr
μ′

(Et|Ss1) =
(

n1 − s1
(n1 − s1)/2− t/2

)(
n2 − s2

(n2 − s2)/2 + t/2

)
/
(

n− s
(n− s)/2

)

where s1 + s2 = s. Note that μ′ = μ if r = s/2. The crux of the proofs is that μ
and μ′ are closely related even if r is as small as 1 or as large as s.

Lemma 2. If s1 ≤ ε
√
n2

100 ln(2/ε) and t < t∗ where t∗ =
√

2n2 ln(2/ε) + s then,

1
1 + ε

≤ Prμ (Et|Ss1)
Prμ′ (Et|Ss1)

≤ 1 + ε .

We omit the proof of this lemma and subsequent lemmas whose proofs, while
detailed, do not require any non-standard ideas. Next, we ascertain that it is
sufficient to consider only values of t < t∗.

Lemma 3. E∗ :=
⋃

|t|<t∗ Et is a high probability event under μ′ and μ, i.e.,
min(Prμ (E∗) ,Prμ′ (E∗)) ≥ 1− ε.

Lower Bounds for Quantile Estimation in Random-Order 709

Let S∗∗ be the event that the number of distinct special items in the suffix of
the stream is at most s∗∗ := c∗s′/(2 log(n)), i.e., S∗∗ = {|{i ∈ [s′] : 2i + σi ∈
B}| < s∗∗}.
Lemma 4. S∗∗ is a high probability event, i.e. Prμ′ (S∗∗) = Prμ (S∗∗) ≥ 1 −
exp(−s′c∗/(13 logn)). This is greater than 1− ε for sufficiently large n.

Let ν be the distribution μ′ conditioned on the events S∗∗ and E∗. Alice and
Bob can easily determine the prefix and suffix of a stream according to this
distribution:

1. Alice randomly places the special items such that at most c∗s′/(2 logn)
distinct elements occur in the suffix, and chooses a value t with probability
Prμ′ (Et|S∗∗) /(1−Prμ′ (E∗|S∗∗)). She then randomly places (n1− s1− t)/2
“0”’s and (n1− s1 + t)/2 “2s+2”’s and the special items she assigned to the
suffix. She then sends S′ = {(i, σi) : 2i + σi �∈ prefix of stream} (note that
this is a multi-set in general) to Bob along with the value of t.

2. Bob randomly places x− (n1− s− t)/2 “0”’s and y− (n1− s+ t)/2 “2s+2”’s
and {2i+ σi : (i, σi) ∈ S′} in the suffix of the stream.

To prove our result we need to show that ν is sufficiently close to μ. This can
be shown by appealing to Lemmas 3 and 4.

Lemma 5. ν is 5ε-near to random, i.e., ‖μ− ν‖1 ≤ 5ε.

Theorem 2. Computing an nδ-approximate median of a random order stream
with probability at least 9/10 requires Ω(

√
n1−3δ/ log(n)) space.

Proof. Let A be an algorithm using M bits of memory that returns the median
of a randomly ordered stream with probability 9/10 (over both the ordering
and the private coin tosses). Assume Alice and Bob generate the stream as
described above. In addition, Alice runs A on the prefix of the stream and sends
the memory state to Bob when she is done. Bob then continues running A,
initialized with the transmitted memory state, on the suffix of the stream. Bob
then returns 1 if the output of the algorithm is odd and 0 otherwise. By Lemma 1
and Lemma 5 this protocol is correct with probability 9/10− 5ε.

We now bound the number of bits required to follow the above protocol. The
number of bits required to specify a sub-set of the unique elements of S of size
at most s∗∗ is

lg
∑

0≤s2≤s∗∗

(
s′

s2

)
≤ lg(s∗∗ + 1) + s∗∗ lg

(
s′e

s∗∗

)
.

For each unique element occurring in the suffix of the stream we need to specify
how many time it occurs and the associated bit value of σ. This takes at most
s∗∗(1 + lg n) bits. Hence the number of bits transmitted in the protocol is at
most

lg s∗∗ + s∗∗ lg
(
s′e

s∗∗

)
+ s∗∗(1 + lgn) + lgn+M,

Assuming that s∗∗ = ω(lg n) this is bounded above by 3
4c

∗s+M and hence we
conclude that M = Ω(s′) by appealing to Theorem 1.

710 S. Guha and A. McGregor

4 Adversarial Order Lower-Bound

In this section we will prove that any k pass algorithm that returns the median
of an adversarially ordered stream must use Ω̃(n1/k) space. This, coupled with
the upper bound of Munro and Paterson [21], will resolve the space complexity
of multi-pass algorithms for median finding up to poly-logarithmic terms. The
proof will use a reduction from the communication complexity of a generalized
form of pointer chasing that we now describe.

Definition 3 (Generalized Pointer Chasing). For i ∈ [k], let fi : [m]→ [m]
be an arbitrary function. Then gk is defined by

gk(f1, f2, . . . , fk) = fk(fk−1(. . . f1(1)) . . .)) .

Let the i-th player, Pi, have function fi and consider a protocol in which the
players must speak in the reverse order, i.e., Pk, Pk−1, . . . , P1, Pk, We say
the protocol has r rounds if Pk speaks r times. Let Rrδ(gk) be the total number of
bits that must be communicated in an r-round (randomized) protocol for P1 to
learn gk with probability at least 1− δ.

Note that Rk0(gk) = O(k logm). We will be looking at k round protocols. The
proof of the next result follows along similar lines to [22] and will be proved in
the Appendix B.

Theorem 3. Rk−1
1/10(gk) = Ω(m/k4 − k2 logm).

The next theorem is shown by reducing generalized pointer-chasing to approxi-
mate selection.

Theorem 4. Finding an nδ-approximate median in k passes of an adversarially
ordered stream requires Ω(n

1−δ
k k−6).

Proof. We will show how a k-pass algorithm A that computes a t-approximate
median of a length n stream gives rise to a k-round protocol for computing
gk+1 when m =

(
n
/

((k + 1)(2t+ 1))
)1/k

/2. If A uses M bits of space then the
protocol uses at most (k(k + 1) − 1)M bits. Hence by Theorem 3, this implies
that M = Ω(m/k6) = Ω((n/t)1/kk−6).

The intuition behind the proof is that any t-approximate median will corre-
spond to a number g1g2g3 . . . gk+1 written in base m + 2. The input of P1 will
first determine the highest order ‘bit’, i.e., g1. Then the input of P2 will deter-
mine the g2 and so on. Specifically, each player Pi will determine a segment of
the stream Si: Pk+1 determines the first nk+1 = |Sk+1| elements, Pk determines
the next nk = |Sk|, etc. These segments are defined as follows,

S1 =
{

0, , 0
︸ ︷︷ ︸

(m−f1(1))(2t+1)(2m−1)k−1

, (m+ 1)bk, . . . , (m+ 1)bk
︸ ︷︷ ︸
(f1(1)−1)(2t+1)(2m−1)k−1

}

Lower Bounds for Quantile Estimation in Random-Order 711

Table 1. Reduction from Pointer Chasing to Exact Median Finding. A triple of the
form (x2, x1, x0) corresponds to the numerical value x2 · 52 + x1 · 51 + x0 · 50. Note that
median(S1 ∪ S2 ∪ S3) = fA(1) · 52 + fB(fA(1)) · 51 + fC(fB(fA(1))) · 50.

S1 S2 S3

(0, 0, 0)× 5(3− fA(1))

(1, 0, 0)× (3− fB(1))
(1, 1, fC(1)), (1, 2, fC(2)), (1, 3, fC(3))

(1, 4, 0)× (fB(1)− 1)

(2, 0, 0)× (3− fB(2))
(2, 1, fC(1)), (2, 2, fC(2)), (2, 3, fC(3))

(2, 4, 0)× (fB(2)− 1)

(3, 0, 0)× (3− fB(3))
(3, 1, fC(1)), (3, 2, fC(2)), (3, 3, fC(3))

(4, 4, 0)× (fB(3)− 1)

(4, 0, 0)× 5(fA(1) − 1)

and for j ∈ {2, . . . , k},

Sj =
⋃

xk+2−j ,...,xk∈[m]

{ k∑

i=k+2−j
xib

i, . . . ,

k∑

i=k+2−j
xib

i

︸ ︷︷ ︸
(m−fj(xk+2−j))(2t+1)(2m−1)k−j

,

(m+ 1)bk+1−j +
k∑

i=k+2−j
xib

i,. . . ,(m+ 1)bk+2−j+
k∑

i=k+2−j
xib

i

︸ ︷︷ ︸
(fj(xk+2−j)−1)(2t+1)(2m−1)k−j

}
,

and finally,

Sk+1 =
⋃

x1,...,xk∈[m]

{
fk+1(x1) +

k∑

i=1

xib
i, . . . , fk+1(x1) +

k∑

i=1

xib
i

︸ ︷︷ ︸
2t+1

}
,

where b = m + 2. See Table 1 for the an example when k = 2 and m = 3.
Note that nk+1 = (2t + 1)mk and for j ≥ k, nj = (2t + 1)(m − 1)(2m −
1)k−j+1mj−1 < (2t + 1)mk. Hence,

∑
j∈[k+1] nj ≤ (2t + 1)(k + 1)(2m)k = n,

and that the largest value in the stream is (m + 1)bk = O(n). Note that any
t-approximate median equals,

∑
i∈[k+1] gib

k+1−iand thus if P1 returns the t-
approximate median modulo b then this is gk+1. This can easily be computed
by a protocol in which each player transmits the memory state of the algorithm
at the appropriate juncture.

712 S. Guha and A. McGregor

References

1. Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. In: Symposium on Com-
putational Geometry, pp. 180–189 (2005)

2. Chang, K.L., Kannan, R.: The space complexity of pass-efficient algorithms for
clustering. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1157–1166
(2006)

3. Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Space- and time-efficient
deterministic algorithms for biased quantiles over data streams. In: PODS, pp. 263–
272 (2006)

4. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

5. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg (2002)

6. Drineas, P., Kannan, R.: Pass efficient algorithms for approximating large matri-
ces. In: Symposium, A.C.M.-S.I.A.M. (ed.) ACM-SIAM Symposium on Discrete
Algorithms, pp. 223–232 (2003)

7. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theoretical Computer Science 348(2-3), 207–216 (2005)

8. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: Testing and spot-
checking of data streams. Algorithmica 34(1), 67–80 (2002)

9. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: How to summarize the
universe: Dynamic maintenance of quantiles. In: International Conference on Very
Large Data Bases (VLDB), pp. 454–465 (2002)

10. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile sum-
maries. In: ACM SIGMOD International Conference on Management of Data, pp.
58–66. ACM Press, New York (2001)

11. Guha, S., McGregor, A.: Approximate quantiles and the order of the stream. In:
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pp. 273–279. ACM Press, New York (2006)

12. Guha, S., McGregor, A.: Space-efficient sampling. In: AISTATS, pp. 169–176 (2007)
13. Guha, S., McGregor, A., Venkatasubramanian, S.: Streaming and sublinear ap-

proximation of entropy and information distances. In: ACM-SIAM Symposium on
Discrete Algorithms, pp. 733–742 (2006)

14. Gupta, A., Zane, F.: Counting inversions in lists. In: ACM-SIAM Symposium on
Discrete Algorithms, pp. 253–254 (2003)

15. Kannan, S.: Open problems in streaming. DIMACS Workshop (2001), (Slides:
dimacs.rutgers.edu/Workshops/Streaming/abstracts.html)

16. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

17. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Approximate medians and other
quantiles in one pass and with limited memory. In: ACM SIGMOD International
Conference on Management of Data, pp. 426–435. ACM Press, New York (1998)

18. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Random sampling techniques for
space efficient online computation of order statistics of large datasets. In: ACM
SIGMOD International Conference on Management of Data, pp. 251–262. ACM
Press, New York (1999)

19. McGregor, A.: Finding graph matchings in data streams. In: APPROX-RANDOM,
pp. 170–181 (2005)

dimacs.rutgers.edu/Workshops/Streaming/abstracts.html

Lower Bounds for Quantile Estimation in Random-Order 713

20. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asym-
metric communication complexity. J. Comput. Syst. Sci. 57(1), 37–49 (1998)

21. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Com-
put. Sci. 12, 315–323 (1980)

22. Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SIAM
J. Comput. 22(1), 211–219 (1993)

23. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: new
aggregation techniques for sensor networks. In: SenSys, pp. 239–249 (2004)

24. Yao, A.C.: Lower bounds by probabilistic arguments. In: IEEE Symposium on
Foundations of Computer Science, pp. 420–428. IEEE Computer Society Press,
Los Alamitos (1980)

A Selection Algorithm for Random-Order Streams

In this section we show how to perform approximate selection in a single pass.
We will also assume that the stream contains distinct values. This can easily
by achieved by attaching a secondary value yi ∈R [n3] to each item xi in the
stream. We say (xi, yi) < (xj , yj) iff xi < xj or (xi = xj and yi < yj). Note that
breaking the ties arbitrarily results in a stream whose order is not random.

Our algorithm proceeds in phases and each phase is composed of three distinct
sub-phases; the Sample sub-phase, the Estimate sub-phase, and the Update sub-
phase. At all points we maintain an open interval (a, b) such that we believe that
the value of the element with rank k is between a and b. In each phase we aim
to narrow the interval (a, b). The Sample sub-phase finds a value u ∈ (a, b). The
Estimate sub-phase estimates the rank of u. The Update sub-phase replaces a
or b by u depending on whether the rank of u is believed to be less or greater
than u. The algorithm is presented in Fig. 1.

Theorem 5. When presented with a randomly ordered stream, the Selection
algorithm returns a value u ∈ S such that RankS(u) = k ± 10 ln2(n) ln(δ−1)

√
k

with probability at least 1− δ. The algorithm uses only O(log n) bits of space.

The algorithm appears to need to know the length of the stream in advance but
this assumption can be removed by making multiple “staggered” instantiations of
the algorithm that correspond to guesses of the length as in [11]. Also, as with the
algorithm presented in [11], the algorithm can be used as a sub-routine to create
an algorithm that performs exact selection in O(log logn) passes. Lastly, the
algorithm can be generalized to deal to with streams whose order is only “almost
random” in the sense of being ε-generated random or t-bounded random [11].

B Proof of Theorem 3

The proof is a generalization of a proof by Nisan and Widgerson [22]. We present
the entire argument for completeness. In the proof we lower bound the (k − 1)-
round distributional complexity, Dk−1

1/20(gk), i.e. we will consider a deterministic

714 S. Guha and A. McGregor

Selection Algorithm:

1. Let Υ = 10 ln2(n) ln(δ−1)
√

k and p = 2(lg(n/Υ) +
�

ln(3/δ) lg(n/Υ))
2. Let a = −∞ and b = +∞
3. Let l1 = nΥ −1 ln(3n2p/δ) and l2 = 2(n− 1)Υ −1

�
(k + Υ) ln(6np/δ).

4. Let the stream S = S1, E1, . . . Sp, Ep where |Si| = l1 and |Ei| = l2
5. Phase i:

(a) Sample sub-phase: If Si ∩ (a, b) = ∅ return a, else let u ∈ Si ∩ [a, b]

(b) Estimate sub-phase: Compute r = RankEi(u) and r̃ = (n−1)(r−1)
l2

+ 1 .
(c) Update sub-phase: If r̃ < k−Υ/2, a ← u, r̃ > k + Υ/2, b ← u else return u

Fig. 1. An Algorithm for Computing Approximate Quantiles

protocol and an input chosen from some distribution. The theorem will then
follow by Yao’s Lemma [24] since Dk−1

1/20(gk) ≤ 2Rk−1
1/10(gk).

Let T be the protocol tree of a deterministic k-round protocol. We consider
the input distribution where each fi is chosen uniformly and independently from
F , the set of all mm functions from [m] to [m]. Note that this distribution over
inputs gives rise to distribution over paths from the root of T to the leaves. We
will assume that in round j, Pi’s message includes gj−1 if i > j and gj if i ≤ j.

By induction this is possible with only O(k2 logm) extra communication.
Consequently we may assume that at each node at least lgm bits are transmitted.
We will assume that protocol T requires at most εm/2 bits of communication
where ε = 10−4(k + 1)−4 and derive a contradiction.

Consider a node z in the protocol tree of T corresponding to the jth round of
the protocol when it is Pi’s turn to speak. Let gt−1 be the appended information
in the last transmission. Note that g0, g1, . . . , gt−1 are specified by the messages
so far.

Denote the set of functions f1× . . .×fk that are consistent with the messages
already sent be F z

1 × . . .×F z
k . Note that the probability of arriving at node z is

|F |−k
∏

1≤j≤k |F z
j |. Also note that, conditioned on arriving at node z, f1×. . .×fk

is uniformly distributed over F z
1 × . . .× F z

k .
Let cz be the total communication until z is reached. We say a node z in the

protocol tree is nice if, for δ = max{4
√
ε, 400ε}, it satisfies the following two

conditions:

|F z
j | ≥ 2−2cz |F | for j ∈ [k] and H(fzt (gt−1)) ≥ lgm− δ .

Claim. Given the protocol reaches node z and z is nice then,

Pr [next node visited is nice] ≥ 1− 4
√
ε− 1/m .

Proof. Let w be a child of z and let cw = cz+aw. For l �= i note that |Fw
l | = |F z

l |
since Pl did not communicate at node z. Hence the probability that we reach
node w given we have reached z is

∏
1≤j≤k |Fw

j |
/
|F z
j | = |Fw

i |
/
|F z
i |. Furthermore,

since z is nice,

Lower Bounds for Quantile Estimation in Random-Order 715

Pr
[
|Fw
i | < 2−2cw |F |

]
≤ Pr

[
|Fw
i |
|F z
i |
< 2−2aw

]
≤
∑

w

2−2aw ≤ 1
m

∑

w

2−aw ≤ 1
m

.

where the second last inequality follows from aw ≥ lgm and the last inequality
follows by Kraft’s inequality (the messages sent must be prefix free.) Hence, with
probability at least 1− 1/m, the next node in the protocol tree satisfies the first
condition for being nice.

Proving the second condition is satisfied with high probability is more com-
plicated. Consider two different cases, i �= t and i = t, corresponding to whether
or not player i appended gt. In the first case, since Pt did not communicate,
F z
t = Fw

t and hence H(fwt (gt−1)) = H(fzt (gt−1)) ≥ lgm− δ.
We now consider the second case. We need to show that H(fwt+1(gt)) ≥ lgm−

δ. Note that we can express fwt+1 as the following vector of random variables,
(fwt+1(1), . . . , fwt+1(m)) where each fwt+1(v) is a random variables in universe [m].
Note there is no reason to believe that components of this vector are independent.
By the sub-additivity of entropy,

∑

v∈[m]

H(fwt+1(v)) ≥ H(fwt+1) ≥ lg(2−2cw |F |) = lg(|F |)− 2cw ≥ m lgm− εm

using the fact that fwt+1 is uniformly distribution over Fw
t+1, |Fw

t+1| ≥ 2−2cw |F |
and cw ≤ εm/2. Hence if v were chosen uniformly at random from [m],

Pr
[
H(fwt+1(v)) ≤ logm− δ

]
≤ ε/δ ,

by Markov’s inequality. However, we are not interested in a v chosen uniformly at
random but rather v = gt = fzt (gt−1). However since the entropy of fzt (gt−1) is
large it is almost distributed uniformly. Specifically, since H(fzt (gt−1)) ≥ lgm−δ
it is possible to show that (see [22]), for our choice of δ,

Pr
[
H(fwt+1(gt)) ≤ logm− δ

]
≤ ε

δ

(

1 +

√
4δ
ε/δ

)

≤ 4
√
ε .

Hence with probability at least 1 − 4
√
ε the next node satisfies the second con-

dition of being nice. The claim follows by the union bound.

Note that the height of the protocol tree is k(k − 1) and that the root of the
protocol tree is nice. Hence the probability of ending at a leaf that is not nice is
at most k(k−1)(1/m+4

√
ε) ≤ 1/25. If the final leaf node is nice then then H(gt)

is at least lgm − δ and hence the probability that gt is guessed correctly is at
most (δ+1)/ lgm using Fano’s inequality. This is less than 1/100 for sufficiently
large m and hence the total probability of P1 guessing gk correctly is at most
1− 1/20.

Streaming and Fully Dynamic Centralized

Algorithms for Constructing and Maintaining
Sparse Spanners

Michael Elkin

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

elkinm@cs.bgu.ac.il
2 This research has been supported by the Israeli Academy of Science, grant 483/06

Abstract. We present a streaming algorithm for constructing sparse
spanners and show that our algorithm out-performs significantly the
state-of-the-art algorithm for this task [20]. Specifically, the processing
time-per-edge of our algorithm is drastically smaller than that of the al-
gorithm of [20], and all other efficiency parameters of our algorithm are
no greater (and some of them are strictly smaller) than the respective
parameters for the state-of-the-art algorithm.

We also devise a fully dynamic centralized algorithm maintaining
sparse spanners. This algorithm has a very small incremental update
time, and a non-trivial decremental update time. To our knowledge, this
is the first fully dynamic centralized algorithm for maintaining sparse
spanners that provides non-trivial bounds on both incremental and decre-
mental update time for a wide range of stretch parameter t.

1 Introduction

The study of the streaming model became an important research area after the
seminal papers of Alon, Matias and Szegedy [1], and Feigenbaum et al. [21]
were published. More recently, research in the streaming model was extended to
traditional graph problems [8,19,18,20]. The input to a graph algorithm in the
streaming model is a sequence (or stream) of edges representing the edge set E
of the graph. This sequence can be an arbitrary permutation of the edge set E.

In this paper we devise a streaming algorithm for constructing sparse spanners
for unweighted undirected graphs. Informally, graph spanners can be thought of
as sparse skeletons of communication networks that approximate to a significant
extent the metric properties of the respective networks. Spanners serve as an un-
derlying graph-theoretic construct for a great variety of distributed algorithms.
Their most prominent applications include approximate distance computation
[15,18,14], synchronization [4,22,6], routing [23,7,26], and online load balancing
[5]. The problem of constructing spanners with various parameters is a subject
of intensive recent research [17,15,25,12,11,27,24,28].

The state-of-the-art streaming algorithm for computing a sparse spanner for
an input (unweighted undirected) n-vertex graph G = (V,E) was presented in a

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 716–727, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Streaming and Fully Dynamic Centralized Algorithms 717

recent breakthrough paper of Feigenbaum et al. [20]. For an integer parameter
t ≥ 2, their algorithm, with high probability, constructs a (2t− 1)-spanner with
O(t · logn · n1+1/(t−1)) edges in one pass over the input using O(t · log2 n ·
n1+1/(t−1)) bits of space. It processes each edge in the stream in time O(t2 · log n ·
n1/(t−1)). Their result also immediately gives rise to a streaming algorithm for
(2t−1)-approximate all-pairs-distance-computation (henceforth, (2t−1)-APDC)
algorithm with the same parameters.

Our algorithm constructs a (2t − 1)-spanner with O((t · logn)1−1/t · n1+1/t)
edges in one pass over the input using O(t1−1/t · log2−1/t n ·n1+1/t) bits of space,
for an integer parameter t ≥ 1. (The size of the spanner and the number of bits
are with high probability.) Most importantly, the processing time-per-edge of our
algorithm is drastically smaller than that of Feigenbaum et al. [20]. Specifically,
the expectation of the processing time-per-edge in our algorithm is O(1), it is
O
(√

log logn

log(3) n

)
with high probability, and in the worst-case processing an edge

e = (v, u) requires O
(√

log deg(e)
log log deg(e)

)
, where deg(e) = max{deg(v), deg(u)}.

To summarize, our algorithm constructs a spanner with a smaller number of
edges and number of bits of space used (by a factor of n1/(t(t−1))(t · logn)1/t),
and it does so using a drastically reduced (and very close to optimal) processing
time-per-edge, at no price whatsoever. Our result also gives rise to an improved
streaming (2t − 1)-approximate APDC algorithm with the same parameters.
Observe also that for the stretch guarantee equal to 3, our algorithm is the first
one to provide a non-trivial bound. A concise comparison of our result with the
state-of-the-art result of Feigenbaum et al. [20] can be found in Table 1.

Independently of us Baswana [9] came up with a streaming algorithm for
computing sparse spanners. The efficiency parameters of the algorithm of [9] are
equal to those of our algorithm, except that it provides amortized bound of O(1)
on the processing time-per-edge. However, processing an individual edge by this
algorithm may requireΩ(n) time in the worst-case, and [9] provides no guarantee
on the expectation of the processing time-per-edge. Also, the algorithm of [9]
appears to be significantly more complex than ours.

A variant of our algorithm can be seen as a fully dynamic centralized algo-
rithm for maintaining a (2t − 1)-spanner with O((t · logn)1−1/tn1+1/t) edges.
The incremental update time of this algorithm is exactly the processing time-
per-edge of our streaming algorithm, and, in fact, the way that the dynamic
algorithm processes incremental updates is identical to the way that our stream-
ing algorithm processes each edge of the stream. The expected decremental up-
date time (the time required to update the data structures of the algorithm
when an edge e is deleted) is O(m

n1/t · (t logn)1/t), and moreover, with prob-

ability at least 1 −
(
t·logn
n

)1/t

, the decremental update time is O
(√

h
log h

)
,

where h = max{log deg(e), log logn}. The size of the data structures maintained
by an incremental variant of our algorithm is O(t1−1/t · (logn)2−1/t · n1+1/t)
bits. To cope with decremental updates as well, our algorithm needs to main-
tain O(|E| · logn) bits. (Note that the incremental algorithm maintains data

718 M. Elkin

Table 1. A comparison between the algorithm of Feigenbaum et al. [20] and our new
streaming algorithm. The degree of an edge e = (u, v) is max{deg(v),deg(u)}. The
word “whp” stands for “with high probability”. The result of [20] applies for t ≥ 2,
while our algorithm applies for t ≥ 1.

passes Processing Stretch # Edges
time-per-edge (whp)

[20] 1 whp O(t2 · log n · n1/(t−1)) 2t− 1 O(t · log n · n1+1/(t−1))

New 1 Expected O(1), 2t− 1 O((t · log n)1−1/t · n1+1/t)

whp O
(√

log log n

log(3) n

)
,

worst-case O
(√

log deg(e)
log log deg(e)

)

structures of overall size sublinear in the size of the input |E|. This is not really
surprising, since this is essentially a streaming algorithm.)

To our knowledge, this is the first fully dynamic centralized algorithm for
maintaining sparse spanners that provides non-trivial bounds for a wide range
of stretch parameter t. The first algorithm of this type was devised recently by
Ausillo et al. [3]. This algorithm maintains 3- and 5-spanners of optimal size
with O(n) amortized time per operation for an intermixed sequence of Ω(n)
edge insertions and deletions.

Very recently Baswana [10] improved the result of Ausillo et al. [3] and devised
a fully dynamic algorithm for maintaining spanners of optimal size with stretch
at most 6 with expected constant update time. Baswana [10] presented also
a decremental algorithm for maintaining (2t − 1)-spanner of optimal size with
expected update time of O(t2 · log2 n). However, the latter algorithm provides
no non-trivial bound for incremental update time. Also, note that with high
probability the decremental update time of our algorithm is significantly smaller
than that of [10].

Related Work and Our Techniques: A fully dynamic distributed algorithm
for maintaining sparse spanners is presented in the companion paper [16]. Our
algorithm in this paper combines the techniques of Feigenbaum et al. [20], of
Baswana and Sen [12], with those developed in [16].

More specifically, both the algorithm of Feigenbaum et al. [20] and our algo-
rithm build upon the techniques of Baswana and Sen [12]. Both algorithms label
vertices by numbers, and use the labels to decide whether a newcoming edge
needs to be inserted into the spanner or not. The main conceptual difference
between the two algorithms is that in the algorithm of Feigenbaum et al. [20]
for every vertex v, the entire list of labels L such that v was ever labeled by L
is stored. These lists are then manipulated in a rather sophisticated manner to
ensure that only the “right” edges end up in the spanner. On the other hand, in
our algorithm only one (current) label is stored for every vertex, and decisions
are made on the basis of this far more restricted information. As a result, our

Streaming and Fully Dynamic Centralized Algorithms 719

algorithm avoids manipulating lists of labels, and is, consequently, much simpler,
and far more efficient.

One could expect that using a smaller amount of information to make deci-
sions may result in a denser spanner, or/and in a spanner with a relaxed stretch
guarantee. Surprisingly, however, we show that this is not the case, and that the
parameters of spanners produced by our algorithm are better than the parame-
ters of spanners produced by the algorithm of Feigenbaum et al. [20].

Preliminaries: For a parameter α, α ≥ 1, a subgraph G′ of the graph G =
(V,E) is called an α-spanner of G if for every pair of vertices x, y ∈ V ,
distG′(x, y) ≤ α · distG(x, y), where distG(u,w) denotes the distance between
u and w in G. The parameter α is called the stretch or distortion parameter of
the spanner. Also, for a fixed value of t = 1, 2, . . ., we say that a subgraph G′

spans an edge e = (v, u) ∈ E, if distG′(v, u) ≤ 2t− 1.

Structure of this paper: In Section 2 we present and analyze our streaming
algorithm. In Section 3 we extend it to the dynamic centralized setting. Most
proofs are omitted from this extended abstract.

2 The Streaming Model

In this section we present and analyze the version of our algorithm that con-
structs spanners in the streaming model of computation.

2.1 The Algorithm

The algorithm accepts as input a stream of edges of the input graph G =
(V,E), and an integer positive parameter t, and constructs a (2t − 1)-spanner
G′ = (V,H), H ⊆ E, of G with O((t · logn)1−1/t · n1+1/t) edges using only
O(|H | · logn) = O(t1−1/t(logn)2−1/t ·n1+1/t) bits of storage space, and process-
ing each edge in O(1) expected time, in one pass over the stream. Note that
the space used by the algorithm is linear in the size of the representation of the
spanner. Regarding the processing time-per-edge, processing the edge e requires

O
(√

log deg(e)
log log deg(e)

)
time in the worst-case, and moreover, with high probability,

the processing time-per-edge is O
(√

log log n

log(3) n

)
.

At the beginning of the execution (before the first edge of the stream arrives),
the vertices of V are assigned unique identifiers from the set {1, 2, . . . , n} = [n],
n = |V |. (Henceforth, for any positive integer k, the set {1, 2, . . . , k} is denoted
[k], and the set {0, 1, . . . , k} is denoted [(k)].) Let I(v) denote the identifier of
the vertex v. Also, as a part of preprocessing, the algorithm picks a non-negative
integer radius r(v) for every vertex v of the graph from the truncated geometric
probability distribution given by IP(r = k) = pk ·(1−p), for every k ∈ [(t−2)], and

IP(r = t − 1) = pt−1, with p =
(
t logn
n

)1/t

. Note that this distribution satisfies
IP(r ≥ k + 1 | r ≥ k) = p for every k ∈ [(t− 2)].

720 M. Elkin

We next introduce a few definitions that will be useful for the description of
our algorithm. During the execution, the algorithm maintains for every vertex
v the variable P (v), called the label of v, initialized as I(v). The labels of ver-
tices may grow as the execution proceeds, and they accept values from the set
{1, 2, . . . , n · t}. A label P in the range i · n+ 1 ≤ P < (i+ 1)n, for i ∈ [(t− 1)]
is said to be a label of level i; in this case we write L(P) = i. The value B(P) is
given by B(P) = n if n divides P (v), and by B(P) = P (v) (mod n), otherwise.
This value is called the base value of the label P . The vertex w = wP such that
I(w) = B(P) is called the base vertex of the label P . A label P is said to exist
if the level L(P) of P is no greater than the radius of the base vertex wP , i.e.,
L(P) ≤ r(wP). The label P is called selected if L(P) < r(wP). Note that for a
label P to be selected, it must satisfy L(P) ≤ t− 2.

One of the basic primitives of the algorithm is comparing the labels. We say
that the labels P (v) and P (v′) of the vertices v and v′, respectively, satisfy the
relation P (v) 7 P (v′) if and only if either P (v) > P (v′) or (P (v) = P (v′) and
I(v) > I(v′)). Note that for every two vertices v and v′, either P (v) 7 P (v′) or
P (v′) 7 P (v).

For a label P of level t− 2 or smaller,

IP(P is selected) = IP(r(wP)) ≥ L(P) + 1 | r(wP) ≥ L(P)) = p .

Lemma 1. With high probability, the number of distinct labels of level t−1 that
occur in the algorithm is O(n1/t · (t · logn)1−1/t).

We remark that the way that we define and manipulate labels is closely related
to the way it is done in Feigenbaum et al. [20].

For every vertex the algorithm maintains an edge set Sp(v), initialized as an
empty set. During the execution the algorithm inserts some edges into Sp(v),
and never removes them. In other words, the sets Sp(v) grow monotonely during
the execution of the algorithm. It is useful to think of the sets Sp(v) as divided
into two disjoint subsets T (v) and X(v), Sp(v) = T (v) ∪X(v). The set T (v) is
called the set of the tree edges of the vertex v, and the set X(v) is called the set
of the cross edges of the vertex v. During the execution the algorithm constructs
implicitly a tree cover of the graph. The edges of this tree cover are (implicitly)
maintained in the sets T (v). In addition, the spanner will also contain some
edges that connect different trees of the tree cover; these edges are (implicitly)
maintained in the sets X(v). Each edge e that is (implicitly) inserted into the
set T (v) will also be labeled by a label of v at the time of the insertion. An
insertion of an edge e = (v, u) into the set T (v) will cause v to change its label
to the label of u plus n, that is P (u) +n. The edge e will also be labeled by this
label.

In addition, for every vertex v a table M(v) is maintained. These tables are
initially empty. Each table M(v) is used to store all the base values of levels
P such that there exists at least one neighbor z of v that was labeled by P at
some point of the execution of the algorithm, and such that the edge (v, z) was
inserted into the set X(v) at that point of the execution.

Streaming and Fully Dynamic Centralized Algorithms 721

The algorithm itself is very simple. It iteratively invokes the Procedure
Read Edge on every edge of the stream, until the stream is exhausted. At this
point it outputs the set

⋃
v Sp(v) =

⋃
v T (v)∪

⋃
vX(v) as the resulting spanner.

The Procedure Read Edge accepts as input an edge e = (u, v) that it is sup-
posed to “read”. The procedure finds the endpoint x of the edge e that has a
greater label P (x) (with respect to the order relation 7). Suppose without loss
of generality that x = u, i.e., P (u) 7 P (v). Then the procedure tests whether
P (u) is a selected label. If it is, the edge e is inserted into the set of tree edges
T (v) of v, and v adapts the label P (u) + n. If P (u) is not a selected label, then
the procedure tests whether the base value B(P (u)) of the label P (u) is stored
in the table M(v). If it is not, then the edge e is inserted into the set X(v) of
the cross edges of v, and the label of v does not change. If P (u) is already stored
in M(v) then nothing needs to be done.

The pseudo-code of the Procedure Read Edge is provided below. Its main
difference from the description above is that the sets X(v) and T (v) are not
maintained explicitly, but rather instead there is just one set Sp(v) maintained.
The reason for this difference is that we aim to present the simplest version of
the algorithm for which we can prove the desired bounds. However, it is more
convenient to reason about the sets X(v) and T (v) explicitly, rather than about
the set Sp(v) as a whole, and thus in the analysis we will analyze the version
of the algorithm that maintains the sets T (v) and X(v) explicitly. (It is obvious
that the two versions are equivalent.)

Algorithm 1. The streaming algorithm for constructing a sparse (2t − 1)-
spanner, and Procedure Read Edge(e = (u, v)).

1. For all the edges e of the input stream
invoke Read Edge(e)

2. Let u be the vertex s.t. P (u) 7 P (v)
3. If (P (u) is a selected label) then

P (v)← P (u) + n
Sp(v)← Sp(v) ∪ {e}

else if (B(P (u)) �∈M(v)) then
M(v)←M(v) ∪ {B(P (u))}
Sp(v)← Sp(v) ∪ {e}

end-if

The set T (v) (resp., X(v)) is the set of edges inserted into the set Sp(v) on line
4 (resp., 7) of the Procedure Read Edge. We will say that an edge e is inserted
into T (v) (resp., X(v)) if it is inserted into Sp(v) on line 4 (resp., 7) of the
algorithm.

Note that the Procedure Read Edge is extremely simple, and the only oper-
ations that might require a super-constant time are lines 5 and 6, which require
testing a membership of an element in a data structure, and an insertion of an
element into the data structure if it is not there already. These operations can
be implemented very efficiently in a general scenario via a balanced search tree,
or a hash table. Moreover, we will also show later that with high probability,

722 M. Elkin

the size of each table is quite small, specifically Õ(n1/t), and thus, in our setting
these operations can be implemented even more efficiently.

2.2 The Size of the Spanner

We start with showing that the resulting spanner is sparse. For this end we show
that both sets

⋃
v∈V T (v) and

⋃
v∈V X(v) are sparse.

Lemma 2. For every vertex v ∈ V , |T (v)| ≤ t− 1.

Proof. Each time an edge e = (v, u) is inserted into T (v), the label of v grows
from P (v) to P (u) + n. Moreover, note that P (u) ≥ P (v) for such an edge.
Consequently, the level of P (v) grows at least by 1. Hence at any given time
of an execution of the algorithm, L(P (v)) is an upper bound on the number of
edges currently stored in T (v). Since L(P (v)) never grows beyond t−1, it follows
that |T (v)| ≤ t− 1.

Consequently, the set
⋃
v T (v) contains at most n · (t− 1) edges, i.e.,

|
⋃

v∈V
T (v)| ≤ n · (t− 1) . (1)

We next argue that the set
⋃
v∈V X(v) is sparse as well. First, by Lemma 1,

the number of distinct labels of level t − 1 that occur during the algorithm
is, with high probability, O(n1/t · (t · logn)1−1/t). Fix a vertex v ∈ V . Since,
by line 5 of Algorithm 1 for each such a label P at most one edge (u, v) with
P (u) = P 7 P (v) is inserted into X(v), it follows that the number of edges (u, v)
with P (u) 7 P (v), L(P (u)) = t−1, inserted into X(v), is, with high probability,
at most O(n1/t · (t · logn)1−1/t).

For an index i ∈ [(t − 1)], let X(i)(v) denote the set of edges (u, v), with
L(P (u)) < t− 1, inserted into X(v) during the period of time that L(P (v)) was
equal to i.

Lemma 3. X(t−1)(v) = ∅.

Cardinalities of the sets X(i)(v), 0 ≤ i ≤ t− 2, are small as well. (Though these
sets may be not empty.)

Lemma 4. For every input sequence of edges (e1, e2, . . . , em) determined oblivi-
ously of the coin tosses of the algorithm, for every vertex v, and index i ∈ [(t−2)],
with high probability, |X(i)(v)| = O

(
n1/t · log1−1/t n

t1/t

)
.

We are now ready to state the desired upper bound on |
⋃
v∈V X(v)|.

Corollary 1. Under the assumption of Lemma 4, for every vertex v ∈ V , with
high probability, the overall number of edges inserted into X(v) is O(n1/t · (t ·
logn)1−1/t).

Streaming and Fully Dynamic Centralized Algorithms 723

We summarize the size analysis of the spanner constructed by Algorithm 1 with
the following corollary.

Corollary 2. Under the assumptions of Lemma 4, with high probability, the
spanner H constructed by the algorithm contains O(n1+1/t · (t · logn)1−1/t)
edges. Moreover, each table M(v), v ∈ V , stores, with high probability, at most
O(n1/t · (t · logn)1−1/t) values, and consequently, overall the algorithm uses
O(|H | · logn) = O(n1+1/t · t1−1/t · (logn)2−1/t) bits of space.

Proof. The resulting spanner is
(⋃

v∈V T (v) ∪
⋃
v∈V X(v)

)
. By the inequality

(1), |
⋃
v∈V T (v)| ≤ n·(t−1). By Corollary 1, with high probability, |

⋃
v∈V X(v)|

= O(n1+1/t · (t · logn)1−1/t), and so the first assertion of the corollary follows.
For the second assertion recall that a new value is added to M(v) only when

a new edge (u, v) is introduced into the set X(v). By Corollary 1, with high
probability, |X(v)| = O(n1/t · (t · logn)1−1/t), and therefore the same bound
applies for |M(v)| as well.

To calculate the overall size of the data structures used by the algorithms we
note that |

⋃
v∈V M(v)| ≤ |

⋃
v∈V X(v)| ≤ |

⋃
v∈V X(v)| + |

⋃
v∈V T (v)| =

O(|H |). Since each label and edge requires O(log n) bits to represent, the desired
upper bound on the size of the data structures follows.

2.3 The Stretch Guarantee of the Spanner

We next show that the subgraph constructed by the algorithm is a (2t − 1)-
spanner of the original graph G.

For an integer k ≥ 1, and a vertex v ∈ V , let Pk(v) denote the label of v,
P (v), before reading the kth edge of the input stream.

Lemma 5. Let v, v′ ∈ V be a pair of vertices such that there exist positive inte-
gers k, k′ ≥ 1 such that B(Pk(v)) = B(Pk′ (v′)). Then there exists a path of length
at most L(Pk(v)) + L(Pk′(v′)) between v and v′ in the (final) set

⋃
v∈V T (v).

The next lemma shows that the edge set H =
⋃
v∈V T (v) ∪

⋃
v∈V X(v) is a

(2t− 1)-spanner.

Lemma 6. Let e = (v, v′) ∈ E be an edge. Then there exists a path of length at
most 2t− 1 between v and v′ in the edge set H.

2.4 The Processing Time-per-Edge

To conclude the analysis of our streaming algorithm for constructing sparse span-
ners, we show that it has a very small processing time-per-edge. For this purpose
we now fill in a few implementation details that have so far been unspecified.
Specifically, on lines 5 and 6 of the Procedure Read Edge the algorithm tests
whether an element B belongs to a set M(v), and if it does not, the algorithm
inserts it there. The set M(v) is a subset of the universe [n], and by Corol-
lary 2, its size is, with high probability, O((t · logn)1−1/t ·n1/t). Moreover, since
|M(v)| ≤ |X(v)|, it follows that |M(v)| ≤ deg(v).

724 M. Elkin

Let N = c · (t · logn)1−1/t · n1/t, for a sufficiently large constant c. (The
probability that |M(v)| ≤ c · (t · logn)1−1/t · n1/t for every vertex v ∈ V is at
least 1− 1

nc−2 . Hence choosing c = 4 is sufficient.) As a part of preprocessing the
algorithm computes a random hash function h : [n]→ [N]. Specifically, for each
number i ∈ [n], the algorithm picks a value j ∈ [N] uniformly at random, and
sets h(i) = j. The table representation of this hash function is written down,
and is used throughout the execution of the algorithm for the tables M(v) for
all the vertices v ∈ V . This representation requires O(n · log n) space, and can
be computed in O(n) time during the preprocessing.

For every vertex v the algorithm maintains a hash table M(v) of size N . Every
base value B for which the algorithm needs to test its membership in M(v) on
line 5 of the Procedure Read Edge is hashed to h(B) using the hash function h.
To resolve collisions, for each entry of the hash table M(v) we use a dynamic
dictionary data structure of Beame and Fich [13] (with the dynamization result
of Andersson and Thorup [2]). This data structure maintains a dynamic set of

q keys from an arbitrary universe using O
(√

log q
log log q

)
time per update (inser-

tion or deletion) and membership queries. This completes the description of the
implementation details of the algorithm.

Note that the preprocessing of the algorithm requires O(n) time. In the full
version of this paper we show that implemented this way, the algorithm enjoys
an extremely low processing time-per-edge.

The properties of our streaming algorithm are summarized in the following
theorem.

Let λ(n) (respectively, σ(n)) denote the function
√

log logn
log(3) n

(resp.,
√

logn
log logn).

Theorem 1. Let n, t, n ≥ t ≥ 1, be positive integers. Consider an execution
of our algorithm in the streaming model on an input (unweighted undirected)
n-vertex graph G = (V,E) such that both the graph and the ordering ρ of its
edges are chosen by a non-adaptive adversary obliviously of the coin tosses of
the algorithm. The algorithm constructs a (2t−1)-spanner H of the input graph.
The expected size of the spanner is O(t · n1+1/t) or the size of the spanner is
O((t · logn)1−1/t · n1+1/t) with high probability (depending on the choice of p;
in the first case the guarantee on the size that holds with high probability is
O(t · logn · n1+1/t)). The algorithm does so in one pass over the input stream,
and requires O(1) expected processing time-per-edge, O(λ(n)) processing time-
per-edge with high probability, and O(σ(deg (e))) processing time-per-edge in the
worst-case, for an edge e = (v, u). The space used by the algorithm is O(|H | ·
logn) = O(t1−1/t · log2−1/t n · n1/t) bits with high probability. The preprocessing
of the algorithm requires O(n) time.

Our algorithm can be easily adapted to construct a (2t − 1)(1 + ε)-spanners
for weighted graphs, for an arbitrary ε > 0. The size of the obtained spanner
becomes O(log(1+ε) ω̂ · (t · logn)1−1/t · n1+1/t), where ω̂ is the aspect ratio of
the network. The algorithm still works in one pass, and has the same processing
time-per-edge. This adaptation is achieved in a standard way (see, e.g., [20]), by

Streaming and Fully Dynamic Centralized Algorithms 725

constructing log(1+ε) ω̂ different spanners in parallel. For completeness, we next
overview this adaptation.

The edge weights can be scaled so that they are all greater or equal to 1
and smaller or equal to ω̂. All edges are partitioned logically into �log(1+ε) ω̂�
categories, indexed i = 1, 2, . . . , �log(1+ε) ω̂�, according to their weights, with the
category i containing the edges with weights greater of equal to (1 + ε)i−1 and
smaller than (1 + ε)i. When an edge e = (u, v) is read, it is processed according
to its category, and it is either inserted into the spanner for the edges of category
i, or discarded.

Obviously, after reading all the edges, we end up with �log(1+ε) ω̂� subgraphs,
with the ith subgraph being a (2t−1)(1+ε)-spanner for the edges of the category
i. Consequently, the union of all these edges is a (2t − 1)(1 + ε)-spanner for
the entire graph. The cardinality of this union is at most �log(1+ε) ω̂� times
the maximum cardinality of one of these subgraphs, which is, in turn, at most
O((t · logn)1−1/t · n1+1/t) with high probability.

3 A Centralized Dynamic Algorithm

Our streaming algorithm can be seen as an incremental dynamic algorithm for
maintaining a (2t− 1)-spanner of size O((t · logn)1−1/t · n1+1/t) for unweighted
graphs, where n is an upper bound on the number of vertices that are allowed
to appear in the graph.

The initialization of the algorithm is as follows. Given a graph G = (V,E),
we run our streaming algorithm with the edge set E, where the order in which
the edge set is read is arbitrary. As a result, the spanner, and the satellite data
structures {M(v),Sp(v) | v ∈ V } are constructed. This requires O(|E|) expected
time, O(|E|·λ(n)) time with high probability, and O(|E|·σ(Δ)) in the worst-case,
where Δ is the maximum degree of a vertex in G.

Each edge that is added to the graph is processed using our streaming algo-
rithm. The spanner and the satellite data structures are updated in expected
O(1) time-per-edge, O(λ(n)) time-per-edge with high probability, and O(σ(Δ))
time in the worst-case.

We next make the algorithm robust to decremental updates (henceforth,
crashes) as well. Note that for an edge e = (v, u) to become a T -edge (an edge of⋃
x∈V T (x)), it must hold that at the time that the algorithm reads the edge, the

greater of the two labels P (u) and P (v) (with respect to the order relation 7)

is selected. The probability of a label to be selected is at most p =
(
t·logn
n

)1/t

if its level is smaller than t− 1, and is 0 otherwise. Hence the probability of e to
become a T -edge is at most p.

In the companion paper [16] it is shown that a crash of an edge e = (v, u) that
does not belong to

⋃
x∈V T (x) can be processed in expected time O(1). Moreover,

with high probability the processing of such a crash requires σ(h) time, where h =
max{deg(e), logn}. Since the entire spanner can be recomputed in expected time
O(|E|) by our algorithm, it follows that the expected decremental update time of

726 M. Elkin

our algorithm is O(|E|
n1/t · (t · logn)1/t). The size of the data structure maintained

by the incremental variant of the algorithm is O(t1−1/t ·(logn)2−1/t ·n1+1/t) bits,
and the fully dynamic algorithm maintains a data structure of size O(|E| · log n).

We summarize this discussion with a following corollary.

Corollary 3. For positive integer n, t, n ≥ t ≥ 1, the algorithm is a fully dy-
namic algorithm for maintaining (2t − 1)-spanners with expected O(t · n1+1/t)
number of edges (or O((t log n)1−1/t ·n1+1/t) edges with high probability, depend-
ing on the choice of p) for graphs with at most n vertices. If G = (V,E) is the ini-
tial graph, then the initialization of the algorithm requires O(|E|) expected time,
O(|E| ·λ(n)) time with high probability, and O(|E| ·σ(Δ)) in the worst-case. The
expected incremental update time of the algorithm is O(1), with high probability
it is O(λ(n)), and in the worst-case it is O(σ(deg (e))) (for an edge e that joins
the graph). The expected decremental update time is O(|E|

n1/t · (t · logn)1/t), and

with probability at least 1−
(
t·logn
n

)1/t

the decremental update time is O(σ(h)),
where h = max{deg(e), logn}.

To our knowledge, this is the first fully dynamic algorithm for maintaining sparse
spanners for a wide range of values of the stretch parameter t with non-trivial
guarantees on both the incremental and decremental update times.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences 58, 137–147 (1999)

2. Andersson, A., Thorup, M.: Tight(er) worst-case bounds on dynamic searching and
priority queues. In: Proc. of the 32nd Annual ACM Symp. on Theory of Computing,
pp. 335–342. ACM Press, New York (2000)

3. Ausillo, G., Franciosa, P.G., Italiano, G.F.: Small stretch spanners on dynamic
graphs. In: Proc. of the 13th European Symp. on Algorithms (ESA), pp. 532–543
(2005)

4. Awerbuch, B.: Complexity of network synchronization. J. ACM 4, 804–823 (1985)

5. Awerbuch, B., Kutten, S., Peleg, D.: Online load balancing in a distributed net-
work. In: Proc. 24th ACM Symp. on Theory of Comput. pp. 571–580. ACM Press,
New York (1992)

6. Awerbuch, B., Peleg, D.: Network synchronization with polylogarithmic overhead.
In: Proc. 31st IEEE Symp. on Foundations of Computer Science, pp. 514–522.
IEEE Computer Society Press, Los Alamitos (1990)

7. Awerbuch, B., Peleg, D.: Routing with polynomial communication-space tradeoff.
SIAM J. Discrete Mathematics 5, 151–162 (1992)

8. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an applications to counting triangles in graphs. In: Proc. 13th ACM-SIAM
Symp. on Discr. Algor. pp. 623–632. ACM Press, New York (2002)

9. Baswana, S.: personal communication (2006)
10. Baswana, S.: Dynamic algorithms for graph spanners. In: Azar, Y., Erlebach, T.

(eds.) ESA 2006. LNCS, vol. 4168, Springer, Heidelberg (2006)

Streaming and Fully Dynamic Centralized Algorithms 727

11. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (a,b)-
spanners and additive spanners. In: SODA: ACM-SIAM Symposium on Discrete
Algorithms, pp. 672–681. ACM Press, New York (2005)

12. Baswana, S., Sen, S.: A simple linear time algorithm for computing a (2k − 1)-
spanner of O(n1+1/k) size in weighted graphs. In: Baeten, J.C.M., Lenstra, J.K.,
Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 384–396.
Springer, Heidelberg (2003)

13. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem. In: Proc. of
the 31st Annual ACM Symp. on Theory of Computing, pp. 295–304. ACM Press,
New York (1999)

14. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Com-
put. 29, 1740–1759 (2000)

15. Elkin, M.: Computing almost shortest paths. In: Proc. 20th ACM Symp. on Prin-
ciples of Distributed Computing, pp. 53–62. ACM Press, New York (2001)

16. Elkin, M.: A near-optimal distributed fully dynamic algorithm for maintaining
sparse spanners. Manuscript (2006)

17. Elkin, M., Peleg, D.: Spanner constructions for general graphs. In: Proc. of the
33th ACM Symp. on Theory of Computing, pp. 173–182. ACM Press, New York
(2001)

18. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1 + ε, β)-spanners in
the distributed and streaming models. Distributed Computing 18, 375–385 (2006)

19. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. In: Proc. of the 31st International Colloq. on Automata,
Languages and Progr. pp. 531–543 (2004)

20. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in
the streaming model: The value of space. In: Proc. of the ACM-SIAM Symp. on
Discrete Algorithms, pp. 745–754. ACM Press, New York (2005)

21. Feigenbaum, J., Strauss, S.K.M., Viswanathan, M.: An approximate L1 difference
algorithm for massive data streams. Journal on Computing 32, 131–151 (2002)

22. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. on
Comput. 18, 740–747 (1989)

23. Peleg, D., Upfal, E.: A tradeoff between size and efficiency for routing tables. J. of
the ACM 36, 510–530 (1989)

24. Pettie, S.: Ultrasparse spanners with sublinear distortion. Manuscript (2005)
25. Thorup, M., Zwick, U.: Approximate distance oracles. In: Proc. of the 33rd ACM

Symp. on Theory of Computing, pp. 183–192. ACM Press, New York (2001)
26. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. of the 13th Symp. on

Parallelism in Algorithms and Architectures, pp. 1–10 (2001)
27. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In:

Proc. of Symp. on Discr. Algorithms, pp. 802–809 (2006)
28. Woodruff, D.: Lower bounds for additive spanners, emulators, and more.

Manuscript (2006)

Checking and Spot-Checking the

Correctness of Priority Queues

Matthew Chu1, Sampath Kannan1, and Andrew McGregor2

1 Dept. of Computer and Information Science, University of Pennsylvania
{mdchu,kannan}@cis.upenn.edu

2 ITA Center, University of California, San Diego
andrewm@ucsd.edu

Abstract. We revisit the problem of memory checking considered by
Blum et al. [3]. In this model, a checker monitors the behavior of a
data structure residing in unreliable memory given an arbitrary sequence
of user defined operations. The checker is permitted a small amount
of separate reliable memory and must fail a data structure if it is not
behaving as specified and pass it otherwise. How much additional reliable
memory is required by the checker? First, we present a checker for an
implementation of a priority queue. The checker uses O(

√
n log n) space

where n is the number of operations performed. We then present a spot-
checker using only O(ε−1 log δ−1 log n) space, that, with probability at
least 1−δ, will fail the priority queue if it is ε-far (defined appropriately)
from operating like a priority queue and pass the priority queue if it
operates correctly. Finally, we then prove a range of lower bounds that
complement our checkers.

1 Introduction

Program checking [4] is a paradigm for gaining confidence at run-time in the out-
put produced by a program by running an auxiliary program called the checker
to verify the correctness of the output on the current input. Checkers are allowed
to be probabilistic and have a specifiably small probability of themselves making
a mistake; however, this probability of error depends only on the checker’s inter-
nal coin tosses and not on the presence or absence of any particular bug in the
program being checked. Checkers may also query the program being checked on
additional inputs and use the self-consistency of the outputs to determine cor-
rectness. Checkers designed for a particular computational problem can check
any program that claims to solve the problem.

Since checkers are run on-line, they should be efficient and should not in-
troduce a significant overhead in the program’s running time and resource use.
Sometimes it is possible and desirable to design highly efficient checkers that
only verify that the program output is close to the true output in a quantifiable
way. Such checkers, known as spot-checkers [6] do not even look at the entire in-
put and output of the program. Spot-checking is related to the idea of property
testing [10] which seeks to examine small portions of the input to determine if it
is close to having a specified property.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 728–739, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Checking and Spot-Checking the Correctness of Priority Queues 729

The problem of checking the correctness of the behavior of data structures
residing in cheap but potentially unreliable memory using a small amount of
reliable memory was first considered by Blum et al. [3]. In contrast to program
checking, we emphasize that we are less concerned with ensuring that the data
structure has been correctly coded but rather wish to ensure that the use of
unreliable memory has not caused incorrect behavior. However, in the spirit
of the program checking framework, we will assume a fully general scenario in
which an adversary controls both the sequence of queries and updates to the
data structure and the exact state of the data structure at each point.

A checker equipped with a small amount of reliable (but not necessarily secret)
memory observes the sequence of operations and the results produced by the data
structure and must decide whether it behaved correctly. Two flavors of checkers
are considered in [3] — an off-line checker that makes its determination after an
entire sequence of accesses have been made to the data structure, and an on-line
checker that must immediately report an error when it occurs. These models
were further explored in the context of simple linked data structures such as
linked lists, trees, and graphs in a paper by Amato and Loui [2]. However, to
date, no efficient checkers have been designed for data structures such as priority
queues and search trees that maintain global order properties amongst the keys
they store. We note that there has been some work done on designing new data
structures that are resilient to memory faults, e.g., Finocchi et al. [9], but stress
that this is a different problem than checking correctness.

The memory checkers of Blum et al. [3] and Amato and Loui [2] fit in a model
of computation called the streaming model [11,1,7]. In this model a computer
with a small amount of memory observes an adversarially generated stream
and determines (with high probability) whether the stream satisfies a specified
property. The notion of spot-checking in such a model [8] is a little different from
the standard notion — rather than requiring the spot–checker to sample only
a few places in the input and output, we allow the spot-checker to observe the
entire stream of inputs and outputs, but require that it operate with the space
constraints imposed by the streaming model.

A common implementation of priority queues is as binary heaps. A heap is
a data structure that is used to easily remove the minimum key (min-heaps)
or the maximum (max-heaps). For the purposes of this paper, we will consider
min-heaps, but all conclusions can easily be applied to max-heaps as well. Heaps
are usually implemented as binary trees, explicitly or implicitly as an array. Each
node has a key, a right child, and a left child. There are two main properties of
all heaps. The first is that all descendants of a certain node have a key that is
greater than the node’s key. The second property is that the tree is filled in order
from left to right, level by level. All add and delete operations run in O(log n)
time, where n is the number of nodes in the tree.

1.1 Our Results

In this paper we present results on the checking and spot-checking of priority
queues. We will assume that the priority queue is implemented in unreliable

730 M. Chu, S. Kannan, and A. McGregor

memory and that the checker observes the values inserted into the priority queue
and the result of each extract operation. We will present our results by referring
to a binary-heap used to implement the priority queue but our checkers will be
able to check any implementation. Note that our goal is only to verify that the
input/output behavior of the implementation is correct. We do not (and in this
model, cannot) actually verify that the priority queue is implemented as a heap
and that this heap satisfies the structure property.

Our checkers are all off-line and assume that the sequence of operations start
and end with the empty heap. We present a O(

√
n logn)-space checker and an

O(ε−1 log δ−1 logn)-space spot-checker in Section 3 and Section 4 respectively.
In Section 5 we present lower bounds that show that any on-line checker requires
Ω(n/ logn) space, that any deterministic checker requires Ω(n) space, and that
our checker is near-optimal among checkers of a certain type.

2 Preliminaries

We start by adapting the definition of a memory checker from [3] for the checking
of heaps. See Fig. 1 for an accompanying figure.

User Heap

input

output

Checker

Working Memory

. . . , extractmin, insert(5), insert(4)

4, . . .

. . . , (5, 2), (4, 1)

(4, 1), . . .

input

output

Fig. 1. Memory Checker interaction with User and Data Structure

Definition 1 (Heap Checker). A heap checker for heap H is an (probabilistic)
algorithm C with access to the following four tapes:

1. A “user” input tape from which the checker reads user specified operations.
Each operation is either an insert(·) where the argument is a value to be
inserted or an extractmin.

2. A “user” output tape on which the checker writes a value for each extractmin
operation or alternatively writes FAIL and terminates if the checker has de-
termined that the heap checker is not operating correctly. If the checker never
outputs FAIL during the processing of the user specified operations, then the
checker concludes by writing PASS on this tape.

3. A “heap” input tape on which the checker specifies operations to H. On a
user operation insert(u), the checker requests the insertion of the tuple (u, t)
into the heap where t is the index of the user operation1, referred to as the
time-stamp. On a user extractmin operation, the checker requests that the
heap extracts the smallest value presently stored in the heap.

1 In the actual implementation of the heap the t is encoded as lower order bits and u
is encoded as higher order bits. A consequence of this is that if (u, t) and (u, t′) are
concurrently in memory, then (u, t) should be extracted before (u, t′) if t < t′.

Checking and Spot-Checking the Correctness of Priority Queues 731

4. A “heap” output tape from which the checker reads the output of each oper-
ation. The user extractmin operation will correspond to a tuple (u, t) being
read from the heap.

In addition, the checker has a limited amount of working memory.

We can abstract the input of the heap checker as a sequence that encodes both
the user specified operations and the output of the heap. We define this sequence
and what it means for the sequence to be “heap-like” as follows.

Definition 2 (Interaction Sequence and Heap-like). An interaction se-
quence is a length 2n sequence of tuples S = c1 . . . c2n where each tuple cj is
either an insert of some value u, denoted 〈insert, u〉, or an extractmin oper-
ation that returns some value v that purports to have inserted at time t, denoted
〈extractmin, (v, t))〉. Furthermore, we require that for any k ∈ [2n], the number
of extractmin operations among c1 . . . ck is at most the number of insert op-
erations. We define an ordering of the tuples in the natural way: (u, t) < (u′, t′)
iff u < u′ or (u = u′ and t < t′). We say an interaction sequence is heap-like if
for all extractmin operations cj

cj = 〈extractmin, (u, t)〉 ⇒ (u, t) = minMj−1 , (C)

where,

M0 = ∅ and Mj =
{
Mj−1 \minMj−1 if cj = 〈extractmin, (·, ·)〉
Mj−1 ∪ {(u, j)} if cj = 〈insert, u〉 .

Conceptually, Mj is the set of (value, time-stamp) tuples still to be extracted
from the heap if the heap were operating correctly.

It will be convenient for us to decompose the heap-like condition into three
separate conditions in the case that we start and end with an empty heap. We
prove these three condition are together equivalent in the following lemma.

Lemma 1 (Equivalent Definition for Heap-like). An interaction sequence
S is heap-like iff S satisfies the following three conditions,

{(u, t) : ct = 〈insert, u〉} = {(u, t) : 〈extractmin, (u, t)〉 ∈ S} , (C1)
∀ctb = 〈extractmin, (·, ta)〉, ta < tb , and (C2)

∀ctb = 〈extractmin, (u, ta)〉, ctb′ = 〈extractmin, (u′, ta′)〉,
(u, ta) < (u′, ta′)⇒ (tb′ < ta or tb < tb′) . (C3)

These conditions correspond to the fact that 1) the set of (value, time-stamp)
pairs inserted should match the (value, time-stamp) pairs extracted, 2) a (value,
time-stamp) should only be extracted after it has been inserted and 3) a pair
(u′, t′) should not be extracted between the insert and extraction of a (u, t) pair
if (u, t) < (u′, t′).

732 M. Chu, S. Kannan, and A. McGregor

Proof. If S satisfies (C) then clearly (C3), (C2), and (C1) are satisfied. Con-
versely assume S satisfies (C3), (C2), and (C1). For the sake of contradic-
tion, assume that there exists a tb′ such that, ctb′ = 〈extractmin, (u′, ta′)〉 and
(u′, ta′) �= minMj−1. and assume tb′ is the smallest such value. But then there
exists (u, ta) ∈ Mj−1 with (u, ta) < (u′, ta′). By the minimality of tb′ and (C1),
ta < tb′ < tb for some tb such that ctb = 〈extractmin, (u, ta)〉. Hence S violates
(C3) which is a contradiction. Hence S satisfies (C) after all.

Next we define what it means for a sequence to be far from heap-like. It will
turn out that it is relatively straight-forward to ensure that a sequence satisfies
(C2) and (C1). Hence, we only define distances between sequences that satisfy
these two properties. Intuitively the distance between two interaction sequences
S and S′ will be the least number of moves that are necessary to transform S
into S′. However, the exact definition is a little more awkward because of the
(value, time-stamp) pairs in the extractmin operations.

Definition 3 (ε-far from Heap-like). Consider an interaction sequence S =
c1c2 . . . c2n and let σ be a permutation on [2n]. Let Sσ = c′1c

′
2 . . . c

′
2n be the

sequence where,

c′i =
{
〈insert, u〉 if cσ−1(i) = 〈insert, u〉
〈extractmin, (u, σ(t))〉 if cσ−1(i) = 〈extractmin, (u, t)〉 .

We define dist(S, Sσ) as the number of edits required to sort (σ(1), . . . , σ(2n))
where an edit is of the form “move the value in position k and insert it at position
j.” In particular we say S is ε-far from being heap-like if for all σ such that Sσ
is heap-like, dist(S, Sσ) ≥ εn.

So, for example, for σ = (1→ 1, 2→ 3, 3→ 4, 4→ 2) and

S = 〈insert, 15〉〈insert, 16〉〈extractmin, (16, 2)〉〈extractmin, (15, 1)〉

then, Sσ = 〈insert, 15〉〈extractmin, (15, 1)〉〈insert, 16〉〈extractmin, (16, 3)〉.
In this case, dist(S, Sσ) = 1 and since Sσ is heap-like, S is at most 1/2-far from
being heap-like.

3 An O(
√

n logn)-Space Checker for Heaps

In this section we present a memory checker that accepts an interaction sequence
that is heap-like and, with probability at least 1 − δ, rejects an interaction se-
quence that is not heap-like. The algorithm uses O(

√
n logn + log(1/δ) logn)

space and processes each term of the interaction sequence in O(log n+ log(1/δ))
time. Hence forth we assume that δ > 1/n and therefore omit the δ dependencies.

To ensure that the interaction sequence satisfies (C1), we use the ε-biased
hash function construction of Naor and Naor [12]. Their relevant properties are
presented in the following theorem.

Checking and Spot-Checking the Correctness of Priority Queues 733

Theorem 1 (ε-biased Hash Function [12]). Consider twon-bit binary strings
x and y. There exists a randomized scheme using O(log n + log δ−1) random bits
that constructs a hash function h such that Pr (h(x) = h(y)) ≤ δ if x �= y. Fur-
thermore h(·) can be computed in O(log n+ log δ−1) space even if the string to be
hashed is revealed bit by bit in some arbitrary order.

Using such a function we hash (value, time-stamp) pairs inserted and extracted
to ensure that, with probability at least 1 − δ, condition (C1) is satisfied. It is
easy to check that condition (C2) is also satisfied as for each operation ctb =
〈extractmin, (·, ta)〉 it is sufficient to check that ta < tb.

To ensure condition (C3), the algorithm maintains two lists

E = {(v1, t1), . . . , (v|E|, t|E|)},

a list of (value, time) pairs, and B, a list of recently inserted values and their
time-stamps. The list E will define a series of epochs and B will be used to
buffer (value, time) between the creation of new epochs. Specifically, the list E
will be sorted such that t1 < t2 < . . . < t|E|. We then refer to the period of time
Ti = {t : ti−1 < t ≤ ti} as the ith epoch (where t0 = 0). We define an epoch to
the period T|E|+1 = {t : t > tE} as the current epoch.

The list B will contain all the values that have been inserted into the heap
since the last pair was added to E not including those that have been returned
by an extractmin operation. Together, the state of B and E at any point in the
algorithm define the function,

f(t) =
{

(vi, ti) if t ∈ Ti for i ≤ |E|
minB if t ∈ T|E|+1

.

The semantics of f is such that at any time, if (u, t) has been inserted but not
extracted, then, f(t) ≤ (u, t) if the heap is performing correctly. f is potentially
updated in every iteration of the algorithm. See Figure 2 for a schematic of the
update and utility of the function f . The algorithm maintains B and E such
that there are at most

√
n tuples in both sets. This is achieved by using the

set B to, in effect, buffer inserted tuples such that at least
√
n tuples must be

inserted for |E| to increase by 1. The algorithm is presented in Figure 3.

Theorem 2. Algorithm Heap-Checker is a checker for the correctness of heaps.
It uses O(

√
n logn) memory and runs in O(log n) time per term of the interac-

tion sequence.

Proof. We first prove the correctness of the Heap-Checker algorithm and then
bound the space and time complexity.

Correctness: If S is heap-like then, the tester will PASS the sequence since prop-
erty (C1) ensures that the algorithm does not fail in Line 1 and properties
(C2) and (C3) ensure that the algorithm does not fail in Line 9. Conversely,
if S does not satisfy property (C1) or (C2), the checker will fail the sequence
at Line 1 or 9. Assuming that S has properties (C1) and (C2), we now show

734 M. Chu, S. Kannan, and A. McGregor

t1 t2
t

f(t)

v1

v2
u

t1 t2 t3
t

f(t)

B

t|E|. . . tb − 1

v2

v1

v3

v|E|

tb

〈extractmin, (u, ta)〉

Fig. 2. A schematic depicting the part of the behavior of the algorithm Heap-Checker
when processing item ctb = 〈extractmin, (u, ta)〉 where t2 < ta < t3. First it is checked
that f(ta) ≤ (u, ta) and, if so, {(vi, ti) ∈ E : vi < u} is removed from E and (u, tb) is
added. Furthermore B is emptied.

that the checker will fail at Line 9 at some point during the processing of
the interaction sequence. If property (C3) is not satisfied then consider the
smallest tb such that ctb = 〈extractmin, (u, ta)〉 and there exists a tb′ with
ctb′ = 〈extractmin, (u′, ta′)〉 with (u, ta) < (u′, ta′) and ta < tb′ < tb. We
consider two cases:
1. At time tb′ assume ta is in the current epoch. Therefore (u, t) ∈ B and

hence (u′, t′) > (u, t) ≥ minB. Therefore the algorithm fails in iteration
tb′ at line 9.

2. Otherwise assume that, at the start of iteration tb′ , ta is not in the current
epoch, i.e. ta < t|E|. Therefore, at the end of the iteration v|E| ≥ u′. But
then at the start of iteration tb, f(ta) is also at least u′. Since at iteration
tb we have f(ta) ≥ u′ > u, the algorithm fails at this iteration during
Line 9.

Space Use: It is clear that there are never more than
√
n values stored in B.

To bound the size of E we consider the following two ways in which a pair
is added to E.
1. Line 7: Note that there can be at most

√
n such addition since in between

each such addition there must be at least
√
n insert operations.

2. Line 15: Note that there is no net increase in the size of E in this step.
Therefore, the maximum number of pairs stored in E is

√
n. Hence the space

use of the algorithm is O(
√
n logn) as claimed.

Running Time: For keeping track of the current epoch, the checker can keep
a heap of the values in B in its own reliable memory. This means that all
insert and delete operations can be done in O(log n) time. When updating
the tuples in E the checker can do a binary search (O(log n) time) through
the values in each tuple since these are in sorted order. Since these are the
only operations the checker must perform, it runs in O(log n) time.

4 Spot-Checker

In this section we present a memory checker that accepts an interaction sequence
that is heap-like and with probability at least 1−δ rejects an interaction sequence

Checking and Spot-Checking the Correctness of Priority Queues 735

Algorithm Heap-Checker(S = c1c2 . . . c2n)
1. Use ε-biased hashing to ensure that,

{(u, t) : ct = 〈insert, u〉} = {(u, t) : 〈extractmin, (u, t)〉 ∈ S}

and if not return FAIL
2. Maintain two lists, initially empty,

E = {(v1, t1), . . . , (v|E|, t|E|)} and B = {(u1, t
′
1), . . . , (u|B|, t

′
|B|)}

3. for t ∈ [2n]
4. do if ct = 〈insert, u〉
5. then if |B| <

√
n

6. then B ← B ∪ {(u, t)}
7. else B ← ∅ and E ← E ∪ {(−∞, t)}
8. if ct = 〈extractmin, (u, t′)〉
9. then if t′ ≥ t or (u, t′) < f(t′) then return FAIL
10. if t′ > t|E|
11. then B ← B \ {(u, t′)}
12. E ← (E \ {(vi, ti) ∈ E : vi < u})∪{(min{v|E|, u}, t|E|)}
13. if t′ ≤ t|E|
14. then B ← ∅
15. E ← (E \ {(vi, ti) ∈ E : vi < u}) ∪ {(u, t)}
16. return PASS

Fig. 3. The Heap-Checker Algorithm

that is ε-far from being heap-like. The algorithm uses O(ε−1 log(1/δ) logn) space
and processes each term of the interaction sequence in O(ε−1 log(1/δ)) time.

As before, we use the hashing techniques described in Section 3 to ascertain
(with probability at least 1− δ/2) whether the sequence has property (C1) and
can simply check for property (C2) by checking that the time-stamp of each
extracted value does not exceed the current time. To check for property (C3),
the algorithm stores a set of p = ln(2/δ)/ε (value, time-stamp) pairs that are
chosen at random from all the n such pairs. The hope is that one of the pairs
stored will reveal that an interaction is un-heaplike if this is indeed the case. We
make the following definition to clarify this notion.

Definition 4 (Revealing Tuples). We call a tuple (u, ta) a revealing tuple if
there exists tb, ta′ , tb′ , u′ such that, cta = 〈insert, u〉, ctb = 〈extractmin, (u, ta)〉,
cta′ = 〈insert, u′〉, ctb′ = 〈extractmin, (u′, ta′〉, ta < tb′ < tb, and (u, ta) <
(u′, ta′)).

In the time between the insertion and the extraction of a tuple (u, ta), the
algorithm checks that no extraction returns a value u′ > u. If this ever occurs
then the sequence is not heap-like because the sequence violates property (C3).
The crux of the proof of correctness will be that interaction sequence has many
revealing tuples if it is far from being heap-like. The following lemma asserts
that this is indeed the case. The algorithm is presented in Figure 4.

736 M. Chu, S. Kannan, and A. McGregor

Algorithm Heap-Spot-Checker(S = c1c2 . . . c2n)
1. Use ε-biased hashing to ensure

{(u, t) : ct = 〈insert, u〉} = {(u, t) : 〈extractmin, (u, t′)〉 ∈ S}

2. Let R be a set of p = ln(2/δ)/ε values chosen randomly from the set [n]
3. Maintain P , a list of at most p (value, insertion time) tuples
4. i ← 1
5. for t ∈ [2n]
6. if ct = 〈insert, u〉 for some u
7. then if i ∈ R then P ← P ∪ {(u, t)}
8. i ← i + 1
9. if ct = 〈extractmin, (u, t′)〉 for some u
10. then if t′ > t then return FAIL
11. if ∃ (v, ta) ∈ P with (v, ta) < (u, t′) then return FAIL
12. if (u, t′) ∈ P then P ← P \ {(u, t′)}
13. return PASS

Fig. 4. The Heap-Spot-Checker Algorithm

Lemma 2. Assume S satisfies, (C1) and (C2). Then, if S is ε-far from being
heap-like, there are at least εn revealing tuples.

Proof. Assume S is ε-far from being heap-like. Let r be the number of reveal-
ing tuples in S. Consider the interaction sequence S and let tb′ be the small-
est value such that ctb′ does not satisfy the heap-condition (C), i.e., ctb′ =
〈extractmin, (u′, ta′)〉 but (u′, ta′) ≥ (u, ta) where (u, ta) = minMtb′−1. Let tb
be such that ctb = 〈extractmin, (u, ta)〉. But then (u, ta) is a revealing tuple.
Consider rearranging the terms of S by bringing ctb up to position tb′ (and ad-
justing the position of the other terms and the time-stamps according. We claim
this reduces the number of revealing tuples by at least one. To see this note that
(u, ta) is no longer a revealing tuple. Furthermore, note that no other tuple has
become revealing.

We repeat this process until there are no operations that do not satisfy the
heap-condition. Note that we can do this at most r times since we decrease the
number of revealing tuples by one each time. Hence S is at most distance r from
being heap-like and therefore r ≥ εn.

Theorem 3. Algorithm Heap-Spot-Checker PASSes heap-like sequences andFAILs
sequences that are ε−far from being heap-like with probability at least 1 − δ. It uses
O(ε−1 log(δ−1) logn) memory and runs inO(ε−1 log(δ−1)) time.

Proof. If a sequence is heap-like, the tester returns PASS because there will be
no revealing tuples. From Lemma 2, we know that if a heap is ε-far from being
heaplike, there are at least εn revealing tuples. Furthermore, if any revealing in-
sertion is sampled then the spot-checker will FAIL the sequence. The probability
that a revealing insertion is stored by the algorithm is at least,

1− (1 − ε)ε
−1 ln(2/δ) ≥ 1− δ/2 .

Checking and Spot-Checking the Correctness of Priority Queues 737

The space requirement is obvious since the algorithm samples at most
ε−1 ln(2/δ) triples. The running time per-element is also O(ε−1 ln(1/δ)) since
at each extractmin operation, at most ε−1 ln(1/δ) tuples need to be checked for
a potential violation.

5 Lower Bounds

The checker presented in Section 3 was off-line and required randomization. It
would be preferable if the checker could identify any error as soon as the error
occurred and, ideally, the checker would be deterministic. We start this section by
showing that any checker that had either of these properties would need almost
as much reliable working space as the space used to store the data structure.

Theorem 4. Any on-line checker that is correct with probability at least 3/4
requires Ω(n/ logn) working space. Any deterministic off-line checker requires
Ω(n) working space.

Proof. The proofs will be by reductions from the one-round communication com-
plexity of Prefix : {0, 1}n × {0, 1}n × [n] → {0, 1} and Equality : {0, 1}n ×
{0, 1}n → {0, 1} where

Prefix(x, y, j) =
{

1 if ∀i ∈ [j], xi = yi
0 otherwise

and Equality(x, y) = Prefix(x, y, n).
Suppose there exists an on-line checker C that correctly identifies the first error

in the operation of the heap with probability at least 3/4. Consider an instance
of Prefix where Alice has a binary string x ∈ {0, 1}n and Bob has a binary
string y ∈ {0, 1}n and an index j ∈ [n]. Then let Alice run the C on the sequence
〈insert, x1〉〈insert, x2 + 2〉 . . . 〈insert, xn + 2(n− 1)〉 and then communicate
the memory state of C to Bob. Bob instantiates C with this memory state and
continues running C on the sequence

〈extractmin, (y1, 1)〉〈extractmin, (y2, 2)〉 . . . 〈extractmin, (yn + 2(n− 1), n)〉 .

Then Prefix(x, y, j) = 1 iff the C does not fail until after the jth extractmin
operation. But it was shown by Chakribatri et al. [5] that Alice needs to send
Ω(n/ logn) bits if Bob is to determine the value of Prefix(x, y, j) with proba-
bility at least 3/4. Hence, the checker requires Ω(n/ logn) bits.

The proof for the second part of the theorem is similar: Alice has a binary
string x ∈ {0, 1}n and Bob has a binary string y ∈ {0, 1}n and wishes to learn
Equality(x, y). Alice and Bob create sequences and use a deterministic off-line
checker as before. Then Equality(x, y) = 1 iff the checker does not fail. But it
is known (e.g. Kushilevitz and Nisan [13]) that Alice needs to send a message of
length Ω(n) if Bob is to determine the value of Equality(x, y) with zero error.
Hence the memory state of the checker must require Ω(n) bits.

738 M. Chu, S. Kannan, and A. McGregor

In the remainder of this section we argue that any checker that operates by
storing (value, time-stamp) pairs and their extraction times must use Ω(

√
n)

space if it is to succeed with at least constant probability. This is even the case
if properties (C1) and (C2) are guaranteed. Let k =

√
n. Consider the following

probabilistic construction of an interaction sequence S.

1. For i ∈ [k], let Ri be the range [100(i− 1)k, 100ik] and let Si = {ui1, . . . , uik}
be k random elements in range Ri. We order the elements of each Si such
that,

u1
1 ≤ u1

2 ≤ . . . ≤ u1
k < u2

1 ≤ . . . ≤ ukk .

2. Let j1, . . . , jk be random elements in the range [k].
3. Consider the sequence Sgood described as follows. First we insert Sk in a

random order and then we extract jk values from the heap. We call these
deletions the immediate deletes at stage k. We then insert Sk−1 and extract
jk−1 values. We continue in this way until we insert S1 and then we extract
all the remaining values until the heap is empty. Let Sbad be the sequence
constructed from Sgood by choosing i ∈ [k] at random and swapping the last
value extracted in the immediate deletes at stage i with the extraction of
the (ji + 1)th smallest element of Si. Call these values u and v respectively.
By construction u < v.

4. Let S = Sgood with probability 1/2 and S = Sbad otherwise.

Note that by definition Sgood is heap-like and, while Sbad satisfies (C1) and
(C2), it violates (C3). Hence the only way for an algorithm (that only stores
and compares (value, time-stamp) pairs along with their extraction times) to
recognize if S = Sbad is to either a) have (u, ·) stored in memory when (v, ·) is
extracted or b) have memory of the extraction time of (v, ·) when (u, ·) is ex-
tracted. Unfortunately since i and ji are chosen at random, unless the algorithm
can store O(k) pairs and deletion times then the probability of this is o(1).

6 Conclusions and an Open Question

In this paper we presented a checker and an spot-checker for a priority queue.
Both of are very practical and could be used as a guarantee of correct memory
behavior when attempting to utilize cheap memory that may be unreliable.

We complemented the checkers with space lower bounds that showed that
on-line checking and deterministic checking were infeasible. We also showed that
off-line, randomized checkers of a specific class, that included the checker pre-
sented, required almost as much space as that required by the checker presented.
However, it is conceivable that a better checker may exist that did not belong to
this class. We conjecture that this is not the case. Also, a general proof would
be very interesting because it appears that the such a proof is not possible with
known techniques such as a reducing from communication complexity results.
The reason for this is that consecutive subsequences of the interaction sequence
can not be generated independently if the interaction sequence is to be heap-like.

Checking and Spot-Checking the Correctness of Priority Queues 739

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences 58(1), 137–147
(1999)

2. Amato, N.M., Loui, M.C.: Checking linked data structures. In: FTCS, pp. 164–173
(1994)

3. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. Algorithmica 12(2/3), 225–244 (1994)

4. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42(1),
269–291 (1995)

5. Chakrabarti, A., Cormode, G., McGregor, A.: A near-optimal algorithm for com-
puting the entropy of a stream. In: ACM-SIAM Symposium on Discrete Algorithms
(2007)

6. Ergün, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-checkers.
J. Comput. Syst. Sci. 60(3), 717–751 (2000)

7. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate L1

difference algorithm for massive data streams. SIAM Journal on Computing 32(1),
131–151 (2002)

8. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: Testing and spot-
checking of data streams. Algorithmica 34(1), 67–80 (2002)

9. Finocchi, I., Grandoni, F., Italiano, G.F.: Resilient Search Trees. In: ACM-SIAM
Symposium on Discrete Algorithms, ACM Press, New York (2007)

10. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. J. ACM 45(4), 653–750 (1998)

11. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams.
Technical Report 1998-001, DEC Systems Research Center (1998)

12. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. SIAM J. Comput. 22(4), 838–856 (1993)

13. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

Undecidability of 2-Label BPP Equivalences and

Behavioral Type Systems for the π-Calculus

Naoki Kobayashi and Takashi Suto

Tohoku University
{koba,tsuto}@kb.ecei.tohoku.ac.jp

Abstract. The trace equivalence of BPP was shown to be undecidable
by Hirshfeld. We show that the trace equivalence remains undecidable
even if the number of labels is restricted to two. The undecidability result
holds also for the simulation of two-label BPP processes. These results
imply undecidability of some behavioral type systems for the π-calculus.

1 Introduction

BPP [2] is a process calculus which has prefixes (lP), sum, parallel composi-
tion, and recursion as process constructors. Hirshfeld [3] has shown that the
trace equivalence of two BPP processes is undecidable, by encoding the halt-
ing problem of a Minsky machine into the trace inclusion relation between two
BPP processes. Hüttel [4] extended the undecidability result to other preorders
between processes.

In this paper, we show that the trace inclusion of BPP processes remains
undecidable even if we restrict the number of action labels to two. In the rest of
the paper, we call the restriction of BPP to two labels 2-label BPP. Hirshfeld’s
encoding of a Minsky machine requires 6 action labels, hence his result does not
immediately extend to the case of 2-label BPP processes.

One may think that the undecidability for 2-label BPP processes can be easily
obtained by encoding an action label into a sequence of the two labels, so that
P ≤tr Q if and only if [[P]] ≤tr [[Q]], where P ≤tr Q means that the trace set of P
is a subset of the trace set ofQ, and [[P]] is the 2-label BPP process obtained from
P by using the label encoding. Then, the undecidability of the trace inclusion for
2-label BPP (and hence also the undecidability of the trace equivalence) would
follow from the undecidability for general BPP processes. We basically follow this
approach, but there are two main difficulties. First, because of the existence of
parallel composition, encoding of some action of a process may be simulated by
interleaving execution of encodings of two or more actions of the other process.
For example, consider two processes P1 = l2 | l2 and Q1 = (l2 | l2) + l3l1l1 and
choose the following label encoding: [[l1]] = a, [[l2]] = ba, [[l3]] = bb. Then, the
trace sets of P1 and Q1 are of course different, but the trace sets of [[P1]] = ba | ba
and [[Q1]] = (ba | ba) + bbaa are equivalent. Second, a naive encoding may also
invalidate the equivalence of processes. For example, consider P2 = l2 | l2 and
Q2 = l2l2. These have the same trace sets (and they are even bisimilar). With

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 740–751, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Undecidability of 2-Label BPP Equivalences and Behavioral Type Systems 741

the above encoding, however, [[P2]] has the trace bbaa while [[Q2]] does not. To
overcome the first problem, we choose an encoding of labels such that a shuffle
of two or more encoded labels (i.e., a partial trace of [[l1]] | · · · | [[lm]]) cannot
be confused with encoding [[l]] of a single action. To avoid the second problem,
we prepare a process Inv that simulates invalid sequences. With Inv , we can
establish that P ≤tr Q if and only if [[P]] ≤tr [[Q]] | Inv , since Inv simulates
all the invalid sequences of [[P]] (which are generated by interleaving execution
of more than one encoded actions). A similar (but a little more complicated)
technique can also be used to show the undecidability of the simulation preorder
of 2-label BPP processes.1

As an application of the undecidability results above, we show that the type
checking problems for some behavioral type systems for the π-calculus are also
undecidable.2 In the behavioral type systems, channel types are augmented with
usage expressions (usages, in short), describing how each communication channel
is used. The usages can be regarded as 2-label BPP processes. Since the trace
preorder between two usages can be reduced to the typability of a certain process,
the type checking problem is undecidable.

The rest of this paper is structured as follows. Section 2 introduces BPP.
Section 3 proves the undecidability of trace inclusion of 2-label BPP. Section 4
applies a similar technique to prove that the simulation preorder is also undecid-
able for 2-label BPP. Section 5 applies the undecidability results to show that
certain behavioral type systems for the π-calculus are undecidable. Section 6
discusses related work, and Section 7 concludes. Full proofs are found in the full
version of this paper [11].

2 Basic Parallel Processes (BPP)

BPP [2] is a calculus of processes consisting of prefixes, parallel composition,
internal choice, and recursion. Unlike in CCS [13], there is no synchronization
mechanism (such as the transition a.P | a.Q τ−→ P |Q).

The syntax of processes is given by:

P ::= 0 | X | lP | (P |Q) | P +Q | μX.P

Here, X and l are meta-variables ranging over the sets of process variables and
action labels respectively. We write Act for the set of action labels, and write
BPPAct for the set of BPP processes whose action labels are in the set Act.

The process 0 does nothing. A process lP first performs l and then behaves
like P . P |Q is a parallel composition of P and Q, and P + Q is an internal
choice of P or Q. μX.P stands for the recursive process X usually defined by
the equation X = P .

1 Note that the trace inclusion (as well as the simulation preorder) is decidable for
1-label BPP processes.

2 Actually, investigation into the type checking problems lead us to the study of the
trace and simulation preorders for 2-label BPP in this paper.

742 N. Kobayashi and T. Suto

lP
l−→ P

(Tr-Act)

P
l−→ P ′

P |Q l−→ P ′ |Q
(Tr-ParL)

P
l−→ P ′

P + Q
l−→ P ′

(Tr-OrL)

[μX.P/X]P
l−→ Q

μX.P
l−→ Q

(Tr-Rec)

Q
l−→ Q′

P |Q l−→ P |Q′
(Tr-ParR)

Q
l−→ Q′

P + Q
l−→ Q′

(Tr-OrR)

Fig. 1. Transition rules of BPP processes

We often omit 0 and just write a for a0. We give a higher-precedence to unary
prefixes, +, and | in this order, so that l1P1|l2P2 + l3P3 means (l1P1)|((l2P2) +
(l3P3)).

We say that P is guarded by l in lP . A recursive process μX.P is guarded if X
appears only in guarded positions of P . A process is guarded if all its recursive
processes are guarded. In the rest of this paper, we consider only closed, guarded
processes.3

The transition relation P l−→ Q is the least relation closed under the rules in
Figure 1. We write P l1···ln−→ Q if P l1−→ · · · ln−→ Q.

2-label BPP is BPP where the set Act of action labels is restricted to the set
{a, b}. Hence, the set of 2-label BPP processes is BPP{a,b}.

3 Undecidability of Trace Equivalence

In this section, we show that the trace equivalence of 2-label BPP processes is
undecidable. As sketched in Section 1, we show an encoding of general BPP pro-
cesses into 2-label BPP processes, so that the trace preorder is preserved. Then,
the undecidability follows from the undecidability result for general BPP [3]. The
undecidability of the trace equivalence can be shown also by using the encoding
in Section 4, but the encoding presented in this section is simpler and easier to
understand.

3.1 Trace Set, Trace Preorder, and Trace Equivalence

Definition 1 (trace set). The trace set of P , written traces(P), is defined by:

traces(P) = {l1 . . . ln | P
l1−→ · · · ln−→ Pn}

Definition 2. The trace preorder ≤tr and the trace equivalence ∼tr are defined
by:

P ≤tr Q
def⇔ traces(P) ⊆ traces(Q)

3 Actually, any recursive process can be transformed to a bisimilar, guarded recursive
process. For example, μX.(X | lX) is equivalent to the guarded process μX.l(X |X).
μX.X is bisimilar to 0.

Undecidability of 2-Label BPP Equivalences and Behavioral Type Systems 743

P ∼tr Q
def⇔ P ≤tr Q ∧Q ≤tr P

3.2 Encoding

We first define the encoding of labels. Since the number of labels occurring
in a given process is finite, we assume here that the set Act of action labels
is a finite set {l0, . . . , lN−1}. In the rest of this section and Section 4, we use
meta-variables P,Q, . . . for processes in BPP{l0,...,lN−1},and use meta-variables
E,F, . . . for processes in BPP{a,b}.

Definition 3. A mapping [[·]] from Act to {a, b}∗ is defined by:

[[li]] = abiab2N−1−i

Here, ai stands for the sequence of a of length i. For example, a3 = aaa.
We now define encoding of a process. As mentioned in Section 1, we use

different encodings for P and Q in P ≤tr Q.

Definition 4
Mappings [[·]]L and [[·]]R from BPP{l0,...,lN−1} to BPP{a,b} are defined by:

[[0]]L = 0
[[X]]L = X
[[lP]]L = [[l]][[P]]L

[[P |Q]]L = [[P]]L | [[Q]]L
[[P +Q]]L = [[P]]L + [[Q]]L
[[μX.P]]L = μX.[[P]]L

[[P]]R = [[P]]L | Inv
where Inv =

∑

k<N,k+l<2N−1

abkablaG and G = μX.(aX + bX)

The role of the process Inv in [[P]]R is to simulate invalid transition sequences
(caused by interleaving execution of [[li]] and [[lj]]).

3.3 Undecidability of Trace Equivalence

The main result of this section is stated as follows.

Theorem 1. P ≤tr Q if and only if [[P]]L ≤tr [[Q]]R.

Since P ≤tr Q is undecidable for general BPP [3], we obtain the following
corollary.

Corollary 1. The trace inclusion E ≤tr F and trace equivalence E ∼tr F are
undecidable for 2-label BPP.

Proof. If the trace inclusion ≤tr were decidable for 2-label BPP, then we could
decide P ≤tr Q for general BPP by deciding [[P]]L ≤tr [[Q]]R, hence a contradic-
tion. To see that E ∼tr F is also undecidable, it suffices to observe that E ≤tr F
if and only if E + F ∼tr F . ��

The rest of this section is devoted to the proof of Theorem 1. The followings are
key lemmas needed to prove Theorem 1.

744 N. Kobayashi and T. Suto

Lemma 1. Let m ∈ {L,R}. If P l−→ Q, then [[P]]m
[[l]]−→ [[Q]]m.

Lemma 2. Let m ∈ {L,R}. If [[P]]m
[[l]]−→ E, then there exists a process Q such

that E = [[Q]]m and P l−→ Q.

Lemma 1, which follows by straightforward induction on the derivation of P l−→
Q, says that any transition of P can be simulated by [[P]]L and [[P]]R. Lemma 2
says that any valid (in the sense that the transition label sequence corresponds
to a label of P) transition sequence of [[P]]L or [[P]]R can be simulated by P .

Lemma 2 follows by induction on the derivation of the first transition of

[[P]]m
[[l]]−→ E; See [11] for the full proof of Lemma 2. The proof makes use of the

following key property, which essentially says that the first problem mentioned
in Section 1 (that a single action may be simulated by interleaving execution of
two or more actions) cannot occur.

Lemma 3. If [[P1 |P2]]L
[[l]]−→ E, then either (i) [[P1]]L

[[l]]−→ E1 and E = E1 | [[P2]]L
or (ii) [[P2]]L

[[l]]−→ E2 and E = [[P1]]L |E2

Proof sketch. By the transition rules, we have: (i) [[P1]]L
s1−→ E1, (ii) [[P2]]L

s2−→
E2, (iii) E = E1 |E2, and (iv) [[l]] is a shuffle of s1 and s2. It suffices to show
that either s1 or s2 is an empty sequence. Suppose that s1 and s2 are not empty.
Then s1 and s2 must be of the form abj1 and abj2 where j1, j2 ≤ N − 1. Then,
[[l]]L cannot be a shuffle of s1 and s2, since [[l]]L contains 2N − 1 occurrences of
b, whereas j1 + j2 ≤ 2N − 2. ��
We state another key lemma below. Let InvTr = {s ∈ {a, b}∗ | ¬∃s′, l.(s =
[[l]]s′)}. In other words, InvTr is the set of label sequences whose prefixes do not
match [[l]].
Lemma 4. If s ∈ InvTr ∩ traces([[P]]L), then s ∈ traces(Inv).
Lemma 4 means that any initially invalid sequence generated by [[P]]L can be
simulated by Inv . Thus, the second problem mentioned in Section 1 is resolved.

We can now prove Theorem 1.

Proof of Theorem 1

– “Only if”: Suppose P ≤tr Q and s ∈ traces([[P]]L). We need to show
s ∈ traces([[Q]]R). s must be of the form [[lk1]] · · · [[lkn]]s′ where s′ ∈ InvTr.

By Lemma 2, there exists P1 such that P
lk1 ···lkn−→ P1 and s′ ∈ traces([[P1]]L).

By the assumption, there must exist Q1 such that Q
lk1 ···lkn−→ Q1. By us-

ing Lemma 1, we get [[Q]]R
[[lk1 ···lkn]]
−→ [[Q1]]R. By Lemma 4, we have s′ ∈

traces(Inv) ⊆ traces([[Q1]]R). Thus, we have s ∈ traces([[Q]]R) as required.
– “If”: Suppose [[P]]L ≤tr [[Q]]R and lk1 · · · lkn ∈ traces(P). By Lemma 1

[[lk1]] · · · [[lkn]] ∈ traces([[P]]L). By the assumption [[P]]L ≤tr [[Q]]R, we have
[[lk1]] · · · [[lkn]] ∈ traces([[Q]]R). By using Lemma 2, we obtain lk1 · · · lkn ∈
traces(Q) as required.

��

Undecidability of 2-Label BPP Equivalences and Behavioral Type Systems 745

4 Undecidability of Simulation Equivalence

In this section, we show that the simulation preorder and equivalence are also un-
decidable for 2-label BPP. We use the undecidability of the simulation preorder
for the general BPP [4].4

Definition 5. A binary relation R on BPP processes is a simulation if, for
any P,Q, l such that PRQ and P l−→ P ′, there exists Q′ such that Q l−→ Q′

and P ′RQ′. The simulation preorder ≤sim is the union of all simulations, i.e.,
P ≤sim Q if and only if there exists a simulation R such PRQ. We write
P ∼sim Q if P ≤sim Q ∧Q ≤sim P .

Note that ≤sim itself is a simulation (hence, the largest simulation).
We show the undecidability of the simulation preorder for 2-label BPP, by

reduction of the simulation preorder for general BPP into that for 2-label BPP.
We first need to change the encoding [[·]]R of the right-hand side process.

Definition 6. A mapping [[·]]R′ from BPP{l0,...,lN−1} to BPP{a,b} is defined by:

[[0]]R′ = 0
[[X]]R′ = X
[[lP]]R′ = a[[P]]s,1,0 (as = [[l]])

[[P |Q]]R′ = [[P]]R′ | [[Q]]R′

[[P +Q]]R′ = [[P]]R′ + [[Q]]R′

[[μX.P]]R′ = μX.[[P]]R′

[[P]]ε,k1,k2 = [[P]]R′

[[P]]as,1,k = a[[P]]s,2,k + aH(2N−2−k)

[[P]]bs,1,k = b[[P]]s,1,k+1 + aH(2N−2−k)

[[P]]bs,2,k = b[[P]]s,2,k+1 + aG

H(k) =
{
aG (k = 0)
bH(k−1) + aG (k > 0)

Note that the process G has been defined in Definition 4.

Intuitively, [[P]]s,k1,k2 represents an intermediate state for simulating a single
action of the original process. The sequence s ∈ {a, b}∗ is the remaining sequence
of actions to be performed, and k1 and k2 are the numbers of a and b actions that
have been already performed. The roles of aH(2N−2−k) and aG in the definitions
of [[P]]s,k1,k2 are to simulate invalid transitions.

Theorem 2. P ≤sim Q if and only if [[P]]L ≤sim [[Q]]R′ .

To show the “if” part, it suffices to show that the relation {(P,Q) | [[P]]L ≤sim
[[Q]]R′} is a simulation. To show the “only if” part, we use the following, standard
up-to technique:

Lemma 5 (up-to technique). Let R be a binary relation on BPP processes.
If R satisfies:

∀P,Q, P ′, l.((PRQ ∧ P l−→ P ′)⇒ ∃Q′.(Q l−→ Q′ ∧ P ′ ≤sim R ≤sim Q′)),

then R ⊆≤sim .
4 The proofs in [4] contain some flaws, but the undecidability results are valid. Please

refer to [12] for the flaws and corrected proofs of the undecidability for the general
BPP.

746 N. Kobayashi and T. Suto

To show the “only if” part of Theorem 2, it suffices to show that the following
relation is a simulation up to ≤sim (i.e., satisfies the assumption of Lemma 5).

[[≤sim]] = {(E,E) | E ∈ BPP{a,b}}
∪ {([[P]]L, [[Q]]R′) | P ≤sim Q}
∪ {(E,F) | P ≤sim Q ∧ P ′ ≤sim Q′ ∧ s1s2 = [[l]] ∧ s1, s2 �= ε∧

[[P]]L
s1−→ E

s2−→ [[P ′]]L ∧ [[Q]]R′
s1−→ F

s2−→ [[Q′]]R′}

E and F in the third set are intermediate states for simulating a single action
of general BPP processes. If E performs a valid action and becomes E′, then F
can also perform a valid action to become F ′ so that the pair (E′, F ′) is again
in the second or third set. If E performs an invalid action to become E′, then
F can transit to a process containing H(2N−2−k) or G, which can simulate any
transitions of E′. See [11] for the full proof.

As a corollary of the above theorem and the undecidability for general BPP
[4,12], we obtain the undecidability for 2-label BPP.

Corollary 2. The relations ≤sim and ∼sim are undecidable for 2-label BPP.

5 Application to Behavioral Type Systems

In this section, we apply the undecidability results of the previous sections to
show the undecidability of certain behavioral type systems for the π-calculus.

Behavioral type systems [6,10,1,9,16] use types to control how processes may
interact with each other. They have been used for analyzing deadlocks, race
conditions, and termination, etc. The version of behavioral type systems we
discuss below is a type system with channel usages [14,10,9,8], which express
how each communication channel is used for input and output.

5.1 Syntax of Usages, Types, and Processes

The syntax of usages and types are given by:

U (usages) ::= 0 |?U |!U | (U1 |U2) | U1 + U2 | X | μX.U
τ (types) ::= chanU [τ1, . . . , τn]

The syntax of usages is almost the same as that of 2-label BPP, except that
X may be unguarded in μX.U . For example, μX.X is allowed and is sometimes
distinguished from 0 [10,9]. The transition relation U l→ U ′ (where l ∈ {?, !}) is
the same as that of BPP{?,!}. We often omit 0 and just write ! and ? for !0 and
?0. We write FV (U) for the set of free variables in U .

Table 1 summarizes intuitive meaning of usages. For example, the usage ? | !
describes a channel that should be used once for input and once for output in
parallel.

The type chanU [τ1, . . . , τn], abbreviated to chanU [τ̃], describes a channel
that should be used for passing a tuple of channels of types τ1, . . . , τn, and used

Undecidability of 2-Label BPP Equivalences and Behavioral Type Systems 747

Table 1. Intuitive Meaning of Usages

0 not used at all

?U used for input, and then according to U

!U used for output, and then according to U

U1 |U2 used according to U1 and U2, possibly in parallel

U1 + U2 used according to either U1 or U2

X usage variable bound by μ.

μX.U used recursively according to X = U .

according to U . For example, the type chan?![] describes a channel that should
be first used for receiving, and then for sending a null tuple. A channel of type
chan?[chan![]] should be used for receiving a channel, and then the received
channel should be used for sending a null tuple.

The subtyping relation τ1 ≤ τ2 (which means that a value of type τ may be
used as a value of type τ ′) is defined by: chanU [τ̃] ≤ chanU ′ [τ̃] if and only if
U ≤ U ′. Here, the subusage relation U ≤ U ′ means that U represents a more
liberal usage of channels, so that a channel of usage U may be used as a channel
of usage U ′. For example, ?+! ≤? should hold. There are several reasonable
definitions of the subusage relation [7,8,9,10], depending on the property that
should be ensured by the type system. The following definition is the simplest
one among such reasonable definitions; other definitions are discussed later.

Definition 7. U1 ≤ U2
def⇔ U2 ≤tr U1.

Here, ≤tr is the trace inclusion relation for BPP{?,!}.
The syntax of processes is given by:

P ::= 0 | x![y1, . . . , yn]. P | x?[y1, . . . , yn]. P | (P |Q) | ∗P | (νx : U)P

A sequence y1, . . . , yn is abbreviated to ỹ. The process x![ỹ]. P sends the tuple [ỹ]
of channels on channel x, and then behaves like P . The process x?[ỹ]. P waits to
receive a tuple consisting of channels z̃ on channel x, binds ỹ to them, and then
behaves like P . The process P |Q runs P and Q in parallel, and the process ∗P
runs infinitely many copies of P in parallel. The process (νx:U)P creates a fresh
communication channel, binds x to it, and then behaves like P . An important
point here is that x is annotated with a usage U , which specifies a programmer’s
intention on how x should be used. As observed later, this usage declaration
makes the type system described below undecidable. We do not consider choice
P + Q and name matching [x = y]P ; The type system remains undecidable in
the presence of those constructors.

Example 1. In the π-calculus, a lock (i.e., a binary semaphore) can be expressed
as a channel, where the locked (unlocked, resp.) state is represented by the ab-
sence (presence, resp.) of a message. For example, the process lck?[]. x?[y]. lck ![]
locks lck , reads from x, and then releases lck . To enforce that the channel lck
is indeed used as a lock (i.e., the channel is first used for output to initialize

748 N. Kobayashi and T. Suto

the lock, and then used according to ?! an arbitrary number of times), one can
declare a usage of lck as (νlck : (! |μX.(0 + (?! |X))))P . The type system intro-
duced in the next subsection ensures that P uses lck according to the declared
usage.

5.2 Type System

A type judgment for processes is of the form Γ 2 P , where Γ is a type environ-
ment of the form x1 : τ1, . . . , xn : τn. It means that P behaves as specified by Γ .
For example, x :chan?[chan![]] 2 P means that P uses x for receiving a channel
of type chan![], and then uses the received channel for sending a null tuple.

Typing rules and related definitions are given in Figure 2.

Remark 1. Although a usage of the form U1 + U2 does not appear in Figure 2,
it can be introduced by rule T-Sub. For example, the process:
x![y] |x?[z]. z![] |x?[z]. z?[].0 is typed underx:chan! | ? | ?[chan!+?[]], y:chan!+?[].

Operation on type environments:

(Γ1 |Γ2)(x) =

⎧
⎨

⎩

(Γ1(x)) | (Γ2(x)) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x) if x ∈ dom(Γ1) \ dom(Γ2)
Γ2(x) if x ∈ dom(Γ2) \ dom(Γ1)

where chanU1 [τ̃] | chanU2 [τ̃] = chanU1 | U2 [τ̃]
(∗Γ)(x) = ∗(Γ (x))

where ∗chanU [τ̃] = chanμX.(U | X)[τ̃]

Typing:

∅ � 0
(T-Zero)

Γ � P Δ � Q

Γ |Δ � P |Q
(T-Par)

Γ, x : chanU [τ̃] � P

Γ � (νx : U) P
(T-New)

Γ, x : chanU [τ̃] � P

(Γ, x : chan!U [τ̃]) | ỹ : τ̃ � x![ỹ]. P
(T-Out)

Γ � P

∗Γ � ∗P
(T-Rep)

Γ, x : τ � P τ ′ ≤ τ

Γ, x : τ ′ � P
(T-Sub)

Γ � P U ≤ 0

Γ, x : chanU [τ̃] � P
(T-Weak)

Γ, x : chanU [τ̃], ỹ : τ̃ � P

Γ, x : chan?U [τ̃] � x?[ỹ]. P
(T-In)

Fig. 2. A Behavioral Type System

5.3 Undecidability of Type Checking Problem

We show that the problem of deciding whether ∅ 2 P holds or not is undecidable.
The key observation for the proof is that, given two usages U1 and U2, we can
construct a process P such that ∅ 2 (νx : U1)P if and only if U1 ≤ U2. We use
show the following key lemma.

Lemma 6. Let U be a usage and suppose FV (U) ⊆ {X1, . . . , Xn}. Then there
exists a process P such that the followings are equivalent for any U ′, U1, . . . , Un.

Undecidability of 2-Label BPP Equivalences and Behavioral Type Systems 749

1. U ′ ≤ [U1/X1, . . . , Un/Xn]U
2. x1 : chanU⊥ [chanU1 []], . . . , xn : chanU⊥ [chanUn []], r : chanU ′ [] 2 P .

Here, U⊥ = μX.(0+?X+!X).

We obtain the following result as a corollary of Lemma 6 and Corollary 1.

Theorem 3. The relation ∅ 2 P is undecidable.

Proof. Let U1, U2 be usages. By Lemma 6, there exists a process P1 such that
r : chanU1 [] 2 P1 if and only if U1 ≤ U2. Hence, ∅ 2 (νr : U1)P1 if and only
if U1 ≤ U2. Since the latter is undecidable, the type checking problem is also
undecidable. ��

Undecidability results for other definitions of U1 ≤ U2 The above undecidability
result holds for various other definitions of the subusage relation. For example,
let ≤def

=≥sim . Since Lemma 6 remains valid, and U1 ≤sim U2 is undecidable, the
type checking problem is also undecidable. Here we sketch other definitions of
subusage relations for which the type checking problem remains undecidable.

– Define a predicate U↓ inductively by the rules:

0↓
U1 ↓ U2↓
(U1 |U2)↓

Ui↓
(U1 + U2)↓

[μX.U/X]U↓
μX.U↓

Then add the condition U1↓ ⇒ U2↓ to the requirement for each element
(U1, U2) in the simulation relation≤sim . Let ≤ex

sim be the extended simulation
relation, and define U1 ≤ U2 as U2 ≤ex

sim U1.
– Extend the trace set using the above predicate:

extraces(U) = {l1 · · · ln | U
l1−→ · · · ln−→ U ′} ∪ {l1 · · · ln↓ | U

l1−→ · · · ln−→ U ′↓}

Then define U1 ≤ U2 as extraces(U2) ⊆ extraces(U1).
– Add a transition U τ−→ U ′ by introducing the synchronization rule:

U1
?−→ U ′

1 U2
!−→ U ′

2

U1 |U2
τ−→ U ′

1 |U ′
2

Then re-define the trace set, and define ≤ as the trace inclusion relation.

Remark 2. The undecidability results above may be disappointing, given that
behavioral type systems are useful for checking various properties [6,10,17,1,9,16]
and that the above type system is one of the simplest forms of behavioral type
systems. It should be noted, however, that the source of the undecidability result
is the programmer’s capability to declare arbitrary usages (by (νx :U)). In fact,
Kobayashi’s type systems for deadlock-freedom and information flow [9,10] are
much more complex, but the type checking problem is decidable (note that they
do not allow type declaration). In order to allow declaration of usages as in
this paper while keeping the decidability of type checking, we need to restrict
the class of usages that can be declared by programmers. For example, type
checking is decidable if the class of declared usages is restricted to the class of
usages whose trace sets are deterministic Petri net languages [15].

750 N. Kobayashi and T. Suto

6 Related Work

As already mentioned in Section 1, Hirshfeld [3] showed the undecidability of
the trace equivalence for general BPP, and Hüttel [4] extended the result to
show undecidability of other equivalence relations (except bisimilarity, which is
decidable [2]). They [3,4] both encode Minsky machines into BPP. Since their
encoding uses more than two action labels, their results do not immediately
imply the undecidability for 2-label BPP.

Srba [5] proposed a general method for encoding a labeled transition sys-
tem into a transition system with a single label, so that certain properties are
preserved by the encoding. His encoding is, however, not applicable to BPP.

A number of behavioral type systems for the π-calculus have been proposed
recently for checking various properties including deadlock, race, liveness, termi-
nation, and information flow [1,6,9,10,16,17]. Usage-based behavioral type sys-
tems studied in Section 5 were first proposed in [14] (in a less general form,
without full recursion), and have been extended [1,9,10]. The undecidability re-
sult presented in this paper indicates that explicit usage or type declarations
must be restricted in order to make those type systems decidable.

7 Conclusion

We have shown that the trace equivalence and simulation relation for 2-label
BPP is undecidable. The undecidability result also implies the undecidability of
certain behavioral type systems for the π-calculus.

Acknowledgments. We would like to thank Hans Hüttel for discussions on
the undecidability of BPP equivalences. We would also like to thank anonymous
reviewers for useful comments.

References

1. Chaki, S., Rajamani, S., Rehof, J.: Types as models: Model checking message-
passing programs. In: Proceedings of ACM SIGPLAN/SIGACT Symposium on
Principles of Programming Languages, pp. 45–57. ACM Press, New York (2002)

2. Christensen, S., Hirshfeld, Y., Moller, F.: Decomposability, decidability and ax-
iomatisability for bisimulation equivalence on basic parallel processes. In: Pro-
ceedings of IEEE Symposium on Logic in Computer Science, pp. 386–396. IEEE
Computer Society Press, Los Alamitos (1993)

3. Hirshfeld, Y.: Petri nets and the equivalence problem. In: Meinke, K., Börger, E.,
Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 165–174. Springer, Heidelberg
(1994)

4. Hüttel, H.: Undecidable Equivalence for Basic Parallel Processes. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 454–464. Springer, Heidelberg
(1994)

5. Jiŕı,: On the power of labels in transition systems. In: Larsen, K.G., Nielsen, M.
(eds.) CONCUR 2001. LNCS, vol. 2154, pp. 277–291. Springer, Heidelberg (2001)

Undecidability of 2-Label BPP Equivalences and Behavioral Type Systems 751

6. Kobayashi, N.: TyPiCal: A type-based static analyzer for the pi-calculus. Tool,
available at http://www.kb.ecei.tohoku.ac.jp/~koba/typical/

7. Kobayashi, N.: A type system for lock-free processes. Information and Computa-
tion 177, 122–159 (2002)

8. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K.,
Maibaum, T.S.E. (eds.) Formal Methods at the Crossroads. From Panacea to Foun-
dational Support. LNCS, vol. 2757, pp. 439–453. Springer, Heidelberg (2003)

9. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta In-
formatica 42(4-5), 291–347 (2005)

10. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidel-
berg (2006)

11. Kobayashi, N., Suto, T.: Undecidability of 2-label BPP equivalences and be-
havioural type systems for the π-calculus, Full version. Available (2007), from
http://www.kb.ecei.tohoku.ac.jp/~koba/publications.html

12. Kobayashi, N., Suto, T.: Undecidability of BPP equivalences revisited, Available
(2007), from http://www.kb.ecei.tohoku.ac.jp/~koba/publications.html

13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

14. Sumii, E., Kobayashi, N.: A generalized deadlock-free process calculus. In: Proc.
of Workshop on High-Level Concurrent Language (HLCL’98). ENTCS, vol. 16(3),
pp. 55–77 (1998)

15. Suto, T., Kobayashi, N.: Channel usage declaration for concurrent programming
languages. IPSJ Transaction on Programming (to appear 2007) (in Japanese)

16. Yoshida, N.: Graph types for monadic mobile processes. In: Chandru, V., Vinay,
V. (eds.) Foundations of Software Technology and Theoretical Computer Science.
LNCS, vol. 1180, pp. 371–387. Springer, Heidelberg (1996)

17. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the pi-calculus. Infor-
mation and Computation 191(2), 145–202 (2004)

http://www.kb.ecei.tohoku.ac.jp/~koba/typical/
http://www.kb.ecei.tohoku.ac.jp/~koba/publications.html
http://www.kb.ecei.tohoku.ac.jp/~koba/publications.html

Ready Simulation for Concurrency: It’s Logical!

Gerald Lüttgen1 and Walter Vogler2

1 Department of Computer Science, University of York, York YO10 5DD, U.K
luettgen@cs.york.ac.uk

2 Institut für Informatik, Universität Augsburg, D–86135 Augsburg, Germany
vogler@informatik.uni-augsburg.de

Abstract. This paper provides new insight into the connection between
the trace-based lower part of van Glabbeek’s linear-time, branching-
time spectrum and its simulation-based upper part. We establish that
ready simulation is fully abstract with respect to failures inclusion, when
adding the conjunction operator that was proposed by the authors in
[TCS 373(1–2):19–40] to the standard setting of labelled transition sys-
tems with (CSP-style) parallel composition. More precisely, we actually
prove a stronger result by considering a coarser relation than failures in-
clusion, namely a preorder that relates processes with respect to inconsis-
tencies that may arise under conjunctive composition. Ready simulation
is also shown to satisfy standard logic properties and thus commends
itself for studying mixed operational and logic languages.

1 Introduction

Basic research in concurrency theory over the past 25 years has resulted in
a wealth of process algebras [2, 8, 13] and temporal logics [4] for specifying
and reasoning about concurrent processes. However, little research has been
conducted on mixing process-algebraic and logic styles of specification in a single
formalism. This is surprising since many popular software-engineering languages,
including UML, permit such mixed specifications.

In [11] we proposed an approach to defining and reasoning about conjunction
on labelled transition systems. Our setting consisted of standard labelled tran-
sition systems, augmented by an inconsistency predicate (cf. Sec. 2). While our
conjunction operator is in essence a synchronous product on visible actions and
an interleaving product on internal actions, the challenge was in dealing with
inconsistencies. Inconsistencies may either arise when conjunctively composing
two processes with different initial action sets (i.e., ready sets), or when a pro-
cess has no other choice for some action than entering an inconsistent state. Our
framework was equipped with ready-tree semantics, which is a variant of van
Glabbeek’s path-based possible-worlds semantics [6] that was inspired by Veg-
lioni and De Nicola [17]. The resulting ready-tree preorder (for divergence-free
consistent systems) turned out to be coarser than ready simulation and finer
than failures inclusion and ready-trace inclusion, which implies the important
feature that ready-tree semantics is sensitive to deadlock. We proved in [11] that

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 752–763, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Ready Simulation for Concurrency: It’s Logical! 753

the ready-tree preorder is fully abstract under conjunction with respect to a
naive inconsistency preorder,1 which allows an inconsistent specification only to
be implemented by an inconsistent implementation.

This paper first shows that the ready-tree preorder is inadequate in the pres-
ence of concurrency, as it fails to be compositional for standard parallel com-
position, such as the parallel operator of CSP [8]. A different compositionality
problem for the parallel composition of SCCS was already noted in [6]. We then
establish our main result (cf. Sec. 3), namely that ready simulation [3], which
adds to ordinary simulation the requirement that related processes must have
identical ready sets, is fully abstract with respect to conjunction and parallel
composition, for labelled transition systems with inconsistencies. Along the way,
we adapt ready simulation to dealing with internal actions and inconsistencies.
We also conduct several sanity checks: we verify that our conjunction opera-
tor indeed formalises conjunction regarding ready simulation, and prove further
logic properties desired of ready simulation. Omitted proofs can be found in [12].

Our full-abstraction result provides an interesting insight into van Glabbeek’s
linear-time, branching-time spectrum [6], namely that conjunction on processes
is a tool, via full abstraction, for relating the trace-based lower part of the
spectrum to the simulation-based upper part. In addition, our results testify
to the adequacy of ready simulation as the semantic basis for mixed process-
algebraic and logic languages. Indeed, ready simulation eliminates the necessity
for restrictions on the nesting of process-algebraic and logic constructs, such as
the one employed by Olderog when embedding trace formulas into CSP [14].

2 Logic LTS, Conjunction and Parallel Composition

This section recalls the definitions of Logic Labelled Transition Systems, or Logic
LTS for short, and the conjunction operator on Logic LTS which were introduced
in [11]. It also lifts the parallel composition operator of CSP [8] to Logic LTS.

∧ ba =
F

a b

qp
q'p'

r

∧a

p

=
c

∧
a

b

a

= a

F

(F)

Fig. 1. Basic intuition behind conjunctive composition

Key to our setting is the consideration of inconsistencies which may arise un-
der conjunctive composition. The idea is to mark a composed state between two
processes as inconsistent, if one offers an action that the other cannot perform,
i.e., if the processes have different ready sets [15]. Consider the processes p, q

1 i.e., the ready-tree preorder is the coarsest precongruence for conjunction which
refines the inconsistency preorder.

754 G. Lüttgen and W. Vogler

F

a b

(F)

F

a ba

τ

b

τ

F

Fig. 2. Backward propagation of inconsistencies

and r of Fig. 1. Process p and q specify that exactly action a and respectively
action b is offered initially, i.e., their ready sets are {a} and respectively {b}.
Similarly, process r specifies that a and b are offered initially and thus has ready
set {a, b}. Hence, p ∧ q as well as p∧ r are inconsistent (or false) and should be
tagged as such. Formally, our variant of LTS will be augmented by an inconsis-
tency predicate, or false-predicate, F , so that p ∧ q, p ∧ r ∈ F in our example.

Inconsistency is a more tricky property, however, as it can propagate back-
wards along transitions. For example, in the conjunction p′ ∧ q′ shown in Fig. 1,
both conjuncts require action a to be performed, whence p′ ∧ q′ should have
an a-transition. But this transition does lead to an inconsistent state and, in
the absence of any alternative a-transition leading to a consistent state, p′ ∧ q′
must itself be considered as inconsistent. In this spirit, inconsistency propagates
backwards for the left process in Fig. 2, whereas it does not for the middle and
right processes, as they can engage in an a-transition, respectively τ -transition,
that leads to a consistent state. As an aside, it is noted that the right process
may be interpreted as a disjunction between the inconsistent process marked F
which has empty behaviour, and the consistent process offering a b-transition.

Logic Labelled Transition Systems. Let A be an alphabet with representatives a
and b, and let Aτ denote A ∪ {τ} with representatives α and β. An LTS is a
triple 〈P,−→, F 〉,2 where P is the set of processes (states), −→⊆ P × Aτ × P
is the transition relation, and F ⊆ P is the inconsistency predicate. We write
(i) p α−→ p′ instead of 〈p, α, p′〉 ∈−→, (ii) p α−→ instead of ∃p′ ∈ P. p α−→ p′ and
(iii) p −→ instead of ∃p′ ∈ P, α ∈ Aτ . p α−→ p′. When p

α−→ p′, we say that
process p can perform an α-step to p′, and we call p′ an α-derivative. A process p
that cannot engage in a τ -transition, i.e., p � τ−→, is called stable. The sort AP of
the LTS (and its processes) is the set of actions occurring in −→.

We also require an LTS to satisfy the following τ-purity condition: p τ−→
implies � ∃a ∈ A. p a−→, for all p ∈ P . Hence, each process represents either an
external or internal (disjunctive) choice between its outgoing transitions. This
restriction reflects the fact that ready sets can only be observed at stable states,
so that visible transitions leaving instable states are outside our observation.
The LTSs of interest to us need to satisfy two further properties:

Definition 1 (Logic LTS [11]). An LTS 〈P,−→, F 〉 is a Logic LTS if:

(LTS1) F ⊆ P such that p ∈ F if ∃α ∈ I(p)∀p′ ∈ P. p α−→ p′ implies p′ ∈ F ;
(LTS2) p cannot stabilise implies p ∈ F .

2 The additional, less relevant true predicate of [11] is omitted here for clarity.

Ready Simulation for Concurrency: It’s Logical! 755

The first condition formalises the backward propagation of inconsistencies as
discussed above; here, I(p) stands for the ready set {α ∈ Aτ | p α−→} of process p.
The second condition relates to divergence, i.e., infinite sequences of τ -tran-
sitions, where divergence is viewed as catastrophic if a process cannot stabilise.

Before formalising our notion of stabilisation, we introduce several variants of
weak transition relations which will prove useful in the sequel. We write p ε=⇒ p′

if p τ−→
∗
p′ and p

a=⇒ p′ if ∃p. p a−→ p
ε=⇒ p′. Note that we do not consider

τ -transitions preceding a visible transition as we only need weak a-transitions
originating from stable processes. If all processes along a computation p ε=⇒ p′

or p a=⇒ p′, including p and p′, are consistent, then we write p ε=⇒F p′ and
p

a=⇒F p
′, respectively. If in addition, p′ is stable, we write p ε=⇒| p′ and p a=⇒| p′,

respectively. We may now define that a process p can stabilise if ∃p′. p ε=⇒| p′.
We will denote a transition p α−→ p′ with p, p′ /∈ F by p α−→F p

′. Moreover,
whenever we mention a process p without stating a respective Logic LTS explic-
itly, we assume implicitly that such a Logic LTS 〈P,−→, F 〉 is given. Finally,
we let ff stand for the only process of the LTS 〈{ff}, ∅, {ff}〉, which represents
the boolean constant false. Intuitively, any given process is either inconsistent,
in which case it is equivalent to ff, or it is equivalent to a process from which
no inconsistent process can be reached; the latter can simply be achieved by
omitting inconsistent processes in LTSs and all transitions leading to them.

Conjunction & parallel composition. Our conjunction operator is a synchronous
product for visible transitions and an asynchronous product for τ -transitions,
analogous to ‖A defined below. However, we need to take care of inconsistencies.
This is because, otherwise, p ∧ q, with p and q defined as in Fig. 1, would be a
consistent process without any transitions.

Definition 2 (Conjunction operator [11]). The conjunction of two Logic
LTSs 〈P,−→P , FP 〉 and 〈Q,−→Q, FQ〉 is the Logic LTS 〈P ∧Q,−→P∧Q, FP∧Q〉:

– P ∧Q =df {p ∧ q | p ∈ P, q ∈ Q}
– −→P∧Q is determined by the following operational rules:

p
τ−→P p

′ implies p ∧ q τ−→P∧Q p
′ ∧ q

q
τ−→Q q

′ implies p ∧ q τ−→P∧Q p ∧ q′

p
a−→P p

′, q
a−→Q q

′ implies p ∧ q a−→P∧Q p
′ ∧ q′

– FP∧Q is the least set such that each p ∧ q ∈ FP∧Q satisfies at least one of
the following conditions:
(C1) p ∈ FP or q ∈ FQ;
(C2) p ∧ q � τ−→P∧Q and I(p) �= I(q);
(C3) ∃α ∈ I(p ∧ q)∀p′ ∧ q′. p ∧ q α−→P∧Q p

′ ∧ q′ implies p′ ∧ q′ ∈ FP∧Q;
(C4) p ∧ q cannot stabilise.

756 G. Lüttgen and W. Vogler

We are left with explaining Conds. (C1)–(C4). Firstly, a conjunction is inconsis-
tent if a conjunct is inconsistent. Conds. (C2) and (C3) reflect our intuition of
inconsistency and backward propagation. Cond. (C4) is added to enforce (LTS2).

Definition 3 (Witness). A witness is a set W ⊆ P ∧ Q such that, for all
p ∧ q ∈W , the following conditions hold:

(W1) p, q /∈ F ;
(W2) p τ−→ or q τ−→ or I(p) = I(q);
(W3) ∀α ∈ Aτ . p ∧ q α−→ implies ∃p′ ∧ q′ ∈W. p ∧ q α−→ p′ ∧ q′;
(W4) p ∧ q can stabilise in W , i.e., p ∧ q τ−→ p1 ∧ q1 τ−→ · · · τ−→ pn ∧ qn � τ−→

with all pi ∧ qi ∈W .

It is easy to check that the set of consistent processes FP∧Q of P ∧ Q, i.e.,
the complement of FP∧Q, is a witness and is in fact the largest one in P ∧ Q.
This implies the following straightforward proposition, giving us a useful tool
for proving that the conjunction of two processes is consistent:

Proposition 4. p ∧ q /∈ FP∧Q if and only if ∃witnessW. p ∧ q ∈W .

For example, the concept of witness may be employed to prove the following
properties of conjunctive composition:

Lemma 5. 1. If p ∧ q τ−→ p′ ∧ q′ /∈ F and p, q /∈ F , then p ∧ q /∈ F .
2. Let p ε=⇒| p′, q ε=⇒| q′ and p′ ∧ q′ /∈ F . Then, p ∧ q ε=⇒| p′ ∧ q′.

Finally, we adapt the parallel operator ‖A of CSP [8] to our setting, where A ⊆ A
denotes the synchronisation alphabet. Naturally, the parallel composition of two
processes is inconsistent if either process is inconsistent.

Definition 6 (Parallel operator). The parallel composition of two Logic LTS
〈P,−→P , FP 〉 and 〈Q,−→Q, FQ〉 for the synchronisation set A ⊆ A, is the Logic
LTS 〈P ‖A Q,−→P‖AQ, FP‖AQ〉:

– P ‖A Q =df {p ‖A q | p ∈ P, q ∈ Q}
– −→P‖AQ is determined by the following operational rules:

p
α−→P p

′, α /∈ A, (α = τ or q � τ−→Q) implies p ‖A q α−→P‖AQ p
′ ‖A q

q
α−→Q q

′, α /∈ A, (α = τ or p � τ−→P) implies p ‖A q α−→P‖AQ p ‖A q′

p
a−→P p

′, q
a−→Q q

′, a ∈ A implies p ‖A q a−→P‖AQ p
′ ‖A q′

– p ‖A q ∈ FP‖AQ if p ∈ FP or q ∈ FQ.

Both conjunction and parallel composition are well-defined, i.e., the compositions
of two Logic LTSs satisfy the conditions of Def. 1. In the sequel, we leave out
indices of relations and predicates whenever the context is clear.

Ready Simulation for Concurrency: It’s Logical! 757

Ready-tree semantics. Our previous work [11] focused only on studying con-
junction on Logic LTSs. It characterised the largest precongruence contained in
the inconsistency preorder, which states that a consistent implementation p does
never refine an inconsistent specification q.3

Definition 7 (Inconsistency preorder [11]). The inconsistency preorder &F
on processes is defined by p &F q if p /∈ F implies q /∈ F .

This definition agrees with the standard verification question whether an imple-
mentation satisfies its specification. When reading ‘satisfies’ logically as ‘implies’,
it is clear that an inconsistent (i.e., ‘false’) specification can only be met by an
inconsistent implementation.

Obviously, the inconsistency preorder is not compositional with respect to
conjunction. Our characterisation of the fully-abstract preorder contained in &F
and presented in [11] is based on a variant of the path-based possible-worlds
semantics of [6, 17], to which we refer as ready-tree semantics. This seman-
tics employs the notion of observation tree. An observation tree is a Logic LTS
〈V,−→, ∅〉 whose processes and transitions form a deterministic tree and whose
processes (vertices) are stable; we refer to the tree’s root as v0. We may now
formalise our desired observations of a process p, called ready trees :

Definition 8 (Ready tree [11]). An observation tree v0 is a ready tree of p,
if there is a labelling h : V −→ P satisfying the following conditions:

(RT1) ∀v ∈ V. h(v) stable and h(v) /∈ F ;
(RT2) p ε=⇒|h(v0);
(RT3) ∀v ∈ V, a ∈ A. v a−→ v′ implies h(v) a=⇒|h(v′);
(RT4) ∀v ∈ V. I(v) = I(h(v)).

Intuitively, nodes v in a ready tree represent stable states h(v) of p (cf. the first
part of Cond. (RT1)) and transitions represent stable, consistent computations
(cf. Cond. (RT3)). Since such computations do not contain inconsistent states,
no represented state must be in F (cf. the second part of Cond. (RT1)). Since p
might not be stable, the root v0 of a ready tree represents a stable process
reachable from p via some internal computation (cf. Cond. (RT2)). Moreover,
v must mimic the ready set of h(v) (cf. Cond. (RT4)). In the following, we
write RT(p) for the set of all ready trees of p; note that ff has no ready tree.

Definition 9 (Ready-tree preorder [11]). The ready-tree preorder ⊆RT on
processes is defined as ready-tree inclusion, i.e., p ⊆RT q if RT(p) ⊆ RT(q).

Theorem 10 (Full-abstraction wrt. conjunction [11]). ⊆RT is the largest
precongruence in &F , when considering conjunction as the only operator.

3 The reader familiar with [11] should note that we now write the implementation
to the left and the specification to the right of the preorder symbol, in order to be
consistent with the notational conventions of simulation-based preorders.

758 G. Lüttgen and W. Vogler

is not a ready tree of

{b}
c

b b

d
r

{b}
c

b b

d
r

{b}
a

a

p

x x

bb

a

a

dc

dc

c d

bb

aa

r

c

dca

a d

b b

t

a

b

x

b

x

{b}
c

q

dc

b b b b

a d

x x

r

a a

a a

bb

x

p

q

a

b b

x is a ready tree of

Fig. 3. Ready-tree semantics is not compositional for parallel composition

Unfortunately, ⊆RT is not a precongruence for parallel composition ‖A, which
makes the preorder unsuitable for reasoning about concurrency. To see this,
consider the Logic LTSs p, q and r of Fig. 3. Here, p and q have the same ready
trees, but t is a ready tree of q ‖{b} r but not of p ‖{b} r.

3 Full Abstraction Via Ready Simulation

We now establish our full-abstraction result of ready simulation wrt. the incon-
sistency preorder, when considering both conjunction and parallel composition.

Definition 11 (Ready simulation on Logic LTS). Let 〈P,−→P , FP 〉 and
〈Q,−→Q, FQ〉 be two Logic LTS. A relation R ⊆ P ×Q is a stable ready simu-
lation relation, if the following conditions hold, for any 〈p, q〉 ∈ R and a ∈ A:

(RS1) p, q stable;
(RS2) p /∈ FP implies q /∈ FQ;
(RS3) p a=⇒| p′ implies ∃q′. q a=⇒| q′ and 〈p′, q′〉 ∈ R;
(RS4) p /∈ F implies I(p) = I(q).

We say that p is stable ready simulated by q, in symbols p �∼RS
q, if there exists a

stable ready simulation relation R with 〈p, q〉 ∈ R. Further, p is ready simulated
by q, written p &RS q, if ∀p′. p ε=⇒| p′ implies ∃q′. q ε=⇒| q′ and p′ �∼RS

q′. We
write ≈RS and =RS for the kernel of �∼RS

and &RS, respectively.

It is easy to see that �∼RS
and &RS are preorders, and that p &RS q trivially

holds if p ∈ F . Moreover, ready simulation &RS is contained in the ready-tree
preorder ⊆RT, as essentially stated in [6], and conjunction and parallel compo-
sition are associative and commutative with respect to =RS. Note that there
are several ways how to define ready simulation [3, 6] for settings with inter-
nal actions [5]. Our variant is an adaptation of Glabbeek’s stability respecting

Ready Simulation for Concurrency: It’s Logical! 759

ready simulation may preorder to Logic LTS. Observe that replacing the premise
p

a=⇒| p′ of (RS3) by p a−→F p
′ results in a finer preorder, unlike for some other

simulation-based behavioural relations [13].

Theorem 12 (Compositionality)

1. Let p �∼RS
q, r be stable and A ⊆ A. Then, (a) p ‖A r �∼RS

q ‖A r as well as
(b) p ∧ r �∼RS

q ∧ r.
2. Let p &RS q, r be an arbitrary process and A ⊆ A. Then, (a) p ‖A r &RS

q ‖A r and (b) p ∧ r &RS q ∧ r.

Regarding the proof, we only want to point out that it employs the proof tool
of witness in order to reason about the consistency of conjunctively composed
processes in Part (1). The following witness turns out to be sufficient for our
purpose:

Lemma 13. The set W =df W1 ∪W2 is a witness, where
W1 =df {q ∧ r |∃p. p �∼RS

q and p ∧ r /∈ F};
W2 =df {q ∧ r |∃p, q, r, p′, r′, q′, a. p �∼RS

q, p ∧ r /∈ F, p ∧ r a=⇒| p′ ∧ r′, p′ �∼RS
q′,

and q a=⇒F q
ε2=⇒| q′ and r a=⇒F r

ε1=⇒| r′ with {ε1, ε2} = {ε, τ} } .

Full-abstraction result. To prove our main result we encode the full behaviour
of a stable process p into a single ready tree. The idea is to unfold p to a tree
and to eliminate any nondeterminism by placing fresh actions into the tree.

Definition 14 (Characteristic ready tree & context). Let p be a process
with Logic LTS 〈P,−→, F 〉 having sort AP , let q be a process with sort AQ, and
let p ε=⇒| p0.

1. The characteristic ready tree P0 of p with respect to p0 and q is a Logic LTS
whose states are paths π ∈ P × (AP × P)∗ of p originating in p0, as well as
such paths concatenated with selection sets D which are subsets of AP ×
P . Formally, the state set P0 and transition relation −→P0 are inductively
defined as follows, where last(π) denotes the last process on path π and the
xD /∈ AP ∪ AQ are fresh actions with respect to p and q:
– p0 ∈ P0;
– π

xD−→P0 πD and πD ∈ P0, if π ∈ P0, ∀〈a, p〉 ∈ D. last(π) a=⇒| p in P and
∀a ∈ I(last(π))∃1〈a, p〉 ∈ D;

– πD
a−→P0 πap and πap ∈ P0, if πD ∈ P0 and 〈a, p〉 ∈ D.

We will write 〈p0〉 instead of p0 when we wish to highlight that not the
process p0 is meant, but the path consisting only of p0.

2. The characteristic context K of p with respect to p0 and q is defined as the
Logic LTS P0 augmented with the fresh process 0 and transitions
– πD

a−→K 0, if πD ∈ P0, a ∈ AQ and � ∃p.〈a, p〉 ∈ D.

760 G. Lüttgen and W. Vogler

Proposition 15. Let P0 be the characteristic ready tree of a process p wrt.
some p0 and q, and let K be the respective characteristic context of p. Then,
P0 is a ready tree of p ‖A 〈p0〉, where A =df AP ∪AQ and 〈p0〉 is the root of K.

Proof. P0 is an observation tree by construction, since it is a deterministic tree
and since all its vertices are stable processes. We define a mapping h0 from
the vertices in P0 to processes in P ‖A K by h0(π) =df last(π) ‖A π and
h0(πD) =df last(π) ‖A πD, and verify Conds. (RT1)–(RT4) of Def. 8:

(RT1) This is trivial since last(π), π and πD are all stable and not in F .
(RT2) We have p ‖A 〈p0〉 ε=⇒| p0 ‖A 〈p0〉 by construction.
(RT3) If π xD−→P0 πD, then π

xD−→K πD by construction of K. Since xD is
a “fresh” action, h0(π) = last(π) ‖A π

xD−→F last(π) ‖A πD = h0(πD). If
πD

a−→P0 πap, then last(π) a=⇒| p and πD
a−→K πap by the construction

of K. As a ∈ A, we have h0(πD) = last(π) ‖A πD a=⇒| p ‖A πap = h0(πap).
(RT4) Observe that the ready set of state πD in K is the initial action set
I(last(π)) of the last process of path π in P plus all actions in AQ, whereas
the same state in P0 has only ready set I(last(π)). By the operational rules
for parallel composition we obtain:
– IP‖AK(last(π) ‖A π) = (IP (last(π)) ∩ IK(π) ∩ A) ∪ (IP (last(π)) \ A) ∪

(IK(π) \A) = ∅ ∪ ∅ ∪ IK(π) = IP0 (π).
– IP‖AK(last(π) ‖A πD) = (IP (last(π))∩IK (πD)∩A)∪(IP (last(π))\A)∪

(IK(πD)\A) = (IP (last(π))∩(IP (last(π))∪AQ)∩A)∪∅∪((IP (last(π))∪
AQ) \A) = IP (last(π)) = IP0(πD); note that the last equality is due to
the construction of P0 from P . ��

Observe that P0 is not a ready tree of p itself due to the fresh actions inserted
in P0; these actions are added to p via the parallel context K. Together, char-
acteristic ready trees and Prop. 15 are the key for proving our main result:

Theorem 16 (Full abstraction). The largest precongruence contained in &F ,
with respect to parallel composition and conjunction, equals &RS.

Proof. Because of Thm. 12 and Thm. 10 [11], as well as the fact that ready
simulation is contained in the ready-tree preorder ⊆RT and thus in &F [11], it is
sufficient to prove that &RS subsumes the largest precongruence ⊆+

RT contained
in ⊆RT. Consider processes p and q with Logic LTSs P and Q and sorts AP and
AQ. We let APQ stand for AP ∪ AQ, and abbreviate ‖APQ by ‖.

Now assume p ⊆+
RT q, and consider some p0 such that p ε=⇒| p0. Because of

p ⊆+
RT q and Prop. 15, we have P0 ∈ RT(q ‖ 〈p0〉) due to some mapping h (cf.

Def. 8); in particular, q /∈ F . Here, P0 is the characteristic ready tree of p with
respect to p0 and q. To prove our claim, it is sufficient to establish that

R0 =df {〈p′, q′〉 | ∃π. last(π) = p′ and h(π) = q′ ‖ π}

is a stable ready simulation relation. Thus, let 〈p′, q′〉 ∈ R0 due to π.

Ready Simulation for Concurrency: It’s Logical! 761

(RS1) h(π) is stable, whence q′ is. Moreover, last(π) is stable by construction.
(RS2) h(π) /∈ F implies q′ /∈ F .
(RS3) Let p′ a=⇒| p′′ and π xD−→ πD with 〈a, p′′〉 ∈ D for some p′′. Then, πD a−→

πap′′. Moreover, h(πD) = q′ ‖ πD, whence q′ ‖ πD a=⇒|h(πap′′) = q′′ ‖ πap′′
for some q′′ by (RT3), as well as q′ a=⇒| q′′ and 〈p′′, q′′〉 ∈ R0 due to πap′′.

(RS4) We have p′ /∈ F by construction. Choose some D with π xD−→ πD, whence
h(πD) = q′‖πD. Now, I(p′) = I(πD) in P0 by construction of P0. The latter
equals I(q′‖πD) by (RT4), which in turn equals the set I(q′) since AQ ⊆
I(πD) ⊆ APQ, for I(πD) in the characteristic context. Hence, I(p′) = I(q′).

Thus, R0 is a stable ready simulation relation. Finally observe h(p0) = q0 ‖ 〈p0〉
for some q0 such that q‖〈p0〉 ε=⇒| q0‖〈p0〉 (by (RT2)); therefore, q ε=⇒| q0 and
〈p0, q0〉 ∈ R0 due to 〈p0〉.

Summarising, we have shown that, for each p0 with p
ε=⇒| p0, there exists

some q0 satisfying q ε=⇒| q0 and p0 �∼RS
q0. Hence, p &RS q. ��

One way to guarantee the existence of the fresh actions required in the construc-
tion of characteristic ready trees is to assume an uncountable alphabet A and
to restrict ourselves to those processes that are finitely branching with respect
to a=⇒| , for all a ∈ A, and have a countable sort. Then, context K and the
characteristic ready trees are also finitely branching and have countable sorts.

Logic properties of ready simulation. We conclude this section by highlighting
some logic properties of ready simulation.

Theorem 17 (∧ is And). (1) r �∼RS
p ∧ q if and only if r �∼RS

p and r �∼RS
q;

(2) r &RS p ∧ q if and only if r &RS p and r &RS q.

As for the compositionality proof of ready simulation wrt. conjunction, the proof
of this theorem uses the concept of witness for reasoning about inconsistencies:

Lemma 18. The set W ′ =df W
′
1 ∪W ′

2 is a witness, where
W ′

1 =df {p ∧ q |∃r. r �∼RS
p, r �∼RS

q and r /∈ F}
W ′

2 =df {p ∧ q |∃r, p, q, r′, p′, q′, a. r �∼RS
p, r �∼RS

q, r
a=⇒| r′, p a=⇒F p

ε1=⇒| p′ and

q
a=⇒F q

ε2=⇒| q′ with {ε1, ε2} = {ε, τ}, r′ �∼RS
p′ and r′ �∼RS

q′} .

Conjunction also satisfies further standard logic properties:

Proposition 19 (Logic properties of ready simulation)
1. p ∧ ff =RS ff; p ∧ ff ≈RS ff if p stable;
2. p ∧ q &RS p; p ∧ q �∼RS

p if p, q stable;
3. p ∧ p =RS p;
4. p ∧ q =RS p if and only if p &RS q.

In our previous work we also considered a disjunction operator ∨ on Logic LTSs.
This operator was defined as internal choice, i.e., p ∨ q can perform an internal
τ -transition to both p and q, where p ∨ q is considered to be inconsistent if

762 G. Lüttgen and W. Vogler

both p and q are. Due to space constraints we do not include disjunction here,
but simply note that ready simulation is compositional for disjunction and that
the dual properties to the ones of Prop. 19 hold. The validity of these statements
is not difficult to check. Moreover, the distributivity laws hold, too.

4 Related Work

This section briefly discusses related work; a full discussion can be found in [11].
Firstly, our ready-tree semantics is in essence the path-based possible-worlds se-
mantics of van Glabbeek [6] which goes back to Veglioni and De Nicola [17], and
our ready simulation was first suggested by Bloom et al. [3]. However, in con-
trast to the standard notions of these semantics, our setting deals with internal
actions as well as inconsistencies.

Traditional research has often avoided explicitly mixing operational and logic
styles of specification by translating one style into the other. Operational con-
tent may be translated into logic formulas, as is implicitly done in [7, 10], where
logic implication serves as refinement relation [1]. Dually, logic content may be
translated into operational content. This is the case in automata-theoretic work,
such as in Kurshan’s work on ω-automata [9], which includes synchronous and
asynchronous composition operators and uses maximal trace inclusion as refine-
ment relation. However, both logic implication and trace inclusion are insensitive
to deadlock and are thus inadequate in the presence of concurrency.

A seminal approach to compositional refinement in a mixed setting was pro-
posed by Olderog in [14], where process-algebraic constructs are combined with
trace formulas expressed in a predicate logic and where failure semantics forms
the semantic basis of refinement. In this approach, trace formulas can serve as
processes, but not vice versa. Thus, and in contrast to our present work, freely
mixing operational and logic specification styles is not supported and, in partic-
ular, conjunction cannot be applied to processes.

Finally, it should be noted that the term consistency as used here is different
from the one in [16], where two specifications are defined as consistent if they
have at least one implementation in common. In our setting, a process p /∈ F is
called consistent, while p∧q implements both p and q, for arbitrary p, q. Thm. 17
also implies that p and q are consistent in the sense of [16], if p ∧ q /∈ F in our
setting.

5 Conclusions and Future Work

This paper proved that ready simulation [3] is fully abstract with respect to con-
junction and parallel composition on Logic LTS. In this sense, ready simulation
is indeed a “logical” semantics. Establishing this result was non-trivial due to
the challenges that arise when dealing with inconsistencies under conjunctive
composition. This is evidenced by the complex compositionality proof with re-
spect to conjunction, as well as the two-step “largest” precongruence proof that
relied on our previous full-abstraction work on ready-tree semantics [11].

Ready Simulation for Concurrency: It’s Logical! 763

Our results show that conjunction is a tool for relating trace-based semantics
to simulation-based semantics, via the concept of full abstraction. This sheds
additional light onto van Glabbeek’s linear-time, branching-time spectrum [6].
Moreover, our results imply that ready simulation commends itself as a suitable
behavioural relation for reasoning about specifications given in a mixed opera-
tional and logic style. Indeed, future work shall employ ready simulation within
novel algebras that will combine process-algebraic and temporal-logic operators.

Acknowledgements. We wish to thank the anonymous referees for their insightful
and constructive comments. The first author also acknowledges support by the
EPSRC under grant no. EP/E034853/1.

References

[1] Abadi, M., Plotkin, G.D.: A logical view of composition. TCS 114(1), 3–30 (1993)
[2] Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier,

Amsterdam (2001)
[3] Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1),

232–268 (1995)
[4] Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer

Science, vol. B, pp. 995–1072. North-Holland, Amsterdam (1990)
[5] van Glabbeek, R.: The linear time – branching time spectrum II (1993) Available

at http://theory.stanford.edu/∼rvg/abstracts.html#26
[6] van Glabbeek, R.: The linear time – branching time spectrum I. In: Handbook of

Process Algebra, ch. 1, pp. 3–99. Elsevier, Amsterdam (2001)
[7] Graf, S., Sifakis, J.: A logic for the description of non-deterministic programs and

their properties. Inform. & Control 68(1–3), 254–270 (1986)
[8] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs (1985)
[9] Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The

Automata-Theoretic Approach. Princeton Univ. Press, Princeton (1994)
[10] Lamport, L.: The temporal logic of actions. TOPLAS 16(3), 872–923 (1994)
[11] Lüttgen, G., Vogler, W.: Conjunction on processes: Full-abstraction via ready-tree

semantics. TCS 373(1–2), 19–40 (2007)
[12] Lüttgen, G., Vogler, W.: Ready simulation for concurrency: It’s logical! Techn.

rep. 2007-4, Inst. f. Informatik, Univ. Augsburg (2007)
http://www.informatik.uni-augsburg.de/forschung/reports/

[13] Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

[14] Olderog, E.-R.: Nets, Terms and Formulas. Cambridge Tracts in Theoretical Com-
puter Science, vol. 23. Cambridge Univ. Press, Cambridge (1991)

[15] Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicat-
ing processes. Acta Informatica 23(1), 9–66 (1986)

[16] Steen, M., Derrick, J., Boiten, E., Bowman, H.: Consistency of partial process
specifications. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 248–
262. Springer, Heidelberg (1998)

[17] Veglioni, S., De Nicola, R.: Possible worlds for process algebras. In: Sangiorgi, D.,
de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 179–193. Springer,
Heidelberg (1998)

http://theory.stanford.edu/~rvg/abstracts.html#26
http://www.informatik.uni-augsburg.de/forschung/reports/

Continuous Capacities on Continuous State Spaces�

Jean Goubault-Larrecq

LSV, ENS Cachan, CNRS, INRIA Futurs
61, avenue du président-Wilson, F-94235 Cachan

goubault@lsv.ens-cachan.fr

Abstract. We propose axiomatizing some stochastic games, in a continuous state
space setting, using continuous belief functions, resp. plausibilities, instead of
measures. Then, stochastic games are just variations on continuous Markov chains.
We argue that drawing at random along a belief function is the same as letting the
probabilistic player P play first, then letting the non-deterministic player C play
demonically. The same holds for an angelic C, using plausibilities instead. We
then define a simple modal logic, and characterize simulation in terms of for-
mulae of this logic. Finally, we show that (discounted) payoffs are defined and
unique, where in the demonic case, P maximizes payoff, while C minimizes it.

1 Introduction

Consider Markov chains: these are transition systems, which evolve from state x ∈ X
by drawing the next state y in the state spaceX according to some probability distribu-
tion θ(x). One may enrich this model to take into account decisions made by a player
P, which can take actions � in some set L. In state x ∈ X , P chooses an action � ∈ L,
and draws the next state y according to a probability distribution θ�(x) depending on
� ∈ L: these are labeled Markov processes (LMPs) [8]. Adding rewards r�(x) on taking
action � from state x yields Markov decision processes [11]. The main topic there is to
evaluate strategies that maximize the expected payoff, possibly discounted.

These notions have been generalized in many directions. Consider stochastic games,
where there is not one but several players, with different goals. In security protocols,
notably, it is meaningful to assume that the honest agents collectively define a player P
as above, who may play probabilistically, and that attackers define a second player C,
who plays non-deterministically. Instead of drawing the next state at random, C delib-
erately chooses its next state, typically to minimize P’s expected payoff or to maximize
the probability that a bad state is reached—this is demonic non-determinism.

A nice idea of F. Laviolette and J. Desharnais (private comm., 2003), which we
develop, is that the theory of these games could be simplified by relaxing the require-
ments of Markov chains: if ν = θ�(x) is not required to be a measure, but the additivity
requirement is relaxed to sub-additivity (i.e., ν(A)+ν(B) ≤ ν(A∪B) for disjoint mea-
surable sets A,B), then such “preprobabilities” include both ordinary probabilities and
the following funny-looking unanimity game uA, which represents the demonic non-
deterministic choice of an element from the setA: the preprobability uA(B) of drawing

� Partially supported by the INRIA ARC ProNoBis.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 764–776, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

goubault@lsv.ens-cachan.fr

Continuous Capacities on Continuous State Spaces 765

an element in B is 1 if A ⊆ B, 0 otherwise. The intuition is as follows. Assume that,
starting from state x, you would like the next state y to be in B. A demonic adversary
C will then strive to pick y outside B. Now if C’s moves are given by δ�(x) = uA, then
eitherA �⊆ B, then it is C’s interest to pick y fromA \B, so that the preprobability that
y be in B is 0; or A ⊆ B, then C is forced to play y ∈ B, and the preprobability is 1.

However, sub-additive set functions are not quite the right notion; and second (which
does not detract from F. Laviolette and J. Desharnais’ great intuition), the right notions
had been invented by economists in the 1950s under the name of “cooperative game
with transferable utility” [22] and by statisticians in the 1960s under the names of belief
functions and plausibilities, while capacities and Choquet integration are even more
ancient [4]. A nice survey is [13]. These notions are well-known in discrete state spaces.
Our generalization to topological spaces is new, and non-trivial. The spaces we consider
include finite spaces as well as infinite ones such as Rn, but also cpos and domains.

Outline. We introduce necessary mathematical notions in Section 2. We then develop
the theory of continuous games, and continuous belief functions in particular in Sec-
tion 3, showing in a precise sense how the latter model both probabilistic and demonic
non-deterministic choice. We then recall the Choquet integral in Section 4, and show
how taking averages reflects the fact that C aims at minimizing P’s gains. We briefly
touch the dual notion of plausibilities (angelic non-determinism) in passing. Finally, we
define ludic transition systems, the analogue of Markov chains, except using continu-
ous games, in Section 5, and define a notion of simulation topologies. We show that
the coarsest simulation topology is exactly that defined by a simple modal logic, à la
Larsen-Skou [19]. This illustrates how continuous games allow us to think of certain
stochastic games as really being just LMPs, only with a relaxed notion of probability.

This work is a summary of most of Chapters 1-9 of [14], in which all proofs, and
many more results can be found.

Related Work. Many models of Markov chains or processes, or stochastic games are
discrete or even finite-state. Desharnais et al. [8] consider LMPs over analytic spaces,
a class of topological spaces that includes not only finite spaces but also spaces such
as Rn. They show an extension of Larsen and Skou’s Theorem [19]: two states are
probabilistically bisimilar iff they satisfy the same formulae of the logic whose formulae
are F ::= 0|F ∧F |[�]>rF , where [�]>rF is true at those states x where the probability
θ�(x)(�F �θ) of going to some state satisfying F by doing action � is greater than r.
This is extended to any measurable space through event bisimulations in [5].

Mixing probabilistic (player P) and non-deterministic (C) behavior has also received
some attention. This is notably at the heart of the probabilistic I/O automata of Segala
and Lynch [25]. The latter can be seen as labeled Markov processes with discrete prob-
ability distributions θ�(x) (i.e., linear combinations of Dirac masses), where the set L of
actions is partitioned into internal (hidden) actions and external actions. While P con-
trols the latter, the former represent non-deterministic transitions, i.e., under the control
of C. Our model of stochastic games is closer to the strictly alternating variant of proba-
bilistic automata, where at each state, a non-deterministic choice is made among several
distributions, then the next state is drawn at random according to the chosen distribu-
tion. I.e., C plays, then P, and there is no intermediate state where C would have played

766 J. Goubault-Larrecq

but not P. This is similar to the model by Mislove et al. [21], who consider state spaces
that are continuous cpos. In our model, this is the other way around: in each state, P
draws at random a possible choice set for C, who then picks non-deterministically from
it. Additionally, our model accommodates state spaces that are discrete, or continuous
cpos, or topological spaces such as Rn, without any change to be made. Mislove et
al. [21] consider a model where non-determinism is chaotic, i.e., based on a variant of
Plotkin’s powerdomain. We concentrate on demonic non-determinism, which is based
on the Smyth powerdomain instead. For angelic non-determinism, see [14, chapitre 6],
and [14, chapitre 7] for chaotic non-determinism.

Bisimulations have been studied in the above models. There are many variants on
probabilistic automata [26,16,23]. Mislove et al. [21] show that (bi)simulation in their
model is characterized by a logic similar to [8], with an added disjunction operator. Our
result is similar, for a smaller logic, with one less modality. Segala and Turrini [27]
compare various notions of bisimulations in these contexts.

We have already mentioned cooperative games and belief functions. See the abun-
dant literature [6,7,28,13,24,2]. We view belief functions as generalized probabilities;
the competing view as a basis for a theory of evidence is incompatible [15].

An obvious approach to studying probabilistic phenomena is to turn to measure the-
ory and measurable spaces, see e.g. [3]. However, we hope to demonstrate that the
theory of cooperative games in the case of infinite state spaces X is considerably more
comfortable when X is a topological space, and we only measure opens instead of
Borel subsets. This is in line with the theory of continuous valuations [17], which has
had considerable success in semantics.

We use Choquet integration to integrate along capacities ν [4]. This is exactly the no-
tion that Tix [30] used more recently, too, and coincides with the Jones integral [17] for
integration along continuous valuations. Finally, we should also note that V. Danos and
M. Escardo have also come up (private comm.) with a notion of integration that gener-
alizes Choquet integration, at least when integrating with respect to a convex game.

2 Preliminaries

Our state spaces X are topological spaces. We assume the reader to be familiar with
(point-set) topology, in particular topology of T0 but not necessarily Hausdorff spaces.
See [12,1,20] for background. Let int(A) denote the interior of A, cl(A) its closure.

The Scott topology on a poset X , with ordering ≤, has as opens the upward-closed
subsets U (i.e., x ∈ U and x ≤ y imply y ∈ U) such that for every directed family
(xi)i∈I having a least upper bound supi∈I xi inside U , some xi is already in U . The
way-below relation" is defined by x " y iff for any directed family (zi)i∈I with a
least upper bound z such that y ≤ z, then x ≤ zi for some i ∈ I . A poset is continuous
iff ↓↓y = {x ∈ X |x" y} is directed, and has x as least upper bound. Then every open
U can be written

⋃
x∈U ↑↑x, where ↑↑x = {y ∈ X |x" y}.

Every topological space X has a specialization quasi-ordering≤, defined by: x ≤ y
iff every open that contains x contains y. X is T0 iff ≤ is a (partial) ordering. That of
the Scott topology of a quasi-ordering≤ is ≤ itself. A subset A ⊆ X is saturated iff A
is the intersection of all opens that contain it; alternatively, iff A is upward-closed in ≤.

Continuous Capacities on Continuous State Spaces 767

Every open is upward-closed. Let ↑ A denote the upward-closure of A under a quasi-
ordering≤, ↓ A its downward-closure. A T0 space is sober iff every irreducible closed
subset is the closure cl{x} =↓ x of a (unique) point x. The Hofmann-Mislove Theorem
implies that every sober space is well-filtered [18], i.e., given any filtered family of
saturated compacts (Qi)i∈I in X , and any open U ,

⋂
i∈I Qi ⊆ U iff Qi ⊆ U for some

i ∈ I . In particular,
⋂
i∈I Qi is saturated compact. X is locally compact iff whenever

x ∈ U (U open) there is a saturated compactQ such that x ∈ int(Q) ⊆ Q ⊆ U . Every
continuous cpo is sober and locally compact in its Scott topology. We shall consider the
space R of all reals with the Scott topology of its natural ordering≤. Its opens are ∅, R,
and the intervals (t,+∞), t ∈ R. R is a stably locally compact, continuous cpo. Since
we equip R with the Scott topology, our continuous functions f : X → R are those
usually called lower semi-continuous in the mathematical literature.

We call capacity on X any function ν from O(X), the set of all opens of X , to
R+, such that ν(∅) = 0 (a.k.a., a set function.) A game ν is a monotonic capacity,
i.e., U ⊆ V implies ν(U) ≤ ν(V). (The name “game” is unfortunate, as there is no
obvious relationship between this and games as they are usually defined in computer
science, in particular with stochastic games. The name stems from cooperative games
in economics, whereX is the set of players, not states.) A valuation is a modular game
ν, i.e., one such that ν(U ∪ V) + ν(U ∩ V) = ν(U) ∩ ν(V) for every opens U, V . A
game is continuous iff ν(

⋃
i∈I Ui) = supi∈I ν(Ui) for every directed family (Ui)i∈I of

opens. Continuous valuations have a convenient theory that fits topology well [17,18].
The Dirac valuation δx at x ∈ X is the continuous valuation mapping each open

U to 1 if x ∈ U , to 0 otherwise. (Note that δx = u{x}, by the way.) A finite linear
combination

∑n
i=1 aiδxi , ai ∈ R+, is a simple valuation. All simple valuations are

continuous. Conversely, Jones’ Theorem [17, Theorem 5.2] states that, if X is a con-
tinuous cpo, then every continuous valuation ν is the least upper bound supi∈I νi of a
directed family (νi)i∈I of simple valuations way-below ν. Continuous valuations are
canonically ordered by ν ≤ ν′ iff ν(U) ≤ ν′(U) for every open U of X .

3 Continuous Games, and Belief Functions

Defining the “preprobabilities” alluded to in the introduction is best done by strength-
ening super-additivity. A game ν on X on X is convex iff ν(U ∪ V) + ν(U ∩ V) ≥
ν(U)+ν(V) for every opensU, V . It is concave if the opposite inequality holds. Convex
games are a cornerstone of economic theory. E.g., Shapley’s Theorem states that (on a
finite space) the core {p valuation on X |ν ≤ p, ν(X) = p(X)} of any convex game ν
is non-empty, which implies the existence of economic equilibria [13,22]. But this has
only been studied on discrete spaces (finiteness is implicit in [13], notably). Finite, and
more generally discrete spaces are sets X , equipped with the discrete topology, so one
may see our topological approach as a generalization of previous approaches.

Recall that the unanimity game uA is defined by uA(U) = 1 if A ⊆ U , uA(U) =
0 otherwise. Clearly, uA is convex. It is in fact more. Call a game ν totally convex
(the standard name, when X is discrete, i.e., when Ui is an arbitrary subset of X , is
“totally monotonic”; we changed the name so as to name total concavity the dual of
total monotonicity) iff:

768 J. Goubault-Larrecq

ν

(
n⋃

i=1

Ui

)

≥
∑

I⊆{1,...,n},I �=∅
(−1)|I|+1ν

(
⋂

i∈I
Ui

)

(1)

for every finite family (Ui)
n
i=1 of opens (n ≥ 1), where |I| denotes the cardinality of I .

A belief function is a totally convex game. The dual notion of total concavity is obtained
by replacing

⋃
by

⋂
and conversely in (1), and turning ≥ into ≤. A plausibility is

a totally concave game. If ≥ is replaced by = in (1), then we retrieve the familiar
inclusion-exclusion principle from statistics. In particular any (continuous) valuation
is a (continuous) belief function. Clearly, any belief function is a convex game. The
converses of both statements fail: On X = {1, 2, 3} with the discrete topology, u{1,2}
is a belief function but not a valuation, and 1

2 (u{1,2} + u{1,3} + u{2,3} − u{1,2,3}) is a
convex game but not a belief function.

WhenX is finite, it is well-known [13] that any capacity ν can be written
∑

A �=∅,A⊆X
αAuA for some coefficients αA ∈ R, in a unique way. Also, ν is a belief function iff all
coefficients are non-negative. An interpretation of this formula is that ν is essentially a
probabilistic choice of some non-empty subset A, with probability αA, from which C
can choose an element y ∈ A non-deterministically.

Our first result is to show that this result transfers, in some form, to the general
topological case. Let Q(X) be the Smyth powerdomain of X , i.e., the space of all non-
empty compact saturated subsets Q of X , ordered by reverse inclusion ⊇. Q(X) is
equipped with its Scott topology, and is known to provide an adequate model of de-
monic non-determinism in semantics [1]. When X is well-filtered and locally com-
pact, Q(X) is a continuous cpo. Its Scott topology is generated by the basic open sets�U = {Q ∈ Q(X)|Q ⊆ U}, U open in X .

The relevance of Q(X) here can be obtained by realizing that a finite linear combi-
nation

∑n
i=1 aiuAi with positive coefficients is a continuous belief function iff every

subset Ai is compact; and that uAi = u↑Ai . Any such linear combination that is con-
tinuous is therefore of the form

∑n
i=1 aiuQi , with Qi ∈ Q(X). We call such belief

functions simple. Returning to the interpretation above, this can be intuitively seen as
a probabilistic choice of some set Qi with probability ai, from which C will choose
y ∈ Qi; additionally, Qi is an element of Q(X), the traditional domain for demonic
non-determinism.

So any simple belief function ν can be matched with a (simple) valuation ν∗ =∑n
i=1 aiδQi on Q(X). Note that ν∗(�U) = ν(U) for every open U of X . This is

exactly the sense in which continuous belief functions are essentially continuous valu-
ations on the space Q(X) of non-deterministic choices.

Theorem 1. For any continuous valuationP on Q(X), the capacity ν defined by ν(U)=
P (�U) is a continuous belief function on X .

Conversely, letX be a well-filtered and locally compact space. For every continuous
belief function ν on X there is a unique continuous valuation ν∗ on Q(X) such that
ν(U) = ν∗(�U) for every open U of X .

Proof. (Sketch.) The first part follows by computation. For the second part, observe that⋃n
i=1 �Ui ⊆ ⋃m

j=1 �Vj iff for every i, 1 ≤ i ≤ n, there exists j, 1 ≤ j ≤ m, such that

Continuous Capacities on Continuous State Spaces 769

Ui ⊆ Vj . Thus, the function P given by P (
⋃n
i=1 �Ui) =

∑
I⊆{1,...,n},I �=∅ (−1)|I|+1

ν
(⋂

i∈I Ui
)

is well-defined and monotonic. Let ν∗(U) be the least upper bound of

P
(⋃

Q∈J �int(Q)
)

, when J ranges over finite subsets of U: ν∗ is monotonic, con-

tinuous, ν∗(�U) = P (�U) = ν(U), and fairly heavy computation shows that ν∗ is
modular. Uniqueness is easy. ��
Next, we show that this bijection is actually an isomorphism, i.e., it also preserves order
and therefore the Scott topology. To this end, define the ordering ≤ on all capacities,
not just valuations, by ν ≤ ν′ iff ν(U) ≤ ν′(U) for every open U of X . We start
by characterizing it in the manner of Jones’ splitting lemma. This [17, Theorem 4.10]
states that

∑m
i=1 aiδxi ≤

∑n
j=1 bjδyj iff there is matrix (tij)1≤i≤m

1≤j≤n
of coefficients in

R+ such that
∑n

j=1 tij = ai for each i,
∑m

i=1 tij ≤ bj for each j, and whenever
tij �= 0 then xi ≤ yj . (Jones proves it for cpos, but it holds on any topological space
[29, Theorem 2.4, Corollary 2.6].) We show:

Lemma 1 (Splitting Lemma).
∑m

i=1 aiuQi≤
∑n

j=1 bjuQ′
j

iff there is matrix (tij)1≤i≤m
1≤j≤n

of coefficients in R+ such that
∑n

j=1 tij = ai for each i,
∑m

i=1 tij ≤ bj for each j,
and whenever tij �= 0 then Qi ⊇ Q′

j .

It follows that: (A) for any two simple belief functions ν, ν′ on X , ν ≤ ν′ iff ν∗ ≤
ν′

∗, since the two are equivalent to the existence of a matrix (tij)1≤i≤m
1≤j≤n

satisfying the

same conditions. This can be extended to all continuous belief functions, see below. Let
Cd≤1(X) be the space of continuous belief functions ν on X with ν(X) ≤ 1, ordered
by ≤. Let V≤1(X) the subspace of continuous valuations. We have:

Theorem 2. Let X be well-filtered and locally compact. Every continuous belief func-
tion ν on X is the least upper bound of a directed family of simple belief functions νi
way-below ν. Cd≤1(X) is a continuous cpo.

It follows that continuous belief functions are really the same thing as (sub-)probabi-
lities over the set of demonic choice sets Q ∈ Q(X).

Theorem 3. Let X be well-filtered and locally compact. The function ν �→ ν∗ defines
an order-isomorphism from Cd≤1(X) to V≤1(Q(X)).

As a side note, (up to the ≤ 1 subscript) V≤1(Q(X)) is exactly the space into which
Edalat [10] embeds a space of measures onX . The above Theorem states that the space
of objects for which we can do this is exactly Cd≤1(X).

Dually, we may mix probabilistic choice with angelic non-determinism. Space does
not permit us to describe this in detail, see [14, chapitre 6]. The point is that the space
Pb≤1(X) of continuous plausibilities is order-isomorphic to V≤1(Hu(X)), whenever
X is stably locally compact, where the (topological) Hoare powerdomain Hu(X) ofX
is the set of non-empty closed subsets of X , with the upper topology of the inclusion
ordering, generated by the subbasic sets �U = {F ∈ H(X)|F ∩U �= ∅},U open inX .
The argument goes through a nice notion of convex-concave duality, which intuitively
exchanges good (concave) and evil (convex). The case of chaotic non-determinism is
more complex, see [14, chapitre 7].

770 J. Goubault-Larrecq

4 Choquet Integration

We introduce the standard notion of integration along games ν. This is mostly well-
known [13]; adapting to the topological case is easy, so we omit proofs [14, chapitre 4].

Let ν be a game onX , and f be continuous fromX to R. Recall that we equip R with
its Scott topology, so that f is really what is known otherwise as lower semi-continuous.
Assume f bounded, too, i.e., infx∈X f(x) > −∞, supx∈X f(x) < +∞. The Choquet
integral of f along ν is:

C

∫

x∈X
f(x)dν =

∫ +∞

0

ν(f−1(t,+∞))dt+
∫ 0

−∞
[ν(f−1(t,+∞))− ν(X)]dt (2)

where both integrals on the right are improper Riemann integrals. This is well-defined,
since f−1(t,+∞) is open for every t ∈ R by assumption, and ν measures opens. Also,
since f is bounded, the improper integrals above really are ordinary Riemann integrals
over some closed intervals. The function t �→ ν(f−1(t,+∞)) is decreasing, and every
decreasing (even non-continuous, in the usual sense) function is Riemann-integrable,
therefore the definition makes sense.

An alternate definition consists in observing that any step function
∑n

i=0 aiχUi ,
where a0 ∈ R, a1, . . . , an ∈ R+, X = U0 ⊇ U1 ⊇ . . . ⊇ Un is a decreasing sequence
of opens, and χU is the indicator function ofU (χU (x) = 1 if x ∈ X , χU (x) = 0 other-
wise) is continuous, and of integral along ν equal to

∑n
i=0 aiν(Ui)—for any game ν. It

is well-known that every bounded continuous function f can be written as the least up-

per bound of a sequence of step functions fK =a+ 1
2K

∑ (b−a)2K!
k=1 χf−1(a+ k

2K ,+∞)(x),

K ∈ N, where a = infx∈X f(x), b = supx∈X f(x). Then the integral of f along ν is
the least upper bound of the increasing sequence of the integrals of fK along ν.

The main properties of Choquet integration are as follows. First, the integral is in-
creasing in its function argument: if f ≤ g then the integral of f along ν is less than or
equal to that of g along ν. If ν is continuous, then integration is also Scott-continuous
in its function argument. The integral is also monotonic and Scott-continuous in the
game ν, provided the function we integrate takes only non-negative values, or provided
ν is normalized, i.e., ν(X) = 1. Integration is linear in the game, too, so integrating
along

∑n
i=1 aiνi is the same as taking the integrals along each νi, and computing the

obvious linear combination. However, Choquet integration is not linear in the function
integrated, unless the game ν is a valuation. Still, it is positively homogeneous: inte-
grating αf for α ∈ R+ yields α times the integral of f . It is additive on comonotonic
functions f, g : X → R (i.e., there is no pair x, x′ ∈ X such that f(x) < f(x′) and
g(x) > g(x′)). It is super-additive (the integral of f + g is at least that of f plus that of
g) when ν is convex, in particular when ν is a belief function, and sub-additive when ν
is concave. See [13] for the finite case, [14, chapitre 4] for the topological case.

One of the most interesting things is that integrating with respect to a unanimity
game consists in taking minima. This suggests that unanimity games indeed model
some demonic form of non-determinism. Imagine f(x) is the amount of money you
gain by going to state x. The following says that taking the average amount of money
with respect to a demonic adversary C will give you back the least amount possible.

Continuous Capacities on Continuous State Spaces 771

Proposition 1. For any continuous f : X → R+,

C

∫

x∈X
f(x)duA = inf

x∈A
f(x)

Moreover, if A is compact, then
the inf is attained: this equals
minx∈A f(x).

Since Choquet integration is linear in the game, the integral of f along a simple belief
function

∑n
i=1 aiuQi yields

∑n
i=1 ai minx∈Qi f(x): this is the expected min-value of

f obtained by drawing Qi at random with probability ai (P plays) then letting C non-
deterministically move to the state x ∈ Qi that minimizes the gain. We can generalize
this to non-discrete probabilities over Q(X) by using the ν �→ ν∗ isomorphism:

Theorem 4. For any bounded continuous function f : X → R, let f∗ be the function
from Q(X) to R defined by f∗(Q) = minx∈Q f(x). Say that a capacity ν is linearly
extensible from below if and only if there is continuous valuation P on Q(X) with:

C

∫

x∈X
f(x)dν = C

∫

Q∈Q(X)

f∗(Q)dP (3)

for every bounded continuous f . If X is well-filtered and locally compact, then the ca-
pacities that are linearly extensible from below are exactly the continuous belief func-
tions, and P must be ν∗ in (3).

It follows in particular that whenever ν is the least upper bound of a directed family
(νi)i∈I of simple belief functions νi, then integrating f : X → R with respect to ν can
be computed by taking least upper bounds of linear combinations of mins. Therefore
the Choquet integral along continuous belief functions coincides with Edalat’s lower
R-integral [10], which was only defined for measures.

This can be dualized to the case of plausibilities ν, assuming X stably locally com-
pact [14, théorème 6.3.17]. Then we talk about capacities that are linearly extensible
from above. There is an isomorphism ν �→ ν∗ such that ν∗(�U) = ν(U) for all U , and
integrating f along ν amounts to integrating f∗ along ν∗, where for every F ∈ Hu(X),
f∗(F) = supx∈F f(x). (I.e., C now maximizes our gain.) Then the Choquet integral
along continuous plausibilities coincides with Edalat’s upper R-integral [10].

5 Ludic Transition Systems, Logic, Simulation, Rewards

Let J≤1(X) be the space of all continuous games ν on X with ν(X) ≤ 1. This is
equipped with its Scott topology. It will be practical to consider another topology. The
weak topology on a subspace Y of J≤1(X) is the topology generated by the subbasic
open sets [U > r] = {ν ∈ Y |ν(U) > r}, U open in X , r ∈ R. It is in general
coarser than the Scott topology, and coincides with it when Y = V≤1(X) and X is
a continuous cpo [30, Satz 4.10]. One can show that the weak topology is exactly the
coarsest that makes continuous all functionals mapping ν ∈ Y to the integral of f along
ν, for all f : X → R+ bounded continuous. (See [14, section 4.5] for details.)

By analogy with Markov kernels and LMPs, define a ludic transition system as a
family θ = (θ�)�∈L, where L is a given set of actions, and each θ� is a continuous map
from the state spaceX to J≤1 wk(X). (See [14, chapitres 8, 9] for missing details.) The

772 J. Goubault-Larrecq

main change is that, as announced in the introduction, we replace probability distribu-
tions by continuous games. One may object that LMPs are defined as measurable, not
continuous, so that this definition overly restricts the class of transition systems we are
considering. However, the mathematics are considerably cleaner when assuming con-
tinuity. Moreover, the weak topology is so weak that, for example, it only restrains θ�
so that x �→ θ�(x)(U) is continuous as a function from X to R+, equipped with its
Scott topology; this certainly allows it to have jumps. Finally, one may argue, following
Edalat [10], that any second countable locally compact Hausdorff space X can be em-
bedded as a set of maximal elements of a continuous cpo (namely Q(X); other choices
are possible) so that any measure on X extends to a continuous valuation on Q(X).
This provides a theory of approximation of integration on X through domain theory.
One may hope a similar phenomenon will apply to games—for some notion of games
yet to be defined on Borel subsets, not opens.

Logic. Following [8,5], define the logic L"∧∨
open by the

grammar shown right, where � ∈ L, r ∈ Q ∩ [0, 1]
in the last line. Compared to [8,5], we only have
one extra disjunction operator. The same logic, with
disjunction, is shown to characterize simulation for
LMPs in [9, Section 2.3].

F ::= 0 true
| F ∧ F conjunction (and)
| F ∨ F disjunction (or)
| [�]>rF modality

Let �F �θ be the set of states x ∈ X where F holds: �0�θ = X , �F1 ∧ F2�θ =
�F1�θ ∧ �F2�θ, �F1 ∨ F2�θ = �F1�θ ∨ �F2�θ , and �[�]>rF �θ = δ−1

� [�F �θ > r] is the
set of states x such that the preprobability δ�(�F �θ) that the next state y will satisfy F
on firing an � action is strictly greater than r. Note that this is well-defined, precisely
because δ� is continuous from X to a space of games with the weak topology. Also, it
is easy to see that �F �θ is always open.

Simulation. Now define simulation in the spirit of event bisimulation [5] (we shall see
below why we do not call it bisimulation). For any topology O on X coarser than that
of X , let X : O be X equipped with the topology O. A simulation topology for θ is
a topology O on X , coarser than that of X , such that δ� is continuous from X : O to
J≤1 wk(X : O), i.e., δ−1

� [U > r] ∈ O for each U ∈ O and each r ∈ R. (A close notion
was introduced in [31, Theorem 29].) One non-explanation for this definition is to state
that this is exactly event bisimulation [5], only replacing σ-algebras by topologies. A
better explanation is to revert back to Larsen and Skou’s original definition of proba-
bilistic bisimulation in terms of an algebra of tests (in slightly more abstract form). A
(bi)simulation should not be thought as an arbitrary equivalence relation, rather as one
generated from a collection Tst of tests, which are subsets A of X : x ∈ X passes the
test iff x ∈ A, it fails it otherwise. Two elements are equivalent iff they pass the same
tests. Now in a continuous setting it only makes sense that the tests be open: any open
U defines a continuous predicate χU from X to the Sierpiński space S = {0, 1} (with
the Scott topology of 0 ≤ 1), and conversely. Let OTst be the topology generated by
the tests Tst. It is sensible to require that δ−1

� [U > r] be a test, too, at least when U
is a finite union of finite intersections of tests (for the general case, appeal to the fact
that δ�(x) is continuous, and that any open can be approximated by such a finite union):
one can indeed test whether x ∈ δ−1

� [U > r] by firing transitions according to the

Continuous Capacities on Continuous State Spaces 773

preprobability δ�(x), and test (e.g., by sampling, knowing that if δ�(x) is a belief func-
tion for example, then we are actually playing also against a demonic adversary C)
whether our chances of getting to a state y ∈ U exceed r. And this is essentially how
we defined simulation topologies.

Every simulation topology O defines a specialization quasi-ordering �O, which is
the analogue of the standard notion of simulation here. (Note that in the case of event
bisimulation, i.e., taking σ-algebras instead of topologies,�O would be an equivalence
relation—because σ-algebras are closed under complements—justifying the fact that
event bisimulation really is a bisimulation, while our notion is a simulation.) Write
≡O= �O ∩ :O the equivalence associated with simulation �O. Clearly, there is a
coarsest (largest) simulation topology Oθ. The following is then easy:

Theorem 5. Let O be a simulation topology for θ on X . For any F ∈ Lopen, �F �θ ∈
O. In particular [Soundness], if x ∈ �F �θ and x �O y then y ∈ �F �θ. Conversely
[Completeness], the coarsest simulation topology Oθ is exactly that generated by the
opens �F �θ , F ∈ L"∧∨

open.

This can be used, as is standard in the theory of Markov chains, to lump states. Given
a topology O, let X/O be the quotient space X/≡O, equipped with the finest topology
such that qO : X : O → X/O is continuous. Let the direct image f [ν] of a game
ν on X by a continuous map f : X → Y be f [ν](V) = ν(f−1(V)). Taking di-
rect images preserves monotonicity, modularity, (total) convexity, (total) concavity, and
continuity.

Proposition 2. Let O be a simulation topology for θ. The function θ�/O mapping qO(x)
to qO[θ�(x)] is well defined and continuous fromX/O to J≤1 wk(X/O) for every � ∈ L.
The family θ/O = (θ�/O)�∈L is then a ludic transition system on X/O, which we call
the lumped ludic transition system.

For any F ∈ L"∧∨
open and x ∈ X , x and qO(x) satisfy the same formulae: qO(�F �θ) =

�F �θ/O, and �F �θ = q−1
O (�F �θ/O), in particular, x ∈ �F �θ iff qO(x) ∈ �F �θ/O.

Rewards and payoffs. A classical problem on Markov decision processes is to eval-
uate average payoffs. Since LMPs and ludic transition systems are so similar, we can
do exactly the same. Imagine P plays according to a finite-state program Π , i.e., an

automaton with internal states q, q′ and transitions q
�−→q′. Let r

q
�−→q′ : X → R be

a family of bounded continuous reward functions: we may think that r
q

�−→q′(x) is the

amount of money P gains if she fires her internal transition q
�−→q′, drawing the next

state y at random along θ�(x). Let γ
q

�−→q′ ∈ (0, 1] be a family of so-called discounts.

Define the average payoff, starting from state x when P is in its internal state q, by:

Vq(x) = sup
�,q′/q

�−→q′

[
r
q

�−→q′(x) + γ
q

�−→q′ C

∫

y∈X
Vq′ (y)dθ�(x)

]
(4)

774 J. Goubault-Larrecq

This formula would be standard if θ�(x) were a probability distribution. What is less
standard is what (4) means when θ�(x) is a game. E.g., when θ�(x) is a simple belief
function

∑n�

i=1 ai�xuQi�x
, then:

Vq(x) = sup
�,q′/q

�−→q′

[

r
q

�−→q′(x) + γ
q

�−→q′

n�∑

i=1

ai�x min
y∈Qi�x

Vq′ (y)

]

(5)

where we see that P has control over the visible transitions �, and tries to maximize his
payoff (sup), while C will minimize it, and some averaging is taking place in-between.
The equation (4) does not always have a solution in the family of all Vqs. But there are
two cases where it has, similar to those encountered in Markov decision processes.

Theorem 6. Assume θ is standard, i.e., θ�(X) is always either 0 or 1, and the set {x ∈
X |θ�(x) = 0} of deadlock states is open; or that r

q
�−→q′(x) ≥ 0 for all q, �, q′, x ∈ X .

Assume also that there are a, b ∈ R with a ≤ r
q

�−→q′(x), γ
q

�−→q′ ≤ b for all q, �, q′,

x ∈ X . Then (4) has a unique solution in any of the following two cases:
[Finite Horizon] If all paths in Π have bounded length.
[Discount] If there is a constant γ ∈ (0, 1) such that γ

q
�−→q′ ≤ γ for every q, �, q′.

When θ� is a simple belief function, Equation (5) is then a Bellman-type equation that
can be solved by dynamic programming techniques. Then observe that any continuous
belief function is the directed lub of simple belief functions by Theorem 2, under mild
assumptions. This offers a canonical way to approximate the average payoff Vq .

Acknowledgments. Thanks to F. Laviolette, J. Desharnais, V. Danos, P. Panangaden,
Ph. Scott, M. Escardo, and the many others who expressed their support. Thanks to the
anonymous referees for their helpful comments.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.
(eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Oxford University Press,
Oxford (1994)

2. Bassett Jr., G.W., Koenker, R., Kordas, G.: Pessimistic portfolio allocation and Choquet ex-
pected utility (January 2004) Available from
http://www.econ.uiuc.edu/~roger/research/risk/choquet.pdf

3. Cattani, S., Segala, R., Kwiatkowska, M.Z., Norman, G.: Stochastic transition systems for
continuous state spaces and non-determinism. In: Sassone, V. (ed.) FOSSACS 2005. LNCS,
vol. 3441, pp. 125–139. Springer, Heidelberg (2005)

4. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953–54)
5. Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for

probabilistic systems. Information and Computation 204(4), 503–523 (2006) Special issue
for selected papers from CMCS04, 22 pages.

6. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of
Mathematical Statistics 38, 325–339 (1967)

7. Dempster, A.P.: A generalization of Bayesian inference. Journal of the Royal Statistical So-
ciety B 30, 205–247 (1968)

http://www.econ.uiuc.edu/~roger/research/risk/choquet.pdf

Continuous Capacities on Continuous State Spaces 775

8. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. In-
formation and Computation 179(2), 163–193 (2002)

9. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labeled Markov
processes. Information and Computation 184(1), 160–200 (2003)

10. Edalat, A.: Domain theory and integration. Theoretical Computer Science 151, 163–193
(1995)

11. Feinberg, E.A., Schwartz, A.: Handbook of Markov Decision Processes, Methods and Ap-
plications, pages. 565. Kluwer Academic Publishers, Dordrecht (2002)

12. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Com-
pendium of Continuous Lattices. Springer, Heidelberg (1980)

13. Gilboa, I., Schmeidler, D.: Additive representation of non-additive measures and the Cho-
quet integral. Discussion Papers 985. Center for Mathematical Studies in Economics and
Management Science, Northwestern University (1992)

14. Goubault-Larrecq, J.: Une introduction aux capacités, aux jeux et aux prévisions, 516 pages
(January 2007)
http://www.lsv.ens-cachan.fr/~goubault/ProNobis/pp.pdf,

15. Halpern, J.Y., Fagin, R.: Two views of belief: Belief as generalized probability and belief as
evidence. Artificial Intelligence 54, 275–317 (1992)

16. Hansson, H.A., Jonsson, B.: A calculus for communicating systems with time and probabil-
ities. In: Hans, A. (ed.) Proc. 11th IEEE Real-time Systems Symp., Silver Spring, MD, pp.
278–287. IEEE Computer Society Press, Los Alamitos (1990)

17. Jones, C.: Probabilistic Non-Determinism. PhD thesis, University of Edinburgh, Technical
Report ECS-LFCS-90-105 (1990)

18. Jung, A.: Stably compact spaces and the probabilistic powerspace construction. In: Deshar-
nais, J., Panangaden, P. (eds.) Domain-theoretic Methods in Probabilistic Processes. Elec-
tronic Lecture Notes in Computer Science, vol. 87, pp. 15. Elsevier, Amsterdam (2004)

19. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Compu-
tation 94, 1–28 (1991)

20. Mislove, M.: Topology, domain theory and theoretical computer science. Topology and Its
Applications 89, 3–59 (1998)

21. Mislove, M., Ouaknine, J., Worrell, J.: Axioms for probability and nondeterminism. In: Proc.
10th Int. Workshop on Expressiveness in Concurrency (EXPRESS’03). Electronic Notes in
Theoretical Computer Science, vol. 91(3), pp. 7–28 (2003)

22. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)
23. Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic processes. In:

Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg
(2000)

24. Schmeidler, D.: Subjective probability and expected utility without additivity. Economet-
rica 57, 571–587 (1989)

25. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. MIT
Press, Cambridge, MA (1996)

26. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal
of Computing 2(2), 250–273 (1995)

27. Segala, R., Turrini, A.: Comparative analysis of bisimulation relations on alternating and
non-alternating probabilistic models. In: 2nd Int. Conf. Quantitative Evaluaton of Systems
(QEST 2005), Torino, Italy, September 2005, pp. 44–53. IEEE Computer Society Press, Los
Alamitos (2005)

28. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

http://www.lsv.ens-cachan.fr/~goubault/ProNobis/pp.pdf

776 J. Goubault-Larrecq

29. Philipp, S.: Spaces of valuations as quasimetric domain. In: Edalat, A., Jung, A., Keimel, K.,
Kwiatkowska, M. (eds.) Proceedings of the 3rd Workshop on Computation and Approxima-
tion (Comprox III), Birmingham, England, September 1997. Electronic Notes in Theoretical
Computer Science, vol. 13, Elsevier, Amsterdam (1997)

30. Tix, R.: Stetige Bewertungen auf topologischen Räumen. Diplomarbeit, TH Darmstadt (June
1995)

31. van Breugel, F., Mislove, M., Ouaknine, J., Worrell, J.: Domain theory, testing and simulation
for labelled markov processes. Theoretical Computer Science 333(1-2), 171–197 (2005)

On the Chromatic Number of Random Graphs

Amin Coja-Oghlan1,�, Konstantinos Panagiotou2,��, and Angelika Steger2

1 Department of Mathematical Sciences, Carnegie Mellon University
Pittsburgh PA15213, USA
amincoja@andrew.cmu.edu

2 Institute of Theoretical Computer Science ETH Zentrum, Universitätsstr. 6
CH - 8092 Zurich, Switzerland
{panagiok,steger}@inf.ethz.ch

Abstract. In this paper we study the chromatic number χ(Gn,p) of the
binomial random graph Gn,p, where p = p(n) ≤ n−3/4−δ , for every fixed
δ > 0. We prove that a.a.s. χ(Gn,p) is �, � + 1, or � + 2, where � is the
maximum integer satisfying 2(�− 1) log(�− 1) ≤ np.

1 Introduction and Results

Coloring random graphs. Let G = (V,E) be a graph. A k-coloring of G is an
assignment V → {1, . . . , k} of colors to the vertices, such that adjacent vertices
receive distinct colors. Moreover, the chromatic number χ(G) of G is the least
integer k such that G admits a k-coloring.

Determining the chromatic number of a given graph is a fundamental though
notoriously hard computational problem. Indeed, Feige and Kilian [1] proved
that no polynomial time algorithm approximates χ(G) within a factor of |V |1−ε,
unless NP = ZPP (ε > 0 arbitrarily small but independent of G). Hence, there
are no efficient algorithms that perform well on every graph coloring instance
(unless NP = ZPP). Therefore, a large number of authors have studied graph
coloring heuristics, i.e., efficient algorithms that are supposed to yield “reason-
able” results on “most” instances (where “reasonable” and “most” are not always
well-defined in a mathematical sense), see e.g. [2] or [3] and references therein.

In order to compare graph coloring heuristics, it is important to consider
meaningful benchmark instances. Among the test instances that are in common
use are various types of random graphs. In fact, the Erdős-Rényi model Gn,p,
which is one of the most studied random graph models, provides very interesting
and – for certain values of the parameters – extremely “difficult” benchmark
instances. The random graph Gn,p is defined as follows: the vertex set is V =
{1, . . . , n}, and each of the

(
n
2

)
possible edges among two vertices in V is present

with probability 0 < p = p(n) < 1 independently. Thus, the expected number of
edges in Gn,p is

(
n
2

)
p, and the expected degree of a vertex is (n − 1)p. We will

say that Gn,p has some property A asymptotically almost surely (“a.a.s.”), if the
probability that Gn,p has A tends to 1 as n→∞.
� Supported by the German Research Foundation (grant CO 646).

�� Supported by the SNF, grant number: 200021-107880/1.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 777–788, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

778 A. Coja-Oghlan, K. Panagiotou, and A. Steger

The random graph Gn,p and several variants of this model have been used to
provide rigorous analyses of graph coloring heuristics. Krivelevich [4] provides a
thorough survey of these results. For more current results we refer the reader to
Achlioptas and Moore [5], where an extension of a list-coloring algorithm is anal-
ysed, and to Jia and Moore [6], where a backtracking algorithm is investigated
in great detail, and references therein.

The empirically best current heuristic for coloring Gn,p is Survey Propaga-
tion [7,8]. This algorithm and its analysis are based on mathematically non-
rigorous arguments from statistical physics. Moreover, these methods also yield
exciting conjectures about the probable value(s) of χ(Gn,p) and concerning the
“solution space geometry”, i.e., the number and relative position of optimal col-
orings of Gn,p.

The chromatic number of Gn,p. Concerning the probable value of χ(Gn,p), the
considerations in [7] suggest that if p = c

n , where c is sufficiently large, then
a.a.s. χ(Gn,p) ≤ �+ 1, where

� = �(n, p) = max{l ∈ N : 2(l − 1) log(l − 1) ≤ np}. (1)

In a remarkable paper, Achlioptas and Naor [9] proved rigorously this statement.
In fact, for edge probabilities c

n , they proved for roughly half of all c ∈ (0,∞) that
a.a.s. “χ(Gn,p) = �+1”, and the slightly weaker statement “χ(Gn,p) ∈ {�, �+1}”
for the remaining c’s. Thus, the result of Achlioptas and Naor deals with random
graphs of bounded average degree, and yields the probable value of χ(Gn,p) up
to an additive error of only one in this case.

The main result of the present paper is the following theorem, which deals
with random graphs of unbounded average degree.

Theorem 1. Let 0 < δ ≤ 1
4 , 1

n ≤ p = p(n) ≤ n−3/4−δ, and let � = �(n, p) be as
in (1). Then χ(Gn,p) ∈ {�, �+ 1, �+ 2} a.a.s. Furthermore, for every fixed ε > 0,
if np ∈ ((2�− 1) log �+ ε, 2� log �), then χ(Gn,p) ∈ {�+ 1, �+ 2} a.a.s.

Hence, Theorem 1 yields the probable value of χ(Gn,p) up to an additive error of
at most two for random graphs of average degree up to n1/4−δ, and is a natural
extension to the main theorem of [9].

Related work. Since the seminal work of Erdős and Rényi [10], computing the
probable value of χ(Gn,p) has been a fundamental problem in the theory of
random graphs. Bollobás [11] was the first to obtain an asymptotically tight
result: he showed that if 0 < p < 1 is fixed, then

χ(Gn,p) ∼ −
n log(1− p)

2 log(np)
a.a.s. (2)

Moreover, �Luczak [12] extended (2) to the regime 1
n " p = o(1), proving that

∣
∣
∣∣χ(Gn,p)− np

2 log(np)

∣
∣
∣∣ = O

(
np · log lognp

log2 np

)
a.a.s. (3)

On the Chromatic Number of Random Graphs 779

Thus, while (3) shows that χ(Gn,p) ∼ np
2 log(np) , the additive error term

O(np log log np
log2 np

) is unbounded if the average degree np → ∞. Hence, Theorem 1
provides a significantly tighter estimate than (3), which is the best previous
result.

In addition to its probable value, also the concentration of χ(Gn,p) has re-
ceived considerable attention. Shamir and Spencer [13] proved that χ(Gn,p) is
concentrated on O(

√
n) integers for any sequence p = p(n) of edge probabili-

ties. Furthermore, they showed that χ(Gn,p) is concentrated in an interval of
constant length for p " n−1/2. Moreover, �Luczak [12] proved that χ(Gn,p) is
concentrated on two consecutive integers if p" n−5/6. Finally, Alon and Kriv-
elevich [14] proved that two point concentration actually holds under the weaker
assumption p" n−1/2, which is best possible in the sense that there are p = p(n)
for which χ(Gn,p) is not concentrated on one value. However, none of these pa-
pers [14,12,13] yields the specific values on which χ(Gn,p) is concentrated. For
instance, while Alon and Krivelevich show that for each p = p(n) there exists a
sequence r = r(n, p) such that a.a.s. it holds χ(Gn,p) ∈ {r, r+ 1}, the proof does
not yield any clue on what the value of r is.

Techniques and outline. The proof of Theorem 1 builds on and extends some of
the techniques from [9,14,12,13]. Suppose that n−1 " p ≤ n−3/4−δ, and let � be
as in (1). To bound χ(Gn,p) from below, we just verify that the expected number
of (� − 1)-colorings is o(1), so that Markov’s inequality yields that χ(Gn,p) ≥ �
a.a.s.

Following Achlioptas and Naor [9], we employ the second moment method to
bound Pr [χ(Gn,p) ≤ �+ 1] from below. That is, we estimate the second moment
E
[
X2

]
of the number X of (� + 1)-colorings of Gn,p; this estimate employs a

general result from [9] on optimizing certain functions over stochastic matrices
(Theorem 2 below). Since Pr [X > 0] ≥ E[X]2

E[X2] , the upper bound on E
[
X2

]
gives

us a lower bound for the probability that χ(Gn,p) ≤ � + 1. More precisely, in
Section 3 we shall prove that

Pr [χ(Gn,p) ≤ �+ 1] ≥ e−6(pn)2 · n−�
2
. (4)

Now, the obvious problem is that the r.h.s. of the “lower bound” (4) actually
tends to 0 as n → ∞. This problem does not occur in the sparse regime con-
sidered in [9] (where np = c is constant). Indeed, in the sparse regime it is true
that Pr [χ(Gn,p) ≤ �+ 1] ≥ α(c), where α(c) remains bounded away from 0 as
n → ∞ (of course, this does not follow from (4)). Therefore, Achlioptas and
Naor can boost this lower bound using a sharp threshold result of Achlioptas
and Friedgut [15], thus concluding that actually χ(Gn,p) ≤ �+ 1 a.a.s.

However, in the case that np → ∞, which is the main focus of the present
work, we cannot bound Pr [χ(Gn,p) ≤ �+ 1] away from 0 uniformly as n →
∞. In addition, the sharp threshold result [15] does not apply. Nevertheless,
adapting arguments from Shamir and Spencer [13], in Section 4 we shall prove
that a.a.s. G = Gn,p admits a set U of vertices of size |U | ≤ n3/2p logn such that
χ(G\U) ≤ �+1. Thus, to prove that χ(Gn,p) ≤ �+2 a.a.s. we just need to show

780 A. Coja-Oghlan, K. Panagiotou, and A. Steger

that any such partial (�+1)-coloring can be modified, such that by spending one
additional color, we can construct a (�+ 2)-coloring of the entire graph a.a.s.

To this end, we consider two cases. If np ≤ n1/20, say, then a slight variation
of �Luczak’s argument [12] yields that χ(G) ≤ � + 2 a.a.s. By contrast, the case
n1/20 ≤ np " n1/4 requires new ideas: extending tools developed by Alon and
Krivelevich [14], we show the following. Suppose that an (�+1)-coloring of G\U
is given. Then one can recolor a few vertices in G \U with one new color so that
the resulting (� + 2)-coloring of G \ U can be extend to an (� + 2)-coloring of
all of G. Thus, to color the vertices in U we recolor a few vertices of G \ U and
reuse some of the “old” colors to color U .

The above argument relates to the proof of Alon and Krivelevich as follows.
In [14], it is assumed that there is a set W ⊂ V of size |W | ≤ √n logn such
that χ(G \W) ≤ k for a certain number k, and the goal is to prove that then
χ(G) ≤ k+ 1. By contrast, in the present paper the “exceptional” set U has size
n3/2p logn '

√
n logn. Thus, we need to extend the coloring to a significantly

larger number of “exceptional” vertices and study the combinatorial structure
of G more precisely.

Some proofs are omitted due to space constraints – they can be found in the
full version of the paper [16].

2 Preliminaries and Notation

Let G = (V,E) be a graph, and X,Y ⊆ V . We shall denote by e(X,Y) the
number of edges in G with one endpoint in X and one endpoint in Y . Further-
more, for every v ∈ V we will denote by Γ (v) the neighbors of v in G, and by
Γ (X) :=

⋃
v∈X Γ (v).

Before we prove our main result (Theorem 1) in the following sections, we
shall introduce a few technical tools, which will be used extensively in the sequel.
These tools can be found for instance in [17] or [18]. The first lemma is a well-
known estimate for the tail of the binomial distribution.

Lemma 1 (Chernoff bounds). Let X be a binomially distributed variable with
λ := E [X]. For every t ≥ 0 it holds

Pr [X ≥ λ+ t] ≤ e−
t2

2(λ+t/3) , and Pr [X ≤ λ− t] ≤ e− t2
2λ .

The next lemma is a special case of a far more general result based on mar-
tingale inequalities. We present this version here, as it suffices for our intended
application.

Lemma 2 (Azuma/Hoeffding’s inequality). Let f be a function on graphs,
such that |f(G) − f(G′)| ≤ 1, whenever G and G′ differ only in edges adjacent
to the same vertex. Then the random variable X = f(Gn,p) with λ := E [X]
satisfies

Pr [X ≥ λ+ t] ≤ e− 2t2
n , and Pr [X ≤ λ− t] ≤ e− 2t2

n .

On the Chromatic Number of Random Graphs 781

Finally, we are going to exploit the following version of the �Lovasz Local Lemma,
which provides us with a lower bound for the probability of the non-occurrence
of certain events.

Lemma 3 (Lovász Local Lemma, symmetric version). Let A1, . . . , An be
events in an arbitrary probability space. Suppose that each event Ai is mutually
independent of a set of all other events Aj but of at most d, and that Pr [Ai] ≤ p
for all 1 ≤ i ≤ n. If ep(d+ 1) ≤ 1, then Pr

[
∧ni=1Ai

]
> 0.

3 Approaching the Values of the Chromatic Number

Let Gn,m be a random graph on n labeled vertices and m edges, drawn uniformly
at random from the set of all such graphs. In this section we shall derive a lower
bound for χ(Gn,m), which holds with high probability, and an upper bound for
χ(Gn,p), which holds with some probability, that we can bound from below.

Proposition 1. Let n ∈ N and � = �(n) be an integer function of n such that
� ≤ n1/2

log n . For every fixed ε > 0, if d ≥ log �
log �−log(�−1) + ε, Gn,dn is a.a.s. not

�-colorable.

The proof is based on estimating the expectation of the number X of colorings of
Gn,m with � colors, and by using the inequality Pr [X > 0] ≤ E [X]. Observe that
for � → ∞, it holds log �

log �−log(�−1) = (� − 1
2) log �+ o(1). Before we proceed with

the proof of the upper bound for χ(Gn,p), let us introduce a tool which plays
a crucial role in our arguments. Let S� denote the set of � × � row-stochastic
matrices, i.e., matrices from [0, 1]�×�, such that the values of the rows sum up
to one. For M ∈ S�, let

H(M) := −1
�

∑

1≤i,j≤�
mij logmij and E(M) := log

(
1− 2

�
+

1
�2

∑

1≤i,j≤�
m2
ij

)
, (5)

and define the function gd(M) := H(M) + dE(M). In our proof we will exploit
the following general result by Achlioptas and Naor [9].

Theorem 2. Let � ∈ N and J� be the constant �×� matrix, whose entries are all
equal to 1

� . If d ≤ (�−1) log(�−1), then for all M ∈ S� it holds gd(J�) ≥ gd(M).

Proposition 2. Let n ∈ N and � be an integer function of n such that � ≤ n1/2

logn .
Let C�,m denote the random variable, which counts the number of colorings of
Gn,m with � colors. If m

n ≤ (�−1) log(�−1), then Pr [C�,m > 0] ≥ e−17(m
n)2 ·n−�2.

From the above proposition we obtain easily the following lemma for the binomial
random graph, as the models Gn,p and Gn,m behave similarly when m ≈ p

(
n
2

)
.

Lemma 4. Let 0 < δ ≤ 1
2 and p = p(n) ≤ n−1/2−δ. Then the following state-

ment is true for sufficiently large n. Let C�,p be the number of colorings of Gn,p

782 A. Coja-Oghlan, K. Panagiotou, and A. Steger

with � colors. If � is the maximum integer satisfying 2(�−2) log(�−2) ≤ p(n−1),
then

Pr [C�,p > 0] ≥ e−6(pn)2 · n−2�2 . (6)

Proof (Proof of Proposition 2). In order to prove the statement, we use similar
ideas as in [9]. An important difference here is that � is a function of n (instead of
being constant), and our contribution is that we take into account how it modifies
the involved constants (which now become functions of �) in the original proof.
Furthermore, we are working directly with the uniform random graph Gn,m

which does not have any multiple edges or loops.
Let d := m

n and denote by B� the number of “balanced” colorings of Gn,dn,
where balanced means that the sizes of all color classes are either �n� � or �n� �.
For the sake of exposition, we shall omit in the remainder floors and ceilings. As
the number of edges not connecting vertices in the same color class is �−1

2� n
2, by

using 1 − x ≥ e−2x, valid for small x, the probability that a balanced partition
is a valid coloring is for sufficiently large n

(
�−1
2� n

2
)dn

(
n
2

)dn ≥
(
�−1
2� n

2 − dn
)dn

(
n2

2

)dn ≥
(

1− 1
�

)dn
e−

4�
�−1d

2
≥
(

1− 1
�

)dn
· e−8d2

.

By applying Stirling’s formula 1 ≤ n!/(ne)n
√

2πn ≤ 2 we obtain easily

E [B�] ≥
n!

(
n
�

)
!�
·
(

1− 1
�

)dn

· e−8d2
≥ (2πn)−

�−1
2 · � �

2 ·
[

� ·
(

1− 1
�

)d]n

· e−8d2
.

In the following we are going to argue that

E
[
B2
�

]
≤ e6d · n�

2−� ·
[

� ·
(

1− 1
�

)d]2n

, (7)

which will complete the proof for large n, as Pr [B� > 0] ≥ E [B�]
2
/E

[
B2
�

]
.

In order to calculate E
[
B2
�

]
, it is sufficient to consider pairs of balanced par-

titions, and to bound the probability that both are simultaneously valid col-
orings. Let Π = (V1, . . . , V�) and Π ′ = (V ′

1 , . . . , V
′
�) be two partitions, and

define dij(Π,Π ′) := |Vi ∩ V ′
j |. The probability that an edge is bichromatic in

both Π and Π ′ is proportional to the number of edges, that do not join vertices
in one of the color classes V1, . . . , V� or V ′

1 , . . . , V
′
� . The number of such edges

is precisely
(
n
2

)
− 2�

(
n/�
2

)
+
∑(

dij(Π,Π
′)

2

)
. Hence, the probability that both Π

and Π ′ are valid colorings is for sufficiently large n
((

n
2

)
− 2�

(
n/�
2

)
+
∑(

dij

2

))dn

(
n
2

)dn ≤

((
n
2

)
− 2�

(
n/�
2

)
+
∑(

dij

2

))dn

(
n
2

)dn

≤ e6d
(

1− 2
�

+
∑(dij

n

)2
)dn

.

On the Chromatic Number of Random Graphs 783

Abbreviate 1 − 2
� +

∑
(dij

n)2 := q, and let D be the set of matrices with non-
negative integer entries, where all rows and colums sum up to n

� . By using
(xe)x ≤ x! ≤ 10

√
x(xe)x, we obtain

E
[
B2
�

]
≤ e6d ·

∑

D∈D

n!
∏

1≤i,j≤�
dij !

qdn ≤ e6d ·
√
n ·

∑

D∈D
en
(
H(�

nD)+log �+dE(�
nD)

)
,

where H and E are defined in (5). Due to Theorem 2, we have for all D ∈ D

H
(
�

n
D

)
+ dE

(
�

n
D

)
≤ H(J�) + dE(J�) = log �+ d log

(
1− 2

�
+

1
�2

)
.

As the number of matrices in D is at most n(�−1)2 , we obtain

E
[
B2
�

]
≤ e6d ·

√
n ·n(�−1)2 · en(2 log �+d log((1− 1

�)2)) = e6d ·n�
2−� · �2n ·

(
1− 1

�

)2dn

.

��

4 Proof of the Main Result

4.1 The Sparse Case (n−1 � p � n−1+ 1
20)

Our first lemma follows directly from [12], Fact 2.

Lemma 5. Let n−1 " p " n−1+ 1
20 . Every subset U of the vertex set of Gn,p,

such that |U | ≤ n3/4, spans less than (3
2 −

1
9)|U | edges.

The next lemma states essentially that a.a.s. Gn,p is almost (� + 1)-colorable,
where � is given by (1).

Lemma 6. Let n−1 ≤ p ≤ n−3/4 and let � be the maximum integer satisfying
2(�− 2) log(�− 2) ≤ p(n− 1). Then a.a.s. there is a subset U0 = U0(Gn,p) of the
vertex set of Gn,p of size at most n3/2p logn, such that Gn,p \ U0 is �-colorable.

The above lemma states that if we choose � as prescribed, then all vertices
of Gn,p are colorable with the colors {1, . . . , �+ 1}, except for a small set U0. In
the remainder we shall assume that G = Gn,p satisfies the assertions of Lemma 5
and 6 and we are going to argue that by using only one additional color, we can
color U0 such that we obtain a valid coloring for the whole graph.

To achieve this, we construct a set U ⊇ U0 of size at most n3/4, such that
I = Γ (U) \ U is stable. For such a set U , we can color G with � + 2 colors.
Indeed, U is 3-colorable, as due to Lemma 5 all its subsets have average degree
less than 3. Now color U with the colors {1, 2, 3}, and I with a fresh color �+ 2
(c.f. Figure 1).

To obtain U , we begin with U0, and extend it by two vertices x, y in its
neighborhood, if {x, y} ∈ G. Now observe that this process stops with |U | ≤ n3/4,
as otherwise the number of edges joining vertices in U would be for sufficiently
large n greater than 3 |U|−|U0|

2 ≥ (3
2 −

1
9)|U |, contradicting Lemma 5.

784 A. Coja-Oghlan, K. Panagiotou, and A. Steger

U0

U

I = G \ (U ∪ I)
Γ(U) \ U

Fig. 1. Coloring G = Gn,p in the sparse case

4.2 The Dense Case (n−1+ 1
20 ≤ p ≤ n− 3

4−δ)

In this section we assume that p = p(n) = n−3/4−δ, where 0 < δ ≤ 1
4 −

1
20 . In or-

der to deal with edge probabilities p in this regime, and thus with denser random
graphs than in the previous section, we have to extend the above argument sig-
nificantly. Let � = �(p, n) be the maximum integer satisfying 2(�−2) log(�−2) ≤
p(n− 1), and note that a straightforward calculation yields � ≥ np

3 log(np) .
A graph G with vertex set V is called d-choosable, if for every family C ={
Sv ∈ Nd | v ∈ V

}
of sets of colors for the vertices of G, there exists a proper

vertex coloring c : V → N, such that c(v) ∈ Sv for all v. The lemma below states
that every not too large subset of vertices of the Gn,p spans very few edges, if p is
substantially smaller than n−3/4; furthermore, every such subset is t-choosable,
for a small constant t. The proof is based on standard random graph arguments
– we omit the details.

Lemma 7. Let p = p(n) = n−3/4−δ, where 0 < δ ≤ 1
4 −

1
20 . Gn,p has a.a.s.

the following properties. Every subset U of the vertex set of Gn,p, such that
|U | ≤ n3/4, spans at most � 1δ �|U | edges. Furthermore, every U is 2� 1δ �-choosable.

Similarly as before, we shall see that a.a.s. the random graph G = Gn,p admits
a set U ⊂ V of size |U | ≤ 2n3/2p logn, such that χ(G \ U) ≤ �, and such that
U is only “sparsely connected” to V \ U . However, we cannot guarantee that
Γ (U) \ U is a stable set. Instead, we shall recolor a few vertices in V \ U with
a new “joker color” in such a way that we can then reuse some of the colors of
the �-coloring of G \ U to color the vertices in U . Hence, we will just need one
additional color, so that χ(G) ≤ �+ 1 a.a.s.

We now elaborate the details of this approach. As a first step, we show that
there is a subset U of the vertex set of size |U | ≤ 2n3/2p logn, such that a.a.s.
χ(G \ U) ≤ �, and every vertex in V \ U has at most a constant number of
neighbors in U .

Lemma 8. Let p = p(n) = n−3/4−δ, where 0 < δ ≤ 1
4 −

1
20 , and let � be the

maximum integer satisfying 2(� − 2) log(� − 2) ≤ p(n − 1). Gn,p has a.a.s. the

On the Chromatic Number of Random Graphs 785

following property. There is a set of vertices U = U(Gn,p) of size < 2n3/2p logn
such that χ(G \ U) ≤ �, and every vertex in V \ U has at most ξ := 50� 1δ �
neighbors in U .

Proof. According to Lemma 6, a.a.s. there exists a set U0 of size at most
n3/2p logn, such that χ(Gn,p \ U0) ≤ �. Moreover, according to Lemma 7, ev-
ery subset X of the vertices of size at most n3/4 spans a.a.s. at most � 1δ �|X |
edges. We assume that G = Gn,p has these properties. To obtain U , we start
with U0, and enhance it iteratively with vertices, which violate the desired con-
dition. This process stops with |U | < 2n3/2p logn, as otherwise we would get a
subset U of the vertices of G with |U | = 2n3/2p logn ≤ n3/4, that spans more
than (|U | − |U0|)ξ ≥ 50� 1δ �n3/2p logn > � 1δ �|U | edges – a contradiction. ��

Let c : V \U → {1, . . . , �} be a �-coloring of V \ U . In order to obtain a (�+ 1)-
coloring c∗ : V → {1, . . . , �+ 1} of the entire graph, we shall recolor some of the
vertices in V \ U with the new color � + 1, so that we can reuse the old colors
1, . . . , � to color the vertices in U . More precisely, our strategy is as follows. As
every subset of vertices of size at most n3/4 is a.a.s. η := 2� 1δ �-choosable, we
shall assign to each vertex u ∈ U a list Lu ⊂ {1, . . . , �} of colors such that the
following holds: let

Γu := {v ∈ Γ (u) \ U : c(v) ∈ Lu}

be the set of all neighbors in V \ U of u ∈ U , whose color lies in Lu. Then
ΓU :=

⋃
u∈U Γu is a stable set.

If we could exhibit such lists (Lu)u∈U , then it would be easy to obtain a (�+1)-
coloring c∗ of G: color the vertices in ΓU with the “joker color” � + 1, thereby
making the colors in Lu available for u ∈ U . Then, color each vertex in u ∈ U
with a color from Lu, which is possible due to Lemma 7. For an illustration, see
Figure 2.

Hence, the remaining task is to show that a.a.s. there exist lists (Lu)u∈U
with the desired property. In this context, Alon and Krivelevich [14] proved the
following.

Lemma 9. Let p = p(n) = n−3/4−δ, where 0 < δ ≤ 1
4 −

1
20 . Gn,p has a.a.s. the

following property. Assume that R ⊂ V is such that Gn,p \ R has a t-coloring
c : V \R→ {1, . . . , t}. Moreover, suppose that Q ⊂ R is a set of size |Q| ≤

√
n.

Then there exist lists (Lu)u∈Q of colors 1, . . . , t such that |Lu| ≥ η := 2� 1δ � for
all u ∈ Q and ΓQ = {v ∈ Γ (u) \Q : c(v) ∈ Lu, u ∈ Q} is stable.

Due to the previous discussion, the above lemma implies that if R = Q (i.e. if
we could find such a subset of Gn,p of size ≤

√
n), then Gn,p would be (t+ 1)-

colorable. In fact, Proposition 3.1 of [14] claims just this consequence. The ver-
sion that we stated above follows directly from their proof – they show that the
claim of Lemma 9 holds, and proceed as just described.

Unfortunately, for our intended application, Lemma 9 is not strong enough.
Lemma 8 only yields a set U of size ≤ 2n3/2p logn, whereas Lemma 9 requires
that |Q| ≤

√
n " 2n3/2p logn. Therefore, to construct the lists (Lu)u∈U , we

786 A. Coja-Oghlan, K. Panagiotou, and A. Steger

Z
G \ U

U \ Z

Lu

Lv

Lw

Γu

Γv

Γw

Fig. 2. Coloring G = Gn,p in the dense case. The lists Lx are chosen such that the
union of the vertices Γx in the corresponding color classes in G\U form an independent
set.

extend the approach of Alon and Krivelevich as follows. We shall show that up
to a small “exceptional set” Z ⊂ U all vertices in v ∈ U \ Z have the property
that their neighborhood Γ (v) \ U outside of U is only sparsely connected to
the neighborhoods Γ (U) \ U of the remaining vertices in U . This will enable
us to apply the Lovász Local Lemma to prove in a probabilistic fashion that
such lists Lu for u ∈ U \ Z always exist. Furthermore, the exceptional vertices
in Z will be considered separately: as |Z| ≤

√
n, we can just apply Lemma 9

with Q = Z and R = U to obtain the lists Lu for u ∈ Z.
The following lemma yields the desired small exceptional set Z.

Lemma 10. Let p = p(n) = n−3/4−δ, where 0 < δ ≤ 1
4 −

1
20 . Gn,p enjoys the

following property a.a.s. For every subset U of the vertices of size 1 " |U | ≤
2n3/2p logn, such that every v �∈ U has at most ξ := 50� 1δ � neighbors in U , there
exists Z ⊆ U of size |Z| ≤ n−1/2p−1(log n)6 such that v ∈ U \ Z satisfies

e(Γ (v) \ U, Γ (U \ Z) \ U) ≤ ξ−7

(
np

log(np)

)2

, (8)

e(Γ (v) \ U, Γ (Z) \ U) ≤ ξ−7 np

log(np)
. (9)

The proof of the above lemma can be found in the full version of the paper [16].
Applying Lemma 9 to Q = Z and R = U , we obtain lists (Lu)u∈Z ⊂ {1, . . . , �}
of colors such that |Lu| ≥ η, and such that the set ΓZ of neighbors v ∈ V \U of
vertices u ∈ Z whose color c(v) belongs to Lu is stable.

On the Chromatic Number of Random Graphs 787

As a final step, we assign lists Lu to the vertices u ∈ U \ Z. For each vertex
u ∈ U \ Z we consider the set

Fu := {c(v) : v ∈ ΓZ is adjacent to some w ∈ Γ (u) \ U}.

Hence, Fu consists of all colors in {1, . . . , �}, that we do not want to include in
the list Lu, as otherwise we would generate a conflict with a vertex v ∈ Γ (Z)\U ,
that will have the “joker color” in c∗ due to the choice of the lists for the vertices
in Z. Note that (9) implies

|Fu| ≤
np

ξ7 log(np)

(�≥ np
3 log(np))

≤ �

2
for all u ∈ U \ Z. (10)

Now, independently for all u ∈ U \ Z we choose a list Lu ⊂ {1, . . . , �} \ Fu of
size |Lu| = η uniformly at random.

Letting Γu = {v ∈ Γ (u) : c(v) ∈ Lu}, ΓU =
⋃
u∈U Γu, and ΓU\Z =

⋃
u∈U Γu,

we complete the proof by showing that with positive probability ΓU is stable.
The crucial ingredient is the following lemma.

Lemma 11. With the above assumptions, the probability that ΓU\Z is stable
(taken over the choice of the random lists (Lu)u∈U\Z) is positive.

Lemma 11 implies that there is a way to choose the lists (Lu)u∈U\Z such that
ΓU\Z is stable, because a randomly chosen list of sets has this property with
positive probability. Further, we already know that ΓZ =

⋃
u∈Z Γu is stable (by

Lemma 9). Morever,G contains no ΓU\Z -ΓZ edges, because in the construction of
the lists (Lu)u∈U\Z we have forbidden all colors Fu that might yield such edges.
Thus, we have established that ΓU = ΓU\Z ∪ ΓZ is stable, thereby completing
the proof.

References

1. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. System
Sci. 57(2), 187–199 (1998)

2. Zeitlhofer, T., Wess, B.: A comparison of graph coloring heuristics for register
allocation based on coalescing in interval graphs. In: ISCAS (4), 529–532 (2004)

3. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by sim-
ulated annealing: an experimental evaluation; part ii, graph coloring and number
partitioning. Oper. Res. 39(3), 378–406 (1991)

4. Krivelevich, M.: Coloring random graphs—an algorithmic perspective. In: Mathe-
matics and computer science, II (Versailles, 2002). Trends Math. Birkhäuser, Basel,
pp. 175–195 (2002)

5. Achlioptas, D., Moore, C.: Almost all graphs with average degree 4 are 3-colorable.
J. Comput. System Sci. 67(2), 441–471 (2003), Special issue on STOC’02 (Mon-
treal, QC)

6. Jia, H., Moore, C.: How much backtracking does it take to color random graphs?
Rigorous results on heavy tails (2004)

788 A. Coja-Oghlan, K. Panagiotou, and A. Steger

7. Mulet, R., Pagnani, A., Weigt, M., Zecchina, R.: Coloring random graphs. Physical
Review Letters 89, 268701 (2002)

8. Braunstein, A., Mulet, R., Pagnani, A., Weigt, M., Zecchina, R.: Polynomial iter-
ative algorithms for coloring and analyzing random graphs. Physical Review E 68,
36702 (2003)

9. Achlioptas, D., Naor, A.: The two possible values of the chromatic number of a
random graph. Ann. of Math. (2) 162(3), 1335–1351 (2005)

10. Erdős, P., Rényi, A.: On random graphs. I. Publ. Math. Debrecen 6, 290–297 (1959)
11. Bollobás, B.: The chromatic number of random graphs. Combinatorica 8(1), 49–55

(1988)
12. �Luczak, T.: A note on the sharp concentration of the chromatic number of random

graphs. Combinatorica 11(3), 295–297 (1991)
13. Shamir, E., Spencer, J.: Sharp concentration of the chromatic number on random

graphs Gn,p. Combinatorica 7(1), 121–129 (1987)
14. Alon, N., Krivelevich, M.: The concentration of the chromatic number of random

graphs. Combinatorica 17(3), 303–313 (1997)
15. Achlioptas, D., Friedgut, E.: A sharp threshold for k-colorability. Random Struc-

tures Algorithms 14(1), 63–70 (1999)
16. http://www.ti.inf.ethz.ch/as/people/panagiotou/papers/CNoSRG.ps
17. Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. Wiley-Interscience

Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley
& Sons], Chichester (2000)

18. Janson, S., �Luczak, T., Rucinski, A.: Random graphs. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley-Interscience, Chichester (2000)

http://www.ti.inf.ethz.ch/as/people/panagiotou/papers/CNoSRG.ps

Quasi-randomness and Algorithmic Regularity

for Graphs with General Degree Distributions

Noga Alon1,�, Amin Coja-Oghlan2,3,��, Hiê.p Hàn3,���, Mihyun Kang3,†,
Vojtěch Rödl4,‡, and Mathias Schacht3,§

1 School of Mathematics and Computer Science, Raymond and Beverly Sackler
Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

noga@math.tau.ac.il
2 Carnegie Mellon Univsersity, Department of Mathematical Sciences, Pittsburgh,

PA 15213, USA
3 Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, 10099

Berlin, Germany
{coja,hhan,kang,schacht}@informatik.hu-berlin.de

4 Department of Mathematics and Computer Science, Emory University, Atlanta,
GA 30322, USA

rodl@mathcs.emory.edu

Abstract. We deal with two very related subjects: quasi-randomness
and regular partitions. The purpose of the concept of quasi-randomness
is to measure how much a given graph “resembles” a random one. More-
over, a regular partition approximates a given graph by a bounded num-
ber of quasi-random graphs. Regarding quasi-randomness, we present a
new spectral characterization of low discrepancy, which extends to sparse
graphs. Concerning regular partitions, we present a novel concept of reg-
ularity that takes into account the graph’s degree distribution, and show
that if G = (V, E) satisfies a certain boundedness condition, then G ad-
mits a regular partition. In addition, building on the work of Alon and
Naor [4], we provide an algorithm that computes a regular partition of
a given (possibly sparse) graph G in polynomial time.

Keywords: quasi-random graphs, Laplacian eigenvalues, sparse graphs,
regularity lemma, Grothendieck’s inequality.

1 Introduction and Results

This paper deals with quasi-randomness and regular partitions. Loosely speak-
ing, a graph is quasi-random if the global distribution of the edges resembles

� Supported by an ISF grant, and by the Hermann Minkowski Minerva Center for
Geometry at Tel Aviv University.

�� Supported by DFG grant FOR 413/1-2 and COJ 646.
��� Supported by DFG in the research training groupMethods for Discrete Structures.

† Supported by DFG grant PR 296/7-3.
‡ Supported by NSF Grant DMS 0300529.
§ Supported by DFG grant SCHA 1263/1-1 and GIF Grant 889/05.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 789–800, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

790 N. Alon et al.

the expected edge distribution of a random graph. Furthermore, a regular parti-
tion approximates a given graph by a constant number of quasi-random graphs;
such partitions are of algorithmic importance, because a number of NP-hard
problems can be solved in polynomial time on graphs that come with regular
partitions. In this section we present our main results. References to related work
can be found in Section 2, and the remaining sections contain proof sketches and
detailed descriptions of the algorithms.

Quasi-Randomness: discrepancy and eigenvalues. Random graphs are
well known to have a number of remarkable properties (e.g., excellent expansion).
Therefore, quantifying how much a given graph “resembles” a random graph is
an important problem, both from a structural and an algorithmic point of view.
Providing such measures is the purpose of the notion of quasi-randomness. While
this concept is rather well developed for dense graphs (i.e., graphs G = (V,E)
with |E| = Ω(|V |2)), less is known in the sparse case, which we deal with in the
present work. In fact, we shall actually deal with (sparse) graphs with general
degree distributions, including but not limited to the ubiquitous power-law degree
distributions (cf. [1]).

We will mainly consider two types of quasi-random properties: low discrepancy
and eigenvalue separation. The low discrepancy property concerns the global
edge distribution and basically states that every set S of vertices approximately
spans as many edges as we would expect in a random graph with the same degree
distribution. More precisely, if G = (V,E) is a graph, then we let dv signify the
degree of v ∈ V . Furthermore, the volume of a set S ⊂ V is vol(S) =

∑
v∈S dv.

In addition, e(S) denotes the number of edges spanned by S.

Disc(ε): We say that G has discrepancy at most ε (“G has Disc(ε)” for short)
if

∀S ⊂ V :
∣
∣∣
∣e(S)− vol(S)2

2vol(V)

∣
∣∣
∣ < ε · vol(V). (1)

To explain (1), let d = (dv)v∈V , and let G(d) signify a uniformly distributed
random graph with degree distribution d. Then the probability pvw that two
vertices v, w ∈ V are adjacent in G(d) is proportional to the degrees of both
v and w, and hence to their product. Further, as the total number of edges is
determined by the sum of the degrees, we have

∑
(v,w)∈V 2 pvw = vol(V), whence

pvw ∼ dvdw/vol(V). Therefore, in G(d) the expected number of edges inside of
S ⊂ V equals 1

2

∑
(v,w)∈S2 pvw ∼ 1

2vol(S)2/vol(V). Consequently, (1) just says
that for any set S the actual number e(S) of edges inside of S must not deviate
from what we expect in G(d) by more than an ε-fraction of the total volume.

An obvious problem with the bounded discrepancy property (1) is that it
is quite difficult to check whether G = (V,E) satisfies this condition. This is
because one would have to inspect an exponential number of subsets S ⊂ V .
Therefore, we consider a second property that refers to the eigenvalues of a
certain matrix representing G. More precisely, we will deal with the normalized

Quasi-randomness and Algorithmic Regularity 791

Laplacian L(G), whose entries (�vw)v,w∈V are defined as

�vw =

⎧
⎨

⎩

1 if v = w and dv ≥ 1,
−(dvdw)−

1
2 if v, w are adjacent,

0 otherwise;

L(G) turns out to be appropriate for representing graphs with general degree
distributions.

Eig(δ): Letting 0 = λ1(L(G)) ≤ · · · ≤ λ|V |(L(G)) denote the eigenvalues of
L(G), we say that G has δ-eigenvalue separation (“G has Eig(δ)”) if 1− δ ≤
λ2(L(G)) ≤ λ|V |(L(G)) ≤ 1 + δ.

As the eigenvalues of L(G) can be computed in polynomial time (within arbitrary
numerical precision), we can essentially check efficiently whether G has Eig(δ)
or not.

It is not difficult to see that Eig(δ) provides a sufficient condition for Disc(ε).
That is, for any ε > 0 there is a δ > 0 such that any graph G that has Eig(δ) also
has Disc(ε). However, while the converse implication is true if G is dense (i.e.,
vol(V) = Ω(|V |2)), it is false for sparse graphs. In fact, providing a necessary
condition for Disc(ε) in terms of eigenvalues has been an open problem in the
area of sparse quasi-random graphs since the work of Chung and Graham [8].
Concerning this problem, we basically observe that the reason why Disc(ε) does
in general not imply Eig(δ) is the existence of a small set of “exceptional” ver-
tices. With this in mind we refine the definition of Eig as follows.

ess-Eig(δ): We say G has essential δ-eigenvalue separation (“G has ess-Eig(δ)”)
if there is a set W ⊂ V of volume vol(W) ≥ (1− δ)vol(V) such that the fol-
lowing is true. Let L(G)W = (�vw)v,w∈W denote the minor of L(G) induced
on W ×W , and let λ1(L(G)W) ≤ · · · ≤ λ|W |(L(G)W) signify its eigenvalues;
then we require that 1− δ < λ2(L(G)W) < λ|W |(L(G)W) < 1 + δ.

Theorem 1. There is a constant γ > 0 such that the following is true for all
graphs G = (V,E) and all ε > 0.

1. If G has ess-Eig(ε), then G satisfies Disc(10
√
ε).

2. If G has Disc(γε3), then G satisfies ess-Eig(ε).

The proof of Theorem 1 is based on Grothendieck’s inequality and the duality
theorem for semidefinite programs. In effect, the proof actually provides us with
an efficient algorithm that computes a set W as in the definition of ess-Eig(ε),
provided that the input graph has Disc(δ). In the full version of the paper we
show that the second part of Theorem 1 is best possible, up to the precise value
of the constant γ.

The algorithmic regularity lemma. Loosely speaking, a regular partition
of a graph G = (V,E) is a partition of (V1, . . . , Vt) of V such that for “most”

792 N. Alon et al.

index pairs i, j the bipartite subgraph spanned by Vi and Vj is quasi-random.
Thus, a regular partition approximatesG by quasi-random graphs. Furthermore,
the number t of classes may depend on a parameter ε that rules the accuracy
of the approximation, but it does not depend on the order of the graph G
itself. Therefore, if for some class of graphs we can compute regular partitions
in polynomial time, then this graph class will admit polynomial time algorithms
for quite a few problems that are NP-hard in general.

In the sequel we introduce a new concept of regular partitions that takes into
account the degree distribution of the graph. If G = (V,E) is a graph and A,B ⊂
V are disjoint, then the relative density of (A,B) in G is *(A,B) = e(A,B)

vol(A)vol(B) .

Further, we say that the pair (A,B) is ε-volume regular if for all X ⊂ A, Y ⊂ B
satisfying vol(X) ≥ εvol(A), vol(Y) ≥ εvol(B) we have

|e(X,Y)− *(A,B)vol(X)vol(Y)| ≤ ε · vol(A)vol(B)/vol(V), (2)

where e(X,Y) denotes the number of X-Y -edges in G. This condition essentially
means that the bipartite graph spanned by A and B is quasi-random, given the
degree distribution of G. Indeed, in a random graph the proportion of edges
between X and Y should be proportional to both vol(X) and vol(Y), and hence
to vol(X)vol(Y). Moreover, *(A,B) measures the overall density of (A,B).

Finally, we state a condition that ensures the existence of regular partitions.
While every dense graph G (of volume vol(V) = Ω(|V |2)) admits a regular
partition, such partitions do not necessarily exist for sparse graphs, the basic
obstacle being extremely “dense spots”. To rule out such dense spots, we say
that a graph G is (C, η)-bounded if for all X,Y ⊂ V with vol(X ∪ Y) ≥ ηvol(V)
we have *(X,Y)vol(V) ≤ C.

Theorem 2. For any two numbers C > 0 and ε > 0 there exist η > 0 and
n0 > 0 such that for all n > n0 the following holds. If G = (V,E) is a (C, η)-
bounded graph on n vertices such that vol(V) ≥ η−1n, then there is a partition
P = {Vi : 0 ≤ i ≤ t} of V that enjoys the following two properties.

REG1. For all 1 ≤ i ≤ t we have ηvol(V) ≤ vol(Vi) ≤ εvol(V), and vol(V0) ≤
εvol(V).

REG2. Let L be the set of all pairs (i, j) ∈ {1, . . . , t}2 such that the pair
(Vi, Vj) is not ε-volume-regular. Then

∑
(i,j)∈L vol(Vi)vol(Vj) ≤ εvol2(G).

Furthermore, for fixed C > 0 and ε > 0 such a partition P of V can be com-
puted in time polynomial in n. More precisely, the running time is O(vol(V) +
ApxCutNorm(n)), where ApxCutNorm(n) is the running time of the algorithm
from Theorem 5 for an n × n matrix, which can be solved via semidefinite
programming.

Theorem 2 can be applied to the MAX CUT problem. While approximating
MAX CUT within a ratio better than 16

17 is NP-hard on general graphs [14,19],
the following theorem provides a polynomial time approximation scheme for
(C, η)-bounded graphs.

Quasi-randomness and Algorithmic Regularity 793

Theorem 3. For any δ > 0 and C > 0 there exist two numbers η > 0, n0 and
a polynomial time algorithm ApxMaxCut such that for all n > n0 the following is
true. If G = (V,E) is a (C, η)-bounded graph on n vertices and vol(V) > η−1|V |,
then ApxMaxCut(G) outputs a cut (S, S̄) of G that approximates the maximum
cut within a factor of 1− δ.

The details of the proof of Theorem 3 will be given in the full version of the
paper. The proof folows the ideas of Frieze and Kannan from [10], where the
corresponding result for dense graps was obtained.

2 Related Work

Quasi-random graphs. Quasi-random graphs with general degree distribu-
tions were first studied by Chung and Graham [7]. They considered the proper-
ties Disc(ε) and Eig(δ), and a number of further related ones (e.g., concerning
weighted cycles). Chung and Graham observed that Eig(δ) implies Disc(ε), and
that the converse is true in the case of dense graphs (i.e., vol(V) = Ω(|V |2)).

Regarding the step from Disc(ε) to Eig(δ), Butler [6] proved that any graph
G such that for all sets X,Y ⊂ V the bound

|e(X,Y)− vol(X)vol(Y)/vol(V)| ≤ ε
√

vol(X)vol(Y) (3)

holds, satisfies Eig(O(ε(1− ln ε))). The proof builds heavily on the work of Bilu
and Linial [5], who derived a similar result for regular graphs.

Butler’s result relates to the second part of Theorem 1 as follows. The r.h.s.
of (3) refers to the volumes of the setsX , Y , and may thus be significantly smaller
than εvol(V). By contrast, the second part of Theorem 1 just requires that the
“original” discrepancy condition Disc(δ) is true, i.e., we just need to bound
|e(S)− 1

2vol(S)2/vol(V)| in terms of the total volume vol(V). Thus, Theorem 1
requires a considerably weaker assumption. Indeed, providing a characterization
of Disc(δ) in terms of eigenvalues, Theorem 1 answers a question posed by Chung
and Graham [7,8]. Furthermore, relying on Grothendieck’s inequality and SDP
duality, the proof of Theorem 1 employs quite different techniques than those
used in [5,6].

In the present work we consider a concept of quasi-randomness that takes into
account the graph’s degree sequence. Other concepts that do not refer to the
degree sequence (and are therefore restricted to approximately regular graphs)
were studied by Chung, Graham and Wilson [9] (dense graphs) and by Chung
and Graham [8] (sparse graphs). Also in this setting it has been an open problem
to derive eigenvalue separation from low discrepancy, and concerning this simpler
concept of quasi-randomness, our techniques yield a similar result as Theorem 1
as well (details omitted).

Regular partitions. Szemerédi’s original regularity lemma [18] shows that
any dense graph G = (V,E) (with |E| = Ω(|V |2)) can be partitioned into a
bounded number of sets V1, . . . , Vt such that almost all pairs (Vi, Vj) are quasi-
random. This statement has become an important tool in various areas, including

794 N. Alon et al.

extremal graph theory and property testing. Furthermore, Alon, Duke, Lefmann,
Rödl, and Yuster [3] presented an algorithmic version, and showed how this
lemma can be used to provide polynomial time approximation schemes for dense
instances of NP-hard problems (see also [16] for a faster algorithm). Moreover,
Frieze and Kannan [10] introduced a different algorithmic regularity concept,
which yields better efficiency in terms of the desired approximation guarantee.

A version of the regularity lemma that applies to sparse graphs was established
independently by Kohayakawa [15] and Rödl (unpublished). This result is of signif-
icance, e.g., in the theory of random graphs. The regularity concept of Kohayakawa
and Rödl is related to the notion of quasi-randomness from [8] and shows that any
graph that satisfies a certain boundedness condition has a regular partition.

In comparison to the Kohayakawa-Rödl regularity lemma, the new aspect of
Theorem 2 is that it takes into account the graph’s degree distribution. There-
fore, Theorem 2 applies to graphs with very irregular degree distributions, which
were not covered by prior versions of the sparse regularity lemma. Further, Theo-
rem 2 yields an efficient algorithm for computing a regular partition (see e.g. [11]
for a non-polynomial time algorithm in the sparse setting). To achieve this algo-
rithmic result, we build upon the algorithmic version of Grothendieck’s inequality
due to Alon and Naor [4]. Besides, our approach can easily be modified to obtain
a polynomial time algorithm for computing a regular partition in the sense of
Kohayakawa and Rödl.

3 Preliminaries

If S ⊂ V is a subset of some set V , then we let 1S ∈ RV denote the vector whose
entries are 1 on the entries corresponding to elements of S, and 0 otherwise.
Moreover, if A = (avw)v,w∈V is a matrix, then AS = (avw)v,w∈S denotes the
minor of A induced on S × S. In addition, if ξ = (ξv)v∈V is a vector, then
diag(ξ) signifies the V ×V matrix with diagonal ξ and off-diagonal entries equal
to 0. Further, for a vector ξ ∈ RV we let ‖ξ‖ signify the �2-norm, and for a matrix
we let ‖M || = sup0�=ξ∈RV

‖Mξ‖
‖ξ‖ denote the spectral norm. If M is symmetric,

then λmax(M) denotes the largest eigenvalue of M .
An important ingredient to our proofs and algorithms is Grothendieck’s in-

equality. Let M = (mij)i,j∈I be a matrix. Then the cut-norm of M is ‖M‖cut =

maxI,J⊂I

∣
∣
∣
∑

i∈I,j∈J mij

∣
∣
∣ . In addition, consider the following optimization

problem:

SDP(M) = max
∑

i,j∈I
mij 〈xi, yj〉 s.t. ‖xi‖ = ‖yi‖ = 1, xi, yi ∈ RI .

Then SDP(M) can be reformulated as a linear optimization problem over the
cone of positive semidefinite 2|I| × 2|I| matrices, i.e., as a semidefinite
program (cf. Alizadeh [2]). Hence, an optimal solution to SDP(M) can be
approximated within any numerical precision, e.g., via the ellipsoid method [13].
Grothendieck [12] proved the following relation between SDP(M) and ‖M‖cut.

Quasi-randomness and Algorithmic Regularity 795

Theorem 4. There is a constant θ > 1 such that for all matrices M we have
‖M‖cut ≤ SDP(M) ≤ θ · ‖M‖cut .

The best current bounds on the above constant are π
2 ≤ θ ≤

π
2 ln(1+

√
2)

[12,17].
Furthermore, by applying an appropriate rounding procedure to a near-optimal
solution to SDP(M), Alon and Naor [4] obtained the following algorithmic result.

Theorem 5. There exist θ′ > 0 and a polynomial time algorithm ApxCutNorm
that computes on input M sets I, J ⊂ I such that θ′ · ‖M‖cut ≤ |

∑
i∈I,j∈J mij |.

Alon and Naor presented a randomized algorithm that guarantees an approxi-
mation ration θ′ > 0.56, and a deterministic one with θ′ ≥ 0.03.

4 Quasi-randomness: Proof of Theorem 1

The proof of the first part of Theorem 1 is similar to the proof given in [7,
Section 4]. Thus, we focus on the second implication, and hence assume that
G = (V,E) is a graph that has Disc(γε3), where γ > 0 signifies some small
enough constant (e.g., γ = (6400θ)−1 suffices for the proof below). Moreover, we
let dv denote the degree of v ∈ V , n = |V |, and d̄ = n−1

∑
v∈V dv. In addition,

we introduce a further property.

Cut(ε): We say G has Cut(ε), if the matrix M = (mvw)v,w∈V with entries
mvw = dvdw

vol(V) − e({v}, {w}) has cut norm ‖M‖cut < ε · vol(V), where
e({v}, {w}) = 1 if {v, w} ∈ E and 0 otherwise.

Since for any S ⊂ V we have 〈M1S ,1S〉 = vol(S)2

vol(V) − 2e(S), one can easily derive
the following.

Proposition 6. Each graph that has Disc(0.01δ) enjoys Cut(δ).

To show that Disc(γε3) implies ess-Eig(ε), we proceed as follows. By Propo-
sition 6, Disc(γε3) implies Cut(100γε3). Moreover, if G satisfies Cut(100γε3),
then Theorem 4 entails that not only the cut norm of M is small, but even the
semidefinite relaxation SDP(M) satisfies SDP(M) < βε3vol(V), for some β with
0 < β ≤ 100θγ. This bound on SDP(M) can be rephrased in terms of an eigen-
value minimization problem for a matrix closely related to M . More precisely,
using the duality theorem for semidefinite programs, we can infer the following.

Lemma 7. For any symmetric n× n matrix Q we have

SDP(Q) = n · min
z∈Rn, z⊥1

λmax

[(
0 1
1 0

)
⊗Q− diag

(
z

z

)]
.

Let D = diag(dv)v∈V . Then Lemma 7 entails the following.

Lemma 8. Suppose that SDP(M) < βε3vol(V) for some β, 0 < β < 1/64.
Then there exists a subset W ⊂ V of volume vol(W) ≥ (1− ε) · vol(V) such that
the matrix M = D− 1

2MD− 1
2 satisfies ‖MW ‖ < ε.

796 N. Alon et al.

Proof. Let U = {v ∈ V : dv > β
1
3 εd̄}. Then

vol(V \ U) ≤ β 1
3 εd̄|V \ U | ≤ εvol(V)/2. (4)

Since SDP(MU) ≤ SDP(M), Lemma 7 entails that there is a vector 1 ⊥ z ∈ RU

such that λmax

[(
0 1
1 0

)
⊗MU − diag

(
z
z

)
]
< βε3d̄. Hence, setting y = D−1

U z, we

obtain

λmax

[(
0 1
1 0

)
⊗MU − diag

(
y

y

)]
< β

2
3 ε2, (5)

because all entries of the diagonal matrix DU exceed β
1
3 εd̄. Moreover, as z ⊥ 1,

we have
y ⊥ DU1. (6)

Now, let W = {v ∈ U : |yv| < β
1
3 ε} consist of all vertices v on which the

“correcting vector” y is small. Since on W all entries of the diagonal matrix
diag

(
y
y

)
are smaller than β

1
3 ε in absolute value, (5) yields

λmax

[(
0 1
1 0

)
⊗MW

]
< β

1
3 ε+ β

2
3 ε2 ≤ 2β

1
3 ε; (7)

in other words, on W the effect of y is negligible. Further, (7) entails that
‖MW ‖ ≤ 2β

1
3 ε < ε.

Finally, we need to show that vol(W) is large. To this end, we consider the

set S = {v ∈ U : yv < 0} and let ζ = D
1
2
U1S . Thus, for each v ∈ U the entry ζv

equals d
1
2
v if yv < 0, while ζv = 0 if yv ≥ 0, so that ‖ζ‖2 = vol(S). Hence, (5)

yields that

2β
2
3 ε2vol(S) = 2β

2
3 ε2‖ζ‖2 ≥

〈[(
0 1
1 0

)
⊗MU − diag

(
y

y

)]
·
(
ζ

ζ

)
,

(
ζ

ζ

)〉

= 2 〈MUζ, ζ〉 − 2
∑

v∈S
dvyv = 2 〈MU1S ,1S〉 − 2

∑

v∈S
dvyv. (8)

Furthermore, as SDP(MU) ≤ SDP(M) ≤ βε3vol(V), Theorem 4 entails that
〈MU1S ,1S〉 ≤ ‖MU‖cut ≤ βε3vol(V). Plugging this bound into (8) and recalling
that yv < 0 for all v ∈ S, we conclude that

∑

v∈S
dv|yv| ≤ β

2
3 ε2vol(S) + βε3vol(V) ≤ 2β

2
3 ε2vol(V). (9)

Hence, (6) entails that actually
∑

v∈U dv|yv| ≤ 4β
2
3 ε2vol(V). As |yv| ≥ β

1
3 ε for

all v ∈ U \W , we obtain vol(U \W) ≤ 4β
1
3 εvol(V) < 1

2εvol(V). Thus, (4) yields
vol(V \W) < εvol(V), as desired. ��

Finally, setting γ = (6400θ)−1 and combining Theorem 4, Proposition 6, and
Lemma 8, we conclude if G has Disc(γε3), then there is a set W such that

Quasi-randomness and Algorithmic Regularity 797

vol(W) ≥ (1− ε)vol(V) and ‖MW ‖ < ε. AsM is closely related to the normal-
ized Laplacian L(G), one can infer via elementary linear algebra that the minor
L(G)W corresponding to W satisfies 1−ε ≤ λ2(L(G)W) ≤ λ|W |(L(G)W) ≤ 1+ε,
whence G has ess-Eig(ε).

5 The Algorithmic Regularity Lemma

In this section we present a polynomial time algorithm Regularize that com-
putes for a given graph G = (V,E) a partition satisfying REG1 and REG2,
provided that G satisfies the assumptions of Theorem 2. In particular, this will
show that such a partition exists. We will outline Regularize in Section 5.1.
The crucial ingredient is a subroutine Witness for checking whether a given pair
(A,B) of subsets of V is ε-volume regular. This subroutine is the content of
Section 5.2.

Throughout this section, we let ε > 0 be an arbitrarily small but fixed and
C > 0 an arbitrarily large but fixed number. In addition, we define a sequence
(tk)k≥1 by letting t1 = �2/ε� and tk+1 = tk2tk . Let k∗ = �Cε−3�, η = t−6

k∗ ε−8k∗
,

and choose n0 > 0 big enough.
We always assume that G = (V,E) is a graph on n = |V | > n0 vertices that

is (C, η)-bounded, and that vol(V) ≥ η−1n.

5.1 The Algorithm Regularize

In order to compute the desired regular partition of its input graph G, the al-
gorithm Regularize proceeds as follows. In its first step, Regularize computes
any initial partition P1 = {V 1

i : 0 ≤ i ≤ s1} such that each class Vi (1 ≤ i ≤ s1)
has a decent volume.

Algorithm 9. Regularize(G)
Input: A graph G = (V,E). Output: A partition of V .

1. Compute an initial partition P1 = {V 1
0 : 0 ≤ i ≤ s1} such that 1

4εvol(V) ≤ vol(V 1
i) ≤

3
4εvol(V) for all 1 ≤ i ≤ s1; thus, s1 ≤ 4ε−1. Set V 1

0 = ∅.

Then, in the subsequent steps, Regularize computes a sequence Pk of par-
titions such that Pk+1 is a “more regular” refinement of Pk (k ≥ 1). As soon as
Regularize can verify that Pk satisfies both REG1 and REG2, the algorithm
stops.

To check whether the current partition Pk = {V k
i : 1 ≤ i ≤ s1} satisfies

REG2, Regularize employs a subroutine Witness. Given a pair (V k
i , V

k
j),

Witness tries to check whether (V k
i , V

k
j) is ε-volume-regular.

Proposition 10. There is a polynomial time algorithm Witness that satisfies
the following. Let A,B ⊂ V be disjoint.

1. If Witness(G,A,B) answers “yes”, then the pair (A,B) is ε-volume regular.

798 N. Alon et al.

2. On the other hand, if the answer is “no”, then (A,B) is not ε/200-volume
regular. In this case Witness outputs a pair (X∗, Y ∗) of subsets X∗ ⊂
A, Y ∗ ⊂ B such that vol(X∗) ≥ ε

200vol(A), vol(Y ∗) ≥ ε
200vol(B), and

|e(X∗, Y ∗)− *(A,B)vol(X∗)vol(Y ∗)| > εvol(A)vol(B)
200vol(V) .

We call a pair (X∗, Y ∗) as in 2. an ε
200 -witness for (A,B).

By applying Witness to each pair (V k
i , V

k
j) of the partition Pk, Regularize

can single out a set Lk such that all pairs Vi, Vj with (i, j) �∈ Lk are ε-volume reg-
ular. Hence, if

∑
(i,j)∈Lk vol(V k

i)vol(V k
j) < εvol(V)2, then Pk satisfies REG2.

As we will see below that by construction Pk satisfies REG1 for all k, in this
case Pk is a feasible regular partition, whence Regularize stops.

2. For k = 1, 2, 3, . . . , k∗ do
3. Initially, let Lk = ∅.

For each pair (V k
i , V k

j) (i < j) of classes of the previously partition Pk

4. call the procedure Witness(G, V k
i , V k

j , ε).
If it answers “no” and hence outputs an ε

200 -witness (Xk
ij , X

k
ji) for (V k

i , V k
j),

then add (i, j) to Lk.
5. If

∑
(i,j)∈Lk vol(V k

i)vol(V k
j) < εvol(V)2, then output the partition Pk and halt.

If Step 5 does not halt, Regularize constructs a refinement Pk+1 of Pk. To
this end, the algorithm decomposes each class V k

i of Pk into up to 2sk pieces.
Consider the sets Xij with (i, j) ∈ Lk and define an equivalence relation ≡ki on
Vi by letting u ≡ki v iff for all j such that (i, j) ∈ Lk it is true that u ∈ Xij ↔ v ∈
Xij . Thus, the equivalence classes of ≡ki are the regions of the Venn diagram of
the sets Vi and Xij with (i, j) ∈ Lk. Then Regularize obtains Pk+1 as follows.

6. Let Ck be the set of all equivalence classes of the relations ≡k
i (1 ≤ i ≤ sk).

Moreover, let Ck
∗ = {V k+1

1 , . . . , V k+1
sk+1

} be the set of all classes W ∈ C such that
vol(W) > ε4(k+1)vol(V)/(15t3k+1). Finally, let V k+1

0 = V k
0 ∪

⋃
W∈Ck\Ck

∗
W , and

set Pk+1 = {V k+1
i : 0 ≤ i ≤ sk+1}.

Since for each i there are at most sk indices j such that (i, j) ∈ Lk, in Pk+1

every class V k
i gets split into at most 2sk pieces. Hence, sk+1 ≤ sk2sk . Thus,

as s1 ≤ t1, we conclude that sk ≤ tk for all k. Therefore, our choice of η
ensures that vol(V k+1

i) ≥ ηvol(V) for all 1 ≤ i ≤ sk+1 (because Step 6 puts all
equivalence classes W ∈ Ck of “extremely small” volume into the exceptional
class). Moreover, it is easily seen that vol(V k+1

0) ≤ ε(1− 2k+2)vol(V). In effect,
Pk+1 satisfies REG1.

Thus, to complete the proof of Theorem 2 it just remains to show that
Regularize will actually succeed and output a partition Pk for some k ≤ k∗.
To show this, we define the index of a partition P = {Vi : 0 ≤ i ≤ s} as

ind(P) =
∑

1≤i<j≤s
*(Vi, Vj)2vol(Vi)vol(Vj) =

∑

1≤i<j≤s

e(Vi, Vj)2

vol(Vi)vol(Vj)
.

Note that we do not take into account the (exceptional) class V0 here. Using the
boundedness-condition, we derive the following.

Quasi-randomness and Algorithmic Regularity 799

Proposition 11. If G = (V,E) is (C, η)-bounded and P = {Vi : 0 ≤ 1 ≤ t} is
a partition of V with vol(Vi) ≥ ηvol(V) for all i ∈ {1, . . . , t}, then ind(P) ≤ C.

Lemma 11 entails that ind(Pk) ≤ C for all k. In addition, since Regularize
obtains Pk+1 by refining Pk according to the witnesses of irregularity computed
by Witness, the index of Pk+1 is actually considerably larger than the index of
Pk. More precisely, the following is true.

Lemma 12.
∑

(i,j)∈Lk vol(V k
i)vol(V k

j)≥ εvol(V)2 ⇒ ind(Pk+1)≥ ind(Pk)+ ε3

8 .

Since the index of the initial partition P1 is non-negative, Lemmas 11 and 12
readily imply that Regularize will terminate and output a feasible partition Pk
for some k < k∗.

Finally, we point out that the overall running time of Regularize is polyno-
mial. For the running time of Steps 1–3 and 5–6 is O(vol(V)), and the running
time of Step 4 is polynomial due to Proposition 10.

5.2 The Procedure Witness

The subroutine Witness for Proposition 10 employs the algorithm ApxCutNorm
from Theorem 5 for approximating the cut norm as follows.

Algorithm 13. Witness(G,A,B)
Input: A graph G = (V,E), disjoint sets A,B ⊂ V , and a number ε > 0.
Output: A partition of V .
1. Set up a matrix M = (mvw)(v,w)∈A×B with entries mvw = 1 − �(A,B)dvdw if v, w

are adjacent in G, and mvw = −�(A,B)dvdw otherwise. Call ApxCutNorm(M) to
compute sets X ⊂ A, Y ⊂ B such that | 〈M1X ,1Y 〉 | ≥ 3

100 ‖M‖cut.
2. If | 〈M1X ,1Y 〉 | < 3ε/100, then return “yes”.
3. Otherwise, pick X ′ ⊂ A \X of volume 3ε

100 vol(A) ≤ vol(X ′) ≤ 4ε
100 vol(A).

– If vol(X) ≥ 3ε
100 vol(A), then let X∗ = X.

– If vol(X) < 3ε
100vol(A) and |e(X ′, Y)− �(A,B)vol(X ′)vol(Y)| > εvol(A)vol(B)

100vol(V) ,
set X∗ = X ′.

– Otherwise, set X∗ = X ∪X ′.
4. Pick a further set Y ′ ⊂ B \ Y of volume ε

200vol(B) ≤ vol(Y ′) ≤ 2ε
300vol(B).

– If vol(Y) ≥ ε
200vol(B), then let Y ∗ = Y .

– If vol(Y) < ε
200 vol(B) and |e(X∗, Y ′)− �(A,B)vol(X∗)vol(Y ′)| > εvol(A)vol(B)

200vol(V) ,
let Y ∗ = Y ′.

– Otherwise, set Y ∗ = Y ∪ Y ′.
5. Answer “no” and output (X∗, Y ∗) as an ε/8-witness.

Given the graph G along with two disjoint sets A,B ⊂ V , Witness sets up a
matrix M . The crucial property of M is that for any two subsets S ⊂ A and T ⊂
B we have 〈M1S ,1T 〉 = e(S, T)− *(A,B)vol(S)vol(T). Therefore, if ‖M‖cut ≤
εvol(A)vol(B)/vol(V), then the pair (A,B) is ε-volume regular. Hence, in order
to find out whether (A,B) is ε-volume regular, Witness employs the algorithm
ApxCutNorm to approximate ‖M‖cut. If Step 2 of Witness answers “yes”, then

800 N. Alon et al.

(A,B) is ε-volume regular, because ApxCutNorm achieves an approximation ratio
> 3

100 by Theorem 5.
On the other hand, if ApxCutNorm yields sets X , Y such that |〈M1X ,1Y 〉| >

3εvol(A)vol(B)
100vol(V) , then Witness constructs an ε/200-witness for (A,B). Indeed, if

the volumes of X and Y are “large enough” – say, vol(X) ≥ ε
200vol(A) and

vol(Y) ≥ ε
200vol(B) – then (X,Y) actually is an ε/200-witness. However, as

ApxCutNorm does not guarantee any lower bound on vol(X), vol(Y), Steps 3–5
try to enlarge the sets X , Y a little if their volume is too small. Finally, it is
straightforward to verify that this procedure yields an ε/200-witness (X∗, Y ∗),
which entails Proposition 10.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of
modern physics 74, 47–97 (2002)

2. Alizadeh, F.: Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM J. Optimization 5, 13–51 (1995)

3. Alon, N., Duke, R.A., Rödl, V., Yuster, R.: The algorithmic aspects of the regularity
lemma. J. of Algorithms 16, 80–109 (1994)

4. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. In:
Proc. 36th STOC, pp. 72–80 (2004)

5. Bilu, Y., Linial, N.: Lifts, discrepancy and nearly optimal spectral gap. Combina-
torica (to appear)

6. Butler, S.: On eigenvalues and the discrepancy of graphs. preprint
7. Chung, F., Graham, R.: Quasi-random graphs with given degree sequences.

Preprint (2005)
8. Chung, F., Graham, R.: Sparse quasi-random graphs. Combinatorica 22, 217–244

(2002)
9. Chung, F., Graham, R., Wilson, R.M.: Quasi-random graphs. Combinatorica 9,

345–362 (1989)
10. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Com-

binatorica 19, 175–200 (1999)
11. Gerke, S., Steger, A.: A characterization for sparse ε-regular pairs. The Electronic

J. Combinatorics 14, R4, p. 12 (2007)
12. Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels

topologiques. Bol. Soc. Mat. Sao Paulo 8, 1–79 (1953)
13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial

optimization. Springer, Heidelberg (1988)
14. H̊astad, J.: Some optimal inapproximability results. J. of the ACM 48, 798–859

(2001)
15. Kohayakawa, Y.: Szemeredi’s regularity lemma for sparse graphs. In: Cucker, F.,

Shub, M. (eds.) Foundations of computational mathematics, pp. 216–230 (1997)
16. Kohayakawa, Y., Rödl, V., Thoma, L.: An optimal algorithm for checking regular-

ity. SIAM J. Comput. 32, 1210–1235 (2003)
17. Krivine, J.L.: Sur la constante de Grothendieck. C. R. Acad. Sci. Paris Ser. A-

B 284, 445–446 (1977)
18. Szemeredi, E.: Regular partitions of graphs. Problémes Combinatoires et Théorie

des Graphes Colloques Internationaux CNRS 260, 399–401 (1978)
19. Trevisan, L., Sorkin, G., Sudan, M., Williamson, D.: Gadgets, approximation, and

linear programming. SIAM J. Computing 29, 2074–2097 (2000)

Complexity of the Cover Polynomial

Markus Bläser and Holger Dell

Computational Complexity Group
Saarland University, Germany

{mblaeser,hdell}@cs.uni-sb.de

Abstract. The cover polynomial introduced by Chung and Graham
is a two-variate graph polynomial for directed graphs. It counts the
(weighted) number of ways to cover a graph with disjoint directed cycles
and paths, it is an interpolation between determinant and permanent,
and it is believed to be a directed analogue of the Tutte polynomial.
Jaeger, Vertigan, and Welsh showed that the Tutte polynomial is #P-
hard to evaluate at all but a few special points and curves. It turns out
that the same holds for the cover polynomial: We prove that, in almost
the whole plane, the problem of evaluating the cover polynomial is #P-
hard under polynomial-time Turing reductions, while only three points
are easy. Our construction uses a gadget which is easier to analyze and
more general than the XOR-gadget used by Valiant in his proof that the
permanent is #P-complete.

1 Introduction

Graph polynomials map directed or undirected graphs to polynomials in one or
more variables, such that this mapping is invariant under graph isomorphisms.
Probably the most famous graph polynomials are the chromatic polynomial or
its generalization, the Tutte polynomial. The chromatic polynomial is the poly-
nomial in the variable λ that counts the number of valid λ-colourings of a given
undirected graph. The Tutte polynomial T in two variables x and y has inter-
pretations from different fields of combinatorics. For example, T (G, 1, 1) is the
number of spanning trees, T (G, 1, 2) is the number of spanning subgraphs of an
undirected graph G, and also the number of nowhere-zero flows or the Jones
polynomial of an alternating link are contained in the Tutte polynomial.

While the Tutte polynomial has been established for undirected graphs, the
cover polynomial by Chung and Graham [1] is an analogue for the directed
case. Both graph polynomials satisfy similar identities such as a contraction-
deletion identity and product rule, but the exact relation between the Tutte and
the cover polynomial is not yet known. The cover polynomial has connections
to rook polynomials and drop polynomials, but from a complexity theoretic
point of view, we tend to see it as a generalization of the permanent and the
determinant of a graph. The cover polynomial of a graph is the weighted sum of
all of its spanning subgraphs that consist of disjoint, directed, and simple cycles
and paths. As it is the case for most graph polynomials, the cover polynomial

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 801–812, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

802 M. Bläser and H. Dell

is of interest because it combines a variety of combinatorial problems into one
generalized theoretical framework.

1.1 Previous Results

Jaeger, Vertigan, and Welsh [2] have shown that, except along one hyperbola and
at nine special points, computing the Tutte polynomial is #P-hard. In recent
years, the complexity and approximability of the Tutte polynomial has received
increasing attention: Lotz and Makowsky [3] prove that the coloured Tutte poly-
nomial by Bollobás and Riordan [4] is complete for Valiant’s algebraic complexity
class VNP, Giménez and Noy [5] show that evaluating the Tutte polynomial is
#P-hard even for the rather restricted class of bicircular matroids, and Goldberg
and Jerrum [6] show that the Tutte polynomial is mostly inapproximable.

A different graph invariant that seems related to the Tutte polynomial is the
weighted sum of graph homomorphisms to a fixed graph H , so basically, it is
the number of H-colourings. Bulatov and Grohe [7] and Dyer, Goldberg, and
Paterson [8] prove that the complexity of computing this sum is #P-hard for
most graphs H .

1.2 Our Contribution

In this paper, we show that the problem of evaluating the cover polynomial
is #P-hard at all evaluation points except for three points where this is easy.

The big picture of the proof is as follows: We use elementary identities of the
cover polynomial in order to construct simple reductions along horizontal lines.
Furthermore, we establish an interesting identity along the y-axis. As it turns
out, there is quite a strong connection between cover polynomial and permanent,
and our construction uses an equality gadget with a similar effect as the XOR-
gadget which Valiant [9] uses in his proof that the permanent is #P-complete.
Our gadget, however, is simpler to analyze and more general, in the sense that
it satisfies additional properties about the number of cycles contributed by our
gadget to each cycle cover.

In addition, we carry over the hardness result to the geometric cover polyno-
mial introduced by D’Antona and Munarini [10].

2 Preliminaries

Let IN = {0, 1, . . . }. The graphs in this paper are directed multigraphs D =
(V,E) with parallel edges and loops allowed. We denote by G the set of all such
graphs. We write n for the number of vertices, and m for the number of edges.
Two graphs are called isomorphic if there is a bijective mapping on the vertices
that transforms one graph into the other.

A graph invariant is a function f : G → F , mapping elements from G to some
set F , such that all pairs of isomorphic graphs G and G′ have the same image
under f . In the case that F is a polynomial ring, f is called graph polynomial.

Complexity of the Cover Polynomial 803

Counting Complexity Basics. The class #P consists of all functions f :
{0, 1}∗ → IN for which there is a non-deterministic polynomial-time bounded
Turing machine M which has exactly f(x) accepting paths on input x. For two
counting problems f, g : {0, 1}∗ → Q not necessarily in #P, we say f Turing-
reduces to g in polynomial time (f �p

T g), if there is a deterministic oracle Turing
machine M which computes f in polynomial time with oracle access to g. If
the oracle is used only once, we say f many-one reduces to g (f �p

m g), and
if the oracle output is the output of the reduction, we speak of a parsimonious
many-one reduction (f �p g). The notions of #P-hardness and #P-completeness
(under polynomial-time Turing reductions) are defined in the usual way.

Polynomials. Polynomials p(x1, . . . , xm) are elements of the polynomial ring
Q[x1, . . . , xm], and, in this context, the variables are abstract objects. Lagrange
interpolation can be used to compute the following problem in polynomial time.

Input: Point-value pairs (a1, p1), . . . , (ad, pd) ∈ Q2, encoded in binary.
Output: The coefficients of the polynomial p(x) with deg(p) ≤ d and p(aj)=pj .

The Cover Polynomial. The cover polynomial basically counts a relaxed form
of cycle covers, namely path-cycle covers. For a directed graph D = (V,E) and
some subset C ⊆ E, we denote the subgraph (V,C) again by C. A path-cycle
cover of D is a set C ⊆ E, such that in C every vertex v ∈ V has an indegree
and an outdegree of at most 1. A path-cycle cover thus consists of disjoint simple
paths and simple cycles. Note that also an independent vertex counts as a path,
and an independent loop counts as a cycle.

By the graph invariant cD(i, j), we denote the number of path-cycle covers
of D that have exactly i paths and j cycles. It is not hard to prove that the
function D �→ cD(i, j) is #P-complete (cf. [11]).The cover polynomial by Chung
and Graham [1] is a graph polynomial in the variables x and y, and it is defined
by the equation

C(D,x, y) :=
m∑

i=0

m∑

j=0

cD(i, j)xiyj, (1)

where xi := x(x− 1) . . . (x− i+ 1) denotes the falling factorial.
Writing i(C) and j(C) for the number of paths and cycles of a path-cycle

cover C, the cover polynomial is the weighted sum over all covers of D:

C(D,x, y) =
∑

path-cycle
cover C

xi(C)yj(C).

3 Overview

The problem of evaluating the cover polynomial, written C(a, b), is parameter-
ized by the coordinates (a, b). Formally, C(a, b) is the function from G → Q
with D �→ C(D, a, b) where we assume graphs and rationals to be represented
explicitly in a standard way. Our main theorem is the following.

804 M. Bläser and H. Dell

Main Theorem. Let (a, b) ∈ Q2. It holds:
If (a, b) �∈ {(0, 0), (0,−1), (1,−1)}, then C(a, b) is #P-hard.
Otherwise, C(a, b) is computable in polynomial-time.

Proof (outline). The proof is in several steps (cf. Fig. 1). We begin by classifying
the polynomial-time computable points in Section 4. Furthermore, we point out
that C(0, 1) is the permanent and C(1, 0) is the number of Hamiltonian paths,
which both are #P-complete counting problems.

In Section 5, using elementary identities of the cover polynomial and interpo-
lation, we reduce along horizontal lines, that means we prove C(0, b) �p

T C(a, b)
for all a, b and C(1, 0) �p

T C(a, 0) for all a �= 0. This implies the hardness of
C(a, 1) for all a and of C(a, 0) for a �= 0.

To prove the remaining hardness part where b �∈ {−1, 0, 1}, we reduce the
permanent to C(0, b). Section 6 is the core part of our proof, establishing this
reduction C(0, 1) �p

T C(0, b) along the y-axis. There we introduce and analyze
the equality gadget, use it to establish a new identity for the weighted cover
polynomial, and show how to derive a reduction for the standard cover polyno-
mial from this. ��

In Section 7, we briefly show how to carry over our result to the geometric version
of the cover polynomial.

1

1
x

y

Permanent

Determinant

�p
T

�
p T

�p
T

#Hamiltonian
Paths

Fig. 1. The big picture: three points
(black discs) are easy to evaluate, and the
rest of the plane is #P-hard. The crosses
indicate the points for the reductions.

u

v

u′

v′

e′e

u

v

u′

v′

−1

= = =· · ·

e1 e2 e3 eα−1 eα

Fig. 2. Top: Shows how the equality gad-
get connects two edges e, e′. Bottom:
Shows how the multiequality gadget con-
nects α edges with equality gadgets from
the top (large diamonds).

Complexity of the Cover Polynomial 805

4 Special Points

A Hamiltonian path is a path-cycle cover with exactly one path and zero cycles,
and a cycle cover is a path-cycle cover without paths. The permanent Perm(D)
is the permanent of the adjacency matrix of D, and it counts the number of cycle
covers of D. The determinant det(D) is the determinant det(A). Remarkably,
both the determinant and the permanent can be found in the cover polynomial.

Lemma 1. For any nonempty directed graph D, we have

(i) C(D, 0, 0) = 0,
(ii) C(D, 1, 0) = #HamiltonianPaths(D),

(iii) C(D, 0, 1) = Perm(D),
(iv) C(D, 0,−1) = (−1)n det(D),
(v) C(D, 1,−1) = C(D, 0,−1) − C(D′, 0,−1) where D′ is derived from D by

adding a new vertex v0 with all edges to and from the nodes of D,

Proof (sketch). (For a detailed proof, cf. [11])
The proof of the first three claims is simple. The proof of the fourth claim uses

Laplace expansion and the multilinearity of the determinant to show that the
contraction-deletion identity from (1)–(3) in [1] is satisfied by the function D �→
(−1)n(D) det(D). Since the contraction-deletion identities are defining equations
of the cover polynomial, the claim follows.

For the last claim, notice that C(D, 1,−1) counts all path-cycle covers with
at most one path (weighted with (−1)j(C)), while the determinant C(D, 0,−1)
counts only cycle covers. The idea is that C(D, 1,−1)−C(D, 0,−1) is the number
of covers of D with exactly one path, and can be expressed by C(D′, 0,−1), the
number of cycle covers of D′. This is because every path-cycle cover of D with
one path becomes a cycle cover in D′ where the path gets closed by the v0-edges
to form a cycle. ��

As a consequence, C(0, 1) and C(1, 0) are #P-hard [9,12], while C(0, 0), C(0,−1)
and C(1,−1) are polynomial-time computable. The #P-hardness of C(2,−1)
follows from the following lemma and requires a sophisticated proof.

Lemma 2. It holds #HamiltonianPaths �p
m C(2,−1).

Proof. Let D be a directed graph with vertex set V = {1, . . . , n}. We construct
a graph D′ from D as follows (cf. Fig. 3).

– uncontract all vertices v from D, into two vertices v, v′ with one edge (v, v′)
in between, and move all outgoing edges (v, w) to (v′, w),

– add fresh vertices a, a′ to D, and add the edges (a, v) and (v′, a′) for all v,
– add an independent directed path of length n with edges e1, . . . , en, and
– add the crossing edges (v, w), (u, v′) for all (v, v′) and ev = (u,w).

Note that uncontracting edges as above does not change the structure of the
path-cycle covers. Therefore, we refer to the graph induced by the vertices v

806 M. Bläser and H. Dell

b b′

a′a

D

v v′

ev

Fig. 3. Shows the graph D′ constructed
from D. The two edges ev, (v, v′) to-
gether with the corresponding crossing
edges form the crossing gadget.

Fig. 4. Shows the change in the number
of paths and cycles in a path-cycle cover
if we switch one crossing gadget: It is 0 if
the two edges are used in distinct paths,
and it is 1 otherwise

and v′ again by D. Let b be the start vertex of e1, and let b′ be the end vertex
of en. Since a and b have no incoming edges, a and b are starting points of paths,
and similarly a′ and b′ are ending points of paths in every path-cycle cover.

For the cover polynomial of D′, we have

C(D′, 2,−1) = 2 ·
∑

C

(−1)j(C),

where the sum is only over those path-cycle covers of D′ that have exactly two
paths and an arbitrary number of cycles.

In the following, we prove C(D′, 2,−1) = 2n+1 ·#HamiltonianPaths(D).
From a given path-cycle cover C, related path-cycle covers can be constructed

by switching the presence of the edges ev, (v, v′) and their corresponding crossing
edges. Let C0 be the set of path-cycle covers C0 ofD′ that have exactly two paths,
use no crossing edge, and have at least one cycle. We define the set of bad cycle
covers Cb as the closure of C0 under switching arbitrary crossing gadgets.

Let C ∈ Cb be arbitrary. By switching, we can uniquely turn C into a path-
cycle cover C0 ∈ C0. Let v be the smallest vertex of D that occurs in a cycle
of C0. We define the partner of C as the path-cycle cover p(C) ∈ Cb which is
derived from C by switching the crossing gadget ev, (v, v′). As depicted in Fig. 4,
the numbers of cycles in C and in p(C) differ by exactly 1.

Since p is a permutation on Cb with the property (−1)j(C) = −(−1)j(p(C)),
the weights (−1)j(C) of the bad cycle covers sum up to 0 in C(D′, 2,−1). This
means that C(D′, 2,−1) is just 2 times the number of path covers of D′ with
exactly two paths. Any such 2-path cover C of D′ translates to an Hamiltonian
path of D (by switching all gadgets to C0, recontracting the edges (v, v′), and
removing a, a′ and the b-b′-path), and this procedure does not add any cycles.
Since there are 2n possible gadget states, we get

C(D′, 2,−1) = 2 · 2n ·#HamiltonianPaths(D). ��

Complexity of the Cover Polynomial 807

Note that in the proof above, we basically examined an operation necessary for
Gaussian elimination: Exchanging two rows or columns in the adjacency matrix
switches the sign of the determinant, but as soon as we allow more than one
path, this is no longer true for the cover polynomial.

5 Horizontal Reductions

Let us consider reductions along the horizontal lines Lb := {(a, b) : a ∈ Q}. For
a directed graph D, let D(r) be the graph obtained by adding r independent
vertices. Corollary 4 in [1] is the core part of the horizontal-line reductions:

C(D(r), x, y) = xrC(D,x− r, y). (2)

From this equation, it is not hard to prove the next lemma (also cf. [11]).

Lemma 3. For all (a, b) ∈ Q2, we have C(0, b) �p
T C(a, b).

Proof (sketch). For a ∈ IN, it follows directly. For a �∈ IN, we can compute the
values C(D, a− 1, b), . . . , C(D, a−m, b) and interpolate to get C(D,x, b). ��

In a similar fashion, one can also prove C(1, 0) �p
T C(a, 0) for a �= 0 and

C(2,−1) �p
T C(a, 0) for a �= 0, 1. Please note that C(a, b) is now known to

be #P-hard for every point (a, b) on the lines L1, L0, and L−1, except for the
three easy points (0, 0), (0,−1), and (1,−1).

6 Vertical Reduction

In this section, we reduce the permanent along the y-axis:

Theorem 1. Let b ∈ Q with −1 �= b �= 0. It holds C(0, 1) �p
T C(0, b).

Proof (outline). For some graph D, we compute C(D, 0, 1) with oracle access to
C(0, b), and we use interpolation to do so.

In order to interpolate the polynomial C(D, 0, y), we need to compute some
values C(D, 0, b1), . . . , C(D, 0, bm). This can be done by using the oracle for
some values C(D1, 0, b), . . . , C(Dm, 0, b) instead. More specifically, we construct
graphsDα containing α copies of a graphD, such that there is a polynomial-time
computable relation between C(D, 0, bα) and C(Dα, 0, b). Computing C(D, 0, bα)
for α = 1, . . . ,m and applying interpolation, we get C(D, 0, y).

Construction details are spelled out in the remainder of this section. ��

The constructed graph Dα is a graph in which every cycle cover ideally has α
times the number of cycles a corresponding cycle cover of D would have. This
way, the terms yj in the cover polynomial ideally become (yα)j , and some easily
computable relation between C(D, 0, bα) and C(Dα, 0, b) can be established.

In the construction, we therefore duplicate the graph α times, and we connect
the duplicates by equality gadgets. These equality gadgets make sure that every
cycle cover of Dα is a cycle cover of D copied α times, and thus has roughly α
times the number of cycles. Let us construct the graph Dα explicitly.

808 M. Bläser and H. Dell

– Start with the input graph D.
– Create α copies D1, . . . , Dα of D.
– Let ei be the copy of e in the graph Di. Replace every tuple of edges

(e1, . . . , eα) by the multiequality gadget on α edges, which is drawn in Fig. 2.

The D1-part of every cycle cover of Dα is isomorphic to a cycle cover of D and
has to be imitated by the other subgraphs Di because of the equality gadgets.
What we are left with is to prove that the equality gadget indeed ensures that,
in every cycle cover, two edges are either both present or both absent.

Note that some edges in the multiequality gadget become paths of length
three. This is because we add the equality gadget first to, say, e1 and e2 which
gives two new edges each. Next we apply it to one of the new edges for e2 and
to e3 which explains why e2 now has three edges. Please also note that the
equality gadget can be adapted easily to work as an XOR-gadget [11], easier to
analyze than that found in [9].

6.1 The Weighted Cover Polynomial

Unfortunately, the equality gadget cannot1 enforce equality in every possible
cycle cover, and we call those cycle covers good that satisfy equality (we later
change this notion slightly). As you noticed, we introduce weights we ∈ {−1, 1}
on the edges. These weights make sure that, in the weighted cover polynomial

Cw(D, 0, y) :=
∑

cycle cover C

w(C)yj(C) :=
∑

cycle cover C

yj(C)
∏

e∈C
we,

the bad cycle covers sum up to 0, so effectively only the good cycle covers are
visible. We define the evaluation function Cw(a, b) in the weighted case again as
D �→ Cw(D, a, b) and show that both evaluation complexities are equal.

Lemma 4. For all b ∈ Q, it holds C(0, b) �p
m Cw(0, b) and Cw(0, b) �p

m C(0, b).

Proof (sketch). The first claim is trivial. For the second claim we adapt the
proof of Valiant [9] to the cover polynomial: We replace the −1-edges by an un-
weighted N -gadget that simulates a sufficiently large weight N , and we compute
modulo N + 1. However, our N -gadget is different from Valiant’s since it has
to contribute a constant amount of cycles to cycle covers. To handle rational
values, we multiply with the common denominator, and for negative values, we
choose N even larger. (for details, cf. [11]) ��

6.2 Partner Elimination

In Fig. 5, we have drawn all possible ways for an equality gadget to be covered
by cycles if the surrounding graph allows it. The state of the gadget is the set

1 Fortunately ! If it were possible without weights, we could adapt the gadget for a
parsimonious reduction from #SAT to the permanent and thereby prove P = NP.

Complexity of the Cover Polynomial 809

u

v

u′

v′

u

v

u′

v′

u

v

u′

v′

−1

good1 state
+
1 state

−
1

u

v

u′

v′

u

v

u′

v′

u

v

u′

v′

−1

good2 state
+
2 state

−
2

u

v

u′

v′

−1

u

v

u′

v′

u

v

u′

v′

−1

good3 state
+
3 state

−
3

u

v

u′

v′

u

v

u′

v′

−1

state
+
4 state

−
4

Fig. 5. All possible states (=partial cycle covers) of the equality gadget except that
the states state

±
3 and state

±
4 also have symmetric cases, which we have not drawn.

We call good1, good2, and good3 good states as they have no partners and satisfy
the equality property. Note that the choice of the good states is arbitrary as long as
the equality property is satisfied and all state

±
i have partners.

810 M. Bläser and H. Dell

of edges chosen to cover it. Notice that the good states as well as state
±
1 and

state
±
2 have the equality property, that is, the left path is completely present

or absent if and only if the same holds for the right one.
As stated above, the problem is that the equality gadget does not prevent

states that do not have the equality property. Therefore, using Lemma 4, we
switch to the weighted cover polynomial for which our equality gadget is con-
structed in such a way, that the good cycle covers contribute a weight �= 0 to
the sum Cw(Dα, 0, b) while the bad cycle covers do not contribute to the sum,
that is, the weights of the bad cycle covers sum up to zero. This is achieved by
the fact that every bad cycle cover of weight +1 has a unique bad cycle cover of
weight −1 as a partner. More specifically, every cycle cover C has a partner C′

such that the corresponding summands in the weighted cover polynomial vanish,
that is,

w(C)yj(C) + w(C′)yj(C
′) = 0.

Note that not only the weights must be of different sign, but also the numbers
of cycles must be equal! This is the crucial factor why we cannot simply adapt
the XOR-gadget of Valiant to form an equality gadget for the cover polynomial.
The number of cycles contributed by his XOR-gadget varies a lot, and thus the
summands corresponding to the bad cycle covers do not cancel out. (Note that,
if we plug in y = 1 to get the permanent, then the condition on the cycles is not
needed, and the XOR-gadget works, of course.)

Now let us quickly summarize and prove the properties of the equality gadget.
We now call a cycle cover bad if an equality gadget is in a state state

±
i .

Lemma 5. Every bad cycle cover C of Dα has a partner C′ with the properties

(i) C′ is again bad, and its partner is C,
(ii) for the weights, it holds w(C′) = −w(C), and

(iii) for the number of cycles, it holds j(C′) = j(C).

Proof. We choose an arbitrary ordering on the equality gadgets of Dα. Let C
be a bad cycle cover and g be its smallest gadget in state state

±
i . We define

its partner C′ to be the same cycle cover but with gadget g in state state
∓
i

instead. Verifying the three properties proves the claim. ��

It immediately follows that only the good cycle covers of Dα remain in Cw(Dα):

Cw(Dα, 0, y) =
∑

cycle cover C,
C is good

w(C)yj(C).

6.3 Counting the Good Cycle Covers

In order to finish the proof of Theorem 1, and thus also the proof of the Main The-
orem, it remains to express Cw(Dα) in an appropriate way in terms of Cw(D).

Lemma 6. It holds Cw(Dα, 0, y) =
(
yn+4m(1 + y)m−n)α−1

Cw(D, 0, yα).

Complexity of the Cover Polynomial 811

Proof (sketch). Every cycle cover C of D induces several possible good cycle
covers C′ of Dα. Since |C| = n, a number of (α− 1)n gadgets have state good3

in C′. The other m − n gadget have the free choice between the states good1

and good2. In addition to the αj(C) large cycles, every gadget contributes small
cycles to C′. More precisely, j(C′) = αj(C) + 4 · #good1 + 5 · #good2 + 5 ·
#good3. Using the fact that there are

(
m−n
i

)
possible C′ corresponding to C

and with the property #good1(C′) = i, the claim can be verified by a simple
computation (cf. [11]). ��

The easily computable relation between Cw(Dα, 0, y) and Cw(D, 0, yα) from the
last lemma proves (a weighted fromulation of) Theorem 1.

Finally, the Main Theorem follows, for −1 �= b �= 0, from the reduction chain

C(0, 1) �p
T C

w(0, 1) �p
T C

w(0, b) �p
T C(0, b) �p

T C(a, b).

7 The Geometric Cover Polynomial

The geometric cover polynomial Cgeom(D,x, y) introduced by D’Antona and Mu-
narini [10] is the geometric version of the cover polynomial, that is, the falling
factorial xi is replaced by the usual power xi in (1). We are able to give com-
plexity results also for this graph polynomial, except for the line L−1.

Theorem 2. Let (a, b) ∈ Q2. It holds:
If (a, b) �∈ {(0, 0), (∗,−1)}, then Cgeom(a, b) is #P-hard.
If (a, b) ∈ {(0, 0), (0,−1)}, then Cgeom(a, b) is computable in polynomial time.

Proof (sketch). The results on the y-axis follow from C(D, 0, y) = Cgeom(D, 0, y).
For the other points, a new horizontal reduction must be established. This can be
done by considering the α-fattening of the graph, in which every edge is replaced
by α parallel edges (for details, cf. [11]). ��

8 Conclusion and Further Work

In this paper, we completely characterized the complexity of evaluating the cover
polynomial in the rational plane. Our reductions should also work for complex
or algebraic numbers, but we do not have any interpretation for such points yet.

The next natural step along the path is to characterize the complexity of
approximately evaluating the cover polynomial, in analogy to recent results by
Goldberg and Jerrum [6] for the Tutte polynomial. Very recently, Fouz had
success in characterizing the approximability of the geometric cover polynomial
in large regions of the plane.

One might conjecture that the connection between the Tutte and the cover
polynomial is solved because both are #P-hard to evaluate at most points, so
they can be computed from each other (where they are in #P). From a com-
binatorial point of view, however, #P-reductions are not really satisfying steps

812 M. Bläser and H. Dell

towards a deeper understanding of the connection between the two graph poly-
nomials.

One promising approach might be to consider generalizations of the cover
polynomial. Very recently, Courcelle analyzed general contraction-deletion iden-
tities analogous to those of the coloured Tutte polynomial, and he found condi-
tions for the variables which are necessary and sufficient for the well-definedness
of the polynomial. Unfortunately, these conditions seem too restrictive.

The contraction-deletion identities of Tutte and cover polynomial look aston-
ishingly similar, but contractions work differently for directed and for undirected
graphs. Explaining the connection between Tutte and cover polynomial means
overcoming this difference.

Acknowledgements. We would like to thank Mahmoud Fouz, Thomas Jansen
and Moritz Hardt for fruitful discussions and comments on earlier versions of
this paper.

References

1. Chung, F.R., Graham, R.L.: On the cover polynomial of a digraph. Journal of
Combinatorial Theory Series B 65, 273–290 (1995)

2. Jaeger, F., Vertigan, D.L., Welsh, D.J.: On the computational complexity of the
Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge Philo-
sophical Society 108, 35–53 (1990)

3. Lotz, M., Makowsky, J.A.: On the algebraic complexity of some families of coloured
Tutte polynomials. Advances in Applied Mathematics 32, 327–349 (2004)

4. Bollobás, B., Riordan, O.: A Tutte polynomial for coloured graphs. Combinatorics,
Probability and Computing 8, 45–93 (1999)

5. Giménez, O., Noy, M.: On the complexity of computing the Tutte polynomial of
bicircular matroids. Combinatorics, Probability and Computing 15, 385–395 (2006)

6. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial (2006)
7. Bulatov, A., Grohe, M.: The complexity of partition functions. Theoretical Com-

puter Science 348, 148–186 (2005)
8. Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to directed

acyclic graphs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4051, pp. 38–49. Springer, Heidelberg (2006)

9. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

10. D’Antona, O.M., Munarini, E.: The cycle-path indicator polynomial of a digraph.
Adv. Appl. Math. 25, 41–56 (2000)

11. Bläser, M., Dell, H.: Complexity of the cover polynomial (journal version) (to
appear)

12. Dyer, M.E., Frieze, A.M., Jerrum, M.: Approximately counting Hamilton paths
and cycles in dense graphs. SIAM Journal on Computing 27, 1262–1272 (1998)

A Generalization of Cobham’s Theorem to

Automata over Real Numbers

Bernard Boigelot and Julien Brusten�

Institut Montefiore, B28
Université de Liège

B-4000 Liège, Belgium
{boigelot,brusten}@montefiore.ulg.ac.be

Abstract. This paper studies the expressive power of finite-state au-
tomata recognizing sets of real numbers encoded positionally. It is known
that the sets that are definable in the first-order additive theory of real
and integer variables 〈R, Z, +, <〉 can all be recognized by weak deter-
ministic Büchi automata, regardless of the encoding base r > 1. In this
paper, we prove the reciprocal property, i.e., that a subset of R that
is recognizable by weak deterministic automata in every base r > 1 is
necessarily definable in 〈R, Z, +,<〉. This result generalizes to real num-
bers the well-known Cobham’s theorem on the finite-state recognizability
of sets of integers. Our proof gives interesting insight into the internal
structure of automata recognizing sets of real numbers, which may lead
to efficient data structures for handling these sets.

1 Introduction

The verification of infinite-state systems, in particular the reachability analysis
of systems modeled as finite-state machines extended with unbounded variables,
has prompted the development of symbolic data structures for representing the
sets of values that have to be handled during state-space exploration [Boi98].

A simple representation strategy consists in using finite-state automata: The
values in the considered domain are encoded as words over a given finite alpha-
bet; a set of values is thus encoded as a language. If this language is regular, then
a finite-state automaton that accepts it forms a representation of the set [WB98].

This approach has many advantages: Regular languages are closed under all
usual set-theory operators (intersection, union, complement, Cartesian product,
projection, . . .), and automata are easy to manipulate algorithmically. Deter-
ministic automata can also be reduced to a canonical form, which simplifies
comparison operations between sets.

The expressive power of automata is also well suited for verification appli-
cations. In the case of programs manipulating unbounded integer variables, it
is known for a long time that the sets of integers that can be recognized by

� Research fellow (“aspirant”) of the Belgian Fund for Scientific Research (F.R.S.-
FNRS).

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 813–824, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

814 B. Boigelot and J. Brusten

a finite-state automaton using the positional encoding of numbers in a base
r > 1 correspond to those definable in an extension of Presburger arithmetic,
i.e., the first-order additive theory of the integers 〈Z,+, <〉 [Büc62]. Furthermore,
the well known Cobham’s theorem characterizes the sets that are representable
by automata in all bases r > 1 as being exactly those that are Presburger-
definable [Cob69, BHMV94].

In order to analyze systems relying on integer and real variables, such as
timed or hybrid automata, automata-based representations of numbers can be
generalized to real values [BBR97]. From a theoretical point of view, this amounts
to moving from finite-word to infinite-word automata, which is not problematic.
It has been shown that the sets of reals that can be recognized by infinite-word
automata in a given encoding base are those definable in an extension of the
first-order additive theory of real and integers variables 〈R,Z,+, <〉 [BRW98].

In practice though, handling infinite-word automata can be difficult, espe-
cially if set complementation needs to be performed. It is however known that,
for representing the sets definable in 〈R,Z,+, <〉, the full expressive power of
Büchi automata is not required, and that the much simpler subclass of weak
deterministic automata is sufficient [BJW05]. The advantage is that, from an al-
gorithmic perspective, handling weak automata is similar to manipulating finite-
word automata.

A natural question is then to characterize precisely the expressive power of
weak deterministic automata representing sets of real numbers. For a given en-
coding base r > 1, it is known that the representable sets form a base-dependent
extension of 〈R,Z,+, <〉. This covers, in particular, all the sets definable in
〈R,Z,+, <, Pr〉, where Pr is a predicate that checks whether its argument is a
power of r [Bru06].

This paper is aimed at characterizing the subsets of R that can be represented
as weak deterministic automata in multiple bases. Our central result is to show
that, for two relatively prime bases r1 and r2, the sets that are simultaneously
recognizable in bases r1 and r2 can be defined in 〈R,Z,+, <〉. As a corollary,
such sets are then representable in any base r > 1.

The intuition behind our proof is the following. First, we reduce the problem
to characterizing the representable subsets of [0, 1]. We then introduce the notion
of interval boundary points, as points with special topological properties, and
establish that a set representable in multiple bases can only contain finitely many
such points. Finally, we show that this property implies that S is definable in
〈R,Z,+, <〉. The argument used for this last step provides a description of the
internal structure of automata representing sets definable in 〈R,Z,+, <〉. This
result may help to develop efficient data structures for handling such sets.

2 Representing Sets of Numbers with Automata

In this section, we briefly present the automata-based representations of sets of
integer and real values.

A Generalization of Cobham’s Theorem 815

2.1 Number Decision Diagrams

Let r > 1 be an integer base. A natural number x ∈ N can be encoded positionally
in base r by finite words bp−1bp−2 . . . b1b0 over the alphabetΣr = {0, 1, . . . , r−1},
such that x =

∑p−1
i=0 bir

i. Negative values are encoded by their r’s-complement,
i.e., the encodings of x ∈ Z with x < 0 are formed by the last p digits of the
encodings of rp + x. The length p of the encodings of a number x ∈ Z is not
fixed, but must be non-zero and large enough for −rp−1 ≤ x < rp−1 to hold. As
a consequence, the most significant digit of encodings, called the sign digit , is
equal to r − 1 for strictly negative numbers, and to 0 for positive numbers.

This encoding scheme maps a subset S of Z onto a language overΣr. If the lan-
guage containing all the encodings of the elements of S is regular, then a finite-
state automaton that accepts it is called a Number Decision Diagram (NDD), and
is said to represent, or recognize, the set S. NDDs can be generalized to represent-
ing subsets of Zn, i.e., sets of vectors, for any n > 0 [Büc62, WB95, Boi98].

It has been shown [Büc62, Vil92, BHMV94] that the subsets of Z recognizable
by NDDs in a base r > 1 are exactly those that can be defined in the first-order
theory 〈Z,+, <, Vr〉 where Vr(x) is the function mapping an integer x > 0 to
the greatest power of r dividing it. Moreover, the sets that are recognizable by
NDDs in every base r > 1 have been characterized by Cobham [Cob69] as being
exactly those that are definable in 〈Z,+, <〉, i.e., Presburger arithmetic. This
result has been extended to subsets of Zn by Semenov [Sem77].

Computing the intersection, union, complementation, difference and Cartesian
product of sets represented by NDDs reduces to performing the corresponding
operations on the languages accepted by the automata. Projection is more tricky,
as the resulting automaton has to be completed in order to accept all the encod-
ings of the vectors it recognizes. Finally, since NDDs are finite-word automata,
they can be determinized, as well as minimized into a canonical form.

2.2 Real Number Automata

Real numbers can also be encoded positionally. Let r > 1 be a base. An encoding
w of a number x ∈ R is an infinite word wI ·� ·wF over Σr∪{�}, where wI ∈ Σ∗

r

encodes the integer part xI ∈ Z of x, and wF ∈ Σω
r its fractional part xF ∈ [0, 1],

i.e., we have wF = b1b2b3 . . . with xF = Σi>0bir
−i. Note that some numbers have

two distinct encodings with the same integer-part length. For example, in base
10, the number 11/2 has the encodings 0+ · 5 · � · 5 · 0ω and 0+ · 5 · � · 4 · 9ω.
Such encodings are said to be dual . We denote by Λr the set of valid prefixes of
base-r encodings that include a separator, i.e., Λr = {0, r − 1} ·Σ∗

r · � ·Σ∗
r .

Similarly to the case of integers, the base-r encoding scheme transforms a set
S ⊆ R into a language L(S) ⊆ Λr · Σω

r . A Real Number Automaton (RNA) is
defined as a Büchi automaton that accepts the language containing all the base-r
encodings of the elements of S. This representation can be generalized into Real
Vector Automata (RVA), suited for subsets of Rn (n > 0) [BBR97].

The expressiveness of RVA (and RNA) has been studied [BRW98]: The subsets
of Rn that are representable in a base r > 1 are exactly those that are definable

816 B. Boigelot and J. Brusten

in the first-order theory 〈R,Z,+, <,Xr〉, where Xr(x, u, k) is a base-dependent
predicate that is true iff u is an integer power of r, and there exists an encoding
of x in which the digit at the position specified by u is equal to k. The predicate
Xr can alternatively be replaced by a function Vr analogous to the one defined
in the integer case [Bru06]: We say that x ∈ R divides y ∈ R iff there exists
an integer k such that kx = y. The function Vr is then defined such that Vr(x)
returns the greatest power of r dividing x, if it exists, and 1 otherwise.

2.3 Weak Deterministic RNA

As in the case of integers, applying most set-theory operators to RNA (or RVA)
reduces to carrying out the same operations on their accepted language. This
is somehow problematic, since operations like set complementation are typically
costly and tricky to implement on infinite-word automata [KV05].

In order to alleviate this problem, it has been shown that the full expressive
power of Büchi automata is not needed for representing the subsets of Rn (n ≥
0), that are definable in the first-order additive theory 〈R,Z,+, <〉 of mixed
integer and real variables [BJW05]. Such sets can indeed be represented by weak
deterministic RVA, i.e., deterministic RVA such that their set of states can be
partitioned into disjoint subsets Q1, . . . , Qm, where each Qi contains only either
accepting or non-accepting states, and there exists a partial order ≤ on the sets
Q1, . . . , Qm such that for every transition (q, a, q′) of the automaton, with q ∈ Qi

and q′ ∈ Qj , we have Qj ≤ Qi.
As remarked in [Wil93], weak deterministic automata are infinite-word au-

tomata that can be manipulated essentially in the same way as finite-word
ones. There exist efficient algorithms for applying to weak deterministic RVA all
classical set-theory operators (intersection, union, complement, Cartesian prod-
uct, projection, . . .) [BJW05]. Furthermore, such RVA can be minimized into a
canonical form.

It is worth mentioning that expressiveness of weak deterministic RVA is clearly
not limited to the sets that are definable in the first-order additive theory of the
integers and reals. For instance, the set of (negative and positive) integer powers
of the representation base is clearly recognizable. Let r > 1 be a base, and Pr(x)
be a predicate that holds iff x is an integer power of r. It has been shown, using
a quantifier elimination result for 〈R, 1,+,≤, Pr〉 [vdD85, AY07], that all the
sets definable in 〈R,Z,+, <, Pr〉 can also be represented by weak deterministic
RVA in base r [Bru06].

3 Problem Reduction

Let S ⊆ R be a set recognizable by a weak deterministic RNA A1, assumed to
be in canonical form, in a base r > 1. Each accepting path of A contains exactly
one occurrence of the separator symbol �. Each transition labeled by � thus links
two distinct strongly connected components of A. Since there are only finitely
many such transitions, the language L accepted by A is of the form

⋃
i L

I
i ·� ·LFi ,

A Generalization of Cobham’s Theorem 817

where the union is finite, and for all i, LIi ⊆ Σ∗
r encodes the integer part, and

LFi ⊆ Σω
r the fractional part, of the encodings of numbers x ∈ S. More precisely,

for every i, let SIi ⊆ Z denote the set encoded by LIi and let SFi ⊆ [0, 1] denote
the set encoded by 0+ · � · LFi . We have S =

⋃
i(S

I
i + SFi). Note that each LIi is

recognizable by a NDD in base r and that, similarly, each language of the form
0+ · � · LFi is recognizable by a RNA (except for the dual encodings of 0 and 1,
which can be explicitly added to the language if needed).

The decomposition of S into sets SIi and SFi of integer and fractional parts
does not depend on the representation base. Therefore, if S is recognizable in
two relatively prime bases r1 and r2, then so are SIi and SFi for every i. From
Cobham’s theorem, each SIi must then be definable in 〈Z,+, <〉. In order to show
that S is definable in 〈R,Z,+, <〉, it is hence sufficient to prove that each SFi is
definable in that theory. We have thus reduced the problem of characterizing the
subsets of R that are simultaneously recognizable in two relatively prime bases
to the same problem over the subsets of [0, 1].

4 Interval Boundary Points

We now consider a set S ⊆ [0, 1] represented by a weak deterministic RNA A.
We define the interval boundary points of S as points with specific topological
properties, and establish a relation between the existence of such points and
some structures in the transition graph of A.

4.1 Definitions

A neighborhood Nε(x) of a point x ∈ R, with ε > 0, is the set Nε(x) = {y |
|x − y| < ε}. A point x ∈ R is a boundary point of S iff all its neighborhoods
contain points from S as well as from its complement S, i.e., ∀ε > 0 : Nε(x)∩S �=
∅ ∧ Nε(x) ∩ S �= ∅.

A left neighborhood N<
ε (x) of a point x ∈ R, with ε > 0, is the set N<

ε (x) =
{y | x − ε < y < x}. Similarly, a right neighborhood N>

ε (x) of x is defined as
N>
ε (x) = {y | x < y < x+ε}. A boundary point x of S is a left interval boundary

point of S iff it admits a left neighborhood N<
ε (x) that is entirely contained in

either S or S, i.e., ∃ε > 0 : N<
ε (x) ⊆ S ∨ N<

ε (x) ⊆ S. Right interval boundary
points are defined in the same way. A point x ∈ S is an interval boundary point
of S iff it is a left or a right interval boundary point of S.

Each interval boundary point x of S is thus characterized by its direction (left
or right), its polarity w.r.t. S (i.e., whether x ∈ S or x �∈ S), and the polarity
of its left or right neighborhoods of sufficiently small size (i.e., whether they are
subsets of S or of S). The possible combinations define eight types of interval
boundary points, that are illustrated in Figure 1.

4.2 Recognizing Interval Boundary Points

Recall that A is a weak deterministic RNA recognizing a set S ⊆ [0, 1]. We as-
sume w.l.o.g. that A is canonical and complete, in the sense that from each state

818 B. Boigelot and J. Brusten

∩S �= ∅

∩S �= ∅ ∩S �= ∅

∩S �= ∅

∩S = ∅

x ∈ S

∩S = ∅

x �∈ S

⊆ S

x ∈ S

⊆ S

x �∈ S

⊆ S

x ∈ S x ∈ S

∩S = ∅

x �∈ S

⊆ S

x �∈ S

∩S = ∅

Left interval boundary points Right interval boundary points

Fig. 1. Types of interval boundary points

q and alphabet symbol a, there exists an outgoing transition from q labeled by
a. Consider a path π of A that reads an encoding w of a left interval boundary
point x of S. Since A is weak, π eventually reaches a strongly connected com-
ponent C that it does not leave. The accepting status of C corresponds to the
polarity of x w.r.t. S.

Since x is a left interval boundary point, all its sufficiently small left neighbor-
hoods are either subsets of S or subsets of S, depending on the type of x. Hence,
from each state s of C visited infinitely many times by π, its outgoing transi-
tions labeled by smaller digits than the one read in π must necessarily lead to
either the universal or the empty strongly connected component of A. It follows
that, after having reached some state s in C, the path π follows the transitions
within C that are labeled by the smallest possible digits, hence it eventually
cycles through a loop. A similar result holds for right interval boundary points,
which are read by paths that eventually follow the largest possible digits in their
terminal strongly connected component.

As a consequence, every base-r encoding w of an interval boundary point of
S is necessarily ultimately periodic, i.e., such that w = u · vω, with u ∈ Λr and
v ∈ Σ+

r . Besides, each ultimate period v of such encodings can be uniquely
determined from a suitable state of A associated with a direction (left or right).
We therefore have the following results.

Theorem 1. Each interval boundary point of a subset of [0, 1] that is recogniz-
able by a weak deterministic RNA is a rational number.

Theorem 2. Let S ⊆ [0, 1] be a set recognizable by a weak deterministic RNA
in a base r > 1. The set of ultimate periods of the base-r encodings of the interval
boundary points of S is finite.

4.3 Recognizing Interval Boundary Points in Multiple Bases

Consider now a set S ⊆ [0, 1] that is simultaneously recognizable by weak deter-
ministic RNA in two relatively prime bases r1 > 1 and r2 > 1. Let A1 and A2

denote, respectively, such RNA.
Suppose that S has infinitely many interval boundary points. From Theo-

rem 2, there must exist some ultimate period v ∈ Σ+
r1 such that infinitely many

A Generalization of Cobham’s Theorem 819

interval boundary points of S have base-r1 encodings of the form ui · vω, with
∀i : ui ∈ Λr1 . Moreover, the language L of the words ui for which ui ·vω encodes
an interval boundary point of S, and such that ui and v do not end with the
same digit, is infinite and regular. (The restriction on the last digit of ui and v
expresses that ui is the smallest aperiodic prefix of ui · vω.) Indeed, each ui ∈ L
can be recognized by a path from the initial state of A to a state from which v
can be read as the ultimate period of an encoding of an interval boundary point.

Hence, there exist w1 ∈ Λr1 and w2, w3 ∈ Σ∗
r1 , with |w2| > 0, such that

∀k : w1 · (w2)k · w3 ∈ L. Furthermore, we have that w2 · w3 and v do not end
with the same digit.

Thus, for each k ≥ 0, there exists an interval boundary point of S with a
base-r1 encoding of the form w1 · (w2)k · w3 · vω . Each word in this language is
ultimately periodic, thus it encodes in base r1 a rational number that can also be
encoded by an ultimately periodic word in base r2. We use the following lemma.

Lemma 1. Let r1 > 1 and r2 > 1 be relatively prime bases, and let w1 ∈
Λr1 , w2, w3, w4 ∈ Σ∗

r1 , with |w2| > 0, |w4| > 0, such that the words w2 · w3 and
w4 do not end with the same digit. The subset of Q encoded in base r1 by the
language w1 · (w2)∗ · w3 · (w4)ω cannot be encoded in base r2 with only a finite
number of ultimate periods.

Proof. The proof is given in Appendix A. ��
Together with Theorem 2, this lemma contradicts our assumption that S has
infinitely many interval boundary points. We thus have the following theorem.

Theorem 3. If a set S ⊆ [0, 1] is simultaneously recognizable by weak deter-
ministic RNA in two relatively prime bases, then it has finitely many interval
boundary points.

We therefore call a set that satisfies the hypotheses of Theorem 3 a finite-
boundary set .

5 Finite-Boundary Sets

Our goal is now to characterize the structure of the transition graph of RNA
that recognize finite-boundary sets. We start by establishing some properties
that hold for all weak deterministic RNA, and then focus on the specific case of
finite-boundary sets.

5.1 Properties of Weak Deterministic RNA

Let A be a weak deterministic RNA, which we assume to be complete and canon-
ical, recognizing a subset of R in a base r > 1. Consider a strongly connected
component C of A such that each of its outgoing transitions leads to either
the universal or the empty strongly connected component, i.e., those accepting
respectively the languages Σω

r and ∅.

820 B. Boigelot and J. Brusten

Lemma 2. Let π be a minimal (resp. maximal) infinite path within C, i.e.,
a path that follows from each visited state the transition of C labeled by the
smallest (resp. largest) possible digit. The destination of all outgoing transitions
from states visited by π, and that are labeled by a smaller (resp. larger) digit
than the one read in π, is identical.

Proof. We first study the case of two transitions t1 and t2 originating from the
same state s visited by π, that are respectively labeled by digits d1, d2 smaller
that the digit d read from s in π. Among the digits that satisfy this condition,
one can always find consecutive values, hence it is sufficient to consider the case
where d2 = d1 + 1.

Let σ be a finite path that reaches s from the initial state of A. By appending
to σ suffixes that read d1·(r−1)ω and d2·0ω, one obtains paths that recognize dual
encodings of the same number, hence these paths must be either both accepting
or both non-accepting. Therefore, t1 and t2 share the same destination.

Consider now transitions t1 and t2 from distinct states s1 and s2 visited by
π, labeled by smaller digits than those – respectively denoted d1 and d2 – read
in π. We can assume w.l.o.g. that s1 and s2 are consecutive among the states
visited by π that have such outgoing transitions. In other words, the subpath of
π that links s1 to s2 is labeled by a word of the form d1 · 0k, with d1 > 0 and
k ≥ 0.

Let σ′ be a finite path that reaches s1 from the initial state of A. Appending
to σ′ suffixes that read (d1 − 1) · (r− 1)ω and d1 · 0ω yields paths that read dual
encodings of the same number, hence these paths must be either both accepting
or both non-accepting. The destinations of the transitions that leave C from s1
and s2 must thus be identical.

The case of maximal paths is handled in the same way. ��
The following result now expresses a constraint on the trivial (acyclic) strongly
connected components of the fractional part of A (i.e., the part of A reached
after reading an occurrence of the symbol �).

Lemma 3. From any trivial strongly connected component of the fractional part
of A, there must exist a reachable strongly connected component that is neither
empty, trivial, nor universal.

Proof. The proof is by contradiction. Let {s} be a trivial strongly connected
component of the fractional part of A. Assume that all paths from s eventually
reach the universal or the empty strongly connected component, after passing
only through trivial components. As a consequence, the language accepted from
s is of the form L ·Σω

r , where L ⊂ Σ∗
r is finite. We can require w.l.o.g. that all

words in L share the same length l. Note that L cannot be empty or equal to
Σl
r, since s does not belong to the empty or universal components.
Each word in Σl

r can be seen as the base-r encoding of an integer in the
interval [0, rl − 1]. Since L is neither empty nor universal, there exist two words
w1, w2 ∈ Σl

r that do not both belong to L or to Σl
r \ L, and that encode two

consecutive integers n and n+ 1. Then, u · w2 · 0ω and u · w1 · (r − 1)ω encode

A Generalization of Cobham’s Theorem 821

the same number in base r, where u is the label of an arbitrary path from the
initial state of A to s. This contradicts the fact that A accepts all the encodings
of the numbers it recognizes. ��

5.2 Properties of RNA Recognizing Finite-Boundary Sets

Theorem 4. Let A be a weak deterministic RNA, supposed to be in complete
and canonical form, recognizing a finite-boundary set S ⊆ [0, 1]. Each non-trivial,
non-empty and non-universal strongly connected component of the fractional part
of A takes the form of a single cycle. Moreover, from each such component, the
only reachable strongly connected components besides itself are the empty or the
universal ones.

Proof. Let C be a non-trivial, non-empty and non-universal strongly connected
component of the fractional part of A, and let s be an arbitrary state of C. The
path π from s that stays within C and follows the transitions with the smallest
possible digits is cyclic, and determines the ultimate period of encodings of some
interval boundary points of S. If C contains other cycles, or if C is reachable from
other non-trivial strongly connected components in the fractional part, then π
can be prefixed by infinitely many reachable paths from an entry state of the
fractional part of A to s. This contradicts the fact that S has only finitely many
interval boundary points. That no trivial strongly connected component can be
reachable from C then follows from Lemma 3. ��
This result characterizes quite precisely the shape of the fractional part of a weak
deterministic RNA recognizing a finite-boundary set: Its transition graph is first
composed of a bottom layer of strongly connected components containing only
the universal and the empty one, and then a (possibly empty) layer of single-cycle
components leading to the bottom layer. Thanks to Lemma 2, the transitions
that leave a single-cycle component with a smaller (or larger) digit all lead to
the same empty or universal component (which may differ for the smaller and
larger cases). Thus, each single-cycle component can simply be characterized by
its label and the polarity of its smaller and greater alternatives. Finally, the two
layers of non-trivial strongly connected components can be reached through an
acyclic structure of trivial components, such that from each of them, there is at
least one outgoing path leading to a single-cycle component.

As a consequence, we are now able to describe the language accepted by such
a RNA.

Theorem 5. Let A be a weak deterministic RNA recognizing a finite-boundary
set S ⊆ [0, 1] encoded in a base r > 1. The language L accepted by A can be
expressed as

L =
⋃

i

L′ · wi ·Σω
r ∪

⋃

i

L′ · w′
i · (vi)ω ∪

⋃

i

L′ · w′′
i · (Σω

r \ (v′i)
ω) ∪ L0 ∪ L1,

822 B. Boigelot and J. Brusten

where each union is finite, ∀i : wi, w′
i, w

′′
i , vi, v

′
i ∈ Σ∗

r with |vi| > 0, |v′i| > 0,
L′ = 0+ ·�, L0 is either empty or equal to (r − 1)+ ·� · (r − 1)ω, and L1 is either
empty or equal to 0+ · 1 · � · 0ω.

(The terms L0 and L1 are introduced in order to deal with the dual encodings
of 0 and 1.)

In the expression given by Theorem 5, each term of the union encodes a
subset of [0, 1] that is definable in 〈R,Z,+, <〉: L′ · wi · Σω

r defines an interval
[a, b], with a, b ∈ Q, the terms L′ · w′

i · (vi)ω, L0 and L1 correspond to single
rational numbers c ∈ Q, and L′ · w′′

i · (Σω
r \ (v′i)

ω) recognizes a set [a, b] \ {c}
with a, b, c ∈ Q. This shows that the set S ⊆ [0, 1] recognized by A is definable
in 〈R,Z,+, <〉. Combining this result with Theorem 3, as well as the reduction
discussed in Section 3, we get our main result:

Theorem 6. If a set S ⊆ R is simultaneously recognizable by weak deterministic
RNA in two relatively prime bases, then it is definable in 〈R,Z,+, <〉.

Corollary 1. A set S ⊆ R is recognizable by weak deterministic RNA in every
base r > 1 iff it is definable in 〈R,Z,+, <〉.

6 Conclusions and Future Work

The main contribution of this work is to show that the subsets of R that can
be recognized by weak deterministic RNA in all integer bases r > 1 are exactly
those that are definable in the first-order additive theory of the real and inte-
ger numbers 〈R,Z,+, <〉. Our central result is actually stronger, stating that
recognizability in two relatively prime bases r1 and r2 is sufficient for forc-
ing definability in 〈R,Z,+, <〉. Using the same argument as in the proof of
Lemma 1, this result can directly be extended to bases r1 and r2 that do not
share the same set of prime factors. This differs slightly from the statement of
Cobham’s original theorem, which considers instead bases that are multiplica-
tively independent, i.e., that cannot be expressed as integer powers of the same
integer [Cob69, BHMV94]. Unfortunately, our approach does not easily general-
ize to multiplicatively independent bases, since Theorem 3 then becomes invalid.
Addressing this issue is an interesting open problem.

Another contribution is a detailed characterization of the transition graph of
weak deterministic RNA that represent subsets of R defined in first-order addi-
tive arithmetic. This characterization could be turned into efficient data struc-
tures for handling such RNA. In particular, since their fractional parts recognize
a finite union of interval and individual rational values, an efficient represen-
tation might be based on symbolic data structures such as BDDs for handling
large but finite enumerations. Another possible application is the extraction of
formulas from automata-based representations of sets [Lat05, Ler05].

Finally, another goal will be to extend our results to sets in higher dimensions,
i.e., to generalize Semenov’s theorem [Sem77] to automata over real vectors.

A Generalization of Cobham’s Theorem 823

References

[AY07] Avigad, J., Yin, Y.: Quantifier elimination for the reals with a predicate
for the powers of two. Theoretical Computer Science 370, 48–59 (2007)

[BBR97] Boigelot, B., Bronne, L., Rassart, S.: An improved reachability analysis
method for strongly linear hybrid systems. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 167–177. Springer, Heidelberg (1997)

[Büc62] Büchi, J.R.: On a decision method in restricted second order arithmetic.
In: Proc. International Congress on Logic, Methodoloy and Philosophy of
Science, Stanford, pp. 1–12. Stanford University Press, Stanford (1962)

[BHMV94] Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-
recognizable sets of integers. Bulletin of the Belgian Mathematical So-
ciety 1(2), 191–238 (1994)

[BJW05] Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for
linear arithmetic over the integers and reals. ACM Transactions on Com-
putational Logic 6(3), 614–633 (2005)

[Boi98] Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD
thesis, Université de Liège (1998)

[Bru06] Brusten, J.: Etude des propriétés des RVA. Graduate thesis, Université de
Liège (May 2006)

[BRW98] Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and
integer arithmetic automata. In: Larsen, K.G., Skyum, S., Winskel, G.
(eds.) ICALP 1998. LNCS, vol. 1443, pp. 152–163. Springer, Heidelberg
(1998)

[Cob69] Cobham, A.: On the base-dependence of sets of numbers recognizable by
finite automata. Mathematical Systems Theory 3, 186–192 (1969)

[KV05] Kupferman, O., Vardi, M.Y.: Complementation constructions for nonde-
terministic automata on infinite words. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 206–221. Springer, Heidelberg
(2005)

[Lat05] Latour, L.: Presburger arithmetic: from automata to formulas. PhD thesis,
Université de Liège (2005)

[Ler05] Leroux, J.: A polynomial time Presburger criterion and synthesis for num-
ber decision diagrams. In: Proc. 20th LICS, Chicago, June 2005, pp. 147–
156. IEEE Computer Society Press, Los Alamitos (2005)

[Sem77] Semenov, A.L.: Presburgerness of predicates regular in two number sys-
tems. Siberian Mathematical Journal 18, 289–299 (1977)

[vdD85] van den Dries, L.: The field of reals with a predicate for the powers of
two. Manuscripta Mathematica 54, 187–195 (1985)

[Vil92] Villemaire, R.: The theory of 〈N, +, Vk, Vl〉 is undecidable. Theoretical
Computer Science 106(2), 337–349 (1992)

[WB95] Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger
arithmetic constraints. In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983,
Springer, Heidelberg (1995)

[WB98] Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state
spaces. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97.
Springer, Heidelberg (1998)

[Wil93] Wilke, T.: Locally threshold testable languages of infinite words. In: En-
jalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 93. LNCS, vol. 665,
pp. 607–616. Springer, Heidelberg (1993)

824 B. Boigelot and J. Brusten

A Proof of Lemma 1

For a base r > 1 and a word w ∈ Λr · Σω
r , let [w]r denote the real number

encoded by w in that base. Similarly, for w ∈ {0, r− 1} ·Σ∗
r , let [w]r denote the

integer number encoded by w, i.e., [w]r = [w · � · 0ω]r. For every k ≥ 0, we define
xk = [w1 · (w2)k · w3 · (w4)ω]r1 .

The prefix w1 can be decomposed into w1 = w′
1·�·w′′

1 , with w′
1 ∈ {0, r1−1}·Σ∗

r1
and w′′

1 ∈ Σ∗
r1 . We then have for every k > 0,

xk =
yk

r
|w′′

1 |+k|w2|+|w3|
1 (r|w4|

1 − 1)
, (1)

with yk = (r|w4|
1 −1)[w′

1 ·w′′
1 ·wk2 ·w3]r1 + [0 ·w4]r1 . Remark that yk is an integer,

but cannot be a multiple of r1. Indeed, we have yk mod r1 = ([0 · w4]r1 − [w′
1 ·

w′′
1 · wk2 · w3]r1) mod r1, which is non-zero thanks to the hypothesis on the last

digits of w2 · w3 and w4. For every k > 0, we have

yk =
zk

r
|w2|
1 − 1

,

with zk = ar
k|w2|
1 + b, a = r

|w3|
1 (r|w4|

1 − 1)((r|w2|
1 − 1)[w′

1 ·w′′
1]r1 + [0 ·w2]r1), and

b = −r|w3|
1 (r|w4|

1 −1)[0 ·w2]r1 +(r|w2|
1 −1)(r|w4|

1 −1)[0 ·w3]r1 +(r|w2|
1 −1)[0 ·w4]r1 .

Substituting in (1), we get

xk =
zk

r
|w′′

1 |+k|w2|+|w3|
1 (r|w2|

1 − 1)(r|w4|
1 − 1)

. (2)

Since zk = (r|w2|
1 − 1)yk and yk mod r1 �= 0, we have zk mod r1 �= 0, hence

b �= 0. Consider a prime factor f of r1, and define l as the greatest integer such
that f l divides b. For every k > l, we have zk mod f l = 0 and zk mod f l+1 =
bmod f l+1 �= 0. It follows that the reduced rational expression of xk, i.e., xk =
nk/dk with nk, dk ∈ Z, dk > 0 and gcd(nk, dk) = 1, is such that fk−l divides dk
for every k > l. Indeed, the numerator of (2) is not divisible by f l+1 whereas its
denominator is divisible by fk+1.

Assume now, by contradiction, that the set {xk | k ≥ 0} can be represented
in base r2 using only a finite number of ultimate periods. Then, there exists
an ultimate period v ∈ Σ+

r2 such that for infinitely many values of k, we have
xk = [u′k · � · u′′k · vω]r2 , with u′k ∈ {0, r2 − 1} ·Σ∗

r2 and u′′k ∈ Σ∗
r2 . We then have,

for these values of k,

xk =
[u′k · u′′k · v]r2 − [u′k · u′′k]r2

r
|u′′

k |
2 (r|v|2 − 1)

.

Since (r|v|2 − 1) is bounded, and r2 is relatively prime with r1 by hypothesis,
the denominator of this expression can only be divisible by a bounded number
of powers of f , which contradicts our previous result. ��

Minimum-Time Reachability in Timed Games�

Thomas Brihaye1, Thomas A. Henzinger2, Vinayak S. Prabhu3,
and Jean-François Raskin4

1 LSV-CNRS & ENS de Cachan
thomas.brihaye@lsv.ens-cachan.fr

2Department of Computer and Communication Sciences, EPFL
tah@epfl.ch

3Department of Electrical Engineering & Computer Sciences, UC Berkeley
vinayak@eecs.berkeley.edu

4Département d’Informatique, Université Libre de Bruxelles
jraskin@ulb.ac.be

Abstract. We consider the minimum-time reachability problem in con-
current two-player timed automaton game structures. We show how to
compute the minimum time needed by a player to reach a target location
against all possible choices of the opponent. We do not put any syntactic
restriction on the game structure, nor do we require any player to guar-
antee time divergence. We only require players to use receptive strategies
which do not block time. The minimal time is computed in part using
a fixpoint expression, which we show can be evaluated on equivalence
classes of a non-trivial extension of the clock-region equivalence relation
for timed automata.

1 Introduction

Timed automata [3], finite-state machines enriched with clocks and clock con-
straints, are a well-established formalism for the modeling and analysis of timed
systems. A large number of important and interesting theoretical results have
been obtained on problems in the timed automaton framework. In parallel with
these theoretical results, efficient verification tools have been implemented and
successfully applied to industrially relevant case studies.

Timed automata are models for closed systems, where every transition is con-
trolled. If we want to distinguish between actions of several agents (for instance,
a controller and an environment), we have to consider games on timed automata,
also known as timed automaton games. In the sequel, we will focus on two-player
games. In this context, the reachability problem asks whether player-1 has a strat-
egy to force the timed game to reach a target location, no matter how player-2
resolves her choices. These games were first introduced and studied in [22,19].
In this framework, it is also natural to consider the minimum-time reachability
problem, which asks for the minimal time required by player-1 to reach a target
� This research was supported in part by the NSF grant CCR-0225610 and by the

Swiss National Science Foundation.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 825–837, 2007.
� Springer-Verlag Berlin Heidelberg 2007

826 T. Brihaye et al.

x ≤ 100 → y := 0

¬p p

y ≥ 1→ x := 0
a

y ≤ 2 → y := 0

b2

b1

Fig. 1. A timed automaton game

location, no matter how player-2 resolves her choices. This problem was first
posed in [5], where it was shown to be decidable for a restricted class of timed
automaton games.

Any formalism involving timed systems has to face the problem of zeno runs,
i.e, runs of the model where time converges. Zeno runs are not physically mean-
ingful. The avoidance of such runs has often been achieved by putting syntactic
constraints on the cycles of timed automaton games [20,5,15,6], or by semantic
conditions that discretize time [16]. Other works on the existence of controllers
[19,14,7,9] have required that time divergence be ensured by the controller —a
one-sided, unfair view in settings where the player modeling the environment
can also block time.

Recently, a more equitable treatment of zeno runs has been proposed in [12].
This setting formulates a symmetric set-up of the model, where both players
are given equally powerful options for updating the state of the game, advancing
time, or blocking time. Both players may block time, however, for a player to win
for an objective, she must not be responsible for preventing time from diverging.
It has been shown in [17] that this is equivalent to requiring that the players use
only receptive strategies [4,21], which do not prevent time from diverging.

Example. Consider the game depicted in Figure 1. Let edge a be controlled by
player-1; the others being controlled by player-2. Suppose we want to know what
is the earliest time that player-1 can reach p starting from the state 〈¬p, x =
0, y = 0〉 (i.e., the initial values of both clocks x and y are 0). Player-1 is not
able to guarantee time divergence, as player-2 can keep on choosing the edge b1.
On the other hand, we do not want to put any restriction of the number of times
that player-2 chooses b1. Requiring that the players use only non-zeno strategies
avoids such unnecessary restrictions, and gives the correct minimum time for
player-1 to reach p, namely, 101 time units.

Contribution. We consider the minimum-time reachability problem (for timed
automaton games), in the framework of [12,17]. We present an EXPTIME algo-
rithm to compute the minimum time needed by player-1 to force the game into
a target location, with both players restricted to using only receptive strategies
(note that reachability in timed automaton games is EXPTIME-complete [16]).
The proof technique builds on techniques from [12,17]. We first show that the
minimum time can be obtained by solving a certain μ-calculus fixpoint equation.
We then give a proof of termination for the fixpoint evaluation. This requires

Minimum-Time Reachability in Timed Games 827

an important new ingredient: an extension of the clock-region equivalence [3] for
timed automata. We show our extended region equivalence classes to be stable
with respect to the monotone functions used in the fixpoint equation. Using re-
sults from [17], we manage to restrict the fixpoint computation to finitely many
regions and thus guarantee termination.

We note that standard clock regions do not suffice for the solution. The
minimum-time reachability game has two components: a reachability part that
can be handled by discrete arguments based on the clock-region graph; and a
minimum-time part that requires minimization within clock regions (cf. [11]).
Unfortunately, both arguments are intertwined and cannot be considered in iso-
lation. Our extended regions decouple the two parts in the proofs. We also note
that region sequences that correspond to time-minimal runs may in general be
required to contain region cycles in which time does not progress by an integer
amount; thus a reduction to a loop-free region game, as in [1], is not possible.

Related work. Only special cases of the minimum-time reachability problem
have been solved before: [5] restricts attention to the case where every cycle of
the timed automaton ensures syntactically that a positive amount of time passes
(a.k.a. strong non-zenoness assumption); [2] considers timed automaton games
that are restricted to a bounded number of moves; [17] presents an approximate
computation of the minimum time (computation of the exact minimum time
being left open). The general case for weighted timed automaton games (timed
automaton games augmented with costs on discrete transitions and cost rates
on locations) is undecidable [8]. The recent work of [18] presents a strategy
improvement algorithm that computes the minimum time in all timed automaton
games, but it does not require strategies to be receptive. Average-reward games
in the framework of [12] are considered in [1], but with the durations of time
moves restricted to either 0 or 1. The non-game version of the minimum-time
reachability problem is solved in [11].

Outline. In Section 2, we recall the definitions of the timed games framework
from [12]. The minimum-time reachability problem is defined in Section 3. Sec-
tion 4 gives an algorithm that computes the minimum time in timed automaton
games. The algorithm runs in time exponential in the number of clocks and the
size of clock constraints.

2 Timed Games

2.1 Timed Game Structures

We use the formalism of [12]. A timed game structure is a tuple G =
〈S,Σ, σ,A1,A2, Γ1, Γ2, δ〉 with the following components:

– S is a set of states.
– Σ is a finite set of propositions.
– σ : S �→ 2Σ is the observation map, which assigns to every state the set of

propositions that are true in that state.

828 T. Brihaye et al.

– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.
We assume that ⊥i �∈ Ai, and write A⊥

i for Ai ∪{⊥i}. We also assume A⊥
1

and A⊥
2 to be disjoint. The set of moves for player i is Mi = IR≥0 × A⊥

i .
Intuitively, a move 〈Δ, ai〉 by player i indicates a waiting period of Δ time
units followed by a discrete transition labeled with action ai.

– Γi : S �→ 2Mi \ ∅ are two move assignments. At every state s, the set Γi(s)
contains the moves that are available to player i. We require that 〈0,⊥i〉 ∈
Γi(s) for all states s ∈ S and i ∈ {1, 2}. Intuitively, 〈0,⊥i〉 is a time-blocking
stutter move.

– δ : S × (M1 ∪ M2) �→ S is the transition function. We require that for
all time delays Δ,Δ′ ∈ IR≥0 with Δ′ ≤ Δ, and all actions ai ∈ A⊥

i ,
we have (1) 〈Δ, ai〉 ∈ Γi(s) iff both 〈Δ′,⊥i〉 ∈ Γi(s) and 〈Δ − Δ′, ai〉 ∈
Γi(δ(s, 〈Δ′,⊥i〉)); and (2) if δ(s, 〈Δ′,⊥i〉) = s′ and δ(s′, 〈Δ −Δ′, ai〉) = s′′,
then δ(s, 〈Δ, ai〉) = s′′.

The game proceeds as follows. If the current state of the game is s, then both
players simultaneously propose moves 〈Δ1, a1〉 ∈ Γ1(s) and 〈Δ2, a2〉 ∈ Γ2(s).
The move with the shorter duration “wins” in determining the next state of
the game. If both moves have the same duration, then one of the two moves is
chosen non-deterministically. Formally, we define the joint destination function
δjd : S ×M1 ×M2 �→ 2S by

δjd(s, 〈Δ1, a1〉, 〈Δ2, a2〉) =

⎧
⎨

⎩

{δ(s, 〈Δ1, a1〉)} if Δ1 < Δ2;
{δ(s, 〈Δ2, a2〉)} if Δ2 < Δ1;
{δ(s, 〈Δ1, a1〉), δ(s, 〈Δ2, a2〉)} if Δ1 = Δ2.

The time elapsed when the moves m1 = 〈Δ1, a1〉 and m2 = 〈Δ2, a2〉 are
proposed is given by delay(m1,m2) = min(Δ1, Δ2). The boolean predicate
blamei(s,m1,m2, s

′) indicates whether player i is “responsible” for the state
change from s to s′ when the moves m1 and m2 are proposed. Denoting the
opponent of player i ∈ {1, 2} by ∼i = 3− i, we define

blamei(s, 〈Δ1, a1〉, 〈Δ2, a2〉, s′) =
(
Δi ≤ Δ∼i ∧ δ(s, 〈Δi, ai〉) = s′

)
.

A run of the timed game structure G is an infinite sequence r =
s0, 〈m0

1,m
0
2〉, s1, 〈m1

1,m
1
2〉, . . . such that sk ∈ S and mk

i ∈ Γi(sk) and sk+1 ∈
δjd(sk,mk

1 ,m
k
2) for all k ≥ 0 and i ∈ 1, 2. For k ≥ 0, let time(r, k) denote the

“time” at position k of the run, namely, time(r, k) =
∑k−1

j=0 delay(mj
1,m

j
2) (we

let time(r, 0) = 0). By r[k] we denote the (k + 1)-th state sk of r. The run pre-
fix r[0..k] is the finite prefix of the run r that ends in the state sk; we write
last(r[0..k]) for the ending state sk of the run prefix. Let Runs be the set of all
runs of G, and let FinRuns be the set of run prefixes.

A strategy πi for player i ∈ {1, 2} is a function πi : FinRuns �→ Mi

that assigns to every run prefix r[0..k] a move to be proposed by player i
at the state last(r[0..k]) if the history of the game is r[0..k]. We require that
πi(r[0..k]) ∈ Γi(last(r[0..k])) for every run prefix r[0..k], so that strategies pro-
pose only available moves. The results of this paper are equally valid if strategies

Minimum-Time Reachability in Timed Games 829

do not depend on past moves chosen by the players, but only on the past se-
quence of states and time delays [12]. For i ∈ {1, 2}, let Πi be the set of player-i
strategies. Given two strategies π1 ∈ Π1 and π2 ∈ Π2, the set of possible out-
comes of the game starting from a state s ∈ S is denoted Outcomes(s, π1, π2): it
contains all runs r = s0, 〈m0

1,m
0
2〉, s1, 〈m1

1,m
1
2〉, . . . such that s0 = s and for all

k ≥ 0 and i ∈ {1, 2}, we have πi(r[0..k]) = mk
i .

We distinguish between physical time and game time. We allow moves with
zero time delay, thus a physical time t ∈ IR≥0 may correspond to several linearly
ordered states, to which we assign the game times 〈t, 0〉, 〈t, 1〉, 〈t, 2〉, . . . For a run
r ∈ Runs, we define the set of game times as

GameTimes(r) =
{〈t, k〉 ∈ IR≥0 × IN | 0 ≤ k < |{j ≥ 0 | time(r, j) = t}|} ∪
{〈t, 0〉 | time(r, j) ≥ t for some j ≥ 0}.

The state of the run r at a game time 〈t, k〉 ∈ GameTimes(r) is defined as

state(r, 〈t, k〉) =

⎧
⎪⎪⎨

⎪⎪⎩

r[j + k] if time(r, j) = t and for all j′ < j, time(r, j′) < t;
δ(r[j], 〈t − time(r, j),⊥i〉) if time(r, j) < t < time(r, j + 1) and

r[0..j + 1] = r[0..j], 〈mj
1, m

j
2〉, r[j + 1] and

blamei(r[j], mj
1, m

j
2, r[j + 1])

Note that if r is a run of the timed game structure G, and time(r, j) < t <

time(r, j + 1), then δ(r[j], 〈t − time(r, j),⊥i〉) is a state in S, namely, the state
that results from r[j] by letting time t − time(r, j) pass. We say that the run r
visits a set X ⊆ S at time t if there is a τ = 〈t, k〉 ∈ GameTimes(r) such that
state(r, τ) ∈ X . A run r visits a proposition p ∈ Σ if it visits the set Sp defined
as {s | p ∈ σ(s)}.

2.2 Timed Automaton Games

Timed automata [3] suggest a finite syntax for specifying infinite-state timed
game structures. A timed automaton game is a tuple T = 〈L,Σ, σ, C,A1,A2,
E, γ〉 with the following components:

– L is a finite set of locations.
– Σ is a finite set of propositions.
– σ : L �→ 2Σ assigns to every location a set of propositions.
– C is a finite set of clocks. We assume that z ∈ C for the unresettable clock z,

which is used to measure the time elapsed since the start of the game.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.
– E ⊆ L× (A1 ∪A2)× Constr(C)× L× 2C\{z} is the edge relation, where the

set Constr(C) of clock constraints is generated by the grammar

θ ::= x ≤ d | d ≤ x | ¬θ | θ1 ∧ θ2

for clock variables x ∈ C and nonnegative integer constants d. For an edge
e = 〈l, ai, θ, l′, λ〉, the clock constraint θ acts as a guard on the clock values
which specifies when the edge e can be taken, and by taking the edge e, the

830 T. Brihaye et al.

clocks in the set λ ⊆ C\{z} are reset to 0. We require that for all edges
〈l, ai, θ′, l′, λ′〉, 〈l, ai, θ′′, l′′, λ′′〉 ∈ E with l′ �= l′′, the conjunction θ′ ∧ θ′′ is
unsatisfiable. This requirement ensures that a state and a move together
uniquely determine a successor state.

– γ : L �→ Constr(C) is a function that assigns to every location an invariant
for both players. All clocks increase uniformly at the same rate. When at
location l, each player i must propose a move out of l before the invariant γ(l)
expires. Thus, the game can stay at a location only as long as the invariant
is satisfied by the clock values.

A clock valuation is a function κ : C �→ IR≥0 that maps every clock to a non-
negative real. The set of all clock valuations for C is denoted by K(C). Given a
clock valuation κ ∈ K(C) and a time delay Δ ∈ IR≥0, we write κ + Δ for the
clock valuation in K(C) defined by (κ+Δ)(x) = κ(x) +Δ for all clocks x ∈ C.
For a subset λ ⊆ C of the clocks, we write κ[λ := 0] for the clock valuation in
K(C) defined by (κ[λ := 0])(x) = 0 if x ∈ λ, and (κ[λ := 0])(x) = κ(x) if x �∈ λ.
A clock valuation κ ∈ K(C) satisfies the clock constraint θ ∈ Constr(C), written
κ |= θ, if the condition θ holds when all clocks in C take on the values specified
by κ.

A state s = 〈l, κ〉 of the timed automaton game T is a location l ∈ L together
with a clock valuation κ ∈ K(C) such that the invariant at the location is
satisfied, that is, κ |= γ(l). Let S be the set of all states of T. In a state, each
player i proposes a time delay allowed by the invariant map γ, together either
with the action ⊥, or with an action ai ∈ Ai such that an edge labeled ai is
enabled after the proposed time delay. We require that for i ∈ {1, 2} and for all
states s = 〈l, κ〉, if κ |= γ(l), either κ + Δ |= γ(l) for all Δ ∈ IR≥0, or there
exist a time delay Δ ∈ IR≥0 and an edge 〈l, ai, θ, l′, λ〉 ∈ E such that (1) ai ∈ Ai

and (2) κ + Δ |= θ and for all 0 ≤ Δ′ ≤ Δ, we have κ + Δ′ |= γ(l), and
(3) (κ+Δ)[λ := 0] |= γ(l′).

The timed automaton game T defines the following timed game structure
[[T]] = 〈S,Σ, σ∗,A1,A2, Γ1, Γ2, δ〉:

– S is defined above.
– σ∗(〈l, κ〉) = σ(l).
– For i ∈ {1, 2}, the set Γi(〈l, κ〉) contains the following elements:

1. 〈Δ,⊥i〉 if for all 0 ≤ Δ′ ≤ Δ, we have κ+Δ′ |= γ(l).
2. 〈Δ, ai〉 if for all 0 ≤ Δ′ ≤ Δ, we have κ + Δ′ |= γ(l), and ai ∈ Ai, and

there exists an edge 〈l, ai, θ, l′, λ〉 ∈ E such that κ+Δ |= θ.
– δ(〈l, κ〉, 〈Δ,⊥i〉) = 〈l, κ+Δ〉, and δ(〈l, κ〉, 〈Δ, ai〉) = 〈l′, (κ+Δ)[λ := 0]〉 for

the unique edge 〈l, ai, θ, l′, λ〉 ∈ E with κ+Δ |= θ.

2.3 Clock Regions

Timed automaton games can be solved using a region construction from the
theory of timed automata [3]. For a real t ≥ 0, let frac(t) = t − �t� denote the
fractional part of t. Given a timed automaton game T, for each clock x ∈ C,

Minimum-Time Reachability in Timed Games 831

let cx denote the largest integer constant that appears in any clock constraint
involving x in T Two clock valuations κ1, κ2 ∈ K(C) are clock-region equivalent,
denoted κ1

∼= κ2, if the following three conditions hold:

1. For all x ∈ C, either �κ1(x)� = �κ2(x)�, or both �κ1(x)� > cx, �κ2(x)� > cx.
2. For all x, y ∈ C with κ1(x) ≤ cx and κ1(y) ≤ cy, we have frac(κ1(x)) ≤

frac(κ1(y)) iff frac(κ2(x)) ≤ frac(κ2(y)).
3. For all x ∈ C with κ1(x) ≤ cx, we have frac(κ1(x)) = 0 iff frac(κ2(x)) = 0.

Two states 〈l1, κ1〉, 〈l2, κ2〉 ∈ S are clock-region equivalent, denoted 〈l1, κ1〉 ∼=
〈l2, κ2〉, iff l1 = l2 and κ1

∼= κ2. It is not difficult to see that ∼= is an equivalence
relation on S. A clock region is an equivalence class with respect to ∼=. There
are finitely many clock regions; more precisely, the number of clock regions is
bounded by |L| ·

∏
x∈C(cx + 1) · |C|! · 2|C|. For a state s ∈ S, we write [s] ⊆ S

for the clock region containing s. These clock regions induce a time-abstract
bisimulation.

3 The Minimum-Time Reachability Problem

Given a state s and a target proposition p ∈ Σ in a timed game structure
G, the reachability problem is to determine whether starting from s, player-1
has a strategy for visiting the proposition p. We must make sure that player-2
does not prevent player-1 from reaching a target state by blocking time. We also
require player-1 to not block time as it can lead to physically unmeaningful plays.
These requirements can be achieved by requiring strategies to be receptive [21,4].
Formally, we first define the following two sets of runs:

– Timediv ⊆ Runs is the set of all time-divergent runs. A run r is time-divergent
if limk→∞ time(r, k) =∞.

– Blamelessi ⊆ Runs is the set of runs in which player i is responsible only for
finitely many transitions. A run s0, 〈m0

1,m
0
2〉, s1, 〈m1

1,m
1
2〉, . . . belongs to the

set Blamelessi, for i = {1, 2}, if there exists a k ≥ 0 such that for all j ≥ k,
we have ¬ blamei(sj ,m

j
1,m

j
2, sj+1).

A strategy πi for player i ∈ {1, 2} is receptive if for all opposing strategies
π∼i, and all states s ∈ S, Outcomes(s, π1, π2) ⊆ Timediv∪Blamelessi. Thus, no
what matter what the opponent does, a receptive player-i strategy should not be
responsible for blocking time. Strategies that are not receptive are not physically
meaningful (note that receptiveness is not sufficient for a strategy to be physically
meaningful, see [10]). For i ∈ {1, 2}, let ΠR

i be the set of player-i receptive
strategies. A timed game structure is well-formed if both players have receptive
strategies. We restrict our attention to well-formed timed game structures. Well-
formedness of timed automaton games can be checked for (see [17]).

We say player-1 wins for the reachability objective p at state s, denoted
s ∈

〈
〈1〉
〉
�p, if he has a receptive strategy π1 such that for all player-2 receptive

strategies π2, we have that all runs r ∈ Outcomes(s, π1, π2) visit p.

832 T. Brihaye et al.

Equivalently [17], we can define player-1 to be winning for the reachability
objective p at state s if he has a strategy π1 such that for all player-2 strategies
π2, for all runs r ∈ Outcomes(s, π1, π2):

– if r ∈ Timediv, then r visits the proposition p;
– if r �∈ Timediv, then r ∈ Blameless1.

The minimum-time reachability problem is to determine the minimal time in
which a player can force the game into a set of target states, using only receptive
strategies. Formally, given a timed game structure G, a target proposition p ∈ Σ,
and a run r of G, let

Tvisit(G, r, p) =
{
∞ if r does not visit p;
inf {t ∈ IR≥0 | p ∈ σ(state(r, 〈t, k〉)) for some k} otherwise.

The minimal time for player-1 to force the game from a start state s ∈ S to a
visit to p is then

Tmin(G, s, p) = inf
π1∈ΠR

1

sup
π2∈ΠR

2

sup
r∈Outcomes(s,π1,π2)

Tvisit(G, r, p)

We omit G when clear from the context.

4 Solving for Minimum-Time Reachability

We restrict our attention to well-formed timed automaton games. The defini-
tion of Tmin quantifies strategies over the set of receptive strategies. Our al-
gorithm will instead work over the set of all strategies. Theorem 1 presents
this reduction. We will then present a game structure for the timed au-
tomaton game T in which Timediv and Blameless1 can be represented us-
ing B�uchi and co-B�uchi constraints. This builds on the framework of [12] in
which a run satisfies the reachability objective p for player-1 iff it belongs in
(Timediv∩Reach(p)) ∪ (¬Timediv∩Blameless1), where Reach(p) denotes the set
of runs which visit p. In addition, our game structure will also have a backwards
running clock, which will be used in the computation of the minimum time,
using a μ-calculus algorithm on extended regions.

4.1 Allowing Players to Use All Strategies

To allow quantification over all strategies, we first modify the payoff function
Tvisit, so that players are maximally penalised on zeno runs:

TUR
visit(r, p) =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if r �∈ Timediv and r �∈ Blamelessi;
∞ if r ∈ Timediv and r does not visit p;
0 if r �∈ Timediv and r ∈ Blamelessi;
inf {t ∈ IR≥0 | p ∈ σ(state(r, 〈t, k〉)) for some k} otherwise.

It turns out that penalizing on zeno-runs is equivalent to penalising on non-
receptive strategies:

Minimum-Time Reachability in Timed Games 833

Theorem 1. Let s be a state and p a proposition in a well-formed timed game
structure G. Then:

Tmin(s, p) = inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p)

4.2 Reduction to Reachability with B�uchi and co-B�uchi Constraints

We now decouple reachability from optimizing for minimal time, and show how
reachability with time divergence can be solved for, using an appropriately cho-
sen μ-calculus fixpoint.

Lemma 1 ([17]). Given a state s, and a proposition p of a well-formed timed
automaton game T, 1)we can determine if Tmin(s, p) <∞ , and 2) If Tmin(s, p) <
∞, then Tmin(s, p) < M = 8|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|. This upper bound

is the same for all s′ ∼= s.

Let M be the upper bound on Tmin(s, p) as in Lemma 1 if Tmin(s, p) <∞, and
M = 1 otherwise. For a number N , let IR[0,N] and IR[0,N) denote IR ∩ [0, N]
and IR ∩ [0, N) respectively. We first look at the enlarged game structure [̂[T]]
with the state space Ŝ = S × IR[0,1) × (IR[0,M] ∪ {⊥}) × {true, false}2, and
an augmented transition relation δ̂ : Ŝ × (M1 ∪ M2) �→ Ŝ. In an augmented
state 〈s, z, β, tick , bl1〉 ∈ Ŝ, the component s ∈ S is a state of the original game
structure [[T]], z is value of a fictitious clock z which gets reset every time it hits
1, β is the value of a fictitious clock which is running backwards, tick is true iff
the last transition resulted in the clock z hitting 1 (so tick is true iff the last
transition resulted in z = 0), and bl1 is true if player-1 is to blame for the last
transition.

Formally, 〈s′, z′, β′, tick ′, bl ′1〉 = δ̂(〈s, z, β, tick , bl1〉, 〈Δ, ai〉) iff

1. s′ = δ(s, 〈Δ, ai〉)
2. z′ = (z +Δ) mod 1;
3. β′ = β <Δ, where we define β <Δ as β −Δ if β �= ⊥ and β −Δ ≥ 0, and
⊥ otherwise (⊥ is an absorbing value for β).

4. tick′ = true if z +Δ ≥ 1, and false otherwise
5. bl1 = true if ai ∈ A⊥

1 and false otherwise.

Each run r of [[T]], and values z ∈ IR≥0, β ≤M can be mapped to a correspond-
ing unique run r̂z,β in [̂[T]], with r̂z,β [0] = 〈r[0], z, β, false, false〉. Similarly, each
run r̂ of [̂[T]] can be projected to a unique run r̂ ↓ T of [[T]]. It can be seen that
the run r is in Timediv iff tick is true infinitely often in r̂z,β , and that the set
Blameless1 corresponds to runs along which bl1 is true only finitely often.

Lemma 2. Given a timed game structure [[T]], let X̂p = Sp × IR[0,1) × {0} ×
{true, false}2.

1. For a run r of the timed game structure [[T]], let Tvisit(r, p) < ∞. Then,
Tvisit(r, p) = inf{β | β ∈ IR[0,M] and r̂0,β visits the set X̂p}.

834 T. Brihaye et al.

2. Let Tmin(s, p) <∞. Then,
Tmin(s, p) = inf

{
β | β ∈ IR[0,M] and 〈s, 0, β, false, false〉 ∈

〈
〈1〉
〉
�X̂p

}

3. If Tmin(s, p) =∞, then for all β, we have 〈s, 0, β, false, false〉 �∈
〈
〈1〉
〉
�X̂p.

The rechability objective can be reduced to a parity game: each state in Ŝ is
assigned an index Ω : Ŝ �→ {0, 1}, with Ω(ŝ) = 1 iff ŝ �∈ X̂p; and tick ∨ bl1 =
true. We also modify the game structure so that the states in X̂p are absorbing.

Lemma 3. For the timed game [̂[T]] with the reachability objective X̂p, the state
ŝ = 〈s, 0, β, false, false〉 ∈

〈
〈1〉
〉
�X̂p iff player-1 has a strategy π1 such that for

all strategies π2 of player-2, and all runs r̂0,β ∈ Outcomes(ŝ, π1, π2), the index 1
does not occur infinitely often in r̂0,β.

The fixpoint formula for solving the parity game in Lemma 3 is given by (as
in [13]),

Y = μY νZ
[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(Z))

]

The fixpoint expression uses the variables Y, Z ⊆ Ŝ and the controllable prede-
cessor operator, CPre1 : 2�S �→ 2�S , defined formally by CPre1(X) ≡ {ŝ | ∃m1 ∈
Γ1(ŝ) ∀m2 ∈ Γ2(ŝ) (δ̂jd(ŝ,m1,m2) ⊆ X)}. Intuitively, ŝ ∈ CPre1(X) iff player 1
can force the augmented game from ŝ into X in one move.

4.3 Termination of the Fixpoint Iteration

We prove termination of the μ-calculus fixpoint iteration by demonstrating
that we can work on a finite partition of the state space. Let an equivalence
relation ∼=e on the states in Ŝ be defined as: 〈〈l1, κ1〉, z1, β1, tick1, bl11〉 ∼=e

〈〈l2, κ2〉, z2, β2, tick2, bl21〉 iff

1. l1 = l2, tick1 = tick2, and bl1 = bl2.
2. κ̂1 ∼= κ̂2 where κ̂i : C∪{z} �→ IR≥0 is a clock valuation such that κ̂i(c) = κi(c)

for c ∈ C, κ̂i(z) = zi,and cz = 1 (cz is the maximum value of the clock z in
the definition of ∼=) for i ∈ {1, 2}.

3. β1 = ⊥ iff β2 = ⊥.
4. If β1 �= ⊥, β2 �= ⊥ then

– �β1� = �β2�
– frac(β1) = 0 iff frac(β2) = 0.
– For each clock x ∈ C ∪ {z} with κ1(x) ≤ cx and κ2(x) ≤ cx, we have

frac(κ1(x)) + frac(β1) ∼ 1 iff frac(κ2(x)) + frac(β2) ∼ 1 with ∼ ∈ {<,=
, >}.

The number of equivalence classes induced by ∼=e is again finite
(O

(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)2 · |C|

)
). We call each equivalence class

an extended region. An extended region Y of [̂[T]] can be specified by the tuple
〈l, tick , bl1, h,P , βi, βf , C<, C=, C>〉 where for a state ŝ = 〈〈l, κ〉, z, β, tick , bl1〉,

Minimum-Time Reachability in Timed Games 835

frac(β)

Cf
1 Cf

3

0 1

1

Cf
2

Fig. 2. An extended region with C< = C ∪ {z}, C= = ∅, C> = ∅

– l, tick , bl1 correspond to l, tick , bl1 in ŝ.
– h is a function which specifies the integer values of clocks: h(x) = �κ(x)� if
κ(x) < Cx + 1, and h(x) = Cx + 1 otherwise.

– P ⊆ 2C∪{z} is a partition of the clocks {C0, . . . , Cn | 3Ci = C ∪ {z}, Ci �=
∅ for i > 0}, such that 1)for any pair of clocks x, y, we have frac(κ(x)) <
frac(κ(y)) iff x ∈ Cj , y ∈ Ck for j < k; and 2)x ∈ C0 iff frac(κ(x)) = 0.

– βi ∈ IN ∩ {0, . . . ,M} ∪ {⊥} indicates the integral value of β.
– βf ∈ {true, false} indicates whether the fractional value of β is greater

than 0, βf = true iff β �= ⊥ and frac(β) > 0.
– For a clock x ∈ C ∪ {z} and β �= ⊥, we have frac(κ(x)) + frac(β) ∼ 1 iff
x ∈ C∼ for ∼ ∈ {<,=, >}.

Pictorially, the relationship between κ̂ and β can be visualised as in Fig. 2.
The figure depicts an extended region for C0 = ∅, βi ∈ IN ∩ {0, . . . ,M}, βf =
true, C< = C ∪{z}, C= = ∅, C> = ∅. The vertical axis is used for the fractional
value of β. The horizontal axis is used for the fractional values of the clocks in
Ci. Thus, given a disjoint partition {C0, . . . , Cn} of the clocks, we pick n + 1
points on a line parallel to the horizontal axis, {〈Cf

0 , frac(β)〉, . . . , 〈Cf
n , frac(β)〉},

with Cf
i being the fractional value of the clocks in the set Ci at κ̂.

Lemma 4. Let X ⊆ Ŝ consist of a union of extended regions in a timed game
structure [̂[T]] . Then CPre1(X) is again a union of extended regions.

Lemma 4 demonstrates that the sets in the fixpoint computation of the μ-calculus
algorithm which computes winning states for player-1 for the reachability ob-
jective X̂p consist of unions of extended regions. Since the number of extended
regions is finite, the algorithm terminates.

Theorem 2. For a state s and a proposition p in a timed automaton game T,

1. The minimum time for player-1 to visit p starting from s (denoted Tmin(s, p))
is computable in time O

(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)2 · |C|

)
.

2. For every region R of [[T]], either there is a constant dR ∈ IN ∪ {∞} such
that for every state s ∈ R, we have Tmin(s, p) = dR, or there is an integer
constant dR and a clock x ∈ C such that for every state s ∈ R, we have
Tmin(s, p) = dR − frac(κ(x)), where κ(x) is the value of the clock x in s.

836 T. Brihaye et al.

References

1. Adler, B., de Alfaro, L., Faella, M.: Average reward timed games. In: Pettersson, P.,
Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 65–80. Springer, Heidelberg
(2005)

2. Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted timed
games. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004)

3. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–
235 (1994)

4. Alur, R., Henzinger, T.: Modularity for timed and hybrid systems. In:
Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–
88. Springer, Heidelberg (1997)

5. Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed au-
tomata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS,
vol. 1569, pp. 19–30. Springer, Heidelberg (1999)

6. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced
timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS,
vol. 3328, pp. 148–160. Springer, Heidelberg (2004)

7. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial
observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 180–192. Springer, Heidelberg (2003)

8. Brihaye, T., Bruyère, V., Raskin, J.: On optimal timed strategies. In: Pettersson,
P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 49–64. Springer, Heidelberg
(2005)

9. Cassez, F., David, A., Fleury, E., Larsen, K., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

10. Cassez, F., Henzinger, T., Raskin, J.-F.: A comparison of control problems for
timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002.
LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)

11. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Formal Methods in System Design 1(4), 385–415 (1992)

12. de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga, M.: The element
of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003.
LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)

13. de Alfaro, L., Henzinger, T., Majumdar, R.: From verification to control: Dynamic
programs for omega-regular objectives. In: LICS 2001, pp. 279–290. IEEE Com-
puter Society Press, Los Alamitos (2001)

14. D’Souza, D., Madhusudan, P.: Timed control synthesis for external specifications.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer,
Heidelberg (2002)

15. Faella, M., Torre, S.L., Murano, A.: Dense real-time games. In: LICS 2002, pp.
167–176. IEEE Computer Society Press, Los Alamitos (2002)

16. Henzinger, T., Kopke, P.: Discrete-time control for rectangular hybrid automata.
Theoretical Computer Science 221, 369–392 (1999)

17. Henzinger, T., Prabhu, V.: Timed alternating-time temporal logic. In: Asarin, E.,
Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Heidelberg
(2006)

Minimum-Time Reachability in Timed Games 837

18. Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata. In:
ICALP 2007. LNCS, Springer, Heidelberg (2007)

19. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995.
LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

20. Pnueli, A., Asarin, E., Maler, O., Sifakis, J.: Controller synthesis for timed au-
tomata. In: Proc. System Structure and Control, Elsevier, Amsterdam (1998)

21. Segala, R., Gawlick, R., Søgaard-Andersen, J., Lynch, N.: Liveness in timed and
untimed systems. Inf. Comput. 141(2), 119–171 (1998)

22. Wong-Toi, H., Hoffmann, G.: The control of dense real-time discrete event systems.
In: Proc. of 30th Conf. Decision and Control, pp. 1527–1528 (1991)

Reachability-Time Games on Timed Automata�

(Extended Abstract)

Marcin Jurdziński�� and Ashutosh Trivedi

Department of Computer Science, University of Warwick, UK

Abstract. In a reachability-time game, players Min and Max choose moves so
that the time to reach a final state in a timed automaton is minimised or max-
imised, respectively. Asarin and Maler showed decidability of reachability-time
games on strongly non-Zeno timed automata using a value iteration algorithm.
This paper complements their work by providing a strategy improvement algo-
rithm for the problem. It also generalizes their decidability result because the
proposed strategy improvement algorithm solves reachability-time games on all
timed automata. The exact computational complexity of solving reachability-time
games is also established: the problem is EXPTIME-complete for timed automata
with at least two clocks.

1 Introduction

Timed automata [3] are a fundamental formalism for modelling and analysis of real-
time systems. They have a rich theory, mature modelling and verification tools (e.g.,
UPPAAL, Kronos), and have been successfully applied to numerous industrial case
studies. Timed automata are finite automata augmented by a finite number of continuous
real variables, which are called clocks because their values increase with time at unit
rate. Every clock can be reset when a transition of the automaton is performed, and
clock values can be compared to integers as a way to constrain availability of transitions.
The fundamental reachability problem is PSPACE-complete for timed automata [3].
The natural optimization problems of minimizing and maximizing reachability time in
timed automata are also in PSPACE [13].

The reachability (or optimal reachability-time) problems in timed automata are fun-
damental to the verification of (quantitative timing) properties of systems modelled by
timed automata [3]. On the other hand, the problem of control-program synthesis for
real-time systems can be cast as a two-player reachability (or optimal reachability-time)
games, where the two players, say Min and Max, correspond to the “controller” and the
“environment”, respectively, and control-program synthesis corresponds to computing
winning (or optimal) strategies for Min. In other words, for control-program synthe-
sis, we need to generalize optimization problems to competitive optimization problems.
Reachability games [5] and reachability-time games [4] on timed automata are decid-
able. The former problem is EXPTIME-complete, but the elegant result of Asarin and

� This research was supported in part by EPSRC project EP/E022030/1.
�� Part of this work was done when the author visited the Isaac Newton Institute for Mathematical

Sciences, Cambridge. Financial support from the Institute is gratefully acknowledged.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 838–849, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reachability-Time Games on Timed Automata 839

Maler [4] for reachability-time games is limited to the class of strongly non-Zeno timed
automata and no upper complexity bounds are given. A recent result of Henzinger and
Prabhu [15] is that values of reachability-time games can be approximated for all timed
automata, but computatability of the exact values was left open.

Our contribution. We show that exact values of reachability-time games on arbitrary
timed automata are uniformly computable; here uniformity means that the output of our
algorithm allows us, for every starting state, to compute efficiently the value of the game
starting from this state. Unlike the paper of Asarin and Maler [4], we do not require
timed automata to be strongly non-Zeno. We also establish the exact complexity of
reachability and reachability-time games: they are EXPTIME-complete and two clocks
are sufficient for EXPTIME-hardness. For the latter result, we reduce from a recently
discovered EXPTIME-complete problem of countdown games [16].

We believe that an important contribution of this paper are the novel proof tech-
niques used. We characterize the values of the game by optimality equations and then
we use strategy improvement to solve them. This allows us to obtain an elementary and
constructive proof of the fundamental determinacy result for reachability-time games,
which at the same time yields an efficient algorithm matching the EXPTIME lower
bound for the problem. Those techniques were known for finite state systems [17,19]
but we are not aware of any earlier algorithmic results based on optimality equations
and strategy improvement for real-time systems such as timed automata.

Related and future work. A recent, concurrent, and independent work [12] establishes
decidability of slightly different and more challenging reachability-time games “with
the element of surprise” [14,15]. In our model of timed games, players take turns to take
unilateral decisions about the duration and type of subsequent game moves. Games with
surprise are more challenging in two ways: in every round of the game, players have
a “time race” to be the first to perform a move; moreover, players are forbidden to
use strategies which “stop the time,” because such strategies are arguably physically
unrealistic and result in Zeno runs. In our reachability-time games, player Max may use
such Zeno strategies in order to prevent reaching a final state. We conjecture that our
techniques can be generalized to prevent player Max from using Zeno strategies.

A generalization of timed automata to priced (or weighted) timed automata [7] al-
lows a rich variety of applications, e.g., to scheduling [6,1,18]. While the fundamental
minimum reachability-price problem is PSPACE-complete [6,8], the two-player
reachability-price games are undecidable on priced timed automata with at least three
clocks [9]. The reachability-price games are, however, decidable for priced timed
automata with one clock [11], and on the class of strongly price-non-Zeno timed au-
tomata [2,10]. Future work should include adapting the techniques of optimality equa-
tions and strategy improvement to (competitive) optimization problems on priced timed
automata.

2 Timed Automata and Reachability-Time Games

We assume that, wherever appropriate, sets N of non-negative integers and R of reals
contain a maximum element∞, and we write N>0 for the set of positive integers and
R≥0 for the set of non-negative reals. For n ∈ N, we write �n�N for the set {0, 1, . . . , n},

840 M. Jurdziński and A. Trivedi

and �n�R for the set {r ∈ R : 0 ≤ r ≤ n} of non-negative reals bounded by n. For
sets X and Y , we write [X → Y] for the set of functions F : X → Y , and [X ⇁ Y]
for the set of partial functions F : X ⇁ Y .

Timed automata. Fix a constant k ∈ N for the rest of this paper. Let C be a finite set
of clocks. A (k-bounded) clock valuation is a function ν : C → �k�R; we write V for
the set [C → �k�R] of clock valuations. If ν ∈ V and t ∈ R≥0 then we write ν + t for
the clock valuation defined by (ν+ t)(c) = ν(c) + t, for all c ∈ C. For a set C′ ⊆ C of
clocks and a clock valuation ν : C → R≥0, we define Reset(ν, C′)(c) = 0 if c ∈ C′,
and Reset(ν, C′)(c) = ν(c) if c �∈ C′.

The set of clock constraints over the set of clocks C is the set of conjunctions of
simple clock constraints, which are constraints of the form c -0 i or c − c′ -0 i, where
c, c′ ∈ C, i ∈ �k�N, and -0 ∈ { <,>,=,≤,≥ }. There are finitely many simple clock
constraints. For every clock valuation ν ∈ V , let SCC(ν) be the set of simple clock
constraints which hold in ν ∈ V . A clock region is a maximal set P ⊆ V , such that
for all ν, ν′ ∈ P , we have SCC(ν) = SCC(ν′). In other words, every clock region is
an equivalence class of the indistinguishability-by-clock-constraints relation, and vice
versa. Note that ν and ν′ are in the same clock region iff all clocks have the same integer
parts in ν and ν′, and if the partial orders of the clocks, determined by their fractional
parts in ν and ν′, are the same. For all ν ∈ V , we write [ν] for the clock region of ν.

A clock zone is a convex set of clock valuations, which is a union of a set of clock
regions. Note that a set of clock valuations is a zone iff it is definable by a clock con-
straint. For W ⊆ V , we write W for the smallest closed set in V which contains W .
Observe that for every clock zone W , the set W is also a clock zone.

Let L be a finite set of locations. A configuration is a pair (�, ν), where � ∈ L is
a location and ν ∈ V is a clock valuation; we write Q for the set of configurations.
If s = (�, ν) ∈ Q and c ∈ C, then we write s(c) for ν(c). A region is a pair (�, P),
where � is a location and P is a clock region. If s = (�, ν) is a configuration then
we write [s] for the region (�, [ν]). We write R for the set of regions. A set Z ⊆ Q
is a zone if for every � ∈ L, there is a clock zone W� (possibly empty), such that
Z = {(�, ν) : � ∈ L and ν ∈ W�}. For a region R = (�, P) ∈ R, we write R for the
zone {(�, ν) : ν ∈ P}.

A timed automaton T = (L,C, S,A,E, δ, ρ, F) consists of a finite set of loca-
tions L, a finite set of clocks C, a set of states S ⊆ Q, a finite set of actions A, an
action enabledness function E : A→ 2S , a transition function δ : L×A→ L, a clock
reset function ρ : A → 2C , and a set of final states F ⊆ S. We require that S, F , and
E(a) for all a ∈ A, are zones.

Clock zones, from which zones S, F , andE(a), for all a ∈ A, are built, are typically
specified by clock constraints. Therefore, when we consider a timed automaton as an
input of an algorithm, its size should be understood as the sum of sizes of encodings of
L, C, A, δ, and ρ, and the sizes of encodings of clock constraints defining zones S, F ,
and E(a), for all a ∈ A. Our definition of a timed automaton may appear to differ from
the usual ones [3,7]. The differences are, however, superficial and mostly syntactic.

For a configuration s = (�, ν) ∈ Q and t ∈ R≥0, we define s+ t to be the configura-
tion s′ = (�, ν+t) if ν+t ∈ V , and we then write s −⇀t s

′. We write s −→t s
′ if s −⇀t s

′

and for all t′ ∈ [0, t], we have (�, s+ t′) ∈ S. For an action a ∈ A, we define Succ(s, a)

Reachability-Time Games on Timed Automata 841

to be the configuration s′ = (�′, ν′), where �′ = δ(�, a) and ν′ = Reset(ν, ρ(a)), and
we then write s

a−⇀ s′. We write s
a−→ s′ if s

a−⇀ s′; s, s′ ∈ S; and s ∈ E(a). For
technical convenience, and without loss of generality, we will assume throughout that
for every s ∈ S, there exists a ∈ A, such that s

a−→ s′.
For s, s′ ∈ S, we say that s′ is in the future of s, or equivalently, that s is in the past

of s′, if there is t ∈ R≥0, such that s −→t s
′; we then write s −→∗ s

′. For R,R′ ∈ R,
we say that R′ is in the future of R, or that R is in the past of R′, if for all s ∈ R,
there is s′ ∈ R′, such that s′ is in the future of s; we then write R −→∗ R

′. We say that
R′ is the time successor of R if R −→∗ R

′, R �= R′, and for every R′′ ∈ R, we have
that R −→∗ R

′′ −→∗ R
′ implies R′′ = R or R′′ = R′; we then write R −→+1 R

′ or
R′ ←−+1 R. Similarly, for R,R′ ∈ R, we write R

a−→ R′ if there is s ∈ R, and there is
s′ ∈ R′, such that s

a−→ s′.
We say that a region R ∈ R is thin if for every s ∈ R and every ε > 0, we have

that [s] �= [s+ ε]; other regions are called thick. We write RThin and RThick for the sets
of thin and thick regions, respectively. Note that if R ∈ RThick then for every s ∈ R,
there is an ε > 0, such that [s] = [s+ ε]. Observe also, that the time successor of a thin
region is thick, and vice versa.

A timed action is a pair τ = (a, t) ∈ A × R≥0. For s ∈ Q, we define Succ(s, τ) =
Succ(s, (a, t)) to be the configuration s′ = Succ(s+ t, a), i.e., such that s −⇀t s

′′ a−⇀ s′,
and we then write s

a−⇀t s
′. We write s

a−→t s
′ if s −→t s

′′ a−→ s′. If τ = (a, t) then we
write s

τ−⇀ s′ instead of s
a−⇀t s

′, and s
τ−→ s′ instead of s

a−→t s
′.

A finite run of a timed automaton is a sequence 〈s0, τ1, s1, τ2, . . . , τn, sn〉 ∈ S ×
((A × R≥0) × S)∗, such that for all i, 1 ≤ i ≤ n, we have si−1

τi−→ si. For a finite
run r = 〈s0, τ1, s1, τ2, . . . , τn, sn〉, we define Length(r) = n, and we define Last(r) =
sn to be the state in which the run ends. We write Runsfin for the set of finite runs.
An infinite run of a timed automaton is a sequence r = 〈s0, τ1, s1, τ2, . . .〉, such that
for all i ≥ 1, we have si−1

τi−→ si. For an infinite run r, we define Length(r) =
∞. For a run r = 〈s0, τ1, s1, τ2, . . .〉, we define Stop(r) = inf{i : si ∈ F} and
Time(r) =

∑Length(r)
i=1 ti. We define ReachTime(r) =

∑Stop(r)
i=1 ti if Stop(r) < ∞, and

ReachTime(r) =∞ if Stop(r) =∞, where for all i ≥ 1, we have τi = (ai, ti).

Strategies. A reachability-time game Γ is a triple (T , LMin, LMax), where T is a timed
automaton (L,C, S,A,E, δ, ρ, F) and (LMin, LMax) is a partition of L. We define sets
QMin = {(�, ν) ∈ Q : � ∈ LMin},QMax = Q\QMin, SMin = S∩QMin, SMax = S\SMin,
RMin = {[s] : s ∈ QMin}, andRMax = R \RMin.

A strategy for Min is a function μ : Runsfin → A × R≥0, such that if Last(r) =
s ∈ SMin and μ(r) = τ then s

τ−→ s′. Similarly, a strategy for Max is a function
χ : Runsfin → A×R≥0, such that if Last(r) = s ∈ SMax and χ(r) = τ then s

τ−→ s′. We
write ΣMin and ΣMax for the sets of strategies for Min and Max, respectively. If players
Min and Max use strategies μ and χ, respectively, then the (μ, χ)-run from a state s is
the unique run Run(s, μ, χ) = 〈s0, τ1, s1, τ2, . . .〉, such that s0 = s, and for every i ≥ 1,
if si ∈ SMin or si ∈ SMax, then μ(Runi(s, μ, χ)) = τi+1 or χ(Runi(s, μ, χ)) = τi+1,
respectively, where Runi(s, μ, χ) = 〈s0, τ1, s1, . . . , si−1, τi, si〉.

842 M. Jurdziński and A. Trivedi

We say that a strategy μ for Min is positional if for all finite runs r, r′ ∈ Runsfin, we
have that Last(r) = Last(r′) implies μ(r) = μ(r′). A positional strategy for Min can
be then represented as a function μ : SMin → A×R≥0, which uniquely determines the
strategy μ∞ ∈ ΣMin as follows: μ∞(r) = μ(Last(r)), for all finite runs r ∈ Runsfin.
Positional strategies for Max are defined and represented in the analogous way. We write
ΠMin andΠMax for the sets of positional strategies for Min and for Max, respectively.

Value of reachability-time game. For every s ∈ S, we define its upper and lower
values by Val∗(s) = infμ∈ΣMin supχ∈ΣMax

ReachTime(Run(s, μ, χ)), and Val∗(s) =
supχ∈ΣMax

infμ∈ΣMin ReachTime(Run(s, μ, χ)), respectively. The inequality Val∗(s) ≤
Val∗(s) always holds.

A reachability-time game is determined if for every s ∈ S, the lower and upper val-
ues are equal to each other; then the value Val(s) = Val∗(s) = Val∗(s) is defined. For a
strategy μ ∈ ΣMin, we define its value Valμ(s) = supχ∈ΣMin

ReachTime(Run(s, μ, χ)),
and for χ ∈ ΣMax, we define Valχ(s) = infμ∈ΣMin ReachTime(Run(s, μ, χ)). For an
ε > 0, we say that a strategy μ ∈ ΣMin or χ ∈ ΣMax is ε-optimal if for every s ∈ S, we
have Valμ(s) ≤ Val(s) + ε or Valχ(s) ≥ Val(s) − ε, respectively. Note that if a game
is determined then for every ε > 0, both players have ε-optimal strategies.

We say that a reachability-time game is positionally determined if for every s ∈ S,
and for every ε > 0, both players have positional ε-optimal strategies from s. Our re-
sults (Lemma 1, Theorem 2, and Theorem 4) yield a constructive proof of the following
fundamental result for reachability-time games.

Theorem 1 (Positional determinacy). Reachability-time games are positionally de-
termined.

Optimality equations OptMinMax(Γ). Our principal technique is to characterize the
values Val(s), for all s ∈ S, as solutions of an infinite system of optimality equations,
and then to study the equations. We write (T,D) |= OptMinMax(Γ), and we say that
(T,D) is a solution of optimality equations OptMinMax(Γ), if for all s ∈ S, we have:

– if D(s) =∞ then T (s) =∞; and
– if s ∈ F then (T (s), D(s)) = (0, 0);

– if s ∈ SMin \ F , then T (s) = infa,t{t+ T (s′) : s a−→t s
′}, and

D(s) = min
{

1 + d′ : T (s) = infa,t{t+T (s′) : s a−→t s
′ andD(s′) = d′}

}
; and

– if s ∈ SMax \ F , then T (s) = supa,t{t+ T (s′) : s a−→t s
′}, and

D(s) = max
{

1 + d′ : T (s) = supa,t{t+ T (s′) : s a−→t s
′ andD(s′) = d′}

}
.

Intuitively, in the equations above, T (s) andD(s) capture “optimal time to reach a final
state” and “optimal distance to reach a final state in optimal time” from state s ∈ S,
respectively. The following key lemma establishes that in order to solve a reachability-
time game Γ , it suffices to find a solution of OptMinMax(Γ).

Lemma 1 (ε-Optimal strategies from optimality equations). If T : S → R and
D : S → N are such that (T,D) |= OptMinMax(Γ), then for all s ∈ S, we have
Val(s) = T (s) and for every ε > 0, both players have positional ε-optimal strategies.

Reachability-Time Games on Timed Automata 843

3 Timed Region Graph

In this section we argue that the task of solving OptMinMax(Γ) can be reduced to solving
a simpler system of equations OptMinMax(Γ̂), which is also infinite, but whose right-
hand sides are minima or maxima of only finitely many expressions.

Simple timed actions. Define the finite set of simple timed actionsA = A× �k�N×C.
For s ∈ Q and α = (a, b, c) ∈ A, we define t(s, α) = b − s(c) if s(c) ≤ b, and
t(s, α) = 0 if s(c) > b; and we define Succ(s, α) to be the state s′ = Succ(s, τ(α)),

where τ(α) = (a, t(s, α)); we then write s
α−⇀ s′. We also write s

α−→ s′ if s
τ(α)−−−→ s′.

Note that if α ∈ A and s
α−→ s′ then [s′] ∈ RThin. Observe that for every thin region

R′ ∈ RThin, there is a number b ∈ �k�N and a clock c ∈ C, such that for every R ∈ R
in the past of R′, we have that s ∈ R implies (s + (b − s(c)) ∈ R′; we then write
R −→b,c R

′. For α = (a, b, c) ∈ A and R,R′ ∈ R, we write R
α−→ R′ or R

a−→b,c R
′, if

R −→b,c R
′′ a−→ R′, for some R′′ ∈ RThin.

Timed region graph Γ̂ . Let Γ = (T , LMin, LMax) be a reachability-time game. We
define the timed region graph Γ̂ to be the finite edge-labelled graph (R,M), where
the set R of regions of timed automaton T is the set of vertices, and the labelled edge
relationM ⊆ R×A×R is defined in the following way. For α = (a, b, c) ∈ A and
R,R′ ∈ R we have (R,α,R′) ∈ M, sometimes denoted by R

α	 R′, if and only if
one of the following conditions holds:

– there is an R′′ ∈ R, such that R −→b,c R
′′ a−→ R′; or

– R ∈ RMin, and there are R′′, R′′′ ∈ R, such that R −→b,c R
′′ −→+1 R

′′′ a−→ R′; or
– R ∈ RMax, and there are R′′, R′′′ ∈ R, such that R −→b,c R

′′ ←−+1 R
′′′ a−→ R′.

Observe that in all the cases above we have that R′′ ∈ RThin and R′′′ ∈ RThick. The
motivation for the second case is the following. Let R→∗ R

′′′ a−→ R′, whereR ∈ RMin

and R′′′ ∈ RThick. One of the key results that we establish is that in a state s ∈ R,
among all t ∈ R≥0, such that s + t ∈ R′′′, the smaller the t, the “better” the timed
action (a, t) is for player Min. Note, however, that the set {t ∈ R≥0 : s + t ∈ R′′′}
is an open interval because R′′′ ∈ RThick, and hence it does not have the smallest
element. Therefore, for every s ∈ R, we model the “best” time to wait, when starting
from s, before performing an a-labelled transition from region R′′′ to region R′, by
taking the infimum of the set {t ∈ R≥0 : s + t ∈ R′′′}. Observe that this infimum
is equal to the tR′′ ∈ R≥0, such that s + tR′′ ∈ R′′, where R′′ −→+1 R

′′′, and that
tR′′ = b − s(c), where R →b,c R

′′. In the timed region graph Γ̂ , we summarize this
model of the “best” timed action from region R to region R′ via region R′′′, by having
a move (R,α,R′) ∈ M, where α = (a, b, c). The motivation for the first and the third
cases of the definition ofM is similar.

Regional functions and optimality equations OptMinMax(Γ̂). Recall from Section 2
that a solution of optimality equations OptMinMax(Γ) for a reachability-time game Γ is
a pair of functions (T,D), such that T : S → R and D : S → N. Our goal is to define
analogous optimality equations OptMinMax(Γ̂) for the timed region graph Γ̂ .

If R
α	 R′, where R,R′ ∈ R and α ∈ A, then s ∈ R does not imply that

Succ(s, α) ∈ R′; however, s ∈ R implies Succ(s, α) ∈ R′. In order to correctly capture

844 M. Jurdziński and A. Trivedi

the constraints for successor states which fall out of the “target” region R′ of a move
of the form R

α	 R′, we consider, as solutions of optimality equations OptMinMax(Γ̂),
regional functions of types T : R → [S ⇁ R] and D : R → [S ⇁ N], where for
every R ∈ R, the domain of partial functions T (R) and D(R) is R. Sometimes, when
defining a regional function F : R → [S ⇁ R], it will only be natural to define F (R)
for all s ∈ R, instead of all s ∈ R. This is not a problem, however, because defining
F (R) on the regionR uniquely determines the continuous extension of F (R) toR. For
a function F : R → [S ⇁ R], we define the function F̃ : S → R by F̃ (s) = F ([s])(s).

If F, F ′, G,G′ : S → R then we write F ≤ F ′ or (F,G) ≤lex (F ′, G′), if for
all s ∈ S, we have F (s) ≤ F ′(s) or (F (s), G(s)) ≤lex (F ′(s), G′(s)), respectively,
where ≤lex is the lexicographic order. Moreover, F < F ′ or (F,G) <lex (F ′, G′), if
F ≤ F ′ or (F,G) ≤lex (F ′, G′), and there is s ∈ S, such that F (s) < F ′(s) or
(F (s), G(s)) <lex (F ′(s), G′(s)), respectively.

If α ∈ A; R,R′ ∈ R; R
α−→ R′; and T : R′ → R and D : R′ → N, then we define

the functions T⊕
α : R → R and D�

α : R → R, by T⊕
α (s) = t(s, α) + T (Succ(s, α))

and D�
α (s) = 1 + D(Succ(s, α)), for all s ∈ R. We write (T,D) |= OptMinMax(Γ̂) if

for all s ∈ S, we have the following:

– if D̃(s) =∞ then T̃ (s) =∞; and
(
T̃ (s), D̃(s)

)
= (0, 0) if s ∈ F ;

–
(
T̃ (s), D̃(s)

)
= minlex

m∈M
{(
T (R′)⊕α (s), D(R′)�

α (s)
)

: m = ([s], α,R′)
}

if
s ∈ SMin \ F ; and

–
(
T̃ (s), D̃(s)

)
= maxlex

m∈M
{(
T (R′)⊕α (s), D(R′)�

α (s)
)

: m = ([s], α,R′)
}

if
s ∈ SMax \ F .

Solutions of OptMinMax(Γ) from solutions of OptMinMax(Γ̂). In this subsection we
show that the function (T,D) �→ (T̃ , D̃) translates solutions of OptMinMax(Γ̂) to so-
lutions of OptMinMax(Γ). In other words, the function Γ �→ Γ̂ is a reduction from the
problem of computing values in reachability-time games to the problem of solving op-
timality equations for timed region graphs.

In order to prove correctness of the reduction, however, we need extra properties of
the solution (T,D) of OptMinMax(Γ̂), namely that T is regionally simple, and that D is
regionally constant. Let X ⊆ Q. A function T : X → R is simple [4] if either: there is
e ∈ Z, such that for every s ∈ X , we have T (s) = e; or there are e ∈ Z and c ∈ C, such
that for every s ∈ X , we have T (s) = e− s(c). Observe that if R ∈ R and T : R→ R

is simple, then the unique continuous extension of T to R is also simple. We say that
a function F : R → [S ⇁ R] is regionally simple or regionally constant, if for every
regionR ∈ R, the function F (R) : R→ R is simple or constant, respectively.

Theorem 2 (Correctness of reduction to timed region graphs). If T : S → R and
D : S → N are such that (T,D) |= OptMinMax(Γ̂), T is regionally simple, and D is
regionally constant, then (T̃ , D̃) |= OptMinMax(Γ).

4 Solving Optimality Equations by Strategy Improvement

In this section we give a strategy improvement algorithm to compute a solution (T,D)
of OptMinMax(Γ̂), and we argue that it satisfies the assumptions of Theorem 2, i.e., T is
regionally simple and D is regionally constant.

Reachability-Time Games on Timed Automata 845

Positional strategies. A positional strategy for player Max in a timed region graph Γ̂
is a function χ : SMax →M, such that for every s ∈ SMax, we have χ(s) = ([s], α,R),
for some α ∈ A and R ∈ R. A strategy χ : SMax →M is regionally constant if for all
s, s′ ∈ SMax, we have that [s] = [s′] implies χ(s) = χ(s′); we can then write χ([s]) for
χ(s). Positional strategies for player Min are defined analogously. We write ΔMax and
ΔMin for the sets of positional strategies for players Max and Min, respectively.

If χ ∈ ΔMax is regionally constant then we define the strategy subgraph Γ̂ χ to be
the subgraph (R,Mχ) whereMχ ⊆ M consists of: all moves (R,α,R′) ∈ M, such
that R ∈ RMin; and of all movesm = (R,α,R′), such that R ∈ RMax and χ(R) = m.
The strategy subgraph Γ̂ μ for a regionally constant positional strategy μ ∈ ΔMin for
player Min is defined analogously. We say that R ∈ R is choiceless in a timed region
graph Γ̂ if R has a unique successor in Γ̂ . We say that Γ̂ is 0-player if all R ∈ R are
choiceless in Γ̂ ; we say that Γ̂ is 1-player if either all R ∈ RMin or all R ∈ RMax

are choiceless in Γ̂ ; every timed region graph Γ̂ is 2-player. Note that if χ and μ are
positional strategies in Γ̂ for players Max and Min, respectively, then Γ̂ χ and Γ̂ μ are
1-player and (Γ̂ χ)μ is 0-player.

For functions T : R → [S → R] and D : R → [S → R], and s ∈ SMax, we define
sets M∗(s, (T,D)) and M∗(s, (T,D)), respectively, of moves enabled in s which are
(lexicographically) (T,D)-optimal for player Max and Min, respectively:

M∗(s, (T,D)) = argmaxlex

m∈M

{(
T (R′)⊕α (s), D(R′)�

α (s)
)

: m = ([s], α,R′)
}
, and

M∗(s, (T,D)) = argminlex

m∈M

{(
T (R′)⊕α (s), D(R′)�

α (s)
)

: m = ([s], α,R′)
}
.

Optimality equations Opt(Γ̂), OptMax(Γ̂), OptMin(Γ̂), Opt≥(Γ̂) and Opt≤(Γ̂). Let

T : R → [S → R] and D : R → [S → N]. We write (T,D) |= OptMax(Γ̂) or
(T,D) |= OptMin(Γ̂), respectively, if for all s ∈ F , we have

(
T̃ (s), D̃(s)

)
= (0, 0),

and for all s ∈ S \ F , we have, respectively:
(
T̃ (s), D̃(s)

)
= maxlex

m∈M

{(
T (R′)⊕α (s), D(R′)�

α (s)
)

: m = ([s], α,R′)
}
, or

(
T̃ (s), D̃(s)

)
= minlex

m∈M

{(
T (R′)⊕α (s), D(R′)�

α (s)
)

: m = ([s], α,R′)
}
.

If Γ̂ is 0-player then OptMax(Γ̂) and OptMin(Γ̂) are equivalent to each other and denoted
by Opt(Γ̂).

We write (T,D) |= Opt≥(Γ̂) or (T,D) |= Opt≤(Γ̂), respectively, if for all s ∈ F ,

we have
(
T̃ (s), D̃(s)

)
≥lex (0, 0) or

(
T̃ (s), D̃(s)

)
≤lex (0, 0), respectively; and for all

s ∈ S \ F , we have, respectively:
(
T̃ (s), D̃(s)

)
≥lex maxlex

m∈M

{(
T (R′)⊕α (s), D(R′)�

α (s)
)

: m = ([s], α,R′)
}
, or

(
T̃ (s), D̃(s)

)
≤lex minlex

m∈M

{(
T (R′)⊕α (s), D(R′)�

α (s)
)

: m = ([s], α,R′)
}
.

The following Propositions 1 and 2 are simple but key properties of optimality equa-
tions and simple functions, which allow us to establish that if (T,D) is a solution of

846 M. Jurdziński and A. Trivedi

0-player, 1-player, or 2-player optimality equations for Γ̂ , then T is regionally simple
and D is regionally constant.

Proposition 1. Let α ∈ A; R,R′ ∈ R; and R
α−→ R′. If F : R′ → R is simple, then

F⊕
α : R→ R is simple.

The following lemma can be proved by induction on the value of the functionD, using
Proposition 1.

Lemma 2 (Solution of Opt(Γ̂) is regionally simple). Let Γ̂ be a 0-player timed region
graph. If (T,D) |= Opt(Γ̂) then T is regionally simple andD is regionally constant.

4.1 Solving 1-Player Reachability-Time Optimality Equations OptMax(Γ̂)

In this subsection we give a strategy improvement algorithm for solving maximum
reachability-time optimality equations OptMax(Γ̂) for a 1-player timed region graph Γ̂ .

Let Choose : 2M → M be an arbitrary function such that for every non-empty
set of moves M ⊆ M, we have Choose(M) ∈ M . We define the following strategy
improvement operator ImproveMax:

ImproveMax(χ, (T,D))(s) =

{
χ(s) if χ(s) ∈M∗(s, (T,D)),
Choose(M∗(s, T)) if χ(s) �∈M∗(s, (T,D)).

For F, F ′ : X → R, we define functions max(F, F ′),min(F, F ′) : X → R by
max(F, F ′)(s) = max{ F (s), F ′(s) } and min(F, F ′)(s) = min{ F (s), F ′(s) }, for
every s ∈ X . The following closure of simple functions under minimum and maximum
operations, together with Proposition 1, yields the important Lemma 3.

Proposition 2. Let F, F ′ : R → R be simple functions defined on a region R ∈
R. Then either min(F, F ′) = F and max(F, F ′) = F ′, or min(F, F ′) = F ′ and
max(F, F ′) = F . In particular, min(F, F ′) and max(F, F ′) are simple functions.

Lemma 3 (Improvement preserves regional constancy of strategies). If χ ∈ ΔMax

is regionally constant, T : R → [S → R] is regionally simple, and D : R → [S → N]
is regionally constant, then ImproveMax(χ, (T,D)) is regionally constant.

Algorithm 1. Strategy improvement algorithm for OptMax(Γ̂)

1. (Initialisation) Choose a regionally constant positional strategy χ0 for player Max
in Γ̂ ; set i := 0.

2. (Value computation) Compute the solution (Ti, Di) of Opt(Γ̂ χi).
3. (Strategy improvement) If ImproveMax(χi, (Ti, Di)) = χi, then return (Ti, Di).

Otherwise, set χi+1 := ImproveMax(χi, (Ti, Di)); set i := i+ 1; and goto step 2.

Proposition 3 (Solutions of OptMax(Γ̂) from fixpoints of ImproveMax). Let χ ∈
ΔMax and let (T χ, Dχ) |= Opt(Γ̂ χ). If ImproveMax(χ, (T

χ, Dχ)) = χ then we have
(T χ, Dχ) |= OptMax(Γ̂).

Reachability-Time Games on Timed Automata 847

If F, F ′, G,G′ : R → [S ⇁ R] then we write F ≤ F ′ or (F,G) ≤lex (F ′, G′), if for
all R ∈ R and s ∈ R, we have F (R)(s) ≤ F ′(R)(s) or

(
F (R)(s), G(R)(s)

)
≤lex

(
F ′(R)(s), G′(R)(s)

)
, respectively. Moreover, F < F ′ or (F,G) <lex (F ′, G′), if

F ≤ F ′ or (F,G) ≤lex (F ′, G′), and there is R ∈ R and s ∈ R, such that F (R)(s) <
F ′(R)(s) or

(
F (R)(s), G(R)(s)

)
<lex

(
F ′(R)(s), G′(R)(s)

)
, respectively.

The following characterization of the solution of Opt(Γ̂) as the maximum solution
of Opt≤(Γ̂) yields Lemma 4 which is key for termination (see the proof of Lemma 6).

Proposition 4 (Solution of Opt(Γ̂) dominates solutions of Opt≤(Γ̂)). If (T,D) |=
Opt(Γ̂) and (T≤, D≤) |= Opt≤(Γ̂), then we have (T≤, D≤) ≤lex (T,D), and if

(T≤, D≤) �|= Opt(Γ̂) then (T≤, D≤) <lex (T,D).

Lemma 4 (Strict strategy improvement for Max). Let χ, χ′ ∈ ΔMax, let (T,D) |=
OptMin(Γ̂ χ) and (T ′, D′) |= OptMin(Γ̂ χ′), and let χ′ = ImproveMax(χ, (T,D)). Then
(T,D) ≤lex (T ′, D′) and if χ �= χ′ then (T,D) <lex (T ′, D′).

The following theorem is an immediate corollary of Lemmas 2 and 3 (the algorithm
considers only regionally constant strategies), of Lemma 4 and finiteness of the number
of regionally constant positional strategies for Max (the algorithm terminates), and of
Proposition 3 (the algorithm returns a solution of optimality equations).

Theorem 3 (Correctness and termination of strategy improvement). The strategy
improvement algorithm terminates in finitely many steps and returns a solution (T,D)
of OptMax(Γ̂), such that T is regionally simple andD is regionally constant.

4.2 Solving 2-Player Reachability-Time Optimality Equations OptMinMax(Γ̂)

In this subsection we give a strategy improvement algorithm for solving optimality
equations OptMinMax(Γ̂) for a 2-player timed region graph Γ̂ . The structure of the al-
gorithm is very similar to that of Algorithm 1. The only difference is that in step 2. of
every iteration we solve 1-player optimality equations OptMax(Γ̂ μ) instead of 0-player
optimality equations Opt(Γ̂ χ). Note that we can perform step 2. of Algorithm 2 below
by using Algorithm 1. Define the following strategy improvement operator ImproveMin:

ImproveMin(μ, (T,D))(s) =

{
μ(s) if μ(s) ∈M∗(s, (T,D)),
Choose(M∗(s, (T,D))) if μ(s) �∈M∗(s, (T,D)).

Lemma 5 (Improvement preserves regional constancy of strategies). If μ ∈ ΔMin

is regionally constant, T : R → [S → R] is regionally simple, and D : R → [S → R]
is regionally constant, then ImproveMin(μ, (T,D)) is regionally constant.

Algorithm 2. Strategy improvement algorithm for solving OptMinMax(Γ̂)

1. (Initialisation) Choose a regionally constant positional strategy μ0 for player Min
in Γ̂ ; set i := 0.

2. (Value computation) Compute the solution (Ti, Di) of OptMax(Γ̂ μi).
3. (Strategy improvement) If ImproveMin(μi, (Ti, Di)) = μi, then return (Ti, Di).

Otherwise, set μi+1 := ImproveMin(μi, (Ti, Di)); set i := i+ 1; and goto step 2.

848 M. Jurdziński and A. Trivedi

Proposition 5 (Fixpoints of ImproveMin are solutions of OptMinMax(Γ̂)). Let μ ∈
ΔMin and (T μ, Dμ) |= OptMax(Γ̂ μ). If ImproveMin(μ, (T μ, Dμ)) = μ then we have
(T μ, Dμ) |= OptMinMax(Γ̂).

Proposition 6 (Solution of OptMax(Γ̂) is dominated by solutions of Opt≥(Γ̂)). If

(T,D) |= OptMax(Γ̂) and (T≥, D≥) |= Opt≥(Γ̂), then we have (T≥, D≥) ≥lex (T,D),

and if (T≥, D≥) �|= OptMax(Γ̂) then (T≥, D≥) >lex (T,D).

Lemma 6 (Strict strategy improvement for Min). Let μ, μ′ ∈ ΔMin, let (T,D) |=
OptMax(Γ̂ μ) and (T ′, D′) |= OptMax(Γ̂ μ′), and let μ′ = ImproveMin(μ, (T,D)). Then
(T,D) ≥lex (T ′, D′) and if μ �= μ′ then (T,D) >lex (T ′, D′).

Proof. First we argue that (T,D) |= Opt≥(Γ̂ μ′) which by Proposition 6 implies that
(T,D) ≥lex (T ′, D′). Indeed for every s ∈ S \ F , if μ(s) = ([s], α,R) and μ′(s) =
([s], α′, R′) then we have

(
T̃ (s), D̃(s)

)
=
(
T (R)⊕α (s), D(R)�

α (s)
)
≥lex

(
T (R′)⊕α′(s), D(R′)�

α′(s)
)
,

where the equality follows from (T,D) |= OptMax(Γ̂ μ), and the inequality follows
from the definition of ImproveMin. Moreover, if μ �= μ′ then there is s ∈ SMin \ F
for which the above inequality is strict. Then (T,D) �|= OptMax(Γ̂ μ′) because every
vertex R ∈ RMin in Γ̂ μ′ has a unique successor, and hence again by Proposition 6 we
conclude that (T,D) >lex (T ′, D′). �
The following theorem is an immediate corollary of Theorem 3 and Lemma 5, of
Lemma 6 and finiteness of the number of regionally constant positional strategies for
Min, and of Proposition 5.

Theorem 4 (Correctness and termination of strategy improvement). The strategy
improvement algorithm terminates in finitely many steps and returns a solution (T,D)
of OptMinMax(Γ̂), such that T is regionally simple and D is regionally constant.

5 Complexity

Lemma 7 (Complexity of strategy improvement). Let Γ̂0, Γ̂1, and Γ̂2 be 0-player,
1-player, and 2-player timed region graphs, respectively. A solution of Opt(Γ̂0) can be
computed in time O(|R|). The strategy improvement algorithms for OptMax(Γ̂1) and
OptMinMax(Γ̂2) terminate in O(|R|) iterations.

Since the number |R| of regions is at most exponential in the size of a timed automa-
ton [3], it follows that the strategy improvement algorithm runs in exponential time,
and hence solving reachability-time games is in EXPTIME. The reachability problem
for timed automata with three clocks is PSPACE-complete [13]. We show that solving
2-player reachability games on timed automata with two clocks is EXPTIME-complete.
We use a reduction from countdown games [16] for EXPTIME-hardness.

Theorem 5 (Complexity of reachability(-time) games on timed automata). Prob-
lems of solving reachability and reachability-time games are EXPTIME-complete on
timed automata with at least two clocks.

Reachability-Time Games on Timed Automata 849

References

1. Abdeddaı̈m, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor. Comput.
Sci. 354(2), 272–300 (2006)

2. Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted timed games.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 122–133. Springer, Heidelberg (2004)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
4. Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed automata. In:

Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30.
Springer, Heidelberg (1999)

5. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In:
IFAC Symp. on System Structure and Control, pp. 469–474. Elsevier, Amsterdam (1998)

6. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaan-
drager, F.W.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D.,
Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer,
Heidelberg (2001)

7. Bouyer, P.: Weighted timed automata: model-checking and games. Electr. Notes Theor. Com-
put. Sci. 158, 3–17 (2006)

8. Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability problem on
weighted timed automata. Form. Method. Syst. Des. (to appear)

9. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted timed au-
tomata. Information Processing Letters 98(5), 188–194 (2006)

10. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed game
automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 148–
160. Springer, Heidelberg (2004)

11. Bouyer, P., Larsen, K.G., Markey, N., Rasmussen, J.I.: Almost optimal strategies in one-clock
priced timed automata. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337,
pp. 345–356. Springer, Heidelberg (2006)

12. Brihaye, T., Henzinger, T.A., Prabhu, V.S., Raskin, J.-F.: Minimum-time reachability in timed
games. In: ICALP 2007. LNCS, vol. 4596, Springer, Heidelberg (2007)

13. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time
systems. Form. Method. Syst. Des. 1, 385–415 (1992)

14. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of sur-
prise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761,
pp. 144–158. Springer, Heidelberg (2003)

15. Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Asarin, E., Bouyer,
P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Heidelberg (2006)

16. Jurdziński, M., Laroussinie, F., Sproston, J.: Model checking probabilistic timed automata
with one or two clocks. In: TACAS 2007. LNCS, vol. 4424, pp. 170–184. Springer, Heidel-
berg (2007)

17. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, Chichester (1994)

18. Rasmussen, J.I., Larsen, K.G., Subramani, K.: On using priced timed automata to achieve
optimal scheduling. Form. Method. Syst. Des. 29, 97–114 (2006)

19. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer,
Heidelberg (2000)

Perfect Information Stochastic Priority Games

Hugo Gimbert1 and Wies�law Zielonka2,�

1 LIX, École Polytechnique, Palaiseau, France
gimbert@lix.polytechnique.fr

2 LIAFA, Université Paris 7 and CNRS, Paris, France
zielonka@liafa.jussieu.fr

Abstract. We introduce stochastic priority games — a new class of
perfect information stochastic games. These games can take two differ-
ent, but equivalent, forms. In stopping priority games a play can be
stopped by the environment after a finite number of stages, however,
infinite plays are also possible. In discounted priority games only infinite
plays are possible and the payoff is a linear combination of the classical
discount payoff and of a limit payoff evaluating the performance at in-
finity. Shapley games [1] and parity games [2] are special extreme cases
of priority games.

1 Introduction

Recently de Alfaro, Henzinger and Majumdar[3] introduced a new variant of
μ-calculus: discounted μ-calculus. As it is known since the seminal paper [2]
of Emerson and Jutla μ-calculus is strongly related to parity games and this
relationship is preserved even for stochastic games, [4]. In this context it is
natural to ask if there is a class of games that corresponds to discounted μ-
calculus of [3]. A partial answer to this question was given in [5], where an
appropriate class of infinite discounted games was introduced. However, in [5],
only deterministic systems were considered and much more challenging problem
of stochastic games was left open. In the present paper we return to the problem
but in the context of perfect information stochastic games. The most basic and
usually non-trivial question is if the games that we consider admit “simple”
optimal strategies for both players. We give a positive answer, for all games
presented in this paper both players have pure stationary optimal strategies.
Since our games contain parity games as a very special case, our paper extends
the result known for perfect information parity games [6,7,8,9].

However, we have an objective which is larger than just transferring to stochas-
tic games the results known for deterministic systems. Parity games are used (di-
rectly or through an associated logic) in verification. Conditions that are verified
often do not depend on any finite prefix of the play (take as a typical example a
simple condition like “A wins if we visit infinitely often some set X of states”).
However, certainly all real systems have a finite life span thus we can ask what

� Partially supported by the french ANR-SETI project AVERISS.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 850–861, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Perfect Information Stochastic Priority Games 851

is the meaning of infinite games when they are used to examine such systems.
Notice that the same question arises in classical game theory [10]. The obvi-
ous answer is that the life span is finite but unknown or sufficiently long and
thus infinite games are a convenient approximation of finite games. However,
what finite games are approximated by parity games? Notice that for the games
like mean-payoff games that are used in economics the answer is simple: infinite
mean-payoff games approximate finite mean-payoff games of long or unknown
duration. But we do not see any obvious candidate for “finite parity games”.
Suppose that C is a parity condition and fC a payoff mapping associated with
C, i.e. fC maps to 1 (win) all infinite sequence of states that satisfy C and to
0 all “loosing” sequences. Now we can look for a sequence fn, n ∈ N, of payoff
functions, such that each fn, defined for state sequences of length n, gives a
payoff for games of length n and such that for each infinite sequence s0s1 . . .
of states fn(s0 . . . sn−1) −−−−→

n→∞
fC(s0s1 . . .). However, except for very special

parity conditions C, such payoff mappings fn do not exist, thus parity games
cannot approximate finite games in the same way as infinite mean-payoff games
approximate finite mean-payoff games.

Nevertheless, it turns out that parity games approximate finite games, however
“finite” does not mean here that the number of steps is fixed, instead these
games are finite in the sense that they stop with probability 1. In Section 4
we present a class of priority stopping games. In the simplest case, when the
stopping probabilities are positive for all states, stopping games are stochastic
games defined by Shapley [1]. However, we examine also stopping games for
which stopping probabilities are positive only for some states. One of the results
of this paper can be interpreted in the following way: parity games are a limit
of stopping games when the stopping probabilities tend to 0 but all at the same
time but rather one after another, in the order determined by priorities.

2 Arenas and Perfect Information Games

Perfect information stochastic games are played by two players, that we call
player 1 and player 2. We assume that player i ∈ {1, 2} controls a finite set Si
of states, S1 and S2 are disjoint and S = S1 ∪ S2 is the set of all states.

With each state s ∈ S is associated a finite non-empty set As of actions that
are available at s and we set A = ∪s∈SAs to be the set of all actions.

If the current state is s ∈ Si then player i controlling this state chooses an
available action a ∈ Si and, with a probability p(s′|s, a), the systems changes
its state to s′ ∈ S. Thus p(·|s, a), s ∈ S, a ∈ As, are transition probabilities
satisfying the usual conditions: 0 ≤ p(s′|s, a) ≤ 1 and

∑
s′∈S p(s

′|s, a) = 1.
LetHω be the set of histories, i.e. the set of all infinite sequences s0a0s1a1s2 . . .

alternating states and actions. Assuming that the sets S and A are equipped with
the discrete topology, we equip Hω with the product topology, i.e. the smallest
topology for which the mappings

Si : Hω → S, Si : Hω / s0a0 . . . siai . . . �→ si

852 H. Gimbert and W. Zielonka

and
Ai : Hω → A, Ai : Hω / s0a0 . . . siai . . . �→ ai

are continuous. Thus (Si)i∈N and (Ai)i∈N, are stochastic processes on the prob-
ability space (Hω,B), where B is Borel σ-algebra generated by open subsets of
Hω.

The data consisting of the state sets S1, S2, available actions (As)s∈S and
transition probabilities p(·, s, a) is an arena A.

Let u : Hω → R be a bounded Borel measurable mapping. We interpret
u(h), h ∈ Hω, as the payoff obtained by player 1 from player 2 after an infinite
play h.

A couple (A, u) consisting of an arena and a payoff mapping is a perfect
information stochastic game.

Let H+
i = (SA)∗Si, i ∈ {1, 2}, be the set of finite non-empty histories ter-

minating at a state controlled by player i. A strategy for player i is a fam-
ily of conditional probabilities σ(a|hn) for all hn = s0a0 . . . sn ∈ H+

i and a ∈
Aan . Intuitively, σ(a|s0a0 . . . sn) gives the probability that player i controlling
the last state sn chooses an (available) action a, while the sequence hn de-
scribes the first n steps of the game. As usual 0 ≤ σ(a|s0a0 . . . sn) ≤ 1 and∑

a∈Asn
σ(a|s0a0 . . . sn) = 1.

A strategy σ is said to be pure if for each finite history hn = s0a0 . . . sn ∈ H+
1

there is an action a ∈ Asn such that σ(a|hn) = 1, i.e. no randomization is used to
choose an action to execute. A strategy σ is stationary if for each finite history
hn = s0a0 . . . sn ∈ H+

1 , σ(·|hn) = σ(·|sn), i.e. the probability distribution used
to choose actions depends only on the last state.

Notice that pure stationary strategies for player i can be identified with map-
pings σ : Si → A such that σ(s) ∈ As for s ∈ Si.

In the sequel we shall use σ, possibly with subscripts or superscripts, to denote
a strategy of player 1. On the other hand, τ will always denote a strategy of
player 2.

Given and initial state s, strategies σ, τ of both players determine a unique
probability measure Psσ,τ on (Hω,B), [11].

The expectation corresponding to the probability measure Psσ,τ is denoted
Esσ,τ . Thus Esσ,τ (u) gives the expected payoff obtained by player 1 from player
2 in the game (A, u) starting at state s when the players use strategies σ, τ
respectively. If supσ infτ Esσ,τ (u) = infτ supσ Esσ,τ (u) for each state s then the
quantity appearing on both side of this equality is the value of the game (for
initial state s) and is denoted vals(A, u).

Strategies σ� and τ � of players 1, 2 are optimal in the game (A, u) if for each
state s ∈ S and for all strategies σ ∈ Σ, τ ∈ T

Esσ,τ� [u] ≤ Esσ�,τ� [u] ≤ Esσ�,τ [u] .

If σ� and τ � are optimal strategies then vals(A, u) = Esσ�,τ� [u], i.e. the expected
payoff obtained when both players use optimal strategies is equal to the value
of the game.

Perfect Information Stochastic Priority Games 853

3 Priority Games

Starting from this moment we assume that each arena A is equipped with a
priority mapping

ϕ : S → {1, . . . , k} (1)

from the set S of states to the set {1, . . . , k} of (positive integer) priorities. The
composition

ϕn = ϕ ◦ Sn, , n ∈ N , (2)

ϕn : Hω → {1, . . . , k}, gives therefore a stochastic process with values in
{1, . . . , k}. Then lim infi ϕi is a random variable

Hω / h �→ lim inf
i

ϕi(h)

giving for each infinite history h ∈ Hω its priority which the smallest priority
visited infinitely often in h (we assume that {1, . . . , k} is equipped with the usual
order on integers and lim inf is taken for this order). From this moment onward,
we assume that there is a fixed a reward mapping

r : {1, . . . , k} → [0, 1] (3)

from priorities to the interval [0, 1].
The priority payoff mapping u : Hω → [0, 1] is defined as

u(h) = r(lim inf
i

ϕi(h)), h ∈ Hω . (4)

Thus, in the priority game (A, u), the payoff received by player 1 from player 2
is the reward corresponding to the minimal priority visited infinitely often. If r
maps odd priorities to 1 and even priorities to 0 then we get a parity game.

One of the referees drew our attention to the paper of McIver and Morgan [12]
where a new stochastic game is introduced and it is proved that this game ad-
mits pure stationary optimal strategies. The framework used in [12] is so different
from the one used in our paper that the direct comparison is difficult. However,
it seems that, after an appropriate translation, the game of [12] corresponds to
the priority game defined above thus [12] gives a direct proof that priority games
admit pure stationary optimal strategies through a reduction to parity games.
In our paper we define, in Sections 4 and 5, a much larger class of games, that in-
cludes priority games as a special case and not only we prove that all these games
admit pure stationary optimal strategies but we show also that all these games
can be seen as appropriate limits of classical discounted games of Shapley [1].

4 Stopping Priority Games

In the sequel we assume that besides the priority and reward mappings (1) and
(3) we have also a mapping

λ : {1, . . . , k} → [0, 1] (5)

from priorities to the interval [0, 1].

854 H. Gimbert and W. Zielonka

We modify the rules of the priority game of Section 3 in the following way.
Every time a state s is visited the game can stop with probability 1−λ(ϕ(s)),

where ϕ(s) is the priority of s. If the game stops at s then player 1 receives from
player 2 the payoff r(ϕ(s)). If the game does not stop then the player controlling
s chooses an action a ∈ As and we go to a state t with probability p(t|s, a).
(Thus p(t|s, a) should now be interpreted as the probability to go to t under the
condition that the games does not stop.) The rules above determine the payoff
in the case when the games stops at some state s. However, λ can be 1 for some
states (priorities) and then it is possible to have also infinite plays with a positive
probability. For such infinite plays the payoff is calculated as in priority games
of the preceding section.

Let us note that if λ(p) = 1 for all priorities p ∈ {1, . . . , k} then actually we
never stop and the game described above is the same as the priority game of the
preceding section.

On the other hand, if λ(p) < 1 for all priorities p, i.e. the stopping probabilities
are positive for all states, then the game will stop with probability 1. Shapley [1]
proved that for such games both players have optimal stationary strategies. In
fact Shapley considered general stochastic games while we limit ourselves to
perfect information stochastic games and for such games the optimal strategies
constructed in [1] are not only stationary but also pure.

Theorem 1 (Shapley 1953). If, for all priorities i, λ(i) < 1 then both players
have pure stationary optimal strategies in the priority stopping game.

Stopping games have an appealing intuitive interpretation but they are not con-
sistent with the framework fixed in Section 2, where the probability space con-
sisted of infinite histories only. This obstacle can be removed in the following
way. For each priority i ∈ {1, . . . , k} we create a new “stopping” state i� that
we add to the arena A. The priority of i� is set to i, ϕ(i�) = i. The set of newly
created states is denoted S�. There is only one action available at each i� and
executing this action we return immediately to i� with probability 1, it is im-
possible to leave a stopping state. Note also that since there is only one action
available at i� it does not matter which of the two players controls “stopping”
states. For each non-stopping state s ∈ S we modify the transition probabilities.
Formally we define new transition probabilities p�(·|·, ·) by setting, for s, t ∈ S,
a ∈ As,

p�(t|s, a) = λ(ϕ(s)) · p(t|s, a)

and

p�(i�|s, a) =

{
1− λ(ϕ(s)) if i = ϕ(s),
0 otherwise .

Let us note by A�λ the arena obtained from A in this way. It is worth noticing
that, even if the set of finite histories of A�λ strictly contains the set of finite
histories of A, we can identify the strategies in both arenas. In fact, given a
strategy for arena A there is only one possible way to complete it to a strategy
in A�λ since for finite histories in A�λ that end in a stopping state i� any strategy

Perfect Information Stochastic Priority Games 855

chooses always the unique action available at i�. Clearly, playing a stopping
priority game on A is the same as playing priority game on A�λ: stopping at
state s in A yields the same payoff as an infinite history in A�λ that loops at i�,
where i = ϕ(s).

5 Discounted Priority Games

The aim of this section is to introduce a new class of infinite games that are
equivalent to stopping priority games.

As previously, we suppose that arenas are equipped with a priority mapping
(1) and that a reward mapping (3) is fixed.

On the other hand, the mapping λ of (5), although also present, has now
another interpretation, it does not define stopping probabilities but it provides
discount factors applied to one-step rewards.

Let
ri = r ◦ϕi and λi = λ ◦ϕi, i ∈ N , (6)

be stochastic processes giving respectively the reward and the discount factor at
stage i. Then the payoff mapping uλ : Hω → R of discounted priority games is
defined as

uλ =
∞∑

i=0

λ0 · · ·λi−1(1− λi)ri + (
∏

i=0

λi) · r(lim inf
n

ϕn) . (7)

Thus uλ is composed of two parts, the discount part

udisc
λ =

∞∑

i=0

λ0 · · ·λi−1(1− λi)ri (8)

and the limit part

ulim
λ = (

∞∏

i=0

λi) · r(lim inf
n

ϕn) . (9)

Some remarks concerning this definition are in order. Let

T = inf{i | λj = 1 for all j ≥ i} . (10)

Since, by convention, the infimum of the empty set is ∞, {T = ∞} consists of
of all infinite histories h ∈ Hω for which λi < 1 for infinitely many i. Thus we
can rewrite uλ as:

uλ =
∑

i<T

λ0 · · ·λi−1(1− λi)ri + (
∏

i<T

λi) · r(lim inf
n

ϕn) . (11)

Moreover, if T =∞ then the product
∏
i<T λi, containing infinitely many factors

smaller than 1, is equal to 0 and for such infinite histories the limit part ulim
λ

disappears while the discount part is (a sum of) an infinite series. The other

856 H. Gimbert and W. Zielonka

extreme case is T = 0, i.e. when the discount factor is 1 for all visited states.
Then it is the the discount part that disappears from 11 and the payoff is just
r(lim infn ϕn), the same as for priority games of Section 3.

Let (A, uλ) be a discounted priority game on A. As explained in the preced-
ing section, a stopping priority game on A with stopping probabilities given by
means of λ can be identified with the priority game (A�λ, u) on the transformed
arena A�λ. As noted also in the preceding section, there is a natural correspon-
dence allowing to identify strategies in both arenas. We shall note by P�sσ,τ the
probability generated by strategies σ and τ on A�λ and Psσ,τ the similar probabil-
ity generated by the same strategies on A. The corresponding expectations are
denoted E�sσ,τ and Esσ,τ . Having all this facts in mind, the following proposition
shows that stopping priority games and discounted priority games are equivalent
in the sense that the same strategies yield the same payoffs in both games:

Proposition 1. For all strategies σ, τ of players 1, 2 and all states s ∈ S,
E�sσ,τ [u] = Esσ,τ [uλ].

Proof. (sketch) Let T = inf{i | Si ∈ S�} be the first moment in the game (A�λ, u)
when we enter a stopping state. Direct calculations show that P�sσ,τ (Si+1 =
si+1|S0 = s0, . . . ,Si = si) = λ(ϕ(si))Psσ,τ (Si+1 = si+1|S0 = s0, . . . ,Si =
si) if all states s0, . . . , si, si+1 are not stopping. This can be used to show
that1 E�sσ,τ [u;T = ∞] = Esσ,τ [ulim

λ]. On the other hand, E�sσ,τ [u;T = m] =
Esσ,τ [λ0 · · ·λm−1(1− λm)rm], implying E�sσ,τ [u;T <∞] = Esσ,τ [udisc

λ]. ��

We can note that in the special case when all discount factors are strictly smaller
than 1 (i.e. all stopping probabilities are greater than 0) Proposition 1 reduces
to a well-known folklore fact: stopping (Shapley) games[1] and discounted games
are equivalent.

6 Limits of Priority Discounted Games

The main aim of this section is to prove that discounted priority games (A, uλ)
admit pure stationary optimal strategies for both players. Of course, due to
Shapley’s theorem, we already know that this is true for discounted mappings λ
such that λ(i) < 1 for all priorities i. Our proof will use in an essential way the
concept of uniformly optimal strategies, which is of independent interest.

Let λ1, . . . , λm, 1 ≤ m ≤ k, be a sequence of constants, all belonging to the
right-open interval [0, 1). Let λ be the following discount mapping:

for all i ∈ {1, . . . , k}, λ(i) =

{
λi if i ≤ m,
1 if i > m.

(12)

In the sequel we shall write u(k)
λ1,...,λm

to denote the discounted priority payoff
mapping uλ, where λ is given by (12). (Note, however, that one should not

1 By E�s
σ,τ [u; A] we denote the integral of u over the set A.

Perfect Information Stochastic Priority Games 857

confuse λ1, λ2, . . . which are used to denote real numbers from [0, 1) with bold
λ1,λ2, . . . that are used to denote a stochastic process (6)).

Defining u(k)
λ1,...,λm

we have assumed that m ≥ 1, however it is convenient to
include the case m = 0 in this notation: if m = 0 then λ(i) = 1 for all priorities
i ∈ {1, . . . , k} and thus u(k) is just the priority payoff mapping u of Section 3.
In particular if m = 1 then u(k)

λ1,...,λm−1
denotes just u(k) = u.

Which strategies are optimal in the game (A, u(k)
λ1,...,λm

) usually depends heav-
ily on the discount factors λ1, . . . , λm. But, in an important paper [13] Blackwell
observed that in discounted Markov decision processes optimal strategies are
independent of the discount factor if this factor is close to 1. This leads to the
concept of uniformly optimal strategies:

Definition 1. Let A be a finite arena, m ∈ {1, . . . , k}. Let us fix values of the
first m − 1 discount factors λ1, . . . , λm−1 ∈ [0, 1). Strategies σ, τ for players 1,
2 are said to be uniformly optimal for λ1, . . . , λm−1 if there exists an ε > 0
(that can depend on λ1, . . . , λm−1) such that σ, τ are optimal for all games
(A, u(k)

λ1,...,λm−1,λm
) with 1− ε < λm < 1.

Now we are prepared to announce the main result of the paper:

Theorem 2. For each m ∈ {1, . . . , k} the games (A, u(k)
λ1,...,λm−1,λm

) admit pure
stationary uniformly optimal strategies for both players. Moreover, if (σ�, τ �) is
a pair of such strategies then σ�, τ � are also optimal in the game (A, u(k)

λ1,...,λm−1
).

Proposition 2 below establishes the following chain of implications:

if (A, u(k)
λ1,...,λm

) admits pure stationary optimal strategies then (A, u(k)
λ1,...,λm

)
admits pure stationary uniformly optimal strategies which in turn implies that
(A, u(k)

λ1,...,λm−1
) admits pure stationary optimal strategies. Since, by Shapley’s

theorem, (A, u(k)
λ1,...,λk

) has pure stationary optimal strategies, trivial backward
induction on m will yields immediately Theorem 2.

Proposition 2. Let A be a finite arena with states labelled by priorities from
{1, . . . , k}. Let m ∈ {1, . . . , k} and λ1, . . . , λm−1 be a sequence of discount factors
for priorities 1, . . . ,m, all belonging to the interval [0, 1). Suppose that the game
(A, u(k)

λ1,...,λm
) has pure stationary strategies for both players. Then the following

conditions hold:

(i) for both players there exist pure stationary uniformly optimal strategies in
the game (A, u(k)

λ1,...,λm−1,λm
),

(ii) there exists an ε > 0 such that, for each pair of pure stationary strategies
(σ, τ) for players 1 and 2, whenever σ and τ are optimal in the game
(A, u(k)

λ1,...,λm−1,λm
) for some 1 − ε < λm < 1 then σ and τ optimal for all

games (A, u(k)
λ1,...,λm−1,λm

) with 1 − ε < λm < 1, in particular σ and τ are
uniformly optimal,

858 H. Gimbert and W. Zielonka

(iii) if σ, τ are pure stationary uniformly optimal strategies in the game
(A, u(k)

λ1,...,λm
) then they are optimal in the game (A, u(k)

λ1,...,λm−1
),

(iv) limλm↑1 vals(A, u(k)
λ1,...,λm

) = vals(A, u(k)
λ1,...,λm−1

), where vals(A, u(k)
λ1,...,λm

)

is the value of the game (A, u(k)
λ1,...,λm

) for an initial state s.

We precede the proof of Proposition 2 by auxiliary lemmas.

Lemma 1. Suppose that λ1, . . . , λk, the discount factors for all priorities, are
strictly smaller than 1. Let σ, τ be pure stationary strategies for players 1 and
2 in the game (A, u(k)

λ1,...,λk
). Then the expectation Esσ,τ [u(k)

λ1,...,λk
] is a rational

function of λ1, . . . , λn bounded on [0, 1)k.

In fact, if we fix pure stationary strategies then we get a finite Markov chain
with discounted evaluation. In this context Lemma 1 is standard, at least for
one discount factor, see for example [14], and the extension to several discount
factors is trivial.

The lack of space compels us to skip the the proof of the following (intuitively
obvious) lemma:

Lemma 2. Let f(x1, . . . , xk) be a rational function well-defined and bounded
on [0, 1)k. Then, for each 0 ≤ m < k, the iterated limit limxm+1↑1 . . . limxk↑1
f(x1, . . . , xk) exists and is finite. Moreover, for every fixed (x1, . . . , xm−1) ∈
[0, 1)m−1 there exists ε > 0 such that the one-variable mapping

xm �→ lim
xm+1↑1

. . . lim
xk↑1

f(x1, . . . , xm−1, xm, xm+1, . . . , xk)

is rational on the interval [1− ε, 1).

For any infinite history h ∈ Hω the value u(k)
λ1,...,λm

(h) can be seen as a function
of discount factors λ1, . . . , λm. It turns out that

Lemma 3. For each m ∈ {1, . . . , k} and for each h ∈ Hω,

lim
λm↑1

u
(k)
λ1,...,λm

(h) = u
(k)
λ1,...,λm−1

(h) . (13)

Proof. (Sketch) Let u(k)
λ1,...,λm

= udisc
λ1,...,λm

+ ulim
λ1,...,λm

be the decomposition of

u
(k)
λ1,...,λm

onto the discount and limit parts. Let λ and λ� be discount factor
mappings from {1, . . . , k} into [0, 1] such that for i ∈ {1, . . . , k}, λ(i) = λi for
i ≤ m and λ(i) = 1 for i > m, while λ�(i) = λ(i) for i �= m and λ�(i) = 1 for
i = m. As usually, λi = λ◦ϕi and λ�i = λ� ◦ϕi are the corresponding stochastic
processes.

We examine three cases:

Case 1: m < lim infi ϕi(h)
In this case, all priorities appearing infinitely often in the sequence ϕi(h), i =
0, 1, . . . have the corresponding discount factors equal to 1. Thus T (h) = min{j |

Perfect Information Stochastic Priority Games 859

λl(h) = 1 for all l ≥ j} is finite. Then limλm↑1 u
disc
λ1,...,λm

(h) = udisc
λ1,...,λm−1

(h)
since udisc

λ1,...,λm
(h) is just a polynomial of variables λ1, . . . , λm. Similarly,

limλm↑1 u
lim
λ1,...,λm

(h) = ulim
λ1,...,λm−1

(h), and we get (13).

Case 2: m = lim infi ϕi(h)
Since for infinitely many i, λi(h) = λm < 1, we have

∏∞
i=0 λi(h) = 0, and then

ulim
λ1,...,λm

(h) = 0.
Let T0(h) := maxj{ϕj(h) < m} be the last moment when a priority strictly

smaller than m appears in the sequence ϕi(h), i ∈ N, of visited priorities. No-
tice that T0(h) < ∞ and

∑
0≤l≤T0(h) λ0(h) · · ·λl−1(h)(1 − λl(h))rl(h) −−−→

λm↑1
udisc
λ1,...,λm−1

(h). On the other hand,
∑∞

l=T0(h)+1 λ0(h) · · ·λl−1(h)(1 − λl(h))

rl(h) = (
∏T0(h)
j=0 λj(h)) ·

∑∞
l=0(λm)l(1−λm)r(m) = (

∏T0(h)
j=0 λj(h)) · r(m) −−−→

λm↑1

(
∏T0(h)
j=0 λ�j (h))r(m) = (

∏∞
j=0 λ�j (h))r(lim inf i ϕi(h)) = ulim

λ1,...,λm−1
(h). Thus we

have shown that limλm↑1 u
disc
λ1,...,λm

(h) = udisc
λ1,...,λm−1

(h) + ulim
λ1,...,λm−1

(h).

Case 3: m > lim infi ϕi(h)
Since m > m− 1 ≥ lim infi ϕi(h) both ulim

λ1,...,λm
(h) and ulim

λ1,...,λm−1
(h) are equal

to 0. Thus it suffices to show that

lim
λm↑1

udisc
λ1,...,λm

(h) = udisc
λ1,...,λm−1

(h) . (14)

For a subset Z of N set fZ(λ1, . . . , λm) =
∑

i∈Z(1−λi(h))λ0(h) · · ·λi−1(h)ri(h)
and consider fX(λ1, . . . , λm) and fY (λ1, . . . , λm), where X = {i | ϕi(h) =
m} and Y = N \X . We show that

lim
λm↑1

fX(λ1, . . . , λm) = 0 . (15)

This is obvious if X is finite, thus assume X infinite. Define a process Ti:
T0(h) = −1, Ti+1(h) = min{j | j > Ti(h) and ϕj(h) = m}. Thus Ti(h), i =
1, 2, . . ., gives the time of the i-th visit to a state with priority m. Set p(h) =
lim infi ϕi(h) and define another process2:Wi(h) =

∑Ti(h)−1
j=0 1{ϕj(h)=p(h)}. Thus

Wi(h) gives the number states with priority p(h) that were visited prior to
the moment Ti(h). Notice that, for all i ≥ 1, λ0(h) . . .λTi(h)−1 contains i −
1 factors λm and Wi(h) factors λp(h) (and possibly other discount factors)
whence λ0(h) . . .λTi(h)−1 ≤ (λm)i−1(λp(h))Wi(h) implying fX(λ1, . . . , λm) =
(1 − λm)r(m)

∑∞
i=0 λ0(h) . . .λTi(h)−1(h) ≤ (1 − λm)r(m)

∑∞
i=0(λp(h))Wi+1(h)

(λm)i−1. Now notice that limi→∞Wi(h) = ∞ since p(h) is visited infinitely
often in h. Since p(h) < m, we have λp(h) < 1 and limi→∞(λp(h))Wi+1(h) = 0.
This implies easily (15) (applying the well-know and easy fact that summable
series are Abel summable, [15]).

2 We use the usual notation, 1A is the indicator function of an event A, 1A(h) = 1 if
Hω ! h ∈ A and 1A(h) = 0 otherwise.

860 H. Gimbert and W. Zielonka

Now let us examine fY (λ1, . . . , λm).
Note that fY (λ1, . . . , λm−1, 1) = udisc

λ1,...,λm−1
(h). Then limλm↑1 fY (λ1, . . . , λm) =

fY (λ1, . . . , λm−1, 1) follows directly from the well-know Abel’s lemma for power
series, see [15]. This and (15) yield (14). ��

Proof of Proposition 2. Since the payoff mappings u(k)
λ1,...,λi+1

are bounded and
Borel-measurable, Lebesgue’s dominated convergence theorem and Lemma 3 im-
ply that for all strategies σ and τ for players 1 and 2, limλi+1↑1 Esσ,τ (u(k)

λ1,...,λi+1
) =

Esσ,τ (limλi+1↑1 u
(k)
λ1,...,λi+1

) = Esσ,τ (u(k)
λ1,...,λi

). Iterating, we get

lim
λm+1↑1

. . . lim
λk↑1

Esσ,τ (u(k)
λ1,...,λk

) = Esσ,τ (u(k)
λ1,...,λm

) . (16)

Suppose that strategies σ and τ are pure stationary. Then, by Lemma 1,
the mapping [0, 1)k / (λ1, . . . , λk) �→ Esσ,τ (u(k)

λ1,...,λk
) is rational and bounded.

Lemma 2 applied to the left hand side of (16) allows us to deduce that, for fixed
λ1, . . . , λm−1, the mapping

(0, 1) / λm �→ Esσ,τ (u(k)
λ1,...,λm−1,λm

) (17)

is a rational mapping (of λm) for λm sufficiently close to 1.
For pure stationary strategies σ and σ� for player 1 and τ , τ � for player 2 and

fixed discount factors λ1, . . . , λm−1 we consider the mapping

[0, 1) / λm �→ Φσ�,τ�,σ,τ (λm) := Esσ�,τ�(u
(k)
λ1,...,λm−1,λm

)− Esσ,τ (u(k)
λ1,...,λm−1,λm

) .

As a difference of rational mappings, all mappings Φσ�,τ�,σ,τ are rational for λm
sufficiently close to 1. Since rational mappings are continuous and have finitely
many zeros, for each Φσ�,τ�,σ,τ we can find ε > 0 such that Φσ�,τ�,σ,τ does not
change the sign for 1− ε < λm < 1, i.e. ∀λm ∈ (1− ε, 1),

Φσ�,τ�,σ,τ (λm) ≥ 0, or Φσ�,τ�,σ,τ (λm) = 0, or Φσ�,τ�,σ,τ (λm) ≤ 0 . (18)

Moreover, since there is only a finite number of pure stationary strategies, we can
choose in (18) the same ε for all mappings Φσ�,τ�,σ,τ , where σ, σ� range over pure
stationary strategies of player 1 while τ, τ � range over pure stationary strategies
of player 2.

Suppose that σ�, τ � are optimal pure stationary strategies in the game
(A, u(k)

λ1,...,λm−1,λm
) for some λm ∈ (1 − ε, 1). This means that for all strategies

σ, τ for both players

Esσ,τ�(u(k)
λ1,...,λm−1,λm

) ≤ Esσ�,τ�(u
(k)
λ1,...,λm−1,λm

) ≤ Esσ�,τ (u(k)
λ1,...,λm−1,λm

) . (19)

For pure stationary strategies σ, τ , Eq. (19) is equivalent with Φσ�,τ�,σ,τ�(λm) ≥ 0
and Φσ�,τ�,σ�,τ (λm) ≤ 0. However, if these two inequalities are satisfied for some
λm in (1− ε, 1) then they are satisfied for all such λm, i.e. (19) holds for all λm
in (1− ε, 1) for all all pure stationary strategies σ, τ . (Thus we have proved that

Perfect Information Stochastic Priority Games 861

σ� and τ � are optimal for all λm ∈ (1 − ε, 1) but only if we restrict ourselves
to the class of pure stationary strategies.) But we have assumed that for each
λm the game (A, u(k)

λ1,...,λm−1,λm
) has optimal pure stationary strategies (now we

take into account all strategies), and under this assumption it is straightforward
to prove that if (19) holds for all pure stationary strategies σ, τ then it holds
for all strategies σ, τ , i.e. σ� and τ � are optimal in the class of all strategies
and for all λm ∈ (1− ε, 1). In this way we have proved conditions (i) and (ii) of
Proposition 2.

Applying the limit λm ↑ 1 to (19) and taking into account (16) we get

Es
σ,τ�(u

(k)
λ1,...,λm−1−1,λm−1

)≤ Es
σ�,τ�(u

(k)
λ1,...,λm−1−1,λm−1

)≤ Es
σ�,τ (u

(k)
λ1,...,λm−1e−1,λm−1e

),

which proves (iii). It is obvious that this implies also (iv). ��

References

1. Shapley, L.S.: Stochastic games. Proceedings Nat. Acad. of Science USA 39,
1095–1100 (1953)

2. Emerson, E., Jutla, C.: Tree automata, μ-calculus and determinacy. In: FOCS 1991,
pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)

3. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems
theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)

4. de Alfaro, L., Majumdar, R.: Quantitative solution to omega-regular games. Jour-
nal of Computer and System Sciences 68, 374–397 (2004)

5. Gimbert, H., Zielonka, W.: Deterministic priority mean-payoff games as limits of
discounted games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052(Part II), pp. 312–323. Springer, Heidelberg (2006)

6. Chatterejee, K., Jurdziński, M., Henzinger, T.: Quantitative stochastic parity
games. In: Proceedings of the 15th Annual Symposium on Discrete Algorithms
SODA, pp. 114–123 (2004)

7. McIver, A., Morgan, C.: Games, probability and the quantitative μ-calculus qmu.
In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 292–
310. Springer, Heidelberg (2002), Full version arxiv.org/abs/cs.LO/0309024

8. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (December 1997)

9. Zielonka, W.: Perfect-information stochastic parity games. In: Walukiewicz, I. (ed.)
FOSSACS 2004. LNCS, vol. 2987, pp. 499–513. Springer, Heidelberg (2004)

10. Osborne,M.J.,Rubinstein,A.:ACourseinGameTheory.MITPress,Cambridge(2002)
11. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg

(1997)
12. McIver, A., Morgan, C.: A novel stochastic game via the quantitative mu-calculus.

In: Cerone, A., Wiklicky, H. (eds.) QAPL 2005. Proc. of the Third Workshop
on Quantitative Aspects of Programming Languages. ENTCS, vol. 153(2), pp.
195–212. Elsevier, Amsterdam (2005)

13. Blackwell, D.: Discrete dynamic programming. Annals of Mathematical Statis-
tics 33, 719–726 (1962)

14. Hordijk, A., Yushkevich, A.: Blackwell optimality. In: Feinberg, E., Schwartz, A.
(eds.) Handbook of Markov Decision Processes, Kluwer, Dordrecht (2002)

15. Titchmarsh, E.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford

arxiv.org/abs/cs.LO/0309024

Bounded Depth Data Trees

Henrik Björklund1,� and Miko�laj Bojańczyk2,��

1 University of Dortmund
2 Warsaw University

Abstract. A data tree is a tree where each node has a label from a finite
set, and a data value from a possibly infinite set. We consider data trees
whose depth is bounded beforehand. By developing an appropriate au-
tomaton model, we show that under this assumption various formalisms,
including a two variable first-order logic and a subset of XPath, have
decidable emptiness problems.

1 Introduction

A data tree is a tree where each node has a label from a finite set, and a data
value from a possibly infinite set. We consider trees where there is a fixed bound
on the depth of nodes. For recognizing properties of such trees, we define an
automaton model that traverses the trees in a depth-first manner. We show
that the emptiness problem for the automata is decidable, by a reduction to
reachability for priority multicounter automata, a powerful model for recognizing
word languages [32]. The automaton model is used to show decidability of the
satisfiability problem for a two-variable first-order logic, and also for a fragment
of XPath. In the logic and XPath, we allow a rich vocabulary of navigational
predicates, such as document order, thus extending the work from [6], where
only successor axes were allowed.

The main application area for this paper is static analysis tasks for XML
databases. We would like to develop tools that automatically answer questions
such as: does property a of XML documents always imply property b?; or: is
property a vacuously true?

A very successful approach to static analysis has been to use tree automata.An
XML document is modeled as a tree, where the labels of the tree correspond to
tag names in the document. Many formalisms for XML can be represented as
tree automata, possibly extended with additional features, (see, e.g., [29,23]).
Using this representation, a large body of techniques for tree automata can be
applied to solving static analysis tasks.

A drawback of the tree automaton approach is that it considers only the
tag names, and ignores other content stored in the document. For instance, one
cannot express key constraints such as: “every two nodes have different values
� Supported by the Deutsche Forschungsgemeinshaft Grant SCHW678/3-1 and the

DAAD Grant D/05/02223.
�� Supported by Polish goverment grant no. N206 008 32/0810.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 862–874, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bounded Depth Data Trees 863

stored in their unique key attribute”. Such constraints are clearly important for
databases, and can be expressed in, say, XPath. One way of extending the tree
automata approach beyond mere tag names is to consider data trees. In a data
tree, each node has a label from a finite set, and a data value from a possibly
infinite set. The data values are used to model the content of the document.
Recently, there has been flurry of research on models with data, including data
words [19,31,13,14,5,22,3], and data trees [8,1,4,16,6].

The typical tool for solving logics over trees without data is a finite-state
automaton. When data is added, the appropriate automaton almost always in-
volves counting: ranging from automata with semilinear constraints on runs [6],
through vector-addition systems [5], and on to faulty counter machines [14] and
lossy channel machines [22]. Complexities are often high: non-primitive recursive,
e.g. [14] and some results in [22], or as hard as reachability in vector-addition sys-
tems [5] (a decidable problem, but not known to be primitive recursive [26,21]).

Due to the above, logics for objects with data are usually quite weak. For
data trees, the present cutting edge is a fragment of first-order logic, where only
two variables are used, and only the child and next-sibling axes are allowed for
testing spatial relationship [6]. This logic has decidable emptiness, but most ex-
tensions are undecidable: adding a third variable, adding a second data value,
adding order on data values. One question left open in [6] was whether the logic
remains decidable if we add their transitive closures (i.e. descendant and follow-
ing sibling)? The outlook is not optimistic, since the extended problem subsumes
reachability for tree vector-addition systems, a difficult open problem [12].

In this paper, we try to deal with the extended axes. We show that if a fixed
bound on the depth is imposed, the logic from [6] remains decidable after the
descendant and following sibling axes (and even document order) are added to
the signature. (The following sibling axis is more interesting than the descendant
axis in bounded depth trees.) In terms of XPath, we extend the fragment from [6],
by allowing all navigational axes in Core XPath ([17]) in path expressions, and
considerably stronger predicate expressions, where the data values of two relative
paths can be compared, as long as the paths belong to the same subtree.

Another motivation to consider bounded depth trees is that the lower bounds
in [6] are somewhat artificial, using constructions alien to actual XML docu-
ments. Indeed, many XML data bases are wide, but not very deep (see, e.g.,[9]).
Therefore, considering trees of arbitrary depth, which turns out to be a major
technical difficulty, need not reflect problems in the real world. It is, however,
sometimes crucial to compare elements on a horizontal axis (which nodes are
later/earlier in the document), something that cannot be done by the logic in [6].

What do we gain by bounding the depth? The main idea is that a bounded
depth tree actually bears more resemblance to a word than a tree. If a bounded
depth tree is written down as a string (the way XML documents are stored in
text files), a finite string automaton can recover the tree structure by using its
finite control to keep track of the path leading to the current node. This simple
observation is the essence of our approach. However, it is not immediately clear
how the string automaton should deal with data values. We discover that the

864 H. Björklund and M. Bojańczyk

appropriate model is an extension of multicounter automata, where a limited
form of zero test is allowed [32].

The paper is structured as follows. In Section 2 we define bounded depth data
trees, and some notions for discussing them. Section 3 contains the main contri-
butions of the paper. Here, we present our automaton model, describe its basic
properties, and prove that the corresponding emptiness problem is decidable.
Section 4 describes a fragment of first-order logic, which, thanks to the automa-
ton model, can be shown to have a decidable satisfiability problem. Section 5
describes applications for XPath. Due to space limitations, many proofs have
been omitted, and will appear in the full version of the paper.

2 Definitions

To simplify technicalities, we do not actually consider data trees, but data forests.
Informally, a data forest is an ordered sequence of data trees. Formally, a data
forest is a partial function

t : N+ → Σ ×Δ
with nonempty finite domain. The set Σ is called the alphabet and is required to
be finite, while the set Δ is called the data domain, and may be infinite (usually,
we use the natural numbers for Δ). The nodes of the forest are elements of the
domain of t. The first coordinate of t(x) is called the label of the node x, while
the second coordinate of t(x) is called the data value of x. Furthermore, the set
of nodes must be closed under parents and previous siblings:

– The parent of a node a1 · · · anan+1 ∈ N∗ is the node a1 · · ·an.
– The previous sibling of a node a1 · · · an ∈ N∗ is the node a1 · · ·an−1(an− 1).

(A node with an = 0 has no previous sibling.)

Preceding siblings are defined by taking the transitive closure the previous sib-
ling. The opposite of previous/preceding siblings are next/following siblings. A
node has at most one previous/next sibling, but possibly many preceding/following
siblings. A root in a forest is any node without a parent; there may be many roots.
The depth of a node a1 · · · an is the number n; in particular each root has depth 1.
The opposite of parent is child. The transitive closure of the child relation is the
descendant relation, similarly ancestors are defined for parents. A leaf is a node
without children.

A depth k data forest is one where all leaves have depth k. We could also
consider forests where leaves have depth at most k; however the more general
type can be easily encoded in the special one by adding dummy nodes. When
considering depth k data forests, we assume without loss of generality that the
label set Σ is partitioned into k disjoint sets Σ1, . . . , Σk such that nodes of
depth i are only allowed to use labels from Σi. This assumption can be easily
ensured by expanding the alphabet.

A class of a data forest is a maximal set of nodes with the same data value.
Let t be a forest. The depth-first-search traversal (DFS traversal) of t is a

sequence v1, . . . , vn of nodes of t satisfying:

Bounded Depth Data Trees 865

– Each non-leaf node appears twice, and each leaf appears once.
– If i < n and vi appears for the first time, i.e. vi �∈ {v1, . . . , vi−1}, then vi+1

is the leftmost child of vi, except if vi is a leaf, in which case vi+1 is the next
sibling of vi, or, if vi is a rightmost child, the parent of vi.

– If i < n and vi is seen for the second time, i.e. vi ∈ {v1, . . . , vi−1}, then vi+1

is the next sibling of vi, or the parent of vi if vi is a rightmost child.

There is only one DFS traversal, and it must begin with the leftmost root and
end with the rightmost root. Later on, it will be convenient that non-leaf nodes
are visited twice. If we remove repetitions from the DFS traversal (by deleting
second occurrences), we get the document ordering on nodes of a forest.

3 Automata

This section contains the main contribution of the paper. In Section 3.1, we
define an automaton model for bounded depth data forests. After showing some
properties that can be recognized by our automata in Section 3.2, we show in
Section 3.3 that the automata have decidable emptiness. The decidability proof
is by reduction to reachability in an extended model of multicounter automata
(Petri nets). Therefore, we have no primitive recursive upper bound for the
complexity; lower bounds are also open.

The automaton model we define can be seen as an extension of the class
memory automata for words from [3] to bounded depth forests. These are, in
turn, a variant of the data automata from [5]. The basic idea is to use one class
memory automaton per depth level in the forest.

3.1 Class Memory Automata for Forests of Bounded Depth

A depth k forest class memory automaton (k-FCMA) is defined as follows. It
has k + 1 state spaces: Q,Q1, · · · , Qk. Each has an initial and a final subset:

I, F ⊆ Q I1, F1 ⊆ Q1, · · · , Ik, Fk ⊆ Qk .

The idea is that the states Qi will be used to examine data values of nodes at
depth at least i, while the states in Q are used to examine properties that do
not involve data.

The automaton runs on an input depth k forest by visiting its nodes in the
DFS sequence (in particular, non-leaf nodes are visited twice). At every moment
of its run, it keeps its current state q ∈ Q – called the global state – as well as k
class memory functions of the form

f1 : Δ→ Q1 · · · fk : Δ→ Qk .

Therefore, a configuration of the automaton consists of: a node v of the for-
est t, the global state q and the class memory functions f1, . . . , fk. (Thanks to
the class memory functions, the automaton is a type of infinite-state system,

866 H. Björklund and M. Bojańczyk

which contributes to the high complexity of emptiness. Each configuration can
be finitely represented, since the class memory functions have finite non-initial
support.) At the beginning of the run, v is the leftmost root, q is set to be a
designated initial state qI ∈ Q, while all the class memory functions f1, . . . , fk
assign initial states to all data values d ∈ Δ. (If there are many initial states,
this produces nondeterminism.)

A single step of the automaton works as follows. Assume that the automaton
is in a node v of depth i with data value d. Depending on the global state, the
values of f1(d), . . . , fi(d), and the label of v, the automaton picks a new global
state and new values of f1(d), . . . , fi(d). It then advances to the next node in
the DFS traversal. Therefore, the transition function is a set of rules from

⋃

i=1,...,k

Q×Q1 × · · · ×Qi ×Σi ×Q×Q1 × · · · ×Qi

Note that since Σ is partitioned into sets Σ1, . . . , Σk, the label of a node deter-
mines its depth. In particular, the automaton knows if it is descending into a
successor, moving to the right sibling, or ascending into the parent.

Furthermore, when the automaton has just read for the second time a right-
most sibling v at depth i ∈ {1, . . . , k} (or for the first time, if v is a leaf), it does
some further processing on the class memory function fi, which we call a check-
reset. (The check-reset is done after the transition corresponding to the second
visit in v has been applied.) First, the automaton checks if the class memory
function fi is accepting, i.e. all data values are assigned either initial or accepting
states. If this is not the case, the run is aborted and cannot be continued. If this
check succeeds, the class memory function fi is reset, by assigning the initial
state (nondeterministically, if there is more than one) to all data values.

The automaton accepts the data forest if, after completing the DFS traversal,
it has an accepting global state (and the last-check reset has been successful).
Note however, that before this happens, a large number of memory check-resets
must be successfully carried out.

Example 1. Consider the following property of depth k forests: each data value
occurs at most once. To recognize this property, the automaton only uses the
states Q1 (all other state spaces Q and Q2, . . . , Qk contain one state q, which
is both initial and final, and is never modified). There are two states in Q1: an
initial state new and a final state old. The transition function advances new
to old, while old has no outgoing transitions. In other words, there is only one
transition for each letter a ∈ Σ:

(q, new, q, · · · , q, a, q, old, q · · · , q).

3.2 Some Properties of FCMA

In this section we present some properties of bounded depth data forests that
can be recognized by FCMA. Apart from being useful later on, the results in
this section are meant to give a feeling for what FCMA can do.

Bounded Depth Data Trees 867

Fact. FCMA are closed under union and intersection.

When the depth of a data forest is limited to 1, the forest is a data word, as
considered in [5]. Furthermore, data automata, the automaton model introduced
in [5] to recognize properties of data words, coincides with the restriction of
FCMA to depth 1. Lemma 1 below can be used to transfer results about data
words to data forests.

Lemma 1. Let A be a data automaton. The following properties of data forests
are recognized by FCMA:

– For every node v, the children of v, when listed from left to right, form a
data word accepted by A.

– For every node v, the descendants of v, when listed in document order, form
a data word accepted by A.

Sometimes it is convenient to see how the data value of a node is related to the
data values of its neighborhood. The profile of a node is information about which
nodes among its ancestors, previous and next siblings have the same data value.
Once the depth k of forests is fixed, there are finitely many possible profiles. The
following lemma shows that these can be tested by an automaton:

Lemma 2. For each possible profile p, there is an FCMA that recognizes the
language: “a node has label a if and only if it has profile p”.

We will also need to use FCMAs to recognize languages of the form: “for every
class, a given property holds”. Here we present a general result of this type.
Note that it is not clear what we mean when saying that a class satisfies some
property, since it is not clear how the nodes of a class should be organized once
they are taken out of the data forest. Here we use one such definition, which we
call a take-out. Let t be a forest and V a set of nodes in this forest. The nodes
of the take-out are nodes of V , along with their ancestors. The labels in the
take-out are inherited from t, except we add a special marker to distinguish if a
node is from V , or just an ancestor of a node from V . The take-out is a forest
without data, where leaves may have different depths.

Lemma 3. Let L be a regular forest language (without data). An FCMA can
test if the take-out of every class belongs to L.

3.3 Decidable Emptiness for the Automata

In this section, we will show that emptiness is decidable for k-FCMA. The proof
is by reduction to emptiness of priority multicounter automata. Note that uni-
versality is undecidable even for 1-FCMA, as it is already undecidable for data
automata over words.

Priority Multicounter Automata. A priority multicounter automaton is an
automaton over words (without data) that has a number of counters, which
can be incremented, decremented and tested for zero. (Multicounter automata

868 H. Björklund and M. Bojańczyk

with zero tests correspond to Petri nets with inhibitor arcs.) To keep the model
decidable, the zero tests are restricted. This is where the priorities come in.

More formally, a priority multicounter automaton has a set C of counters, a
state space Q and an input alphabet Σ. Furthermore, the counters come with a
distinguished chain of subsets: C1 ⊆ · · · ⊆ Cm ⊆ C.

The automaton reads a word w ∈ Σ∗ from left to right, possibly using ε-
transitions. At each point in its run, the automaton has a current state q ∈ Q
and a non-negative counter assignment c ∈ NC . At the beginning, a designated
initial state is used, and all the counters are empty.

In a transition, the automaton reads a letter – possibly ε – from the word. De-
pending on this letter the automaton changes its state, and performes a counter
operations, that is, it increases a counter, decrements a counter, or checks that
all counters in Ci, for some i, are empty.

The above operations can fail: if a decrement is done on an empty counter; or
if a zero test fails. When the counter operation fails, the transition fails and the
run is aborted. The automaton accepts if at the end of the word it has reached a
designated accepting state. The following difficult result has been shown in [32]:

Theorem 1. Emptiness is decidable for priority multicounter automata.

Note that priority multicounter automata are an extension of multicounter au-
tomata (where the zero tests are not allowed). In particular, no primitive recur-
sive emptiness algorithm is known.

Reduction to Priority Multicounter Automata. We now show that empti-
ness for FCMA can be reduced to emptiness of priority multicounter automata.
In particular, thanks to Theorem 1, emptiness is decidable for FCMA.

Let t be a depth k forest, and let v1, . . . , vn be its DFS traversal. Let trav(t)
be the word over Σ containing the labels of v1, . . . , vn. Since trav(t) does not
use the data values, it is irrelevant if t is a data forest or a non-data forest.

Theorem 2. Emptiness is decidable for k-FCMA, for all k ∈ N. Furthermore,
for each k-FCMA A, the set {trav(t) : t is accepted by A} is accepted by an
(effectively obtained) priority multicounter automaton.

By Theorem 1, the first clause of the theorem follows from the second one. This
section is therefore devoted to simulating a k-FCMA with a priority multicounter
automaton.

We fix a k-FCMA A. We assume that in every transition

(q, q1, . . . , qi, a, r, r1, . . . , ri) ,

none of the states r1, . . . , ri are initial; and if some qj is initial, then so are
qj+1, . . . , qi. Any k-FCMA can be effectively transformed into one satisfying the
above assumptions.

The priority multicounter automaton that recognizes the traversals is defined
as follows. It is a conjunction of two automata. The first one checks that the

Bounded Depth Data Trees 869

depths indicated by the labels are consistent with a DFS traversal, i.e. the input
word belongs to {trav(t) : t is a depth k forest}. Since the latter is a regular
word language, we do not even need to use counters.

The real work is done by the second automaton, which we call B. To sim-
plify presentation, we use a slightly extended notion of transition. We will later
comment on how the extended notion can be realized by a standard priority
multicounter automaton. The control states of B are the global states Q of A.
It has a counter for each of the states in Q1, . . . , Qk used in the class memory
functions (we assume these state spaces are disjoint).

When the simulating automaton B is in state q ∈ Q, and the input letter is
a ∈ Σi (with i = 0, . . . , k) the automaton performs the following actions:

1. As preprocessing for the transition, B may nondeterministically choose to
increment any counter corresponding to an initial state.

2. In the next step, B nondeterministically picks a transition

(q, q1, . . . , qi, a, r, r1, . . . , ri)

of the simulated k-FCMA A. It decrements counters q1, . . . , qi, and then
increments the counters r1, . . . , ri.

3. In the third step, B sets its finite control to the the state r from the transition
chosen in step 2.

4. The last step corresponds to the check-reset and is carried out if the next
label is going to be from Σi−1 (this corresponds to a rightmost successor
node appearing for the second time in the DFS, or for the first time, if the
node is a leaf). In this case, the automaton B tests that all counters in

Qi \ (Fi ∪ Ii) (1)

are empty, and then empties all the counters in Qi.

We call such a sequence of actions a macrotransition. A macrotransition can be
carried out by a multicounter automaton with zero checks, by using ε-transitions
and additional control states. Perhaps the most delicate point is the last step in
the macrotransition. First of all, the automaton needs to know the next label.
Here, we can nondeterministically guess the next label in advance; this nondeter-
ministic guess is then validated in the next step. (The degenerate case of j = 0
is handled by using ε-transitions.)

At first glance, the automaton is not a priority multicounter automaton, since
the zero checks in (1) are done for disjoint counters. But this can easily be fixed,
by imposing a chain discipline on the zero checks. Indeed, when the automaton is
doing the zero check in (1), we know that in the previous moves it has emptied the
counters Qi+1, . . . , Qk. Therefore, it could equivalently zero check the counters

Qi \ (Fi ∪ Ii) ∪ Qi+1 ∪ · · · ∪ Qk .

Furthermore, the emptying of the counters in Qi, which is done after (1), can
be simulated by a sequence of nondeterministic decrements on Qi and then a

870 H. Björklund and M. Bojańczyk

zero check on Qi ∪ · · · ∪Qk. The automaton B accepts if it reaches an accepting
global state after processing all the nodes. It is fairly clear that if A accepts t,
then B accepts trav(t). Theorem 2 then follows once we show the converse:

Lemma 4. If t is a depth k forest whose DFS traversal is accepted by B, then t
can be labeled with data values so that the resulting data forest is accepted by A.

Proof
Consider an accepting run of B, with macrotransitionsm1, . . . ,mn. Let v1, . . . , vn
be the DFS traversal of the forest t. These nodes correspond to the macrotransi-
tions m1, . . . ,mn. Recall that each macrotransition corresponds (in step 2) to a
transition of the automaton A. Let then δ1, . . . , δn be the sequence of transitions
of A that corresponds to m1, . . . ,mn.

We will assign data values to nodes of the forest t, so that the result s is
accepted by A, using the run δ1, . . . , δn. This is done progressively for v1, . . . , vn,
so that at each intermediate step j = 0, . . . , n the following invariant is satisfied.

Assume that data values have been assigned to nodes v1, . . . , vj . The sequence
δ1, . . . , δj is a partial run of A on t (that has read nodes v1, . . . , vj) such that:

For each class memory function fi ∈ {f1, . . . , fk}, and each non-initial
state q ∈ Qi, the counter q contains the number of data values d with
fi(d) = q.

This invariant can be easily shown by induction on j. �

4 A Two-Variable Logic for Bounded Depth Data Forests

In this section, we define a first-order logic that can express properties of data
forests. Formulas of this logic can be effectively compiled into FCMA; in particu-
lar this logic has decidable satisfiability thanks to Theorem 2. Variables quantify
over nodes. Only two variables, x and y, are allowed. Furthermore, data values
can only be compared for equality, via a predicate x ∼ y. On the other hand, we
allow a large body of navigational predicates.

For a fixed depth k, we define the logic FO2
k as the two-variable fragment of

FO, with the following predicates (some parameterized by i = 1, . . . , k):

di(x) x has depth i
a(x) x has label a (here a is a label from Σ)
x ↓i y y is a descendant of x and depth(y)− depth(x) = i
x ↓+ y y is a descendant of x

x+ 1 = y x is the left sibling of y
x ≺ y x comes before y in the document ordering (the ordering

produced by a pre-order traversal)
x < y x and y are siblings, and x is to the left of y
ti(x, y) x � y and the nodes x, y share the same depth i ancestor

but not the same depth i+ 1 ancestor

Bounded Depth Data Trees 871

t0(x, y) x, y do not have a common ancestor
x ∼ y x and y have the same data value
x⊕ y y is the class successor of x, that is, x ∼ y, x comes before y

in the document ordering, and there is no z between x and y
(in the document ordering) which has the same data value.

The semantic of the logic is defined as usual. For instance, the following is a
long way of saying that all nodes have the same data value:

∀x∀y(x ↓+ y ⇒ x ∼ y) ∧ (x+ 1 = y ⇒ x ∼ y) .

The predicates di, ↓+, ↓i and < are syntactic sugar, and can be removed from
the signature without loss of expressivity. For instance, di(x) is the same as
ti(x, x). In similar ways, ↓i, ↓+ can be defined in terms of ti, and < can be
defined in terms of ti and ≺. Since we only have two variables, x+ 1 = y cannot
be defined in terms of <, and x⊕ y cannot be defined in terms of ≺ and ∼.

In the following example, we show that thanks to the bounded depth assump-
tion, two-variable formulas can express properties that seemingly require three
variables.

Example 2. We write a formula ϕ(x), which holds in a node x that has two
distinct descendants y ∼ z. The natural formula would be

ϕ(x) = ∃y∃z (y �= z ∧ y ∼ z ∧ x ↓+ y ∧ x ↓+ z) .

The problem is that this formula uses three variables. We will show that for
depth k forests, ϕ can be written with only two variables. The idea is to do a
disjunction over the finitely many possible depths i of the node x:

ϕ(x) =
∨

i

di(x) ∧ ∃y(x ↓+ y ∧ ∃x(x �= y ∧ x ∼ y ∧
∨

j≥i
tj(x, y))) .

In the above formula, the second existential quantifier ∃x actually corresponds
to the node z. We do not need to verify if the new node x is a descendant of the
“real” node x in the free variable; this is a consequence of ti(x, y).

Theorem 3. Every language definable in FO2
k can be recognized by a k-FCMA.

Corollary 1. Satisfiability is decidable for FO2
k.

5 XPath

We now apply our results to show decidability of some static analysis tasks for
XML. Our approach closely mirrors that in [6]. To avoid repetition, we only
explain which expressive power can be added to the fragment LocalDataXPath
from [6], while preserving decidability over bounded depth trees. Since we have
the predicates ↓+ and < in our logic, we can, unlike [6], capture the XPath
axes descendant (ancestor) and following (preceding). Also, we can allow

872 H. Björklund and M. Bojańczyk

attribute comparisons in which both sides of the (in-)equality are relative, as long
as they stay within the subtree rooted at the node to which they are relative.

As in [6], decidability is shown by encoding XPath into two-variable logic.
We first give an example that illustrates how the bounded depth can be used
to encode XPath expressions that could not be handled in [6]. This example is
similar to Example 2 in the Section 4.

Example 3. Consider the XPath expression

child :: a/child :: b/@B1 = child :: c/next− sibling :: d/@B2.

It is not allowed in LocalDataXPath, since both sides of the equality are relative
paths. For bounded depth trees, however, we can encode it into the logic from
Section 4, using a technique similar to that of Example 2.

We now define BDXPath (Bounded Depth XPath). It is defined the same way
as LocalDataXPath from [6]; except that BDXPath can use all the navigational
axes in Core XPath [17]. Also, in predicate expressions, we allow comparisons of
attribute values with = and �= as long as one of the following holds.

1. At least one side of the (in-)equality is an absolute location path (i.e., one
starting at the root, or document node); or

2. The comparison is relative, but safe (as defined in [6]); or
3. Both sides have location expressions that start with child or descendant

and do not use parent or ancestor.

Using the same proof, but aided by our more powerful two-variable logic, we
can upgrade the main XPath result from [6]:

Theorem 4. Over trees of bounded depth, Satisfiability and Containment for
(unary or binary) BDXPath is decidable. This holds even relative to a schema
consisting of a regular tree language and unary key and inclusion constraints.

Acknowledgements. We thank Wim Martens and Thomas Schwentick for valu-
able discussions.

References

1. Alon, N., Milo, T., Neven, F., Suciu, D., Vianu, V.: XML with Data Values:
Typechecking Revisited. In JCSS 66(4), 688–727 (2003)

2. Arenas, M., Fan, W., Libkin, L.: Consistency of XML specifications. In: Bertossi,
L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp.
15–41. Springer, Heidelberg (2005)

3. Björklund, H., Schwentick, T.: On notions of regularity for data languages
Manuscript (2006) available at http://lrb.cs.uni-dortmund.de/ bjork/
papers/regular-data.pdf

4. Benedikt, M., Fan, W., Geerts, F.: XPath Satisfiability in the Presence of DTDs.
In: PODS 2005

http://lrb.cs.uni-dortmund.de/~bjork/papers/regular-data.pdf
http://lrb.cs.uni-dortmund.de/~bjork/papers/regular-data.pdf

Bounded Depth Data Trees 873

5. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-
variable logic on words with data. In: LICS 2006, pp. 7–16 (2006)

6. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-
Variable Logic on Data Trees and XML Reasoning. In: PODS’06 (2006)

7. Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and
timed languages. Inf. Comput. 182(2), 137–162 (2003)

8. Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Reasoning about
keys for XML. In Inf. Syst. 28(8), 1037–1063 (2003)

9. Choi, B.: What are real DTDs like. In: WebDB 2002, pp. 43–48 (2002)
10. Cristau, J., Löding, C., Thomas, W.: Deterministic Automata on Unranked Trees.

In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 68–79.
Springer, Heidelberg (2005)

11. David, C.: Mots et données infinis. Master thesis, Université Paris 7, LIAFA (2004)
12. de Groote, P., Guillaume, B., Salvati, S.: Vector Addition Tree Automata. In:

LICS 2004, pp. 64–73 (2004)
13. Demri, S., Lazic, R., Nowak, D.: On the Freeze Quantifier in Constraint LTL:

Decidability and Complexity. In: TIME 2005
14. Demri, S., Lazic, R.: LTL with the Freeze Quantifier and Register Automata. In:

LICS 2006, pp. 17–26 (2006)
15. Etessami, K., Vardi, M.Y., Wilke, T.: First-Order Logic with Two Variables and

Unary Temporal Logic. Inf. Comput. 179(2), 279–295 (2002)
16. Geerts, F., Fan, W.: Satisfiability of XPath Queries with Sibling Axes. In: Bier-

man, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, Springer, Heidelberg
(2005)

17. Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath
Queries. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.)
CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, Springer, Heidelberg (2003)

18. Grädel, E., Otto, M.: On Logics with Two Variables. TCS 224, 73–113 (1999)
19. Kaminski, M., Francez, N.: Finite memory automata. TCS 134, 329–363 (1994)
20. Kieroński, E., Otto, M.: Small Substructures and Decidability Issues for First-

Order Logic with Two Variables. In: LICS 2005 (2005)
21. Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: STOC

1982, pp. 267–281 (1982)
22. Lazić, R.: Safely Freezing LTL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS

2006. LNCS, vol. 4337, Springer, Heidelberg (2006)
23. Martens, W.: Static analysis of XML transformation and schema. PhD Thesis,

Hasselt University (2006)
24. Martens, W., Niehren, J.: Minimizing Tree Automata for Unranked Trees. In:

Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, Springer, Heidelberg
(2005)

25. Marx, M.: First order paths in ordered trees. In: Eiter, T., Libkin, L. (eds.) ICDT
2005. LNCS, vol. 3363, Springer, Heidelberg (2004)

26. Mayr, E.: An algorithm for the general Petri net reachability problem. In: STOC
1981, pp. 238–246 (1981)

27. Mortimer, M.: On languages with two variables. Zeitschr. f. math. Logik u. Grund-
lagen d. Math. 21, 135–140 (1975)

28. Neeraj Verma, K., Seidl, H., Schwentick, T.: On the Complexity of Equational
Horn Clauses. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS
(LNAI), vol. 3632, Springer, Heidelberg (2005)

874 H. Björklund and M. Bojańczyk

29. Neven, F.: Automata, Logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and
EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)

30. Neven, F., Schwentick, T.: XPath Containment in the Presence of Disjunction,
DTDs, and Variables. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT
2003. LNCS, vol. 2572, Springer, Heidelberg (2002)

31. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 15(3), 403–435 (2004)

32. Reinhardt, K.: Counting as Method, Model and Task in Theoretical Computer
Science. Habilitation-thesis (2005)

33. XML Path Language (XPath), W3C Recommendation (November 16, 1999)
Available at http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

Unranked Tree Automata with Sibling

Equalities and Disequalities

Wong Karianto and Christof Löding

Lehrstuhl für Informatik 7, RWTH Aachen, Germany

Abstract. We propose an extension of the tree automata with con-
straints between direct subtrees (Bogaert and Tison, 1992) to unranked
trees. Our approach uses MSO-formulas to capture the possibility of com-
paring unboundedly many direct subtrees. Our main result is that the
nonemptiness problem for the deterministic automata, as in the ranked
setting, is decidable. Furthermore, we show that the nondeterministic
automata are more expressive than the deterministic ones.

1 Introduction

The notion of unranked trees, i.e., finite (ordered) trees for which there are
no constraints on the number of successors of a node, has recently regained
interest from the research community, especially due to the application of such
trees as models of semi-structured data. As with ranked trees, automata-related
and logic-related notions have been developed for unranked trees. In fact, many
results that hold for the ranked case have been shown to hold for the unranked
case as well. For references, the reader is referred to, e.g., the surveys [16,13].

A current trend in the theory of unranked tree automata is concerned with
the development of logics and automaton models that are more expressive than
the framework of finite automata and, at the same time, have good (algorithmic)
properties. Such frameworks, in turn, can be useful for developing (logic-based)
query languages over unranked trees (with application to query languages for
XML documents) with desirable algorithmic properties. A particular approach
along this line, for instance, has been to incorporate the notion of numerical
constraints in unranked tree automata: in the Presburger automata of Seidl
et. al. [17,18] (cf. also the sheaves automata of Lugiez and Dal Zilio [8]), the
applicability of a (bottom-up) transition at a node of an input tree is subject to
formulas of Presburger arithmetic (the first-order logic over the natural numbers)
over the occurrences of the states to which the children of this node are evaluated
to. In another approach, structures (among others, words and trees) with data,
i.e. where the nodes carry, besides a label from a finite alphabet, a data value
from an infinite set, have been considered; see, e.g., [3,2] as well as the references
therein. In these two papers, logics and automata with equality tests between
data values in different nodes are studied, and decidability results for fragments
of first-order logics over words and unranked trees with data are shown.

Regarding the latter approach, another possibility of incorporating data is to
encode the data value of a node (together with the node’s label) as a subtree over

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 875–887, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

876 W. Karianto and C. Löding

a finite alphabet (e.g., natural numbers can be coded by unary subtrees of the
corresponding depth) instead of directly taking values from an infinite alphabet.
In this view, equality tests between data values then amount to equality com-
parisons between subtrees. As a first step toward this approach, in this paper we
study a class of (unranked) tree automata that can deal with such comparisons
in a restricted way.

In the ranked setting, automata with equality comparisons between subtrees
have been studied in the literature; for references, see [7, Chapter 4]. It turns
out that tree automata with such constraints, in the most general form where it
is allowed to compare arbitrary subtrees, fail to have a decidable nonemptiness
problem [15]. This result even carries over to the case where equality tests are
only allowed between cousin subtrees, i.e., subtrees of depth at most two [19].
Nevertheless, by imposing appropriate restrictions on the transition structure
and/or the equality constraints, it is possible to identify classes of automata
with a decidable nonemptiness problem; the class of reduction automata and
its variants [9,6,11] are a case in point. Another subclass of tree automata with
equality constraints has been suggested by Bogaert and Tison [1]: they allow
equality (and disequality) constraints only between sibling subtrees (i.e., direct
subtrees or subtrees of depth one) and show that this class forms a Boolean
algebra and that the nonemptiness problem for this class is decidable.

In this paper, we aim at extending Bogaert and Tison’s automaton model to
the unranked setting. However, even the definition of such automata is not obvi-
ous: with unrankedness, on the one hand, the number of pairs of sibling subtrees
to be compared is not a priori bounded and may increase with the size of the
input tree. On the other hand, the (possibly unboundedly many) sibling com-
parisons must be finitely representable in order to define an automaton model
properly. Here, we propose using formulas of monadic second-order logic over
the state set of the underlying automaton to address the pairs of siblings to be
compared. In this way, we meet the two requirements just mentioned: unbounded
number of but finitely representable equality tests between sibling subtrees.

The main result of this paper is that the nonemptiness problem for the deter-
ministic unranked tree automata with equality and disequality constraints be-
tween siblings we propose is decidable, which we show by adapting Bogaert and
Tison’s nonemptiness decision procedure. As a remark, using encodings (e.g., the
first-child-next-sibling encoding; cf. [16]), a standard way of transferring results
from ranked trees to unranked ones, obviously fails for our purposes because the
sibling relation must be destroyed by any encoding mapping unranked trees to
ranked ones.

Further, regarding the use of subtrees to represent data values mentioned
above, we would like to point out that, if we want to test equality only between
the data values and ignore the node labels, then we actually do not want to
compare whole sibling subtrees. Thus, a next step along this line of study would
be to consider automaton models that do not directly compare subtrees but,
instead, the output of some preprocessing of the subtrees; see Section 5 for a
discussion on this.

Unranked Tree Automata with Sibling Equalities and Disequalities 877

Outline of the paper. After fixing our notations in Section 2, in Section 3 we
present our automaton model, indicate some closure properties, and show that
the nondeterministic automata are more expressive than the deterministic ones.
In Section 4 we show our main result, namely that the nonemptiness problem for
the deterministic case is decidable. Section 5 indicates some possible variations
of our automaton model. We conclude with some remarks on further prospects
in Section 6. Due to space limitations, proof details are omitted and can be found
in the preliminary version of this paper [12].

Related works. Lugiez [14] proposes automata on multitrees (unranked, un-
ordered trees) with a certain type of constraints among sibling multitrees in the
transitions and shows that these automata are closed under Boolean operations,
determinizable, and have a decidable nonemptiness problem. The constraints he
uses incorporate both numerical (Presburger) constraints and inclusion relations
among multisets of (multi)trees. By using Boolean combinations of constraints
of the latter kind, it is then possible to impose equality tests among sibling
(multi)trees, so his work also extends Bogaert and Tison’s. Nevertheless, his ap-
proach is not comparable to ours in several respects. In his approach, besides
unorderedness, evaluating a constraint in an unbounded (unordered) sequence of
(multi)trees is reduced to evaluating the constraint in an (unordered) sequence
of multisets of trees whose length is bounded by the number of states of the
underlying automaton. Consequently, first, equality tests are imposed between
multisets of trees (in our setting: between trees), and second, the number of
equality tests depends on the number of states of the automaton instead of the
size of the input (multi)tree.

2 Preliminaries

We denote the set of (positive) natural numbers by N (respectively, N+). For
k > 0, the set of k-tuples over these sets are denoted by Nk and Nk

+, respectively;
throughout the paper, such tuples are usually denoted by d̄, ē, Further, as
usual, these tuples are ordered by comparing them componentwise. Whenever k
is clear from the context, we denote by m̂, for m ∈ N, the k-tuple (m, . . . ,m).

For a set A, we denote the set of all (finite) words over A by A∗. We denote
the empty word by ε and write A+ for A∗ \ {ε}. For a word w over A, we denote
its length by |w|.

Let A be a finite, nonempty alphabet. A nonempty word w over A defines the
word structure 〈{1, . . . , |w|}, S,<, (χa)a∈A〉 where S and < denote the successor
and the order relation, respectively, over the set {1, . . . , |w|} of positions in w,
and χa, for each a ∈ A, is the set of a-labeled positions in w. To simplify nota-
tion, we do not distinguish between a word and its corresponding word structure.
The formulas of monadic second-order (MSO) logic over words over A are built
up from: first-order variables x, y, z, . . . , which range over positions; monadic
second-order variables X,Y, Z, . . . , which range over sets of positions; atomic
formulas x = y, x < y, S(x, y), X(x), and χa(x), for all a ∈ A and for all vari-
ables x, y,X ; Boolean connectives; and first-order as well as set quantifiers. We

878 W. Karianto and C. Löding

write ϕ(x1, . . . , xn, X1, . . . , Xm) to indicate that the MSO-formula ϕ may con-
tain free occurrences of the variables x1, . . . , xn, X1, . . . , Xm. If a word structure
w, together with an assignment of positions κ1, . . . , κn and of sets K1, . . . ,Km of
positions in w to the free variables x1, . . . , xn, X1, . . . , Xm, respectively, satisfies
ϕ, we write w |= ϕ(κ1, . . . , κn,K1, . . . ,Km).

In the sequel, Σ will always denote a nonempty, finite (tree-labeling) alphabet.
A tree domain D is a nonempty, prefix-closed subset of N∗

+ such that, for each
u ∈ D and i > 0, if ui ∈ D, then also uj ∈ D, for each j ∈ {1, . . . , i}. A finite
unranked tree t over Σ (or simply Σ-labeled tree in the sequel) is a mapping
t : domt → Σ where domt is a finite tree domain. The elements of domt are called
the nodes of t, and the node ε is called the root of t. A node u ∈ domt is said
to have k ≥ 0 successors if uk ∈ domt but u(k+ 1) �∈ domt. In this case, we call
ui the i-th successor of u, and we say that ui and uj are sibling nodes, for each
i, j ∈ {1, . . . , k}. A leaf of t is a node without any successor. Given a node u of t,
the subtree of t at u is the tree given by t|u with domt|u = {v ∈ N∗

+ | uv ∈ domt}
and t|u(v) = t(uv), for all v ∈ domt|u . Further, t|u is called a direct subtree of t
if |u| = 1. We write t as a(t1 · · · tk) to indicate that its root is labeled with a and
that it has k successors at which the subtrees t1, . . . , tk are rooted. We denote
the set of all Σ-labeled trees by TΣ .

3 Automata with Equality and Disequality Constraints
Between Siblings on Unranked Trees

In the framework of ranked trees, roughly speaking, a finite tree automaton
processes a given input tree by assigning states to the nodes of the tree, say,
in a bottom-up fashion, according to its transitions. The automaton model in-
troduced in [1] extends this definition by requiring that the application of a
transition on a node of the input tree is subject to some equality and disequality
constraints between the direct subtrees of that particular node. For instance,
“1 = 2 ∧ 1 �= 3” expresses the property that the first and the second subtree
are equal while the first and the third subtree are different from each other.
Note that the constraints directly address the subtrees to be compared, which is
possible since the number of successors of any node of a ranked tree is bounded.

When moving on to the framework of unranked trees, we encounter the fact
that the number of successors of a node, when applying a transition, is no longer
a priori bounded by a rank. The usual approach to this phenomenon is to use
regular word languages over the set of states in the transitions of a finite tree
automaton instead of mere sequences of states (cf. [4]). In this way, we allow the
number of successors of a node to be arbitrarily large (but finite) while ensuring
a finite representation (by means of, e.g., regular expressions over the set of
states) of the automaton model.

The same phenomenon occurs if we now want to add equality and disequality
constraints between the direct subtrees of a node (or simply sibling constraints
for short). As an illustration, if we want to express that “all direct subtrees are
equal to one another”, then we will have to address unboundedly many pairs of

Unranked Tree Automata with Sibling Equalities and Disequalities 879

direct subtrees to be compared; in the framework of ranked trees, say, of rank
k, we just need to define the constraint

∧
1≤i,j≤k(i = j). To cope with this phe-

nomenon, in the sequel, we will use MSO-formulas to address the pairs of direct
subtrees to be compared; by doing so, we take into account the unboundedness
aspect while ensuring that the constraints we use are finitely representable.

Let A be a finite, nonempty alphabet. An atomic sibling constraint over A is
given by a pair (ϕ, η) where ϕ(x, y) is an MSO-formula over words over A that
may contain free occurrences of the first-order variables x and y, and η is one of
the following four types of usage: ∃EQ, ∃NEQ, ∀EQ, and ∀NEQ. Intuitively, an ∃EQ-
constraint (∃NEQ-constraint) says that “there is a pair of positions that satisfies
ϕ and the subtrees at these positions are equal (or distinct, respectively)”, and
a ∀EQ-constraint (∀NEQ-constraint) says that “for each pair of positions that sat-
isfies ϕ the subtrees at these positions must be equal (or distinct, respectively)”.
Formally, a nonempty word w over A together with a sequence t1 . . . t|w| of Σ-
labeled trees are said to satisfy an atomic sibling constraint (ϕ, η) if, depending
on η, one of the following holds:

– η = ∃EQ: there exist κ, λ ∈ {1, . . . , |w|} such that w |= ϕ(κ, λ) and tκ = tλ.
– η = ∃NEQ: there exist κ, λ ∈ {1, . . . , |w|} such that w |= ϕ(κ, λ) and tκ �= tλ.
– η = ∀EQ: for all κ, λ ∈ {1, . . . , |w|}, if w |= ϕ(κ, λ), then tκ = tλ.
– η = ∀NEQ: for all κ, λ ∈ {1, . . . , |w|}, if w |= ϕ(κ, λ), then tκ �= tλ.

A sibling constraint over A is built up from atomic sibling constraints by means of
Boolean connectives, and the semantics definition above is extended accordingly.
The set of all sibling constraints over A is denoted by CONSA.

We remark that ∃EQ-constraints and ∀NEQ-constraints are dual with respect to
negation. Likewise, ∃NEQ-constraints and ∀EQ-constraints are dual with respect
to negation. Hence, it suffices to consider only positive Boolean combinations
(i.e., without negation) of atomic sibling constraints.

An unranked tree automaton with equality and disequality constraints between
siblings (UTACS) over Σ is defined as a tuple A = (Q,Σ,Λ,Δ, F) where: Q is
a finite, nonempty set of states; F ⊆ Q is the set of final or accepting states;
Λ ⊆ Σ ×Q contains the leaf transitions; and

Δ ⊆ Reg+(Q)× CONSQ ×Σ ×Q ,

where Reg+(Q) denotes the set of regular subsets of Q+, is the set of inner-node
transitions. Given a Σ-labeled tree t, a run of A on t is defined as a Q-labeled
tree ρ : domt → Q with the following property: (a) for each leaf node u ∈ domt,
we have (t(u), ρ(u)) ∈ Λ; (b) for each node u ∈ domt with k ≥ 1 successors,
there exists a transition (L,α, t(u), ρ(u)) ∈ Δ such that the word ρ(u1) . . . ρ(uk)
belongs to L and, together with the tree sequence t|u1 . . . t|uk, satisfies α. In case
such a run exists, we write t→A ρ(ε) or simply t→ ρ(ε), whenever no confusion
might arise, and say that t evaluates to ρ(ε). The run ρ is said to be accepting
if ρ(ε) ∈ F . The tree t is accepted by A if there is an accepting run of A on t.
The set of trees accepted by A is denoted by T (A).

The UTACS A is called deterministic if, for each tree t ∈ TΣ , there exists at
most one state q with t→ q.

880 W. Karianto and C. Löding

Example 1. The set of well-balanced trees over the alphabet {a} can be recog-
nized by a UTACS by takingQ = F = {q}, Λ = {(a, q)}, andΔ = {(Q+, α, a, q)}
with α = (true, ∀EQ).

By adapting the standard constructions from the ranked setting (see, for ex-
ample, [7,1]), one can show that the class of (nondeterministic) automata with
constraints between siblings on unranked trees is closed under union and inter-
section, and that the class of deterministic automata is closed under complemen-
tation. On the other hand, the nondeterministic automata, as opposed to the
ranked case, are more powerful than the deterministic ones (see Proposition 1 be-
low); this fact, in turn, raises the question whether the class of nondeterministic
UTACS’s is closed under complementation.

Proposition 1. There exists a tree language that is recognizable by a nondeter-
ministic UTACS, but by no deterministic UTACS.

The tree language that we use to separate the two classes consists of trees of
the form depicted in Figure 1. Intuitively, such a tree consists of a root labeled

a

b . . . b b b . . . b b b . . . b

Fig. 1. Trees separating nondeterministic and deterministic UTACS’s (the dashed lines
represent b-strands)

with a and below it strands of b’s. All but two of the b-strands are of the same
length, and the two special b-strands themselves are of the same length. With
nondeterminism, essentially, we would guess the positions of the latter b-strands
and mark them by means of a special state. Then, using this particular state,
we can address the appropriate pairs of positions that should be equal and those
that should be distinct. With determinism, this is no longer possible; the fact
that there are b-strands of arbitrary length prevents the possibility of using a
special state to mark the positions of the two special b-strands and thus also of
addressing their positions in the constraints.

4 Nonemptiness Problem: The Deterministic Case

In the ranked setting, it has been shown in [1] that the nonemptiness problem
for deterministic automata with sibling constraints is decidable, which carries
over into nondeterministic automata since the latter can be determinized. The
method used there is an adaptation of the standard marking algorithm: one
constructs trees that are accepted by the automaton under consideration, in
a bottom-up fashion, by applying the transitions of the automaton. In order

Unranked Tree Automata with Sibling Equalities and Disequalities 881

to apply a transition, in turn, one needs to find, for each state occurring in
the transition, a tree that evaluates to this state. With disequality constraints,
however, we may need more than one tree evaluating to a state; for instance,
if a transition requires that the first and the second subtree both evaluate to
the same state, say p, and that they are distinct, then at least two distinct trees
evaluating to p are needed to apply the transition. Of course, if we want to apply
a transition to a node, then we need, for each state occurring in the transition,
at most only as many distinct trees as the number of successors of this node.
Thus, if the number of successors a tree node may have is bounded, then this
bound gives an upper bound on the sufficient number of distinct trees needed
for each state in order to apply a transition.

Now, our main obstacle to transferring the above nonemptiness decision pro-
cedure to the unranked setting indeed lies in the unrankedness aspect: as the
number of successors of a tree node is not a priori bounded, we first need to find
out how we can bound the sufficient number of distinct trees needed to satisfy a
sibling constraint. In Lemma 1 below, we assert the existence of such a bound:
for each transition, if this transition is applicable, then as many distinct trees
as given by this bound are sufficient in order to apply this transition. Using this
bound, we can then devise, based on the corresponding algorithm in the ranked
setting, a nonemptiness decision procedure for deterministic UTACS’s.

In the remainder of this section, unless stated otherwise, let A = (Q,Σ,Δ,Λ,
F) be a deterministic UTACS and τ = (L,α, a, q) be a transition of A.

We call a word w ∈ Q+ suitable for τ if it can be used in an application of τ ,
thus resulting in a tree that evaluates to q, provided that, for each state occurring
in w, there are plenty of (i.e., sufficiently many) distinct trees evaluating to this
state. Note that not every word is suitable for τ ; for instance, if α requires that
the subtrees at the first and the second position of w are equal, then the states
at these positions must be the same, too, since A is deterministic. Let us denote
the set of words that are suitable for τ by Sτ . Now, in order to analyze the
applicability of τ , it suffices only to consider words that are suitable for τ , for if
a word w is not suitable for τ , then there is no sequence of trees together with
which w can both belong to L and satisfy the constraint α. Moreover, in the
following exposition we can assume that Sτ is not empty as τ otherwise cannot
be applied at all and can thus be removed from Δ.

For a τ -suitable word w, let �w, τ� ∈ N|Q| be a tuple of natural numbers
that indicates, for each state, the number of distinct trees that are used for a
particular application of τ that uses w. Alternatively, �w, τ� can be seen as a
mapping �w, τ� : Q → N where �w, τ�(p) is assigned the p-component of �w, τ�,
for each p ∈ Q. We would like to point out that the value of �w, τ� does not
solely depend on w and τ , but also on a certain application of τ by means of
w. In order to simplify our presentation, whenever we pick a τ -suitable word w,
in the following, we always implicitly refer to such a particular application of τ ,
which then gives a unique value of �w, τ�. We remark that, in general, �w, τ�(p),
for each p ∈ Q, does not need to exceed |w|.

882 W. Karianto and C. Löding

Our aim is to show the existence of a bound N such that for each word w
that is suitable for τ , if �w, τ�(p) exceeds N , for some p ∈ Q, then we can find
another τ -suitable word w′ such that �w′, τ� is less than or equal to N̂ . This is
stated in the following lemma, to which we will refer to as the bound lemma.

Lemma 1. There exists some N ≥ 0 such that, for each transition τ of A and
for each word w ∈ Sτ , there exists a word w′ ∈ Sτ such that the following holds:

�w′, τ� ≤ N̂ (1)
�w′, τ� ≤ �w, τ� (2)
For any p ∈ Q, if �w, τ�(p) > N , then �w′, τ�(p) > 0. (3)

In essence, the lemma asserts that, if a transition τ can be applied by means of
the word w, then we can replace w with another word w′ such that, for each state
p ∈ Q, the sufficient number of distinct trees evaluating to p that are needed to
apply τ by means of w′ exceeds neither N nor the corresponding number when
w is used instead of w′. The third condition in the bound lemma is needed for
technical reasons; it asserts that if a component p ∈ Q in �w, τ� exceeds N , then
it must occur in w′.

Before we sketch our method of finding such a bound, let us first introduce
some further notations. We recall that a word w ∈ Q+ is suitable for τ if, given
plenty of distinct trees for each state occurring in w, the transition τ can be
applied. Now, given a set R ⊆ Q and a tuple d̄ ∈ N|R|, the word w is said to be
suitable for τ with respect to R and d̄ if the transition τ can be applied under the
assumption that for each state p occurring in w: (a) there are d̄(p) many distinct
trees that evaluate to p, if p ∈ R, and (b) there are plenty of (i.e., sufficiently
many) distinct trees that evaluate to p, if p �∈ R. We denote the set of all words
that are suitable for τ with respect to R and d̄ by Sτ,R,d̄.

Lemma 2. The sets Sτ and Sτ,R,d̄, for all R ⊆ Q and d̄ ∈ N|R|, are regular
subsets of Q+. In particular, the nonemptiness problem for these sets is decidable.

Proof (sketch). Roughly speaking, a word w belongs to Sτ iff it belongs to L
and the constraints in α do not cause conflicts in w; for instance, any pair (κ, λ)
of positions in w satisfying a ∀EQ-constraint of τ may not satisfy any ∀NEQ-
constraint of τ . In addition, since A is supposed to be deterministic, if a pair
of positions is declared to have equal subtrees by α, then the Q-labels of those
positions must be equal. Since atomic constraints are built from MSO-formulas,
we can write an MSO-formula that captures all these requirements, which shows
the regularity of Sτ . To show the regularity of Sτ,R,d̄, we just need to additionally
require that the occurrences of p ∈ R can be partitioned into d̄(p)-many sets of
positions such that this partitioning does not cause conflict in w; for instance,
if a pair (κ, λ) of positions in w that are labeled with a state from R satisfies a
∀EQ-constraint, then both positions must lie in the same partition. ��

Let us now illustrate our method of finding the desired bound for a fixed tran-
sition τ by means of a simple example. Suppose q1, . . . , q4 are the states of A

Unranked Tree Automata with Sibling Equalities and Disequalities 883

and q1 is the target state of τ , and suppose v ∈ Sτ , say, with �v, τ� = (2, 4, 5, 1).
Then, �v, τ� already gives a first approximation of the bound, namely 5. That
is, if, for each state, there are five distinct trees that evaluate to this state, then
we can apply τ (using v). Now, what happens if there are actually, say, only one
tree for q1 and three distinct trees for q2? Then, two cases may occur. First, it
might be the case that τ cannot be applied at all, i.e., it is not possible to apply
τ under these conditions (with only one tree for q1 and three distinct trees for
q2). Otherwise, second, there is an application of τ under these conditions, for
example, using a word v′, six distinct trees for q3, and seven distinct trees for
q4. In the latter case, the bound must then be updated to 7 in order to make
certain that we do not miss out any possibility of applying τ .

Recapitulating, we proceed for a fixed transition τ as follows:

(i) Start with an initial bound Nτ .
(ii) Check, for all subsets R of Q and all tuples d̄ ∈ N|R| with d̄ ≤ N̂τ , whether

the set Sτ,R,d̄ is nonempty (which is possible due to Lemma 2).
(iii) In this case, pick a word vτ,R,d̄, which then gives a new approximation of

the desired bound via
�
vτ,R,d̄, τ

�
, and update Nτ accordingly.

(iv) Go back to (ii).

Upon termination of this procedure, which turns out to be non-trivial and relies
on Dickson’s Lemma [10] (see also [5, Lemma 3]), the value of Nτ gives the de-
sired bound with respect to the particular transition τ . For the bound required
by Lemma 1, we then take the maximum of the bounds Nτ among all the tran-
sitions τ of A. For more details, in particular, concerning the termination and
the correctness of the procedure, the reader is referred to [12, Section 4.3].

We now present an algorithm that, given a deterministic UTACS, decides
whether the corresponding tree language is nonempty. In essence, this algorithm
is an adaptation of the standard marking algorithm: it consists of a main loop
that in each round collects, for each state, a tree resulting from the application
of a transition based on the trees collected from the previous rounds. The bound
from Lemma 1 gives the sufficient number of distinct trees that we ought to
collect for each state; the main loop is iterated until either we cannot construct
new trees anymore, or we have collected, for each state, as many trees as the
bound. Hence, the algorithm eventually terminates.

Algorithm 1. Given a deterministic UTACS A = (Q,Σ,Λ,Δ, F), together
with the bound N from Lemma 1, the algorithm Nonempty(A) decides whether
T (A) �= ∅ holds. The tuple d̄ ∈ N|Q| keeps track of the number of trees we have
collected so far; for each state q ∈ Q, we use Tq to store the trees evaluating to
q, so at any time of the computation d̄(q) contains the current value of |Tq|.
1: function Nonempty(A)
2: initialize each Tq with {a ∈ Σ | (a, q) ∈ Λ}
3: repeat
4: if there exist τ = (L,α, a, q) ∈ Δ, w = q1 . . . qm ∈ Sτ,Q,d̄, and t1 ∈Tq1 ,

. . . , tm ∈ Tqm such that w and t1 . . . tm satisfy α, and |Tq| < N
5: then Tq ← Tq ∪ {a(t1 . . . tm)}

884 W. Karianto and C. Löding

6: until no new tree can be constructed, or we have d̄ = N̂
7: if Tq �= ∅ for some q ∈ F then return ‘T (A) �= ∅’
8: else return ‘T (A) = ∅’

The algorithm is sound since in Line 3–6 trees are constructed according to the
transition relation Δ of A. The completeness of the algorithm (i.e., if T (A) is
nonempty, then its output must be ‘T (A) �= ∅’) follows immediately from Lemma
3 below, which asserts that, if a tree t evaluates to a state q, then either we will
eventually construct it, or we have already had N trees evaluating to q.

Lemma 3. For any t ∈ TΣ and q ∈ Q, if t→ q, then t ∈ Tq or |Tq| = N holds.

We prove this lemma by an induction on the structure of t (cf. [12, Lemma 14]).
The more interesting case is embodied by the induction step, i.e., the case t =
a(t1 . . . tm) with t→ q and ti → qi, for each i = 1, . . . ,m, where t itself does not
belong to Tq. Then, we have to construct N distinct trees evaluating to q out
of the trees in

⋃
s∈Q Ts. For this, we might have to replace the word q1 . . . qm

with one that satisfies the requirements of Lemma 1 in order to obtain trees
evaluating to q that are actually constructed by Algorithm 1. In particular, the
requirement (3) in the bound lemma ensures that we are indeed able to construct
N such trees. To sum up, we obtain the main result of this section:

Theorem 2. The nonemptiness problem for deterministic UTACS’s is decidable.

Throughout our algorithms and proofs, actually, we have just used the regularity
of the sets of suitable words without really analyzing the form of the equality and
disequality constraints appearing in the transitions at all. Hence, our method will
still work if we vary the definition of the constraints, as long as the regularity of
the sets of suitable words or, more generally, the decidability of the nonemptiness
problem for these sets, is maintained.

As a remark, our method does not work for nondeterministic UTACS’s. With
determinism, we can assume that, if two trees evaluate to two different states,
then these trees must be different as well; this property fails to hold for nondeter-
ministic UTACS’s. In fact, this observation has then lead us to define the notion
of suitability of words over the set of states with respect to a transition, thereby
reducing the analysis of the distinctness among trees to that among states.

5 Restrictions and Extensions of the Model

In this section, we indicate some possible variations of the automaton model we
have introduced and discuss how far our results, in particular with respect to
the decidability of the nonemptiness problem, are retained.

Sibling constraints without references to states. We recall that the atomic con-
straints between siblings we have used in the definition of UTACS are given by
MSO-formulas over the state set of the underlying UTACS. In other words, the
MSO-formulas used as constraints may refer to states when defining the pairs of
sibling subtrees that are supposed to be equal or distinct. In fact, the use of this

Unranked Tree Automata with Sibling Equalities and Disequalities 885

ability has been demonstrated in Proposition 1 to show that the tree language
given there is recognizable by a nondeterministic UTACS.

With this phenomenon in mind, we now prohibit the reference to states in
the atomic constraints: the MSO-formulas used as atomic constraints now lack
atomic MSO-formulas of the form χa(x). With this definition, we can then show
that every nondeterministic restricted UTACS can be transformed into a deter-
ministic one by using the standard subset construction.

Comparing the output of a tree transducer. When applying a transition, given a
pair of siblings to be compared, what we do up to now is to check whether the
subtrees below these positions are equal or not. A more involved processing is to
feed the subtrees into a (deterministic) tree transducer and compare the output
trees instead of the subtrees themselves, for example, if we want to compare
only data values contained in the trees instead of the whole trees, as indicated in
Section 1. Furthermore, if we consider bottom-up tree transducers, we can use
MSO-formulas over the state set of the transducer instead of the state set of the
underlying UTACS.

However, if we want to apply our method to solve the nonemptiness problem
for the resulting automaton model, similar to our remark at the end of Section 4,
we must require that if the states assumed by the transducer under consideration
after producing two output trees, say, t and t′, are different, then t and t′ must
also be different. Hence, a more restricted model of tree transducers, which are,
in some sense, output deterministic, is required.

6 Conclusions

We have extended the tree automaton model defined by Bogaert and Tison
in [1] to the case of unranked trees. In the transitions, we use MSO-formulas
to address the pairs of positions to be compared. It then turns out that the
nondeterministic model, in contrast to the ranked setting, is more expressive
than the deterministic one. Our main result is that the nonemptiness problem for
the latter model is decidable: we adapt the standard marking algorithm, which
collects for each state a sufficient number of distinct trees. For this number, we
define an appropriate bound by means of Lemma 1.

As far as the complexity of our nonemptiness decision procedure is concerned,
there are two issues that still need to be settled. First, the termination of the
bound algorithm is given by Dickson’s Lemma, so its time complexity depends
on the length of a certain antichain. Second, the complexity of our algorithms
depends on the representation of the MSO-formulas that are used as constraints.
It is known, however, that the translation from MSO-formulas to automata on
words might involve a non-elementary blow-up. Thus, a careful choice of the rep-
resentation of the sibling constraints is needed in order to analyze the complexity
of our algorithms.

In addition to analyzing complexity, other prospective future work includes:
(a) studying the nonemptiness problem for nondeterministic UTACS, (b) con-
sidering extensions that involve tree transducers, as indicated in Section 5,

886 W. Karianto and C. Löding

(c) considering automaton models that allow determinization, and (d) studying
the connection to automata on words and trees with data considered in [3,2].

References

1. Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in
tree automata. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp.
161–171. Springer, Heidelberg (1992)

2. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data trees and XML reasoning. In: PODS 2006, pp. 10–19. ACM Press,
New York (2006)

3. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: LICS 2006, pp. 7–16. IEEE Computer Society Press,
Los Alamitos (2006)

4. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular
hedge languages over unranked alphabets. Research Report HKUST-TCSC-
2001-05, HKUST Theoretical Computer Science Center (2001), Available on
http://hdl.handle.net/1783.1/738

5. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)

6. Caron, A.C., Comon, H., Coquidé, J.L., Dauchet, M., Jacquemard, F.: Pumping,
cleaning and symbolic constraints solving. In: Shamir, E., Abiteboul, S. (eds.)
ICALP 1994. LNCS, vol. 820, pp. 436–449. Springer, Heidelberg (1994)

7. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications. (1997) Current release:
October 1st, 2002 Available on http://www.grappa.univ-lille3.fr/tata

8. Dal Zilio, S., Lugiez, D.: XML schema, tree logic and sheaves automata. In:
Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 246–263. Springer, Hei-
delberg (2003)

9. Dauchet, M., Caron, A.C., Coquidé, J.L.: Automata for reduction properties solv-
ing. Journal of Symbolic Computation 20, 215–233 (1995)

10. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. American Journal of Mathematics 35, 413–422 (1913)

11. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree automata with equality con-
straints modulo equational theories. In: Furbach, U., Shankar, N. (eds.) IJCAR
2006. LNCS (LNAI), vol. 4130, pp. 557–571. Springer, Heidelberg (2006)

12. Karianto, W., Löding, C.: Unranked tree automata with sibling equalities and
disequalities. Technical Report AIB-2006-13, RWTH Aachen (2006)

13. Libkin, L.: Logics for unranked trees: An overview. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
35–50. Springer, Heidelberg (2005)

14. Lugiez, D.: Counting and equality constraints for multitree automata. In: Gor-
don, A.D. (ed.) ETAPS 2003 and FOSSACS 2003. LNCS, vol. 2620, pp. 328–342.
Springer, Heidelberg (2003)

15. Mongy-Steen, J.: Transformation de noyaux reconnaissables d’arbres. Forêts
RATEG. PhD thesis, Université de Lille I (1981)

http://hdl.handle.net/1783.1/738
http://www.grappa.univ-lille3.fr/tata

Unranked Tree Automata with Sibling Equalities and Disequalities 887

16. Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and
EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)

17. Seidl, H., Schwentick, T., Muscholl, A.: Numerical document queries. In: PODS
2003, pp. 155–166. ACM Press, New York (2003)

18. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004)

19. Tommasi, M.: Automates d’arbres avec tests d’égalité entre cousins germains. Tech-
nical report, Mémoire de DEA, Université de Lille I (1992)

Regular Languages of Nested Words: Fixed Points,
Automata, and Synchronization

Marcelo Arenas1, Pablo Barceló2, and Leonid Libkin3

1 Pontificia Universidad Católica de Chile
2 Universidad de Chile

3 University of Edinburgh

Abstract. Nested words are a restriction of the class of visibly pushdown lan-
guages that provide a natural model of runs of programs with recursive procedure
calls. The usual connection between monadic second-order logic (MSO) and au-
tomata extends from words to nested words and gives us a natural notion of reg-
ular languages of nested words.

In this paper we look at some well-known aspects of regular languages – their
characterization via fixed points, deterministic and alternating automata for them,
and synchronization for defining regular relations – and extend them to nested
words. We show that mu-calculus is as expressive as MSO over finite and infinite
nested words, and the equivalence holds, more generally, for mu-calculus with
past modalities evaluated in arbitrary positions in a word, not only in the first
position. We introduce the notion of alternating automata for nested words, show
that they are as expressive as the usual automata, and also prove that Muller au-
tomata can be determinized (unlike in the case of visibly pushdown languages).
Finally we look at synchronization over nested words. We show that the usual
letter-to-letter synchronization is completely incompatible with nested words (in
the sense that even the weakest form of it leads to an undecidable formalism) and
present an alternative form of synchronization that gives us decidable notions of
regular relations.

1 Introduction

The class of visibly pushdown languages (VPL) has been introduced by Alur and Mad-
husudan [5] as a restriction of the class of context-free languages that subsumes all
regular properties and some non-regular properties relevant in program analysis (e.g.
stack-inspection properties and pre-post conditions). VPLs in many ways resemble reg-
ular languages: they have the same closure properties, and most natural problems re-
lated to them are decidable. The intuitive idea of VPLs is that the input alphabet Σ is
partitioned into three parts, Σc, Σr, Σi, of symbols viewed as procedure calls, returns,
and internal operations. A machine model for VPLs is a special pushdown automaton
that pushes a symbol onto the stack in a call, pops one symbol in a return, and does not
touch the stack when reading an internal symbol.

Nested words [6] replaced the implicit nesting structure of calls and returns by an
explicit relation that matches calls and returns. A nested word is thus a word extended
with a hierarchical structure on top of its linear structure. An example of such a nested
structure of matching calls ci and returns ri is given below.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 888–900, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Regular Languages of Nested Words 889

r1c1 c2 c3 r3 c4 r4 r2 c5 c6 r6 r5 c7 r7

Such structures naturally appear, for instance, in XML documents that are string
representations of trees using opening and closing tags [23,8], or in software verification
of programs with stack-based control flow [4,2]. A nested word automaton [6] runs from
left to right, similarly to a finite state automaton, but each time it encounters a “return”
position, the next state depends not only on the current state but also on the state of the
matching “call”.

A nice property of nested words and their automata is that they share logical charac-
terizations with the usual (unnested) words: the automaton model has the same expres-
siveness as monadic second-order logic (MSO) [5,6]. This gives us a natural and robust
notion of regular languages of nested words, with the expected closure properties, de-
cision procedures, and logical characterizations.

For finite or infinite unnested words, an alternative way of describing regularity log-
ically is via the modal μ-calculus (cf. [7]). That is, μ-calculus formulae evaluated in
the first position of a word define precisely the regular languages. Moreover, μ-calculus
formulae with past modalities evaluated in an arbitrary position of a word have pre-
cisely the power of MSO formulae with one free first-order variable. As our first result,
we extend these equivalences to the case of finite and infinite nested words.

We then look at automata characterizations of VPLs and nested words. Nondeter-
ministic and deterministic automata have previously been considered [5,6,18], and [5]
showed that automata can be determinized in the finite case, but in the infinite case this
is impossible even for automata with a Muller acceptance condition (unlike in the case
of the usual ω-words), if one considers VPLs. Then [18] introduced a different automa-
ton model and showed that it admits a determinization procedure over nested words. We
expand this in two ways. First we introduce alternation in the case of nested word au-
tomata, and prove that alternating automata can still be translated into nondeterministic
ones. Second, we refine the determinization procedure for automata from [18] to show
that over infinite nested words, every regular language is definable by a deterministic
Muller automaton. This also gives us some corollaries about the structure of regular
languages of nested ω-words.

We finally turn our attention to the notion of regular relations. Over words, one
moves from sets to relations by using letter-to-letter synchronization. That is, an au-
tomaton runs over a tuple of words viewing the tuple of ith letters of the words as a
single letter of an expanded alphabet [15]. The same approach works for trees, ranked
and unranked [11]. The notion of regular relations also leads to a notion of automatic
structures [12,13,10], i.e. decidable first-order structures over words in which all defin-
able relations are regular.

Here we show that, in contrast to the case of words and trees, the notion of letter-
to-letter synchronization is incompatible with nested words: the simplest extension of
nested word automata with such synchronization is undecidable. We present an alterna-
tive call-return notion of synchronization, and show that it gives us a natural concept of
regular relations over nested words.

890 M. Arenas, P. Barceló, and L. Libkin

Related work. VPLs were introduced in [5] and nested words in [6]. They can be
viewed as special classes of trees (and we shall use this often in the paper); such tree
representations were introduced in [5,6] as well. Applications in program analysis are
discussed, e.g., in [2,4], and applications in processing tree-structured data in [23,8].

There are several related results on μ-calculus and MSO, e.g. their equality over
infinite binary trees [20] or finite unranked trees [9] or expressive-completeness of
μ-calculus [16]. We explain in Section 3 why we cannot derive our result from those.
Another fixed-point logic VPμ is defined in [2] to specify properties of executions of
programs. It differs from the standard versions of μ-calculus we look at as its fixed
points are evaluated not over sets of nodes but over sets of subtrees of the program;
further, its expressiveness is known to be different from MSO [3].

Automata for VPLs and nested words were defined in [5,6], and [5] observed that
Muller automata are not determinizable. Then [18] noticed that this is due to VPLs
having potentially arbitrarily many unmatched calls/returns, and introduced a different
automaton model (stair automata) that can be determinized. We use them to show how
to determinize Muller automata over nested ω-words. None of these papers addresses
alternating automata over nested words.

Letter-to-letter synchronization for defining regular relations is an old notion [15],
and the concept of universal automatic structures [13,12] is based on it. Although such
automatic structures exist for both words and trees [10,11], we show here that letter-to-
letter synchronization is incompatible with nesting structure.

Organization. Basic definitions are given in Section 2. We describe MSO unary queries
via μ-calculus in Section 3. In Section 4 we study automata for nested words, define
alternating automata, and describe determinization for Muller automata. In Section 5
we look at synchronization and regular relations for nested words.

2 Preliminaries

Words, ω-words, and automata. Let Σ be a finite alphabet. A finite word w =
a1 . . . an in Σ∗ is represented as a logical structure 〈 {1, . . . , n} , (Pa)a∈Σ , < 〉, where
< is the usual linear order on {1, . . . , n}, and Pa is the set of i’s such that ai = a. We
shall use w to refer to both the word and its logical representation. Infinite, or ω-words,
are sequences a1a2 · · · of symbols in Σ indexed by positive natural numbers, and are
represented as structures 〈N+, (Pa)a∈Σ , <〉. The length of w is denoted by |w|.

A (nondeterministic) automaton A over Σ is a tuple (Σ,Q,Q0, δ, F), where Q is
a finite set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final states
and δ : Q × Σ → 2Q is a transition function. For automata over ω-words we shall
use either a Büchi acceptance condition (given by F ⊆ Q) or a Muller acceptance
condition (given by F ⊆ 2Q). A run of A over a word w is a map ρ : {1, . . .} → Q
such that ρ(1) ∈ Q0 and ρ(i + 1) ∈ δ(ρ(i), ai), for all i. A finite run is accepting if
ρ(|w| + 1) ∈ F . We let Inf (ρ) be the set of states that occurs infinitely often in an
infinite run ρ. Then ρ is accepting for a Büchi condition F if Inf (ρ) ∩ F �= ∅, and it is
accepting for a Muller condition F if Inf (ρ) ∈ F . A word is accepted iff there exists
an accepting run. Sets of (ω-)words accepted by automata are called regular.

Regular Languages of Nested Words 891

A is deterministic if |Q0| = 1, and |δ(q, a)| = 1 for for every a ∈ Σ and q ∈ Q.
Nondeterministic automata over ω-words with Büchi and Muller conditions are equiv-
alent, and automata with Muller acceptance condition can be determinized, cf. [25].

Nested words. A finite nested word over Σ is a pair w̄ = (w, η), where w ∈ Σ∗

and η is a binary matching relation on {1, . . . , |w|} that satisfies: (1) η(i, j) implies
i < j; (2) η(i, j) and η(i, j′) imply j = j′ and η(i, j) and η(i′, j) imply i = i′; and
(3) if η(i, j), η(i′, j′), and i < i′ then either j < i′ or j′ < j. A nested ω-word is
a pair w̄ = (w, η), where w is an ω-word and η is a matching on N+. We also refer
to them as infinite nested words. We represent nested words as logical structures over
the vocabulary {(Pa)a∈Σ , <, η}, i.e. words expanded with a matching relation. For a
nested word w̄ and two positions i < j, we let w̄[i, j] be the substructure of w̄ induced
by positions � such that i ≤ � ≤ j. A position i of a nested word w̄ is: (1) a call position
if there is j such that η(i, j) holds; (2) a return position if there is j such that η(j, i)
holds; and (3) an internal position if it is neither a call nor a return. Whenever η(i, j)
holds we say that i is the call of j, and j is the return of i.

Nested word automata. A nested word automaton, or NWA [6], A over Σ is defined
as a usual automaton, except that δ is a triple (δc, δι, δr) of transition functions δc, δι :
Q × Σ → 2Q, and δr : Q × Q × Σ → 2Q. A run of A over w̄ = (a1 · · · , η) is a
mapping ρ : {1, . . .} → Q such that ρ(1) ∈ Q0 and for every i ∈ N+ (or i ∈ [1, |w̄|]
for finite nested words),

– if i is a call position, then ρ(i+ 1) ∈ δc(ρ(i), ai);
– if i is an internal position, then ρ(i+ 1) ∈ δι(ρ(i), ai);
– if i is a return position whose call is j, then ρ(i+ 1) ∈ δr(ρ(i), ρ(j), ai).

Büchi and Muller acceptance conditions can then be defined in exactly the same way
as for the usual automata (and are easily shown to be equivalent over nested words,
for nondeterministic automata). We refer to such automata as ω-NWAs. An NWA is
deterministic if the values of all transition functions are singletons.

A class of nested (ω-)words accepted by an (ω-)NWA is called regular.

Monadic second-order logic and μ-calculus. Monadic second-order logic (MSO) ex-
tends first-order logic with quantification over sets. Over nested words, its vocabulary
contains predicates Pa (a ∈ Σ),< and η. A class of nested (ω-)words is regular iff it is
definable by an MSO sentence [5,6].

The μ-calculus over nested words, denoted by Lμ, is defined by the grammar:

ϕ,ϕ′ := a | X | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ¬ϕ | �ϕ | �ηϕ | μX.ϕ(X)

with X occurring positively in ϕ(X), and a ∈ Σ ∪ {call, int, ret}. Given a nested
(ω-)word w̄, a position i in w̄, and a valuation v assigning each free variableX a set of
positions of w̄, the semantics is as follows (omitting the rules for Boolean connectives):

– (w̄, v, i) |= int iff i is an internal position; (w̄, v, i) |= call iff i is a call position;
and (w̄, v, i) |= ret iff i is a return position.

– (w̄, v, i) |= a, for a ∈ Σ, iff i is labeled a.
– (w̄, v, i) |= X iff i ∈ v(X).

892 M. Arenas, P. Barceló, and L. Libkin

– (w̄, v, i) |= �ϕ iff i+ 1 belongs to w̄ and (w̄, v, i+ 1) |= ϕ.
– (w̄, v, i) |= �ηϕ iff there is an � such that η(i, �) holds and (w̄, v, �) |= ϕ.
– (w̄, v, i) |= μX.ϕ(X) iff i is in the least fixed point of the operator defined by ϕ;

in other words, if i ∈
⋂
{P | {i′ | (w̄, v[P/X], i′) |= ϕ} ⊆ P}, where v[P/X]

extends the valuation v with v(X) = P .

The μ-calculus over words does not mention the modality �ηϕ.
We shall also work with the full μ-calculus [28] (denoted by Lfull

μ), which is an
extension of Lμ with the past modalities �−ϕ and �−

η ϕ:

– (w̄, v, i) |= �−ϕ iff i > 1 and (w̄, v, i− 1) |= ϕ.
– (w̄, v, i) |= �−

η ϕ iff there is an � such that η(�, i) holds and (w̄, v, �) |= ϕ.

Greatest fixed-points νX.ϕ(X) are definable in Lμ as ¬μX.¬ϕ(¬X). Using greatest
fixed-points and �ϕ (defined as ¬�¬ϕ), one can push all negations to atoms in Lμ
formulae. For resulting formulae, an important parameter is the alternation-depth of
least and greatest fixed-points [7]. We refer to Lkμ as the fragment of Lμ that consists of
formulae of alternation depth at most k (e.g., the alternation-free fragment is L0

μ).

Languages and unary queries. Formulae ofLμ (without free variables) are satisfied in
positions of a nested word, and thus they give rise to classes of unary queries that return,
for w̄, the set {i | (w̄, i) |= ϕ}. Every Lμ formula ϕ without free variables defines a
language {w̄ | (w̄, 1) |= ϕ}. Likewise, every MSO formula ϕ(x) with one free first-
order variable defines a unary query, and every MSO sentence defines a language. In the
absence of nesting, it is known [7,20] that a language (of words or ω-words) is definable
by a Lμ formula iff it is definable by an MSO sentence (not using relation η).

3 Mu-Calculus over Nested Words

Since NWA generalize finite state automata, the translation from MSO to NWAs is
nonelementary. But just as for finite words or trees, one can find equally expressive
logical formalisms with better model-checking complexity. We show that the equiva-
lence MSO = Lμ extends from words and trees to nested words. It applies not only in
sentences evaluated in the first position of a nested word, but more generally to unary
queries that select a set of positions. This is relevant for finite nested words viewed as
streaming XML documents: while theoretical investigations have mostly looked at the
case of sentences [23,8], in practical application one typically needs to evaluate unary
queries (e.g. XPath) over such streams [21]. To deal with unary queries, we look at Lμ
with the past, i.e. Lfull

μ , and prove that it is equivalent to MSO unary queries. That is:

Theorem 1. For finite nested words and nested ω-words, MSO and Lfull
μ define the

same classes of unary queries.

As a corollary to the proof, we get

Corollary 1. The languages of nested words definable in MSO and Lμ are the same.

We can tighten this for finite nested words. Let (Lfull
μ)+ be the negation-free (and thus

alternation-free) fragment of Lfull
μ that has two additional constants “first” and “last”

with their intuitive meanings: “first” holds only at the first position of a nested word,
and “last” holds at the last position. Likewise we define (Lμ)+ from Lμ.

Regular Languages of Nested Words 893

Corollary 2. For unary queries over finite nested words, MSO = Lfull
μ = (Lfull

μ)+.
Furthermore, MSO, Lμ, and (Lμ)+ define the same languages of finite nested words.

From [14], we conclude that for every (Lfull
μ)+ formula ϕ and every finite nested word

w̄, the set {i | (w̄, i) |= ϕ} can be computed in time O(|ϕ| · |w̄|).
We make a couple of remarks about the proof of Theorem 1. Nested words are natu-

rally translated into trees, and there is a closely related result in the literature, Niwinski’s
theorem, showing that over the full infinite binary tree, MSO and Lμ, evaluated in the
root of the tree, are equally expressive [20]. Despite this, there does not seem to be any
easy adaptation of proof techniques in [20] that yields a proof of Theorem 1. Not only
do we need a stronger result for unary queries and an extension with the past modalities,
but in addition translations of infinite nested words are not complete binary trees.

Another natural attempt at a proof is to use the expressive-completeness result of
Janin and Walukiewicz: every bisimulation-invariant MSO property is definable in Lμ
[16]. Then we could express runs of tree automata on tree encodings of nested words
by bisimulation-invariant MSO sentences, apply [16] to get an equivalent Lμ formula
for trees, and translate it into an Lμ formula over nested words. This sketch indeed
can be turned into a proof of MSO = Lμ for languages of nested words, but it breaks
already for unary queries over finite nested words, where one needs to encode a more
complicated run of a query automaton [19], and it is even harder to adapt this argument
to infinite nested words for which we do not have an automaton model capturing unary
queries. Thus, our proof is a direct argument based on the composition method.

4 Automata Models for Nested ω-Words

Nested ω-word automata. Visibly pushdown automata (VPA), with both Büchi and
Muller acceptance conditions, were introduced in [5], and shown to be equivalent to
MSO, but not necessarily determinizable. The example of a VPL that cannot be ac-
cepted by a deterministic automaton [5] can use arbitrarily many calls without matching
returns, something that cannot happen in nested words. Then [18] introduced a notion
of stair visibly pushdown automata (stair VPA) to control such unmatched calls and
showed that stair VPAs are determinizable. These models were defined for VPLs, so
we first specialize a particular class of stair VPAs [18] to nested words, thereby obtain-
ing a notion of combined nested word automata, that admit determinization. We then
use such automata to show that over nested words, for every ω-NWA (with a Büchi or a
Muller acceptance condition), there exists an equivalent deterministic Muller ω-NWA.

A combined nested word automaton (CNWA) puts together an ω-word automatonA1

with a Muller acceptance condition and a finite NWA A2. It runs A1 over all positions
that are not inside a call. Every time A1 finds a call position i, it invokesA2 to process
the finite nested word formed by the elements between i and its matching return j, and
then it uses its final state to determine what state to assign to j + 1, and continues its
run from position j + 1. Formally, a CNWA A overΣ is a pair (A1,A2), where:

– A2 = (Σ,Q2, Q
0
2, δ2 = (δ2c , δ

2
ι , δ

2
r)) is an NWA without accepting states;

– A1 = (Σ∪Q2, Q1, Q
0
1, δ1,F1) is an ω-word automaton over alphabetΣ∪Q2 (we

assume, of course, that Σ andQ2 are disjoint).

894 M. Arenas, P. Barceló, and L. Libkin

Given a nested ω-word w̄ and i ≥ 1, we define the set of external positions E(w̄) as
positions i such that there are no j, k ≥ 1 such that j < i ≤ k and η(j, k) holds. Note
that 1 ∈ E(w̄) and E(w̄) is infinite. If i ∈ E(w̄) is not a call, then i + 1 ∈ E(w̄). If
i ∈ E(w̄) is a call with j being its matching return, then the next, after i, element of
E(w̄) is j+ 1. With this, we define a run ofA over a nested ω-word w̄ = (a1a2 · · · , η)
as a mapping ρ : E(w̄)→ Q1 such that ρ(1) ∈ Q0

1 and for every i ∈ E(w̄):

– if i is not a call (and i+ 1 ∈ E(w̄)), then ρ(i+ 1) ∈ δ1(ρ(i), ai);
– if i is a call with return j (and the successor of i in E(w̄) is j + 1), then ρ(j + 1) ∈
δ1(ρ(i), q), where q is a state inQ2 such that there exists a run ρ2 ofA2 over w̄[i, j]
having q as the last state.

A CNWA A accepts w̄ if there is a run ρ of A over w̄ such that Inf (ρ) ∈ F1. We say
that CNWA A = (A1,A2) is deterministic if both A1 and A2 are deterministic. Then
results in [18] can be restated in this terminology as:

Proposition 1 ([18]). Over nested ω-words, CNWAs and deterministic CNWAs are
equivalent.

We show, by using standard techniques, that CNWA and MSO are equivalent, from
which the main result of this section follows:

Theorem 2. Over nested ω-words, MSO, ω-NWA and deterministic ω-NWA with
Muller acceptance condition, define precisely the regular languages. Moreover, trans-
lations between these formalisms are effective.

Determinization of ω-NWAs is done by translating them into CNWAs, determinizing
those (which involves a 2O(n logn) Safra construction [22] and a 2O(n2) determinization
procedure from [5]) and then translating back into ω-NWAs with Muller acceptance
condition. Putting these three components together, we get (note that the bound is the
same as for determinization of stair VPAs for VPLs [18]):

Corollary 3. For every ω-NWA with n states, there exists an equivalent deterministic
ω-NWA with a Muller acceptance condition and with 2O(n2) states.

It is well-known that a language of ω-words is regular (accepted by a Büchi or a Muller
automaton) iff it is a finite union of languages of the form UV ω, where U, V are regular
languages. Automata characterizations imply a similar result for nested ω-words.

Corollary 4. A language of nested ω-words is regular iff it is a finite union of languages
of the form UV ω where U and V are regular languages of finite nested words.

A basic problem in automata theory is the nonemptiness problem: is the language ac-
cepted by an automaton nonempty? It was shown in [5], that nonemptiness, and more
generally reachability problem for visibly pushdown ω-automata, is polynomial. Com-
bining this with a NLOGSPACE algorithm for nonemptiness of ω-word automata, we
get polynomial nonemptiness algorithms for ω-NWA and CNWA. Further, a modifica-
tion of PTIME-hardness reduction for emptiness for context-free grammars gives us:

Corollary 5. The nonemptiness problem for ω-NWA and CNWA is PTIME-complete.

Regular Languages of Nested Words 895

It is easy to code a deterministic automaton by an L1
μ formula. Thus,

Corollary 6. Over nested ω-words, Lμ collapses to L1
μ.

Alternating automata for nested ω-words. In the context of formal verification, al-
ternating automata have proved to be the key to a comprehensive automata-theoretic
framework for temporal logics [27]. With the development of temporal logics for nested
words [4,2,1], it is natural to develop alternating automata for nested words, with the
hope that they can simplify the process of translating temporal logics into automata.

We now define alternating automata for both finite and infinite nested words, and
show that they are equivalent to NWAs. We note that this is in sharp contrast with the
theory of alternating automata for nested trees, where alternating automata are known
to be more expressive than nondeterministic automata [3].

First recall the definition of alternating automata for finite and infinite words. Given a
set of statesQ, let B+(Q) be the set of positive Boolean combinations of elements from
Q. GivenX ⊆ Q and ϕ ∈ B+(Q), we say thatX satisfies ϕ if the truth assignment σX
satisfies ϕ, where σX is defined as σX(q) = 1 iff q ∈ X . Then an alternating (ω-)word
automatonA is a tuple (Σ,Q,Q0, δ, F), whereQ,Q0 and F are defined as for the case
of word automata, and δ : Q×Σ → B+(Q) is a transition function.

A run of such an automaton is a labeled tree. A Σ-labeled tree T is a pair (D,λ),
where λ : D → Σ and D is a prefix-closed subset of N∗ such that (1) if x · i ∈ D and
0 ≤ j < i, then x · j ∈ D, and (2) for every x ∈ D, there exists a finite number of
strings of the form x · i inD (finite branching). For x ∈ N∗, its length is denoted by |x|.
The depth of a tree is maxx∈D |x|.

A run of an alternating word automaton A = (Σ,Q,Q0, δ, F) over w = a1 · · · an
is a finite Q-labeled tree T = (D,λ) of depth n such that λ(ε) ∈ Q0 and for every
x ∈ D that has children x · 0, . . ., x · � of length i, we have that {λ(x · 0), . . . , λ(x · �)}
satisfies δ(λ(x), ai). An alternating word automaton A accepts a word w if there is a
run T = (D,λ) ofA overw such that λ(x) ∈ F for every node x in T of length n. The
run of an alternating ω-word automaton A = (Σ,Q,Q0, δ, F) over an ω-word w =
a1a2 · · · is defined in exactly the same way as an infinite Q-labeled tree T = (D,λ).
Then A accepts ω-word w if there is an accepting run T = (D,λ) of A over w, i.e.
every infinite branch ρ of T includes infinitely many labels in F .

An alternating nested word automaton (or alternating NWA, or ANWA) is an NWA
that admits alternation in call, return, and internal transitions. Formally, an ANWA A is
a tuple (Σ,Q,Q0, δ, F), where Q, Q0 and F are defined as for the case of alternating
word automata, and δ is a triple (δc, δι, δr) of transition functions δc, δι : Q × Σ →
B+(Q), and δr : Q × Q × Σ → B+(Q). A run of A over w̄ = (a1 · · · an, η) is a
Q-labeled finite tree T = (D,λ) of depth n such that λ(ε) ∈ Q0 and for every x ∈ D
with children x · 0, . . ., x · �, of length i ≤ n:

– if |x| (i.e. i−1) is a call position, then {λ(x ·0), . . . , λ(x ·�)} satisfies δc(λ(x), ai);
– if |x| is an internal position, then {λ(x · 0), . . . , λ(x · �)} satisfies δι(λ(x), ai);
– if |x| is a return position with matching call j and y is the prefix of x with |y| =
j − 1, then {λ(x · 0), . . . , λ(x · �)} satisfies δr(λ(x), λ(y), ai).

Note that if i− 1 is an internal position and x does not have children, then δι(λ(x), ai)
has to be a tautology, and likewise for call and return positions. An alternating nested

896 M. Arenas, P. Barceló, and L. Libkin

word automaton A accepts a nested word w̄ if there is a run T = (D,λ) of A over w̄
such that λ(x) ∈ F for every node x in T of length n.

Proposition 2. For every alternating NWA, there exists an equivalent NWA.

This can be extended to nested ω-words. An alternating nested ω-word automaton (ω-
ANWA) A is a tuple (Σ,Q,Q0, δ, F), whereQ, Q0, δ and F are defined exactly as for
ANWA. A run is defined in the same way as above, and the acceptance condition again
states that along each infinite branch, states from F are seen infinitely often.

Theorem 3. For every ω-ANWA with n states, there exists (and can be effectively con-
structed) an equivalent ω-NWA with a Büchi acceptance condition and 2O(n4) states.

For the proof, we introduce a notion of alternating combined nested word automaton
(ACNWA) and provide a direct translation fromω-ANWA into ACNWA. Then by using
Proposition 2 and the fact that alternating ω-word automata can be translated into ω-
word automata [27], we give a translation from ACNWA into CNWA. Theorem 3 then
follows from Proposition 1. We note that Theorem 3 provides an exponential-time al-
gorithm for checking nonemptiness of ANWAs and ω-ANWAs. Since even in the finite
case the problem is as hard as universality for finite tree automata [24], we get:

Corollary 7. The nonemptiness problem for both ANWAs and ω-ANWAs is EXPTIME-
complete.

5 Synchronization of Nested Words

Synchronization of words leads to a concept of regular relations. It ties together (syn-
chronizes) positions in several words, and then runs an automaton over them [15]. To
be concrete, let w1, . . . , wk be words from Σ∗. Assume that # is a letter that is not in
Σ. Let n = maxi |wi|, and let [(w1, . . . , wk)] be a word of length n constructed as fol-
lows. It is over the alphabet (Σ∪{#})k, and its ith letter is a k-tuple ai = (ai1, . . . , a

i
k),

where each aij is the ith letter of wj if i ≤ |wj |, and # if i > |wj |. That is, we pad
words shorter than n with #’s to make them all of length n, and then take the ith letter
of [(w1, . . . , wk)] to be the tuple of the ith letters of these padded words.

Then regular k-ary relations overΣ are defined as sets R ⊆ (Σ∗)k such that the set
{[(w1, . . . , wk)] | (w1, . . . , wk) ∈ R} is accepted by an automaton over the alphabet
(Σ ∪ {#})k [13,12]. Such automata are called letter-to-letter automata.Regular rela-
tions are closed under Boolean combinations, product, and projection. This makes it
possible to find infinite structures overΣ∗ with decidable first-order theories whose de-
finable sets are precisely the regular relations (these are universal automatic structures,
cf. [13,12]). The most commonly used such structure is 〈Σ∗,≺, (Pa)a∈Σ , el〉, where
≺ is the prefix relation, Pa(w) is true iff the last letter of w is a, and el(w,w′) (the
equal-length predicate) holds iff |w| = |w′| [13,12,10].

We now study synchronization for nested words. We show that the usual letter-to-
letter synchronization for words is completely incompatible with the nesting structure
because even the simplest nested extension of letter-to-letter automata is undecidable.

Regular Languages of Nested Words 897

We propose a different decidable synchronization scheme for nested words that gives
us regular relations with all the expected properties.

Letter-to-letter nested word automata.Assume that we have k nested words w̄1, . . . , w̄k,
and we again pad the shorter words with a special symbol # so that all of them are of
the same length n. Let [(w̄1, . . . , w̄k)] be such a nested word over the alphabet (Σ ∪
{#})k, and let ai be its ith letter. The letter-to-letter automaton runs from left to right
on [(w̄1, . . . , w̄k)], as an NWA. The main difference with NWAs is that each position
i may now be a return position in several of the w̄j’s, and thus states in several call
positions determine the next state.

That is, in a k-letter-to-letter NWA over k-tuples of nested words, we have multiple
return transitions δXr : Q × Q|X| × (Σ ∪ {#})k → 2Q, indexed by nonempty X ⊆
{1, . . . , k}. Suppose i is a return position in w̄l1 , . . . , w̄lm , where 1 ≤ l1 < . . . < lm ≤
k and m > 0. If j1, . . . , jm are the matching calls, i.e. ηl1(j1, i), . . . , ηlm(jm, i) hold,
then ρ(i+ 1) depends on ρ(i), ai, and the states in positions j1, . . . , jm:

ρ(i+ 1) ∈ δ{l1,...,lm}
r (ρ(i), ρ(j1), . . . , ρ(jm),ai).

For positions without returns, we have one transition δ : Q× (Σ ∪ {#})k → 2Q.
We show that even a much simpler automaton is undecidable. Define a simplified

k-letter-to-letter NWA as a k-letter-to-letter NWA with one return transition is δr :
Q×Q× (Σ ∪ {#})k → 2Q, just as in the usual NWA. The condition on the run is as
follows: if i is a return position in words w̄l1 , . . . , w̄lm , for 1 ≤ l1 < . . . < lm ≤ k,
then ρ(i+ 1) ∈ δr(ρ(i), ρ(j1),ai), where j1 is the call of i in w̄l1 . In other words, we
look at the state of only one call position, corresponding to the return with the smallest
index. For all other positions we have a single transition δ : Q× (Σ ∪ {#})k → 2Q.

If k = 1, these are the usual NWAs. But if k = 2, they are undecidable.

Theorem 4. The nonemptiness problem is undecidable for simplified 2-letter-to-letter
NWAs (and thus for k-letter-to-letter NWAs for k > 1).

Thus, there is no hope to use even the simplest possible form of letter-to-letter synchro-
nization in nested words. As another example of such incompatibility, we show that
there are no natural decidable extensions of universal automatic structures on words
to nested words. We look at structures M = 〈Σ∗

nw, Θ〉 (where Σ∗
nw is the set of all fi-

nite nested words over Σ) of a vocabulary Θ. We assume that Θ includes some basic
relations. One is a prefix relation w̄ �nw w̄′ iff w̄ = w̄′[1,m] for some m ≤ |w̄′|
(so we can refer to the linear structure of nested words). The other allows us to re-
fer to the nesting structure: we relate a prefix w̄ of w̄′ so that in w̄′, there is a call-
return edge from the last position of w̄ to the last position of w̄′. That is, w̄ �η w̄′

iff w̄ = w̄′[1,m], and η(m, |w̄′|) holds in w̄′. We say that M defines all regular lan-
guages of nested words if for each such language L, there is a formula ϕL(x) such
that L = {w̄ ∈ Σ∗

nw | M |= ϕ(w̄)}. We say that M defines all regular relations over
words if for each regular relation R ⊆ (Σ∗)k, there is a formula ψR(x1, . . . , xk) such
that M |= ψR(w̄1, . . . , w̄k)} iff (w1, . . . , wk) ∈ R (recall that wi is a word from Σ∗

obtained by removing the nesting structure from w̄i).

Proposition 3. There is no structure M = 〈Σ∗
nw,�nw,�η, . . .〉 that defines all regular

languages of nested words, all regular relations over words, and has a decidable theory.

898 M. Arenas, P. Barceló, and L. Libkin

Call-return synchronization. As the usual letter-to-letter synchronization is incompati-
ble with nested words, we propose a different, call-return synchronization. Intuitively,
instead of synchronizing positions with the same index i in different words, we synchro-
nize positions for which the shortest paths to them (from the first position) are the same.
To formalize this, we use a notion of a summary path introduced recently in connection
with the study of LTL-like logics on nested ω-words [1]. A summary path to a position
i in a nested word w̄ is the shortest path from 1 to i that combines both successor and
matching edges. That is, it is a sequence 1 = i0 < i1 < . . . < ik = i such that, if il is
a call with η(il, j) and i ≥ j, then η(il, il+1) holds, and otherwise il+1 = il + 1. We
represent this summary path as a word a1 . . . ak over the alphabet Λ = {i, c,m}:

1. if il = il−1 + 1 and il−1 is not a call, then al = i (path goes via an internal edge);
2. if il = il−1 + 1 and il−1 is a call, then al = c (path goes via a call edge);
3. if η(il−1, il) holds, then al = m (path goes via a matching edge).

If both i1 = il−1 + 1 and η(il−1, il) hold, we let al be m. The unique summary path to
position i will be denoted by πηw̄(i) ∈ Λ∗, and the set of all summary paths by Πη(w̄).
The label of πηw̄(i) is the label of i in w̄. Note that Πη(w̄) is closed under prefix.

The idea of the call-return synchronization is that now with each position i,
we keep its summary paths πηw̄(i), to remember how it was reached in different
nested words. That is, a call-return synchronization of nested words w̄1, . . . , w̄k
is a pair (Πη(w̄1, . . . , w̄k), λ) where Πη(w̄1, . . . , w̄k) =

⋃
lΠ

η(w̄l), and λ :
Πη(w̄1, . . . , w̄k) → (Σ ∪ {#})k is a labeling function that labels each summary path
with its label in w̄i if it occurs in w̄i, and with # otherwise, for each i ≤ k. This
synchronization can naturally be viewed as a tree.

As an example, consider two nested words below, w̄1 (on the left) and w̄2 (on the
right), with summary paths shown above positions.

61 2 3 4 5 6 1 2 3 4 5

ε i ic ici im imi ε i ic im imi imii

The synchronization occurs in the first and the second position, and we recursively
synchronize the calls (from i) and what follows their returns (from im). Intuitively, this
results in adding a dummy internal node ici inside the call for w̄2, and adding a dummy
last internal position imii for w̄2. Note that position 4 (i.e. ici) in w̄1 is in no way related
to position 4 (im) in w̄2, as it would have been in letter-to-letter synchronization.

We now say that R ⊆ (Σ∗
nw)k is a regular k-ary relation of nested words iff there

is a tree automaton on ternary trees that accepts precisely (Πη(w̄1, . . . , w̄k), λ), for
(w̄1, . . . , w̄k) ∈ R. The following is an immediate consequence of coding tree repre-
sentations in MSO, and of the work on automatic structures over trees [11]:

Proposition 4. – Regular relations of nested words are closed under union, intersec-
tion, complementation, product, and projection.

– Regular 1-ary relations of nested words are precisely the regular nested languages.
– There is a finite collection Θ of unary and binary predicates on Σ∗

nw such that
〈Σ∗

nw, Θ〉 is a universal automatic structure for nested words, i.e. its definable rela-
tions are precisely the regular relations of nested words, and its theory is decidable.

Regular Languages of Nested Words 899

Acknowledgments. We thank Rajeev Alur, Kousha Etessami, and Neil Immerman for
helpful discussions. Arenas was supported by FONDECYT grants 1050701, 7060172
and 1070732; Arenas and Barceló by grant P04-067-F from the Millennium Nucleus
Centre for Web Research; Libkin by the EC grant MEXC-CT-2005-024502, EPSRC
grant E005039, and by an NSERC grant while on leave from U. Toronto.

References

1. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-order and
temporal logics for nested words. In: LICS 2007

2. Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and global program
flows. In: POPL 2006, pp. 153–165.

3. Alur, R., Chaudhuri, S., Madhusudan, P.: Languages of nested trees. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 329–342. Springer, Heidelberg (2006)

4. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Hei-
delberg (2004)

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004, pp. 202–211.
6. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H., Dang, Z. (eds.)

DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)
7. Arnold, A., Niwinski, D.: Rudiments of μ-calculus. North-Holland, Amsterdam (2001)
8. Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown languages. In:

Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 420–431. Springer, Hei-
delberg (2006)

9. Barceló, P., Libkin, L.: Temporal logics over unranked trees. In: LICS 2005, pp. 31–40.
10. Benedikt, M., Libkin, L., Schwentick, T., Segoufin, L.: Definable relations and first-order

query languages over strings. J. ACM 50(5), 694–751 (2003)
11. Benedikt, M., Libkin, L., Neven, F.: Logical definability and query languages over ranked

and unranked trees. In: ACM TOCL. Extended abstract in LICS’02 and LICS’03, vol. 8(2),
ACM Press, New York (2007)

12. Blumensath, A., Grädel, E.: Automatic structures. In: LICS 2000, pp. 51–62.
13. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of inte-

gers. Bull. Belg. Math. Soc. 1, 191–238 (1994)
14. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the alternation-free

modal mu-calculus. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 48–58.
Springer, Heidelberg (1992)

15. Elgot, C., Mezei, J.: On relations defined by generalized finite automata. IBM J. Res. De-
velop. 9, 47–68 (1965)

16. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-calculus
with respect to monadic second order logic. In: Sassone, V., Montanari, U. (eds.) CONCUR
1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996)

17. Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In: Pacholski,
L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 205–216. Springer, Heidelberg (1995)

18. Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K., Mahajan,
M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Heidelberg (2004)

19. Neven, F., Schwentick, Th: Query automata over finite trees. TCS 275, 633–674 (2002)
20. Niwinski, D.: Fixed points vs. infinite generation. In: LICS 1988, pp. 402–409

900 M. Arenas, P. Barceló, and L. Libkin

21. Peng, F., Chawathe, S.: Xpath queries on streaming data. In: SIGMOD 2003, pp. 431–442.
22. Safra, S.: On the complexity of omega-automata. In: FOCS 1988, pp. 319–327
23. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: PODS 2002, pp. 53–64.
24. Seidl, H.: Deciding equivalence of finite tree automata. SICOMP 19(3), 424–437 (1990)
25. Thomas, W.: Languages, automata, and logic. Handbook of Formal Languages, vol. 3 (1997)
26. Thomas, W.: Infinite trees and automaton-definable relations over ω-words. TCS 103, 143–

159 (1992)
27. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. Banff Higher Order

Workshop, pp. 238-266 (1995)
28. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S.,

Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)

A Combinatorial Theorem for Trees

Applications to Monadic Logic and Infinite Structures

Thomas Colcombet

Cnrs/Irisa
thomas.colcombet@irisa.fr

Abstract. Following the idea developed by I. Simon in his theorem
of Ramseyan factorisation forests, we develop a result of ‘deterministic
factorisations’. This extra determinism property makes it usable on trees
(finite or infinite).

We apply our result for proving that, over trees, every monadic inter-
pretation is equivalent to the composition of a first-order interpretation
(with access to the ancestor relation) and a monadic marking. Using this
remark, we give new characterisations for prefix-recognisable structures
and for the Caucal hierarchy.

Furthermore, we believe that this approach has other potential appli-
cations.

Topics: Semigroups, Ramseyan factorisation,Monadic second-order
logic, Trees, Infinite structures.

1 Introduction

The theorem of factorisation forests was proposed by Simon [20]. One way to
present it is the following. For every semigroup morphism ϕ from A+ to some
finite semigroup S, there exists a regular expression evaluating to A+ in which
the Kleene exponent L∗ is allowed only when ϕ(L) = {e} for some e = e2 ∈ S;
i.e., the Kleene star is allowed only if it produces a Ramseyan factorisation of the
word. The original statement is slightly different in its presentation. It establishes
the existence of a so called ‘Ramseyan factorisation of bounded depth’ for every
word; those factorisations intuitively witness the acceptance of the word by the
regular expression mentioned above. The present paper is based on the proof of
the theorem of factorisation forests in [9] which is a simplification of the original
presentation.

The result itself has been used for various applications. In [21], Simon uses
this theorem for studying the finiteness problem of regular languages of ma-
trices over the tropical semiring (i.e. the semiring N ∪ {∞} equipped with the
minimum and addition operations). This problem is equivalent to the limited-
ness problem for distance automata. This question is at the heart of the very
difficult proof of decidability of the star-height problem due to Hashigushi [11]
(the star-height problem consists in determining how many nesting of Kleene
stars are required for describing a given regular language of words by a regular

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 901–912, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

902 T. Colcombet

expression). In [16] the theorem is used in a characterisation of the polynomial
closure of a variety of languages. In [2], the authors use the theorem of factorisa-
tion forests in a complementation result extending the one of Büchi over infinite
words. A direct consequence of the result in [2] is the decidability of the limit-
edness problem for nested distance desert automata: this problem extends the
one for distance automata seen above, and is the cornerstone of the modern and
much simpler solution to the star-height problem proposed by Kirsten [12]. In
general the theorem of factorisation forests entails very deep consequences in the
understanding of the structure of semigroups. For instance, one directly derives
from it a constructive proof of Brown’s lemma on locally finite semigroups [3].

Independently of the contributions of this paper, let us advertise the impor-
tance of the factorisation forests theorem. This result is well known in semigroup
theory, in which some of its consequences are investigated. But this theorem
clearly has other potential fields of application. In the present paper for instance,
we use the approach for an application in logic. The interest of this theorem is
in fact more natural outside the scope of semigroup theory: for a non-specialist
in semigroups, it happens to be much easier to use than to prove. Thus, it is
hardly avoidable in some situations (such as in [2]).

The present paper is an attempt to adapt the theorem of factorisation forests
in a framework suitable for its use on trees. Essentially the problem we have
concerning the original statement is the following: given two words sharing a
common prefix, the factorisation forests theorem explicits the existence of a
factorisation for each of the two words, but those two factorisations need not
coincide on the common prefix. For eliminating this problem, we introduce an
extra determinism requirement: the original theorem shows the existence of a
factorisation for every word; our theorem shows the existence of a factorisation
which is computable ‘deterministically, on-line’ while reading the word from
left to right. For reaching this goal, we modify in two ways the original result.
A cosmetic modification is that we drop the original formalism using trees —
determinism does not fit naturally in it —, and replace it by the notion of splits
for representing factorisation (see below). The second modification consists in
weakening the hypothesis of ‘Ramseyanity’, and replace it by a notion of ‘forward
Ramseyanity’. Without this weakening, the result would simply not hold.

The second part of the paper is devoted to an application of this result to
monadic (second-order) logic over trees. This result has been chosen as an appli-
cation because it is it is new, because it does not contain too much technicalities,
and also because it could not be derived from weaker version of the main theo-
rem. Let us recall that the monadic logic is an extension of first-order logic by the
possibility to quantify over sets of elements. Over words, trees as well as infinite
words and trees (of length/height ω), the expressivity of closed monadic formulæ
coincide with the standard classes of automata ([5,4,17]). In particular, this logic
is known to be more expressive than first-order logic, already over words. We
use our result to decompose monadic formulæ over trees: every monadic for-
mula with only free first-order variables is equivalent over trees to a first-order
formula with access to the ancestor relation and to monadically defined unary

A Combinatorial Theorem for Trees 903

predicates. Equivalently, every monadic interpretation is equivalent, over trees,
to the composition of a first-order interpretation and a monadic marking.

We apply this result to the theory of infinite structures. We give new charac-
terisations to the class of prefix-recognisable structures as well as to the Caucal
hierarchy.

2 Main Result

We first define semigroups and additive labellings, then words in Sections 2.1
and 2.2. Our main result is presented in Section 2.3.

2.1 Semigroups and Additive Labellings

A semigroup (S, .) is a set S equipped with an associative binary operator written
multiplicatively. Groups and monoids are particular instances of semigroups.
A morphism of semigroup from a semigroup (S, .) to a semigroup (S′, .′) is a
mapping ϕ from S to S′ such that for all x, y in S, ϕ(x.y) = ϕ(x).′ϕ(y). An
idempotent in a semigroup is an element e such that e2 = e.

Let us recall that a linear ordering (α,<) is a set α together with a total
strict ordering relation <. Let α be a linear ordering and (S, .) be a semigroup.
A mapping σ from couples (x, y) with x, y ∈ α and x < y to S is called an
additive labelling if for every x < y < z in α, σ(x, y).σ(y, z) = σ(x, z).

2.2 Words

Given an alphabet A, we denote by A∗ the set of finite words over A, i.e. finite se-
quences of letters in A. The length of the word is the length of the sequence. The
empty word is ε, and A+ representsA∗\{ε}.A+ equipped with the concatenation
of words is a semigroup. Given a word u of length n, and i, j with 0 ≤ i ≤ j ≤ n,
ui,j is the word ui+1ui+2 . . . uj. Given a finite semigroup S, a morphism of semi-
group ϕ from A+ to S, and a word u of length n, ϕu is the additive labelling
from [0, n] to S defined by

ϕu(i, j) = ϕ(ui,j).

Reciprocally, given an additive labelling σ over ([0, n], <) for some n, one can
associate the word 〈σ〉 of length n over the alphabet S, the ith letter of which is
σ(i − 1, i). Of course, ϕ〈σ〉 = σ, where ϕ is the canonical semigroup morphism
from S+ to S. According to this remark, additive labellings and words together
with a semigroup morphism form two sides of the same object.

2.3 Main Theorem

A split of height N of a linear ordering α is a mapping s from α to [1, N] (we use
square brackets for intervals of natural numbers). Given a split, two elements x
and y in α such that s(x) = s(y) = k are k-neighbours if s(z) ≥ k for all z ∈ [x, y].

904 T. Colcombet

k-neighbourhood is an equivalence relation over s−1(k). A split s of height N
is forward Ramseyan wrt. σ if for every k = 1 . . . n and every x, y, x′, y′ in the
same class of k-neighbourhood with x < y and x′ < y′,

σ(x, y) = σ(x, y).σ(x′, y′) . (1)

So in particular, σ(x, y) is an idempotent, but σ(x, y) and σ(x′, y′) may be
different idempotents1. Our main result is the following.

Theorem 1. Fix a finite semigroup (S, .), an alphabet A and a semigroup mor-
phism ϕ from A+ to S. There is a partition of A∗ into regular languages L1, . . . ,
LK with K ≤ |S| such that for every word u of length n, su defined by

for all i ∈ [0, n], su(i) = k such that u0,i ∈ Lk,

is forward Ramseyan for ϕu.

The proof essentially follows the one of Chalopin and Leung [9]. In particular, it
is based on a decomposition of the semigroup following Green’s relations. Green’s
relation reflects the interplay of ideals in a semigroup [10], and their use provides
deep informations on the structure of the semigroup.

Example 1. For simplicity, we identify A with S, and ϕ is the identity over
letters. Let S be {a, b, c} together with the product defined by a = ab = aa,
b = ba = bb and c = cc = ac = bc = ca = cb, then the languages

L1 = ε+ (a+ b)∗c , and L2 = (a+ b+ c)∗(a+ b)

form a valid output of the theorem. For instance, consider the word abcbaabacbaa,
the split defined is (the value of the split being interleaved in the word):

1 a 2 b 2 c 1 b 2 a 2 a 2 b 2 a 2 c 1 b 2 a 2 a 2 .

Given two 1-neighbour positions i < j, the letter just before j is c; this means
ϕu(i, j) = c. While given two 2-neighbour positions i < j, all letters in ui,j
belong to {a, b}; this means ϕu(i, j) ∈ {a, b}. Those remarks entail the forward
Ramseyanity since c is an idempotent, and a, b are idempotents satisfying ab = a
and ba = b.

3 Application to Monadic Second-Order Logic

We first define structures, graphs and trees in Section 3.1. Then Section 3.2
introduces logics. Section 3.3 presents our result, Theorem 2, and Section 3.4
studies its consequences over infinite structures.
1 In terms of Green’s relation, σ(x, y) and σ(x′, y′) are L-equivalent idempotents.

A Combinatorial Theorem for Trees 905

3.1 Structures

Structures. A (relational) structure (U , R1, . . . , Rn) is a set U , called the uni-
verse, together with relations R1, . . . , Rn of fixed finite arity over U . Each rela-
tion R has a name that we write R itself. The relation is called the interpretation
of the name in the structure. The signature of a structure contains the names
involved together with their arity. By extension, we allow (partial) functions
from Uk to some finite set E = {e1, . . . , en}. Such a function f is nothing but
a shorthand for using n k-ary relations F1, . . . , Fn, each Fi being interpreted as
f−1(ei).

Words. Our base structure is ([0, n], <), i.e. the natural numbers equipped
with the natural ordering. An additive labelling σ on it to some finite semigroup
can be directly represented in it according to the remark above: this provides
the structure ([0, n], <, σ). Our coding of a word u of length n is slightly non-
standard. It is the structure ([0, n], <, u) where u is a partial mapping from [1, n]
to A. The element 0 of this structure is unused. This makes it easier to jump
from ([0, n], <, σ) to ([0, n], <, 〈σ〉) and vice versa.

Graphs. A (directed) graph is a structure for which all relations have arity 1
but one of arity 2 called the edge relation. The elements of the universe are called
vertices, the unary relations are labelling relations. A path is a finite sequence of
vertices such that two successive vertices are in relation by the edge relation. The
first vertex is called the origin of the path, and the last vertex the destination.

Trees. A tree t is a graph for which the edge relation is called the ancestor
relation, is denoted by &, and satisfies:

– the relation & is an order,
– there is a minimal element for &, called the root,
– for every u, the set {v : v & u} is finite and totally ordered.

The vertices of a tree are called nodes. Maximal chains are called branches. The
maximal element smaller than node u is called (when it exists) the parent of u.

We extend the notions for words to trees: an additive labelling is a mapping σ
from pairs of nodes (x, y) such that x � y to a finite semigroup S which is an
additive labelling when restricted to every branch. We also note by 〈σ〉 the partial
function from nodes different from the root to S defined by 〈σ〉(u) = σ(v, u) for v
the parent of u (if it exists). A split of heightN is a mapping from nodes to [1, N].
The split is forward Ramseyan wrt. σ if it is forward Ramseyan wrt. σ over every
branch.

Caution: The trees are not defined by a ‘direct successor’ relation, but rather by
the ancestor relation. This has major impact on the logic side: all the logics we
use below can refer to the ancestor relation, and it is well-known that first-order
logic using this ancestor relation is significantly more expressive over trees than
first-order logic with access to the successor of a node only. The ancestor relation
is necessary in this work.

906 T. Colcombet

The complete binary tree has as universe {0, 1}∗, as ancestor relation the prefix
relation, and has two unary relations, 0 = {0, 1}∗0 and 1 = {0, 1}∗1. We call the
relation 0 the left-child relation, while 1 is the right-child relation. We denote
by Δ2 the complete binary tree.

One constructs a tree from a graph by unfolding. Given a graph G and one of
its vertices v, the unfolding of G from v is the tree which has as nodes the paths
of origin v, as ancestor relation the prefix relation over paths, and such that a
path π is labelled by a in the unfolding iff its destination is labelled by a in the
graph.

3.2 Logics

First-order logic. We assume a countable set of first-order variables x, y, . . .
to pick from. The atomic formulæ are R(x1, . . . , xn) for x1, . . . , xn first-order
variables and R a name of relation of arity n; given two first-order variables
x, y, x = y is also an atomic formula. First-order logic formulæ are made out of
atomic formulæ combined by the boolean connectives ∨,∧,¬, and the first-order
quantifiers ∃x and ∀x.

Monadic logic. We assume a countable set of monadic variables X,Y, Mona-
dic (second-order) formulæ are defined as first-order formulæ, but further allow
the use of monadic quantifiers ∃X , ∀X , and of a membership atomic formula
x ∈ X , where x is first-order and X monadic.

We use the standard notion of free variables. A formula without free variables
is closed. We denote by S |= φ the fact, for a closed formula φ and a structure S,
that the formula is true over the structure S. The value of first-order variables
range over elements of the universe of the structure, while monadic variables
take as values subsets of the universe. For S |= φ, we also say that S is a model
of φ, or that φ is satisfied over S. We also allow ourselves to write φ(x1, . . . , xn)
to denote that the free-variables of φ are among {x1, . . . , xn}. Then given ele-
ments u1, . . . , un in the universe of a structure S, we write S |= φ(u1, . . . , un) if
the formula φ is true over the structure S, using the valuation mapping xi to ui.

A structure S has a decidable L-theory (where L is either first-order or
monadic), if there is an algorithm which, given a formula φ of the logic L,
answers whether S |= φ or not.

Definability. Let R be a relation of arity k over the universe of some struc-
ture S. It is said L definable (where L is either first-order or monadic) if there
exists an L formula φ(x1, . . . , xk) such that R(u1, . . . , uk) iff S |= φ(u1, . . . , uk).
Implicitly, when we refer to definability, we mean that the formula does not
depend of the structure.

A structure S′ is L definable in S if its universe is an L definable subset of
the universe of S, and all the relations in S′ are L definable in S. We write
S′ ≤FO S (resp. S′ ≤MSO S) if S′ if first-order (resp. monadically) definable in
S. The special case S′ ≤1

MSO S signifies that S′ is the structure S augmented
with some new monadically definable unary relations. We also say that S′ is

A Combinatorial Theorem for Trees 907

obtained by a monadic marking from S. The relations �FO , �MSO and �1
MSO

correspond to ≤FO , ≤MSO and ≤1
MSO respectively, up to isomorphism.

3.3 Main Result

We prove in this section Theorem 2: every monadic interpretation is the compo-
sition of a first-order interpretation with a monadic marking. For simplicity, we
use the notations ≤FO ,≤MSO , etc. But let us stress that the constructions are
uniform in the sense that implicitly the formulæ involved do not depend on the
structures, but only on their signatures.

We need two intermediate lemmas. Both can be proved using elementary
compositional methods (see e.g., [19]). The first one establishes that a monadic
formula with many first-order variables can be “first-order” reconstructed out of
monadic formulæ of two free first-order variables.

Lemma 1. Every monadic formula Φ(x1, . . . , xn) is equivalent over trees to a
first-order formula with access to binary relations defined by monadic formulæ
of the form x � y ∧ Ψ(x, y).

The second lemma states that a monadic formula of two free first-order variables
can be seen as a monadically definable additive labelling.

Lemma 2. For every monadic formula of the form Φ(x, y) of free first-order
variables x, y, there exists a finite semigroup SΦ, a subset AΦ ⊆ SΦ, and an
additive labelling σ monadically definable in every tree t such that

for every nodes u � v in t, t |= Φ(u, v) iff σ(u, v) ∈ AΦ .

The combination of the two previous lemmas yields the following.

Corollary 1. For every relation R monadically definable in some tree t,

(t, R) ≤FO (t, σ) ≤MSO t ,

where σ is an additive labelling from t to some finite semigroup.

Proof. (Idea) IfR is defined by a monadic formula of the form x � y∧Ψ(x, y), this
is a direct application of Lemma 2. Else, we decompose the formula defining R
as in Lemma 1, and use the argument above for coding each formula of the
form x � y∧Ψ(x, y). Each time we obtain a semigroup and an additive labelling.
By product, we combine all those informations into a single semigroup and a
single additive labelling σ. ��

The following lemma is the key argument. It shows how to first-order reconstruct
an additive labelling σ out of its unary presentation 〈σ〉, providing a forward
Ramseyan split is given.

Lemma 3. Fix a semigroup S. Then

([0, n], <, σ) ≤FO ([0, n], <, 〈σ〉, s)

where n is some natural number, σ an additive labelling from [0, n] to S, and s
a split of [0, n] of height at most |S| forward Ramseyan wrt. σ.

908 T. Colcombet

Proof. We have to first-order define σ in ([0, n], <, 〈σ〉, s). By a downward in-
duction on k = |S|+ 1, . . . , 1, we construct a function ak(i, j) to S such that for
every i < j in [0, n], ak(i, j) = σ(i, j) whenever s(x) ≥ k for all x ∈]i, j[.

For k = |S|+ 1, then j = i+ 1. And a|S|+1(i, j) = 〈σ〉(j) = σ(i, j).
For k ≤ |S|. Let i < j lie in [0, n], define

ak(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak+1(i, j) if s(x) > k for all x ∈]i, j[,

ak+1(i, x).ak+1(x, j) if x is the only element in]i, j[
such that s(x) = k,

ak+1(i, x).ak+1(x, y).ak+1(z, j)
for x < y ≤ z in]i, j[
with s(x) = s(y) = s(z) = k

and s(w) > k for all w ∈]i, x[∪]x, y[∪]z, j[.

Let i < j be in [0, n] such that s(x) ≥ k for all x ∈]i, j[. We have to show
ak(i, j) = σ(i, j). In the two first cases, the correctness is obvious. In the last
case, x, y, z are k-neighbours. Hence, by forward Ramseyanity of s, σ(x, z) =
σ(x, y).σ(y, z) = σ(x, z) (this holds even if y = z). Hence

ak(i, j) = ak+1(i, x).ak+1(x, y).ak+1(z, j)
= σ(i, x).σ(x, y).σ(z, j)
= σ(i, x).σ(x, z).σ(z, j)
= σ(i, j) .

Those constructions are first-order definable. The result follows. ��
The determinism allows to transfer easily this result to trees.

Corollary 2. Fix a semigroup S. Then

(t, σ) ≤FO (t, 〈σ〉, s)

for a tree t, an additive labelling σ from t to s, and a split of t of height |S|
forward Ramseyan for σ.

Proof. (Idea) The formula defining σ(u, v) for u � v is obtained by relativisation
of the formula obtained by Lemma 3 to {w : w & v}. ��

Lemma 4. Let R be a relation monadically definable in a tree t,

(t, R) ≤FO t′ ≤1
MSO t for some tree t′.

Proof. From Corollary 1 it is sufficient to derive from (t, σ) ≤MSO t that

(t, σ) ≤FO t′ ≤1
MSO t

where σ is an additive labelling to a finite semigroup S. Let L1, . . . , L|S| be as in
Theorem 1. Set s to be the split of t defined by s(u) = n such that t|{v : v&u} ∈ Ln

A Combinatorial Theorem for Trees 909

(we see here t|{v : v&u} as a word, up to isomorphism). By Theorem 1, s is forward
Ramseyan wrt. σ. Furthermore, from the equivalence between regular languages
and monadic logic, s is monadically definable in (t, σ). Obviously, 〈σ〉 is also
monadically definable in (t, σ). Combined with Corollary 2 we obtain:

(t, σ) ≤FO (t, 〈σ〉, s) ≤MSO (t, σ) ≤MSO t .

Hence,

(t, σ) ≤FO (t, 〈σ〉, s) ≤1
MSO t . ��

By extension of Lemma 4 to structures, we obtain the expected theorem.

Theorem 2. If S ≤MSO t then S ≤FO t′ ≤1
MSO t for some tree t′.

3.4 Consequences for Infinite Structures

The goal of this section is to show how Theorem 2 has direct new consequences
in the definition of some families of finitely presentable infinite structures: The-
orems 4 and 5. But we do not intend to survey this area.

Prefix-recognisable graphs were introduced in [7]. Fix a finite alphabet A. A
prefix-recognisable graph is an (possibly infinite) graph defined as follows. Its set
of vertices is a regular language over the alphabet A. And each edge relation is
a finite union of relations of the form (U × V).W with

(U × V).W = {(uw, vw) : u ∈ U, v ∈ V, w ∈ W} ,

for U, V,W regular languages. By extension, a graph is prefix-recognisable if it is
isomorphic to such a graph. An important property of those graphs is that their
monadic theory is decidable (this fact is due to Caucal [7]; it can be easily seen
as a direct consequence of Rabin Theorem [17] stating that the complete binary
tree has a decidable monadic theory, together with Theorem 3 below).

There exists different characterisations for this class of graphs. We will use
below the following one due to Blumensath [1]:

Theorem 3. A graph G is prefix-recognisable iff G �MSO Δ2.

Following this idea, one extends prefix-recognisability to structures: a structure S
is prefix-recognisable if S �MSO Δ2.

Theorem 4 provides another – new – characterisation to the prefix-recognisable
structures. Beforehand, we need Lemma 5 stating that every regular binary tree
is first-order definable in Δ2.

Lemma 5. If t ≤1
MSO Δ2 then t �FO Δ2.

And we obtain.

Theorem 4. A structure S is prefix-recognisable iff S �FO Δ2.

Proof. From S �MSO Δ2 and Theorem 2, S �FO t′ ≤1
MSO Δ2 for some t′. By

Lemma 5, S �FO t′ �FO Δ2. Hence S �FO Δ2. The converse is obvious. ��

910 T. Colcombet

A similar approach can be used for characterising the Caucal hierarchy [8], i.e
a form of extension of prefix-recognisable graphs to ‘higher-order’. We use here
the characterisation in [6] as a definition:

– The structures in Struct0 are the finite structures.
– The graphs in Graphn are the graphs2 in Structn.
– The trees in Treen+1 are the unfolding of graphs in Graphn.
– A structure S is in Structn+1 if S �MSO t for some tree t in Treen+1.

The following theorem shows that in the definition of this hierarchy, the
monadic logic can be replaced by first-order logic.

Theorem 5. S is in Structn+1 iff S �FO t for some tree t in Treen+1.

In fact, this is a direct combination of the definitions, of Theorem 2, and of the
following proposition (see [6], Proposition 1).

Proposition 1. For t in Treen , every t′ �1
MSO t is also in Treen .

4 Other Consequences, Perspectives

Determinisation of Regular Languages of Infinite Words

From our result can also be derived McNaughton’s determinisation theorem [13].
This theorem states that for every regular language of infinite words of length ω
(regular meaning accepted by a Büchi automaton), there exists a deterministic
parity automaton which accepts the same language. Such an automaton is a
standard finite deterministic automaton without final states, the states of which
are labelled by natural numbers among 1, . . . , p called their priorities. An infinite
word is accepted by such an automaton if the least priority appearing infinitely
often in the (unique by determinism) run is even. The deteterminisation result
is fundamental in the theory of languages of infinite words. In particular, it is
used in most proofs of the theorem of Rabin.

Let us sketch the link with our result. Given a Büchi automaton accepting
a language L, it is natural to associate to it a structure of finite semigroup S
as well as a morphism ϕ from finite words to S such that it is sufficient to
know ϕ(u1), ϕ(u2), . . . for determining whether the word u1u2 . . . belongs to L
(this was already the approach of Büchi in his proof of complementation [4],
see also [15] for the more explicit presentation via ω-semigroups). In particular,
given two words u, v, the membership of uvω = uvvv · · · in L does only depend
of ϕ(u) and ϕ(v).

One can apply Theorem 1 to this semigroup, and obtain for each word u the
forward Ramseyan split su. One constructs a deterministic parity automaton
which, when reading a word of u of length n, reaches a state of priority:

{
2su(n) if u0,mu

ω
m,n ∈ L for m = max{m < n : su(n) = su(m)},

2su(n) + 1 if u0,mu
ω
m,n �∈ L, or m does not exist.

2 In the original version, graphs have their edges labelled. We drop this since it has
no impact on the definition of Structn.

A Combinatorial Theorem for Trees 911

One checks that a) this can be implemented by a finite deterministic parity au-
tomaton, and b) that the language it accepts is L (using forward Ramseyanity).

This construction yields a doubly exponential automaton in the size of the origi-
nal automaton. It is comparable in complexity to the original proof of McNaughton,
but quiet far from Safra’s construction [18]. A clother study of the construction
above shows that in fact only a third of the proof of Theorem 1 (the proof treats
separately three different cases) is sufficient for establishing McNaughton’s deter-
minisation result. This means that determinisation does not illustrate the full in-
terest of Theorem 1 and should be considered more as a side-effect.

Another combinatorial approach to determinisation of Büchi automata is
known from [22]. The combinatorial lemma it involves is suitable for determini-
sation, but is not as expressive as Theorem 1. And in particular it is not sufficient
for proving Theorem 2.

Infinite Trees

Another motivation for factorising trees is the perspective to give a new proof to
the theorem of Rabin of decidability of monadic second-order logic over infinite
trees [17]. Such a contribution would be an answer to a long lasting open question
of Shelah [19]. It would also generalise the original proof of Büchi for infinite
words to the case of infinite trees. Theorem 1 is far from being sufficient for such
an application. A reason for that is the irreducibility of nondeterminism in tree
automata (it is for instance shown in [14] that some languages of infinite trees
are not accepted by any unambiguous automaton, i.e., an automaton having a
single accepting run for each accepted input tree). Standard proofs of the result
of Rabin handle this problem using game theory, see e.g., [23]. The theorem
developed in this paper has no nondeterminism feature, and for this reason
cannot be sufficient alone for this application.

Despite this, the main reason for the introduction of Theorem 1 by the author
is its perspective of usage in an extension of the work in [2] to infinite trees, which
would be at the same time an extension of Rabin’s theorem

Acknowledgement

Many thanks to Achim Blumensath who follows this work from the begining.

References

1. Blumensath, A.: Prefix-recognisable graphs and monadic second-order logic. Tech-
nical Report AIB-06-2001, RWTH Aachen (May 2001)

2. Bojańczyk, M., Colcombet, T.: Bounds in omega-regularity. In: IEEE Symposium on
Logic InComputerScience, pp. 285–296. IEEEComputerSocietyPress,LosAlamitos
(2006)

3. Brown, T.C.: An interesting combinatorial method in the theory of locally finite
semigroups. Pacific Journal of Mathematics 36(2), 277–294 (1971)

912 T. Colcombet

4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy of
Science, pp. 1–11. Stanford University press, Stanford (1960)

5. Büchi, J.R., Elgot, C.C.: Decision problems of weak second order arithmetics and
finite automata. Notices of the American Math. Soc. 5, 834 (1958)

6. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.)
FST TCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)

7. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
194–205. Springer, Heidelberg (1996)

8. Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg
(2002)

9. Chalopin, J., Leung, H.: On factorization forests of finite height. Theoretical Com-
puter Science 310(1–3), 489–499 (2004)

10. Green, J.A.: On the structure of semigroups. Annals of Mathematics 54(1), 163–172
(1951)

11. Hashiguchi, K.: Relative star height, star height and finite automata with distance
functions. In: Formal Properties of Finite Automata and Applications, pp. 74–88
(1988)

12. Kirsten, D.: Distance desert automata and the star height problem. RAIRO 3(39),
455–509 (2005)

13. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9(5), 521–530 (1966)

14. Niwinski, D., Walukiewicz, I.: Ambiguity problem for automata on infinite trees.
Personal communication (1997)

15. Perrin, D., Pin, J-E.: Semigroups,Formal Languages and Groups. In: chapter Semi-
groups and automata on infinite words, pp. 49–72. Kluwer Academic Publishers,
Dordrecht (1995)

16. Pin, J-E., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.
Syst. 30(4), 383–422 (1997)

17. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. soc. 141, 1–35 (1969)

18. Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327 (1988)
19. Shelah, S.: The monadic theory of order. Annals Math. 102, 379–419 (1975)
20. Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94

(1990)
21. Simon, I.: On semigroups of matrices over the tropical semiring. ITA 28(3-4), 277–

294 (1994)
22. Thomas, W.: A combinatorial approach to the theory of ω-automata. Information

and Control 48, 261–283 (1981)
23. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.

(eds.) Handbook of Formal Language Theory, vol. III, pp. 389–455. Springer, Hei-
delberg (1997)

Model Theory Makes Formulas Large

Anuj Dawar1, Martin Grohe2, Stephan Kreutzer2, and Nicole Schweikardt2

1 University of Cambridge, U.K
anuj.dawar@cl.cam.ac.uk

2 Institut für Informatik, Humboldt Universität zu Berlin
{grohe,kreutzer,schweika}@informatik.hu-berlin.de

Abstract. Gaifman’s locality theorem states that every first-order sentence is
equivalent to a local sentence. We show that there is no elementary bound on
the length of the local sentence in terms of the original.

The classical Łoś-Tarski theorem states that every first-order sentence pre-
served under extensions is equivalent to an existential sentence. We show that
there is no elementary bound on the length of the existential sentence in terms of
the original. Recently, variants of the Łoś-Tarski theorem have been proved for
certain classes of finite structures, among them the class of finite acyclic struc-
tures and more generally classes of structures of bounded tree width. Our lower
bound also applies to these variants.

We further prove that a version of the Feferman-Vaught theorem based on
a restriction by formula length necessarily entails a non-elementary blow-up in
formula size.

All these results are based on a similar technique of encoding large numbers
by trees of small height in such a way that small formulas can speak about these
numbers. Notably, our lower bounds do not apply to restrictions of the results
to structures of bounded degree. For such structures, we obtain elementary upper
bounds in all cases. However, even there we can prove at least doubly exponential
lower bounds.

1 Introduction

Classical results of model theory provide syntactical normal forms for various seman-
tical properties of structures. For example, the Łoś-Tarski theorem states that every
first-order definable property that is preserved under extensions of structures is actually
definable by an existential first-order sentence. Gaifman’s locality theorem provides a
normal form for all properties definable in first-order logic. It states that each first-order
definable property is definable by a local sentence, that is, a sentence where quantifica-
tion is basically restricted to local neighbourhoods of elements.

Gaifman’s theorem has found various applications in algorithms and complexity [9,
4, 16, 17]. In particular, there are very general algorithmic meta-theorems stating that
first-order model-checking is fixed-parameter tractable for various classes of structures,
such as planar graphs or graphs with excluded minors, and that first-order definable
optimisation problems on such classes have polynomial time approximation schemes.
These algorithms are heavily based on (an effective version of) Gaifman’s theorem:

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 913–924, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

914 A. Dawar et al.

First-order formulas are first translated into local formulas, and then these local formu-
las are algorithmically evaluated.

While it is known that the Łoś-Tarski theorem fails when restricted to all finite struc-
tures, it has recently been proved [1] that the theorem does still hold when restricted to
specific “well-behaved” classes of finite structures such as acyclic structures, structures
of bounded tree width, and structures of bounded degree.

In the context of algorithms, complexity, and finite model theory, questions about
the efficiency of the normal forms, which are usually neglected in classical model the-
ory, are of fundamental importance. These are the questions we address. By efficiency
we mean the size of the formulas in normal form (succinctness) and the existence of
efficient algorithms that translate formulas into their normal forms (complexity of the
translation). We shall prove nonelementary lower bounds for the succinctness — ob-
viously, this implies nonelementary lower bounds on the complexity of the translation.
Specifically, we prove that there is no elementary function f such that every first-order
sentence ϕ is equivalent to a local first-order sentence ϕ̃ of length ||ϕ̃|| ≤ f(||ϕ||),
not even on the class of all finite trees. Similarly, we prove that there is no elemen-
tary function f such that every first-order sentence ϕ that is preserved under extensions
(on arbitrary structures) is equivalent to an existential first-order sentence ϕ̃ of length
||ϕ̃|| ≤ f(||ϕ||), not even on the class of all finite trees. This provides a succinctness
lower bound for both the classical Łoś-Tarski theorem and its variants for classes of
finite forests and all classes of finite structures that contain all trees (but not for classes
of finite structures of bounded degree).

We prove a further lower bound that is concerned with the classical Feferman-Vaught
theorem. The classical theorem states that for certain forms of compositions of struc-
tures the theory of a structure composed from simpler structures is determined by the
theories of the simpler structures. In particular, there is a function f such that if struc-
tures Ai and Bi (for i = 1, 2) satisfy the same first-order sentences of length at most
f(�), then the disjoint union of A1 and A2 satisfies the same first-order sentences of
size � as the disjoint union of B1 and B2. We prove a lower bound on the growth rate of
f showing that f is not bounded above by an elementary function.

Technically, all our lower bound proofs rely on a suitable encoding of large natural
numbers by trees of small height that can be controlled by small first-order formulas. In
fact, we show — and use — that full arithmetic on a large initial segment of the positive
integers can be simulated by comparably small first-order formulas that operate on the
tree encodings of the numbers. It is worth mentioning that this approach can be applied
in various other contexts. For example, concerning the classical decision problem, it is
known that the first-order theory (and actually also the monadic second-order theory) of
trees is decidable [23, 19]; and in [2] (see also [7] for related results) it has been shown
that there is no elementary decision algorithm. A simple proof of this non-elementary
lower bound can easily be obtained using the methods in the present paper (details of
this can be found in the full version of this paper).

A point to note, however, is that all our non-elementary lower bounds heavily rely on
the fact that the degree of the underlying structures is unbounded. In fact, when restrict-
ing attention to classes of structures of bounded degree, we can show elementary upper
bounds as counterparts of the non-elementary lower bounds on classes of structures of

Model Theory Makes Formulas Large 915

unbounded degree. In particular, in the bounded degree case we obtain a 4-fold expo-
nential upper bound for Gaifman’s locality theorem; and we get a 5-fold exponential
upper bound for the variant of the Łoś-Tarski theorem on the class of acyclic structures
of bounded degree.

As far as we know, techniques similar to those applied here go back to Stockmeyer
and Meyer [21]. Much later, such techniques have been employed in [10, 18, 12, 13] to
prove lower bounds in parameterised complexity, respectively, on the succinctness of
monadic logics. A related succinctness lower bound deserves mention. It has recently
been proved by Rossman [20] that the homomorphism preservation theorem (in con-
trast with the Łoś-Tarski theorem) holds in the class of all finite structures. Here, it is
known that there is no elementary bound on the length of the existential positive formula
obtained.1

The rest of the paper is structured as follows. Section 2 establishes some definitions
and notation and Section 3 presents the encoding of numbers by trees that is then used to
prove lower bounds on the size of formulas in Gaifman normal form (Section 4) and the
failure of the Feferman-Vaught theorem for formula length (Section 5). Section 6 then
establishes the lower bound for the Łoś-Tarski theorem, which is based on a different
encoding of numbers by trees. Finally, Section 7 contains the elementary upper bounds
on classes of structures of bounded degree. Due to space limitations, many technical
details of the proofs are deferred to the full version of this paper.

2 Preliminaries

We use R to denote the set of reals and N to denote the set of natural numbers, i.e., the
set of nonnegative integers. For natural numbers m < n we write [m,n] to denote the
set {m,m+1, . . . , n}.

We say that a function f : N→ R is (1-fold) exponential if there is some polynomial
p such that f(n) is eventually bounded by 2p(n). For any k ≥ 2, a function f is called
k-fold exponential if there is some (k−1)-fold exponential function g such that f(n)
is eventually bounded by 2g(n). A function f : N → R is called elementary if it can
be formed from the successor function, addition, subtraction, and multiplication using
compositions, projections, bounded additions, and bounded multiplications (of the form∑

z≤y g(x, z) andΠz≤yg(x, z)). The crucial fact for us is that a function f is bounded
by an elementary function if, and only if, there exists a k ≥ 1 such that f is bounded by
a k-fold exponential function (see, e.g., [3]).

One function of particular interest for the present paper is the function Tower :
N → N, defined via Tower(0) := 1 and, for all h ≥ 1, Tower(h) := 2Tower(h−1). I.e.,
Tower(h) is a tower of 2s of height h. Note that, e.g., none of the functions Tower(h),
Tower(4

√
h), Tower(log h) is bounded by an elementary function.

A vocabulary is a finite set of relation symbols and constant symbols. Associated
with every relation symbolR is a positive integer called the arity ofR. In the following,
τ always denotes a vocabulary. A vocabulary τ is called relational if it does not contain
any constant symbol. A τ -structureA consists of a non-empty setA, called the universe

1 This is mentioned by Rossman citing unpublished work of Gurevich and Shelah. As far as we
are aware, a proof of this lower bound has not yet been published.

916 A. Dawar et al.

of A, an element cA ∈ A for each constant symbol c ∈ τ , and a relation RA ⊆ Ar for
each r-ary relation symbol R ∈ τ . A is called an induced substructure of a τ -structure
B if A ⊆ B, RA = RB ∩ Ar, for each relation symbol R ∈ τ of arity r, and cA = cB

for each constant symbol c ∈ τ .
The Gaifman graph of a τ -structure A is the (undirected, loop-free) graph GA with

vertex set A and an edge between two vertices a, b ∈ A iff there exists an R ∈ τ
and a tuple (a1, . . , ar) ∈ RA such that a, b ∈ {a1, . . , ar}. The distance between two
elements a, b ∈ A in A, denoted by distA(a, b), is defined to be the length (that is,
number of edges) of the shortest path from a to b in the Gaifman graph ofA. For r ≥ 0
and a ∈ A, the r-neighbourhood of a in A is the set NA

r (a) = {b ∈ A : distA(a, b) ≤
r}. The induced substructure ofAwith universeNA

r (a) is denoted byNA
r (a). We omit

superscripts A if A is clear from the context.
We write FO(τ) to denote the class of all formulae of first-order logic over the vo-

cabulary τ , and we write qr (ϕ) to denote the quantifier rank of an FO(τ)-formula
ϕ. In a natural way, we view formulas as trees (to be precise, as their syntax trees),
where leaves correspond to the atoms of the formulas, and inner vertices correspond to
Boolean connectives or quantifiers. We define the size (or, length) ||ϕ|| of a first-order
formula ϕ as the number of vertices in the syntax tree of ϕ.

Whenever we write E, it denotes a binary relation symbol. We view {E}-structures
as directed graphs. For a directed graph A = (A,EA) and an a ∈ A, we let Aa be
the set of all vertices b such there is a path from a to b (this includes a), and we let
Aa be the induced substructure of A with universe Aa. Unless we explicitly call them
undirected, we view trees as being directed from the root to the leaves. A forest is a
directed graph in which every vertex has indegree at most 1. Vertices of indegree 0 are
called roots of the forest. A tree is a forest with exactly one root. The class of all finite
forests is denoted by F and the class of all finite trees by T. The height of a tree T is
the length of the longest path in T .

3 Encoding Numbers by Trees

In this section we introduce the technical machinery that is used for proving our main
theorems in sections 4 and 5. We use the following encoding of natural numbers by
trees, introduced in [8].

Definition 1 (Encoding numbers by trees). For i, n ∈ N we write bit(i, n) to denote
the i-th bit in the binary representation of n. I.e., bit(i, n) = 0 if

⌊
n
2i

⌋
is even, and

bit(i, n) = 1 if
⌊
n
2i

⌋
is odd. Inductively we define a tree T (n) for each natural number

n as follows: T (0) is the one-node tree. For n ≥ 1 the tree T (n) is obtained by creating
a new root and attaching to it all trees T (i) for all i such that bit(i, n) = 1.

Illustrations of these trees can be found in [8]. It is straightforward to see (cf. [8,
Lemma 10.20]) that for all h, n ≥ 0, height(T (n)) ≤ h ⇐⇒ n < Tower(h) .
The next lemma from [8] shows that the tree encodings of numbers can be “controlled”
by small first-order formulas. (In [8], the statement of the lemma is formulated for trees
instead of general structures. The proof given there, however, also holds for general
structures and thus leads to the following lemma.)

Model Theory Makes Formulas Large 917

Lemma 1 ([8, Lemma 10.21]). For every h ≥ 0 there is an FO(E)-formula eqh(x, y)
of lengthO(h) such that for all structuresA = (A,EA) and t, u ∈ A we have: If there
are m,n < Tower(h) such that the structuresAt andAu are isomorphic to T (m) and
T (n), resp., then A |= eqh(t, u) ⇐⇒ m = n .

Using this, one easily obtains the following two lemmas which provide formulas of
length polynomial in h that recognise tree encodings and define arithmetic on the tree
encodings of numbers of size up to Tower(h).

Lemma 2. For every h ≥ 0 there is a FO(E)-formula encodingh(x) of length O(h2)
such that for all structuresA = (T,EA) and t ∈ A we have: A |= encodingh(t) ⇐⇒
there is an i ∈ {0, . . , Tower(h)−1} such that At is isomorphic to T (i) .

Lemma 3. For every h ≥ 0 there are FO(E)-formulas bith(x, y) of size O(h),
lessh(x, y) of size O(h2), min(x) of constant size (not depending on h), succh(x, y)
of size O(h3), and maxh(x) of size O(h4) such that for all structures A = (A,EA)
and t, u ∈ A we have: If there are m,n < Tower(h) such that the structures At and
Au are isomorphic to T (m) and T (n), respectively, then we have:

(a) A |= bith(t, u) ⇐⇒ bit(m,n) = 1
(b) A |= lessh(t, u) ⇐⇒ m < n
(c) A |= min(t) ⇐⇒ At is isomorphic to T (0)
(d) A |= succh(t, u) ⇐⇒ m+ 1 = n
(e) A |= maxh(t) ⇐⇒ At is isomorphic to T (Tower(h)−1) .

4 Lower Bounds for the Size of Formulas in Gaifman Normal
Form

The aim of this section is to prove a non-elementary succinctness gap for Gaifman’s
theorem. To give a precise formulation of Gaifman’s theorem and our new bounds on
formula length, we need to fix some (standard) notation.

For every r ≥ 0, we let dist≤r(x, y) be an FO(τ)-formula expressing that the
distance between x and y is at most r. We often write dist(x, y) ≤ r instead of
dist≤r(x, y) and dist(x, y) > r or dist>r(x, y) instead of ¬dist≤r(x, y). An FO(τ)-
formula ψ(x) is called r-local if for every τ -structure A and every a ∈ A we have
A |= ψ(a) ⇐⇒ NA

r (a) |= ψ(a). A basic local sentence (with parameters k, r) is a
sentence of the form

∃x1 · · · ∃xk
(∧

1≤i<j≤k
dist(xi, xj) > 2r ∧

∧

1≤i≤k
ψ(xi)

)
,

where ψ(x) is r-local.
For an FO(τ)-sentence ϕ we say that ϕ is in Gaifman normal form if ϕ is a Boolean

combination of basic local sentences. Gaifman’s well-known theorem [11] states that
every first-order sentence over a relational vocabulary is equivalent to a first-order sen-
tence in Gaifman normal form. The proof in [11] proceeds by induction on the length
of the given first-order sentence ϕ and leads to an effective algorithm that transforms a

918 A. Dawar et al.

given ϕ into an equivalent sentence ψ in Gaifman normal form. A closer look at Gaif-
man’s proof shows that the size of the constructed sentenceψ may be non-elementary in
the size of the original sentence ϕ. The main result of the present section shows that this
huge increase in formula size is not just an artifact of Gaifman’s proof, but that indeed
there are first-order formulas ϕ for which the shortest equivalent formula in Gaifman
normal form is non-elementarily larger than ϕ.

Theorem 1. For every h ≥ 1 there is an FO(E)-sentence ϕh of size O(h4) such that
every FO(E)-sentence in Gaifman normal form that is equivalent to ϕh on the class T
of finite trees has size at least Tower(h).

Here, we show the following variant that speaks about the class of all forests rather
than trees. The proof of Theorem 2 avoids some of the unpleasant details needed in the
proof of Theorem 1 while still exposing the main ideas that are crucial for the proof of
Theorem 1. The proof of Theorem 1 can be found in the full version of this paper.

Theorem 2. For every h ≥ 1 there is an FO(E)-sentence ϕh of size O(h4) such that
every FO(E)-sentence in Gaifman normal form that is equivalent to ϕh on the class
F≤h of finite forests of height≤ h has size at least Tower(h).

Proof. We use the tree encodings of natural numbers introduced in Section 3. For h ≥ 1
we define the structure Fh to be the forest that consists of the disjoint union of all trees
T (j) for all j ∈ {0, . . , Tower(h)−1}. Furthermore, for every i ∈ {0, . . , Tower(h)−1},
we letF−i

h be the forest that consists of the disjoint union of all trees T (j) for all j with
j �= i and j ∈ {0, . . , Tower(h)−1}.

We let root(x) be a formula which expresses that a node x has in-degree 0, i.e.,
root(x) := ¬∃y E(y, x) . We choose the FO(E)-sentence ϕh as follows: ϕh :=

∃x
(
root(x)∧min(x)

)
∧ ∀y

((
root(y)∧¬maxh(y)

)
→ ∃z

(
root(z)∧succh(y, z)

)))
.

Using Lemma 3, it is straightforward to see that ||ϕh|| = O(h4) and

Fh |= ϕh and, for each i < Tower(h), F−i
h �|= ϕh . (1)

Now let ψ be an FO(E)-sentence in Gaifman normal form that is equivalent to ϕh
on the class F≤h. In particular, sinceFh as well as all theF−i

h belong to F≤h, we obtain
from (1) that

Fh |= ψ and, for each i < Tower(h), F−i
h �|= ψ . (2)

Our aim is to show that H := ||ψ|| ≥ Tower(h). Aiming at a contradiction, let us now
assume that H < Tower(h).

Since ψ is in Gaifman normal form, it is a Boolean combination of basic local sen-
tences χ1, . . , χL, where each χ� (for � ∈ {1, . . , L}) is of the form

χ� := ∃x1 · · · ∃xk�

(∧

1≤i<j≤k�

dist(xi, xj) > 2r� ∧
∧

1≤i≤k�

ψ�(xi)
)
,

Model Theory Makes Formulas Large 919

with k�, r� ≥ 1 and ψ�(x) a formula that is r�-local. In particular,

H := ||ψ|| ≥ k1 + · · ·+ kL . (3)

We can assume w.l.o.g. that there exists an L̃ with 0 ≤ L̃ ≤ L such that

for each � ≤ L̃, Fh |= χ� , and for each � > L̃, Fh �|= χ� . (4)

For all � ≤ L̃ we know that Fh |= χ�, i.e., there are nodes t(�)1 , . . . , t
(�)
k�

in Fh such that
the formula ∧

1≤i<j≤k�

dist(xi, xj) > 2r� ∧
∧

1≤i≤k�

ψ�(xi) (5)

is satisfied in Fh when interpreting each variable xi with the node t(�)i . The set { t(�)i :
� ≤ L̃ and i ≤ k� } consists of at most k1 + · · · + kL̃ ≤ H nodes (see (3)). Since
we assume that H < Tower(h), and since Fh consists of Tower(h) disjoint trees, there

must be at least one component T of Fh in which none of the nodes from { t(�)i : � ≤
L̃ and i ≤ k� } is present. Let j ∈ {0, . . , Tower(h)−1} be such that T = T (j).

Now, of course, the forest F−j
h , which is obtained from Fh by removing the compo-

nent T (j), still contains all the nodes in { t(�)i : � ≤ L̃ and i ≤ k� }. Considering (5),
note that each formula ψ�(xi) is r�-local around xi. Thus, when interpreting xi with

the node t(�)i , the formula can only “speak” about the r�-neighbourhood of t(�)i , which
is the same in F−j

h as in Fh. We thus obtain from (5) that F−j
h |= χ� for each � ≤ L̃.

Let us now consider the formulas χ� with � > L̃. From (4) we know that Fh �|= χ�,
i.e., Fh |= ¬χ�, where the formula ¬χ� is of the following form:

¬∃x1 · · · ∃xk�

(∧

1≤i<j≤k�

dist(xi, xj) > 2r� ∧
∧

1≤i≤k�

ψ�(xi)
)
.

Since the formula ψ�(xi) is r�-local and since F−j
h is obtained from Fh by removing

an entire component of Fh, it is straightforward to see that also F−j
h |= ¬χ�. In total,

we now know the following:

for each � ≤ L̃, F−j
h |= χ� , and for each � > L̃, F−j

h �|= χ� . (6)

From (6) and (4) we obtain that F−j
h satisfies exactly the same basic local sentences

from {χ1, . . . , χL} asFh. Sinceψ is a Boolean combination of the sentencesχ1, . . , χL,
we thus have that F−j

h |= ψ ⇐⇒ Fh |= ψ . This, however, is a contradiction to (2).
Altogether, the proof of Theorem 2 is complete. ��

To conclude this section let us mention that an easy reduction shows that Theorem 1
and Theorem 2 still hold when replacing T and F≤h by the classes Tu and Fu≤h of
undirected trees and undirected forests of height at most h, respectively.

5 Failure of Feferman-Vaught Theorems for Formula Size

The classical Feferman-Vaught theorem [6] states that for certain forms of compositions
of structures the theory of a structure composed from simpler structures is determined

920 A. Dawar et al.

by the theories of the simpler structures. The plainest form of composition is the disjoint
union, denoted by ⊕ in the following. The Feferman-Vaught theorem for disjoint union
and first-order logic states that for all structuresA1,A2,B1,B2, if the structuresAi and
Bi (for i = 1, 2) satisfy the same first-order sentences, their disjoint unions A1 ⊕ A2

and B1 ⊕ B2 also satisfy the same first-order sentences. This can be stratified by the
quantifier rank, that is, if Ai and Bi satisfy the same first-order sentences of quantifier
rank at most q, then A1 ⊕ A2 and B1 ⊕ B2 also satisfy the same first-order sentences
of quantifier rank at most q. This result is an immensely useful tool in analysing the
expressivity of first order logic, and for deriving bounds on the quantifier rank.

To derive bounds on the formula size, it would be similarly useful to have an analo-
gous result for formula size instead of quantifier rank. As (for a fixed, finite vocabulary)
there are only finitely many first-order sentences of quantifier rank q, up to logical
equivalence, we immediately get the following: There is a function f such that if the
structures Ai and Bi (for i = 1, 2) satisfy the same first-order sentences of length at
most f(�), then A1 ⊕A2 and B1 ⊕ B2 satisfy the same first-order sentences of length
at most �. It is not hard to derive an upper bound of Tower(O(�)) on the function f .
Maybe surprisingly, this upper bound is essentially tight:

Theorem 3. There is no elementary function f such that the following holds for all
trees A,B, C ∈ T: If A and B satisfy the same first-order sentences of length at most
f(�), then A⊕ C and B ⊕ C satisfy the same first-order sentences of length at most �.

Proof. We use the encoding and the formulas from Section 3. For every h ≥ 1, let

ϕh := ∀x
(
encodingh(x)→

(
maxh(x) ∨ ∃y succh(x, y)

))
.

Then there is a constant c ≥ 1 such that ||ϕh|| ≤ c · h4 for all h.
Suppose for contradiction that f is an elementary function with the desired property.

We may assume that f(�) ≥ � for all � ≥ 1. As there are only exponentially many
first-order sentences ϕ of a given length, there is an h ≥ 1 such that there are less than
Tower(h−1) first-order sentences of length at most f(c·h4) (up to equivalence). Let us
fix such an h, and let � = c·h4 and n = Tower(h)−1. For every j ∈ [0, n], let Fj denote
the forest consisting of the trees T (j), . . . , T (n), and let Uj be the tree obtained from
Fj by connecting a new root with the roots of all trees in Fj . Then there are numbers
j, k such that 1 ≤ j < k ≤ n, and the trees Uj and Uk satisfy the same first-order
sentences of length at most f(�). Observe that

Fj ⊕ T (j−1) |= ϕh and Fk ⊕ T (j−1) �|= ϕh.

Now let A = Uj , B = Uk, and C = T (j−1). As the new roots of A,B are not nodes
satisfying encodingh(x) (because A and B are isomorphic to trees T (nA) and T (nB)
with nA, nB ≥ Tower(h)), we have A ⊕ C |= ϕh and B ⊕ C �|= ϕh. Since the length
of ϕh is at most � and A,B satisfy the same sentences of length at most f(�), this is a
contradiction. ��

6 Existential Preservation on Forests

A structure B is called an extension of A if A is an induced substructure of B. Let τ
be a vocabulary and let C be a class of finite τ -structures that is closed under induced

Model Theory Makes Formulas Large 921

substructures. An FO(τ)-sentence ϕ is preserved under extensions on C if the following
is true for all structuresA,B ∈ C: If A |= ϕ and B is an extension of A, then B |= ϕ.

The well-known Łoś-Tarski Theorem (see e.g. [15]) states that every first-order sen-
tence that is preserved under extensions on the class of all structures (i.e., finite as well
as infinite structures), is equivalent to an existential first-order sentence. Here, the class
of existential first-order formulas is obtained by closing the atomic formulas and the
negated atomic formulas under conjunction, disjunction, and existential quantification.
While the Łoś-Tarski theorem fails when shifting the attention from the class of all
structures to the class of all finite structures ([22,14]), it was shown in [1] that the Łoś-
Tarski theorem holds when restricted to certain “well-behaved” classes of finite struc-
tures, among them the class of all finite acyclic structures. The main result of the present
section, Theorem 4, shows that a translation of formulas preserved under extensions into
equivalent existential formulas may increase the formula size non-elementarily.

In the following, we let L andX be two unary relation symbols. An {L,X}-labelled
tree is an {E,L,X}-structure T = (T,ET , LT , XT) where (T,ET) is a tree.

Theorem 4. Let τ be a vocabulary that consists of a binary relation symbolE and two
unary relation symbols L andX . For every h ≥ 1 there is a FO(τ)-sentence ϕh of size
2O(h) with the following properties:

1. ϕh is preserved under extensions on the class of all τ -structures, and

2. every existential FO(τ)-sentence ψ that is equivalent to ϕh on the class T≤h of all
{L,X}-labelled trees of height at most h is of size at least Tower(h−1).

Using the same approach as in the previous sections, i.e., the encoding of natural num-
bers by trees introduced in Section 3, it is not difficult to construct a sentence ϕh of
small size which meets requirement 2. We were, however, unable to find a sentence
based on this encoding which also meets requirement 1 (even when considering T≤h
instead of the class of all τ -structures). To prove Theorem 4, we therefore introduce the
following encoding of numbers by {L,X}-labelled trees. The remainder of this section
is devoted to the proof of Theorem 4.

From now on, until the end of this section, we let τ denote a vocabulary that consists
of a binary relation symbol E and two unary relation symbols L andX .

Definition 2. For each natural number h ≥ 1 and each n ∈ {0, 1, . . , Tower(h)−1},
we define the {L,X}-labelled tree T̃h(n) as follows:

– T̃1(0) consists of two nodes u and v such that there is an edge from u to v, and v
is labelled to be a leaf (which is encoded by “v ∈ L”) and v is labelled 0 (which is
encoded by “v �∈ X”).

– T̃1(1) consists of two nodes u and v such that there is an edge from u to v, and v
is labelled to be a leaf (which is encoded by “v ∈ L”) and v is labelled 1 (which is
encoded by “v ∈ X”).

– for h ≥ 1 and n ∈ {0, . . , Tower(h+1)−1} = {0, . . , 2Tower(h)−1}, the {L,X}-
labelled tree T̃h+1(n) is obtained by creating a new root, attaching to it one copy
of T̃h(i), for each i ∈ {0, . . , Tower(h)−1}, and labelling the root of T̃h(i) with 1
if bit(i, n) = 1, and 0 otherwise.

922 A. Dawar et al.

Note that for every fixed h, the trees T̃h(n) for n < Tower(h) all have the same shape
and only vary in the labelling (w.r.t. 0 and 1) of the children of the root. Furthermore,
each path from the root of T̃h(n) to a leaf has exactly length h (i.e., consists of h edges),
and the nodes that are labelled L are exactly the leaves of T̃h(n).

Unlike in the previous sections, it does not suffice to restrict attention to structures
that are obtained as disjoint unions or similar, easy combinations of the trees T̃h(n).
Instead, we will consider a suitable notion where a node t in an arbitrary τ -structureA
is called “h-good” if the substructure At is “sufficiently similar” to the tree T̃h(n), for
a number n < Tower(h). The precise definition of this notion is given below. Before
introducing it, however, we need the following (easy) lemma.

Lemma 4. For every h′ ≥ 1 there is a universal FO(τ)-sentence forest≤h′ of length
O(h′) such that for every finite τ -structure A = (A,EA, LA, XA) the following is
true: A |= forest≤h′ ⇐⇒ (A,EA) is a disjoint union of trees such that every node in
LA is a leaf, and for every root r in A (i.e., for every node r in A that has in-degree 0
in EA) the following is true: every path in A that starts in r has length at most h′.

Definition 3 (h-good nodes x, and the numbers RepAh (x) represented by them). Let
h′ ≥ 1 and let A be a structure with A |= forest≤h′ . By induction on h ∈ {1, . . , h′}
we define the following notion:

A node x of A is called 1-good in A iff it has at least one child y with LA(y), and for
all children y′ of x in A the following is true: if LA(y′), then XA(y′)↔ XA(y).
Every 1-good node x in A represents a number RepA1 (x) ∈ {0, 1} as follows:

RepA1 (x) = 0 ⇐⇒ x has a child that belongs to LA but not to XA

RepA1 (x) = 1 ⇐⇒ x has a child that belongs to LA and to XA.

Let h < h′ be such that the notion of h-goodness as well as the numbers RepAh (y), for
all h-good nodes y inA, are already defined. Then, a node x ofA is called (h+1)-good
in A iff the following is true: For each number i ∈ {0, . . , Tower(h)−1} there exists a
h-good child yi of x in A with RepAh (yi) = i, and for all h-good children z of x in A
with RepAh (z) = i the following is true: XA(z)↔ XA(yi).
Every (h+1)-good node x in A represents the (uniquely defined) number

RepAh+1(x) = n ∈ {0, 1, . . , 2Tower(h)−1} = {0, 1, . . , Tower(h+1)−1}

which satisfies the following: for every i < Tower(h), bit(i, n) = 1 ⇐⇒ XA(yi).

The following notion of h-inconsistency can be viewed as a counterpart to the notion
of h-goodness. Note, however, that h-goodness is a property of a node whereas h-
inconsistency is a property of a whole structure.

Definition 4 (h-inconsistency). Leth′ ≥ 1 and letA be a structure withA |= forest≤h′ .
By induction on h ∈ {1, . . , h′}, we define the following notion: We say that A is 1-
inconsistent if there exist nodes x, y, y′ such that y and y′ are children of x with the
following properties: y and y′ both belong to LA, and we have XA(y) and ¬XA(y′).
Let h < h′ be such that the notion of h-inconsistency is already defined.

Model Theory Makes Formulas Large 923

We say that A is (h+1)-inconsistent if there exist nodes x, y, y′ such that y and y′

are children of x with the following properties: y and y′ both are h-good in A with
RepAh (y) = RepAh (y′), and we have XA(y) and ¬XA(y′).

Furthermore, we say that A is (≤h)-inconsistent if there exists a h̃ ∈ {1, . . , h} such
that A is h̃-inconsistent. It is straightforward (but tedious) to show the following:

Lemma 5. For every h ≥ 1 there is a FO(τ)-sentence ϕh of size 2O(h) such that the
following is true for every τ -structure A: A |= ϕh ⇐⇒ A |= ¬forest≤h or A is
(≤h)-inconsistent or there exists a node x that is h-good in A.

Furthermore, it can be shown that this sentence ϕh is preserved under extensions. This
finally enables us to prove Theorem 4.

7 Structures of Bounded Degree — Elementary Upper Bounds

All the non-elementary lower bounds in previous sections depend heavily on the fact
that we consider classes of structures of unbounded degree. On classes of structures
of bounded degree, the picture looks entirely different as we can prove elementary
upper bounds as counterparts to Theorems 1, 3, and 4. Throughout the remainder of this
section we let τ be a fixed finite relational vocabulary, and we let d be a fixed natural
number. We write Dd to denote the class of all τ -structures whose Gaifman graph has
degree at most d. By an easy adaptation of the model theoretic proof of Gaifman’s
theorem given in [5], one obtains the following elementary upper bound:

Theorem 5. There is a 4-fold exponential function g : N → N such that for every
FO(τ)-sentence ϕ there is a sentence ψ of size≤ g(||ϕ||) with the following properties:
ψ is a Boolean combination of basic local sentences and ψ is equivalent to ϕ on all
structures in Dd.

By similar techniques we can prove an elementary upper bound for the Feferman-
Vaught theorem stratified by formula length. Furthermore, there are elementary decision
algorithms for the first-order theories of classes of trees of bounded arity, in particular
for the class of binary trees. Refining the methods of [1], one also obtains an elementary
upper bound for the following variant of the Łoś-Tarski Theorem.

Theorem 6. There is a 5-fold exponential function f : N → N such that any FO(τ)-
sentence ϕ that is preserved under extensions on the class of acyclic structures in Dd is
equivalent, on this class, to an existential first-order sentence of length at most f(||ϕ||).

In all the above cases for structures of bounded degree we can also prove at least 2-fold
exponential lower bounds.

Acknowledgements. We would like to thank an anonymous referee for pointing us to
the references [2, 7]. We gratefully acknowledge the support of the Isaac Newton Insti-
tute through its 2006 programme on Logic and Algorithms. The opportunity afforded
by this programme greatly aided our collaboration.

924 A. Dawar et al.

References

1. Atserias, A., Dawar, A., Grohe, M.: Preservation under extensions on well-behaved finite
structures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1437–1449. Springer, Heidelberg (2005)

2. Compton, K., Henson, C.W.: A uniform method for proving lower bounds on the computa-
tional complexity of logical theories. In: Abramsky, S., Gabbay, D.M., Maibaum, T. (eds.)
Handbook of Logic in Computer Science. Logic and Algebraic Methods, vol. 5, pp. 129–216.
Oxford University Press, Oxford (2000)

3. Cutland, N.J.: Computability. Cambridge University Press, Cambridge (1980)
4. Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Approximation schemes for first-order

definable optimisation problems. In: Proc. LICS’06, pp. 411–420 (2006)
5. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)
6. Feferman, S., Vaught, R.: The first order properties of products of algebraic systems. Funda-

menta Mathematicae 47, 57–103 (1959)
7. Ferrante, J., Rackoff, C.: Computational Complexity of Logical Theories. Lecture Notes in

Mathematics, vol. 718. Springer, Heidelberg (1979)
8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
9. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures.

Journal of the ACM 48, 1184–1206 (2001)
10. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revis-

ited. Annals of Pure and Applied Logic 130, 3–31 (2004)
11. Gaifman, H.: On local and non-local properties. In: Stern, J. (ed.) Proceedings of the Her-

brand Symposium, Logic Colloquium ‘81, pp. 105–135. North-Holland, Amsterdam (1982)
12. Grohe, M., Schweikardt, N.: Comparing the succinctness of monadic query languages over

finite trees. RAIRO: Theoretical Informatics and Applications (ITA) 38, 343–373 (2005)
13. Grohe, M., Schweikardt, N.: The succinctness of first-order logic on linear orders. Logical

Methods in Computer Science 1(1:6), 1–25 (2005)
14. Gurevich, Y.: Toward logic tailored for computational complexity. In: Richter, M., et al.

(eds.) Computation and Proof Theory. Lecture Notes in Mathematics, vol. 1104, pp. 175–
216. Springer, Heidelberg (1984)

15. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
16. Libkin, L.: On forms of locality over finite models. In: Proceedings of the 12th IEEE Sym-

posium on Logic in Computer Science, pp. 204–215. IEEE Computer Society Press, Los
Alamitos (1997)

17. Libkin, L.: Logics with counting and local properties. Transaction on Computational Logic 1,
33–59 (2000)

18. Pan, G., Vardi, M.: Fixed-parameter hierarchies inside PSPACE. In: Proceedings of the 21st
IEEE Symposium on Logic in Computer Science, pp. 27–36. IEEE Computer Society Press,
Los Alamitos (2006)

19. Rabin, M.: Decidability of second order theories and automata on infinite trees. Transactions
of the American Mathematical Society 141, 1–35 (1969)

20. Rossman, B.: Existential positive types and preservation under homomorphisisms. In: 20th
IEEE Symposium on Logic in Computer Science, pp. 467–476. IEEE Computer Society
Press, Los Alamitos (2005)

21. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time. In: Proceedings of
the 5th ACM Symposium on Theory of Computing, pp. 1–9. ACM Press, New York (1973)

22. Tait, W.W.: A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic
Logic 24, 15–16 (1959)

23. Thatcher, J., Wright, J.: Generalised finite automata theory with an application to a decision
problem of second-order logic. Mathematical Systems Theory 2, 57–81 (1968)

Decision Problems for Lower/Upper Bound
Parametric Timed Automata�

Laura Bozzelli1 and Salvatore La Torre2

1 Università di Napoli Federico II , Via Cintia, 80126 - Napoli, Italy
2 Università degli Studi di Salerno, Via Ponte Don Melillo - 84084 Fisciano, Italy

Abstract. We investigate a class of parametric timed automata, called lower
bound/upper bound (L/U) automata, where each parameter occurs in the tim-
ing constraints either as a lower bound or as un upper bound. For such automata,
we show that checking if for a parameter valuation (resp., all parameter valu-
ations) there is an infinite accepting run is PSPACE-complete. We extend these
results by allowing the specification of constraints on parameters as a linear sys-
tem. We show that the considered decision problems are still PSPACE-complete,
if the lower bound parameters are not compared to the upper bound parameters
in the linear system, and are undecidable in general. Finally, we consider a para-
metric extension of MITL0,∞, and prove that the related satisfiability and model
checking (w.r.t. L/U automata) problems are PSPACE-complete.

1 Introduction

Timed automata [2] are a widely accepted formalism to model the behavior of real-time
systems. A timed automaton is a finite–state transition graph equipped with a finite set
of clock variables which are used to express timing constraints. The semantics is given
by an infinite-state transition system where transitions correspond either to a change of
location (instantaneous transition) or to a time consumption (time transition). Over the
years, timed automata have been intensively studied by many authors, and significant
progresses have been done in developing verification algorithms, heuristics, and tools
(see [6] for a recent survey).

Timing constraints in timed automata allow the specification of constant bounds on
delays among events. Typical examples are upper and lower bounds on computation
times, message delays and timeouts. In the early stages of a design, when not much is
known about the system under development, it is however useful for designers to use
parameters instead of specific constants.

In [5], Alur et al. introduce parametric timed automata, i.e., timed automata where
clocks can be compared to parameters. For such class of automata, they study the empti-
ness problem: “is there a parameter valuation for which the automaton has an accepting
run?” This problem turns out to be undecidable already for parametric timed automata
with only three parametric clocks, while it is decidable when at most one clock is com-
pared to parameters. In case of two parametric clocks, the emptiness problem is closely

� This research was partially supported by the MIUR grant ex-60% 2005-2006 Università di
Salerno, and the European Commission via FP6 program under contracts FP6-1596 AEOLUS.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 925–936, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

926 L. Bozzelli and S. La Torre

related to various hard and open problems of logic and automata theory [5]. In [11],
Hune et al. identify a subclass of parametric timed automata, called lower bound/upper
bound (L/U) automata, in which each parameter occurs either as a lower bound or as an
upper bound in the timing constraints. Despite this limitation, the model is still interest-
ing in practice. In fact, L/U automata can be used to model the Fisher’s mutual exclusion
algorithm [13], the root contention protocol [12] and other known examples from the
literature (see [11]). Hune et al. show that the emptiness problem for L/U automata with
respect to finite runs is decidable. The case of infinite accepting runs (which is crucial
for the verification of liveness properties) is not investigated, and does not follow from
their results.

In this paper, we further investigate the class of L/U automata and consider accep-
tance conditions over infinite runs. Given an L/U automaton A, denote with Γ (A) the
set of parameter valuations for which the automaton has an infinite accepting run. We
show that questions about Γ (A) can be answered considering a bounded set of param-
eter valuations of size exponential in the size of the constants and the number of clocks,
and polynomial in the number of parameters and locations ofA. Therefore, we are able
to show that checking the set Γ (A) for emptiness and universality (i.e., if Γ (A) con-
tains all the parameter valuations) is PSPACE-complete. The main argument for such
results is as follows: suppose that A is an L/U automaton which uses parameters only
as either upper bounds or lower bounds; then if an infinite run ρ is accepted by A for
large-enough values of the parameters, we can determine appropriate finite portions of
ρ which can be “repeatedly simulated” (resp., “deleted”) thus obtaining a run ρ′ which
is accepted by A for larger (resp., smaller) parameters values.

Parameters in system models can be naturally related by linear equations and in-
equalities. As an extension of the above results, we consider constrained emptiness and
constrained universality on L/U automata, where the constraint is represented by a lin-
ear system over parameters. We show that these problems are in general undecidable,
and become decidable in polynomial space (and thus PSPACE-complete) if we do not
compare parameters of different types in the linear constraint.

An important consequence of our results on L/U automata is the extension to the
dense-time paradigm of the results shown in [3]. We define a parametric extension of
the temporal logic MITL0,∞ [4], denoted PMITL0,∞, and show that (under restrictions
on the use of parameters analogous to those imposed on L/U automata) the related
satisfiability and model-checking problems are PSPACE-complete. The proof consists of
translating formulas to L/U automata. To the best of our knowledge this is the first work
that solves verification problems against linear-time specifications with parameters both
in the model and in the specification.

Besides the already mentioned research, there are several other papers that are re-
lated to ours. The idea of restricting the use of parameters (in order to obtain decidabil-
ity) such that upper and lower bounds cannot share a same parameter is also present
in [3] where the authors study the logic LTL [14] augmented with parameters. The
general structure of our argument for showing decidability (“pumping” argument) is
inspired to their approach. However, let us stress that there are substantial technical dif-
ferences with that paper since we consider a different framework, and in particular, we
deal with a dense-time semantics. Parametric branching time specifications were first

Decision Problems for Lower/Upper Bound Parametric Timed Automata 927

investigated in [16,9] where decidability is shown for logics obtained as extensions of
TCTL [1] with parameters. In [7], decidability is extended to full TCTL with Presburger
constraints over parameters. In [8], decidability is established for the model checking
problem of discrete-time timed automata with one parametric clock against parametric
TCTL without equality (for full TCTL with parameters the problem is undecidable).
Finally, recall that the undecidability of systems with parameters is also captured by the
undecidability results shown in [10]. However, the limitations we consider for obtaining
decidability seem to be orthogonal to those considered there. We are not aware of any
way of obtaining our decidability results from those presented in [10].

Due to the lack of space, for the omitted details we refer the interested reader to a
forthcoming extended version of this paper.

2 Parametric Timed Automata

Throughout this paper, we fix a finite set of parameters P = {p1, . . . , pm}. Let R≥0 be
the set of non-negative reals, N the set of natural numbers, and Z the set of integers.

A linear expression e is an expression of the form c0 + c1p1 + . . . + cmpm with
c0, c1, . . . , cm ∈ Z. We say that parameter pi occurs in e if ci �= 0. A (parameter)
valuation is a function v : P → N assigning a natural number to each parameter. The
null parameter valuation, denoted vnull, is the valuation assigning 0 to each parameter.
For the linear expression e above, e[v] denotes the integer c0+c1v(p1)+. . .+cmv(pm).

We fix a finite set of clocks X . For the ease of presentation, we allow in our model
a special clock x0 ∈ X , called zero clock, which always evaluates to 0 (i.e., it does not
increase with time).

An atomic (clock) constraint f is an expression of the form x − y ≺ e, where
x, y ∈ X , e is a linear expression, and≺∈ {<,≤}. We say that f is parametric if some
parameter occurs in e. A (clock) constraint is a finite conjunction of atomic constraints.
A clock valuation is a function w : X → R≥0 assigning a value in R≥0 to each clock
and s.t. w(x0) = 0. For a constraint f , a parameter valuation v, and a clock valuation
w, the pair (v, w) satisfies f , denoted (v, w) |= f , if the expression obtained from f by
replacing each parameter p with v(p) and each clock x with w(x) evaluates to true.

A reset set r is a subset ofX containing the clocks to be reset to 0. For τ ∈ R≥0 and
a clock valuation w, the clock valuation w + τ is defined as (w + τ)(x) = w(x) + τ
for all x ∈ X \ {x0} and (w + τ)(x0) = 0. For a reset set r ∈ 2X , the clock valuation
w[r] is defined as w[r](x) = 0 if x ∈ r and w[r](x) = w(x) otherwise. Let Ξ be the
set of all clock constraints overX and P .

Definition 1. A parametric timed automaton (PTA) is a tupleA = 〈Q, q0, Δ, F 〉, where
Q is a finite set of locations, q0 ∈ Q is the initial location,Δ ⊆ Q×Ξ × 2X ×Q is a
finite transition relation, and F ⊆ Q is a set of accepting locations.

Let A = 〈Q, q0, Δ, F 〉 be a PTA. A state of A is a pair (q, w) such that q ∈ Q is a
location and w is a clock valuation. The initial state is (q0,

−→
0), where

−→
0 maps every

x ∈ X to 0. We denote by X(P) the set of parametric clocks, that is the set of x ∈ X
such thatA contains a parametric atomic constraint of the form x−y ≺ e or y−x ≺ e.
A PTAA is called a timed automaton (TA, for short), ifA does not contain occurrences

928 L. Bozzelli and S. La Torre

0 1 2 3

x := 0 x < u−y < 2 − �

y := 0

y := 0

Fig. 1. An L/U automaton

of parameters. For a PTA A and a parameter valuation v, we denote by Av the TA
obtained by replacing each linear expression e of A by e[v].

Let A = 〈Q, q0, Δ, F 〉 be a PTA and v be a parameter valuation. The concrete
semantics of A under v, denoted [[A]]v , is the labelled transition system 〈S,�〉 over

(Δ∪ {⊥})×R≥0, where S is the set ofA states and for τ ≥ 0, (q, w)
δ,τ
−−� (q′, w′) iff:

– either δ = (q, g, r, q′), τ = 0, (v, w) |= g, and w′ = w[r] (instantaneous transi-
tion),

– or δ = ⊥, q′ = q, and w′ = w + τ (time transition).

An infinite run of [[A]]v is an infinite path ρ = s0
δ0,τ0−−−� s1

δ1,τ1−−−� s2 . . . of [[A]]v such
that

∑
i≥0 τi = ∞ (progress condition) and for infinitely many i ≥ 0, δi �= ⊥ (there

are infinitely many occurrences of instantaneous transitions). Moreover, ρ is accepting
iff for infinitely many i ≥ 0, we have that qi ∈ F , where si = (qi, wi). A finite run of

[[A]]v is a finite path ρ = s0
δ0,τ0−−−� s1 . . . sn−1

δn−1,τn−1
−−−−−−−� sn of [[A]]v . The duration of

ρ, denoted by DUR(ρ), is defined as DUR(ρ) =
∑i=n−1

i=0 τi. We denote with Γ (A)
the set of parameter valuations v such that there exists an accepting infinite run of [[A]]v
from the initial state (q0,

−→
0).

Given a linear expression e = c0 + c1p1 + . . . cmpm and a parameter pi ∈ P , we say
that pi occurs positively in e if ci ≥ 0. Analogously, we say that pi occurs negatively in
e if ci ≤ 0. A lower bound parameter (resp., an upper bound parameter) of a PTAA is a
parameter that only occurs negatively (resp., occurs positively) in the expressions ofA.
We call A a lower bound/upper bound (L/U) automaton if every parameter occurring
in A is either an upper bound parameter or a lower bound parameter. Moreover, we say
that A is a lower bound automaton (resp., upper bound automaton) iff every parameter
occurring in A is a lower bound parameter (resp., an upper bound parameter).

Example 1. Consider the automaton A in Fig. 1. It has four locations 0, 1, 2, 3, two
clocks x, y, and two parameters � and u. Note that the constraint −y < 2 − � imposes
a lower bound on the possible values of y, while x < u imposes an upper bound on
the possible values of x. Thus, � and u are respectively a lower bound and an upper
bound parameter, and A is an L/U automaton. Also, it is easy to verify that [[A]]v has
an infinite run from location 0 visiting infinitely often location 3 iff v(�) < v(u)+2 and
v(u) > 0. Therefore, Γ (A) = {v | v(�) < v(u) + 2 and v(u) > 0}.

For an L/U automatonA, we consider the following decision problems on Γ (A):

– Emptiness: is the set Γ (A) empty?
– Universality: does the set Γ (A) contain all parameter valuations?

Decision Problems for Lower/Upper Bound Parametric Timed Automata 929

Relations over states. For t ∈ R≥0, �t� denotes the integral part of t and fract(t)
denotes its fractional part. We define the following equivalence relations over R≥0:

– t ≈ t′ iff (i) �t� = �t′� and (ii) fract(t) = 0 iff fract(t′) = 0;
– for everyK ∈ N, t ≈K t′ iff either t ≈ t′ or t, t′ > K .

Let A = 〈Q, q0, Δ, F 〉 be a PTA and v be a parameter valuation. We denote by Kv

the largest |e[v]|+ 1 such that e is a linear expression of A. The region equivalence of
A with respect to v, denoted ≈v, is the equivalence relation overA states defined as:
(q, w) ≈v (q′, w′) iff q = q′ and for all clocks x, y ∈ X , (i) w(x) − w(y) ≥ 0 iff
w′(x) − w′(y) ≥ 0, (ii) |w(x) − w(y)| ≈Kv |w′(x) − w′(y)|, (iii) fract(w(x)) ≤
fract(w(y)) iff fract(w′(x)) ≤ fract(w′(y)) (ordering of fractional parts).

A region of A with respect to v is an equivalence class induced by ≈v. Recall that
the number of these regions is O(|Q| · (2Kv + 2)|X|2) [2] (note that we consider also
diagonal constraints). Moreover, ≈v is a bisimulation over [[A]]v . Note that if A is a
timed automaton, then the value of Kv is obviously independent on specific valuation
v, and we denote it with KA. Thus, the emptiness for a timed automaton is reduced
to check emptiness of the finite–state quotient graph induced by region equivalence
(region graph) [2].

Theorem 1. Checking emptiness for a timed automaton A is PSPACE-complete and
can be done in time O(|Δ| · (2KA + 2)2|X|2).

To answer questions on Γ (A), for a parametric timed automatonA, we need to examine
an infinite class of region graphs, one for each parameter valuation. However, in the
next sections we will show that for an L/U automaton A, it is possible to effectively
determine a parameter valuation v such that our decision problems can be reduced to
check emptiness of Av . In our arguments, we use a preorder & over the set of states
defined as (q, w) & (q′, w′) iff

– (q, w) ≈vnull (q′, w′) (recall that vnull is the null parameter valuation);
– for all clocks x, y ∈ X(P) such that w(x) − w(y) > 0: either w′(x) − w′(y) ≥
w(x) − w(y), or (w′(x)− w′(y)) ≈ (w(x) − w(y)) hold.

The first condition establishes that (q, w) and (q′, w′) are equivalent w.r.t. all non-
parametric clock constraints. The second condition ensures that, for a lower (resp. up-
per) bound automaton, each parametric clock constraint which is fulfilled in (q, w)
(resp. (q′, w′)) is also fulfilled in (q′, w′) (resp. (q, w)). We will show that & indeed
defines a simulation relation over the states of a lower (resp. upper) bound automaton.

For an L/U automatonA, we will use the following constants:

– kA denotes the number of parametric clocks of A, i.e. the size of X(P);
– cA is the maximum over {|c| + 1 | there is a linear expression of A of the form
c0 + c1p1 + . . .+ cmpm and c = ci for some 0 ≤ i ≤ m}.

– NR(A) is the number of regions of A with respect to the null parameter valuation.

3 Emptiness and Universality for Lower Bound Automata

In this section, we study the considered decision problems for lower bound automata.
We fix a lower bound automatonA = 〈Q, q0, Δ, F 〉. Also, for two parameter valuations
v1 and v2, we write v1 ≤ v2 to mean that v1(p) ≤ v2(p) for all p ∈ P .

930 L. Bozzelli and S. La Torre

Emptiness. We recall that every linear expression ofA is of the form c0− c1p1− . . .−
cmpm with ci ∈ N for 1 ≤ i ≤ m. By decreasing the parameter values, the constraints
of A are weakened. Thus, if v ≤ v′ and v′ ∈ Γ (A), then also v ∈ Γ (A) (i.e., Γ (A) is
downward-closed). Hence, to test emptiness of Γ (A) it suffices to check emptiness of
the TA Avnull . By Theorem 1, we obtain:

Theorem 2. Given a lower bound automaton A, checking emptiness of Γ (A) is
PSPACE-complete and can be done in time O(|Δ| · (2cA + 2)2|X|2).

Universality. For checking universality of Γ (A), we define a parameter valuation vA
(assigning “large” values to parameters) and show that if vA ∈ Γ (A) then each v ≥ vA
also belongs to Γ (A). Since Γ (A) is downward closed, checking universality of Γ (A)
reduces to checking if vA ∈ Γ (A), and thus, checking for non-emptiness of the timed
automatonAvA .

Define NA as the constant kA(NR(A) + 1) + cA, and denote by vA the parameter
valuation assigningNA to each parameter. The choice of such a large constant is to ensure
that in any run ρ of [[A]]vA we can find subruns ρ′ that can be repeatedly and consecutively
simulated such that we can construct a corresponding run for [[A]]v , for any v ≥ vA.
Intuitively,NA is sufficiently large to ensure that there is a portion ρ′ of ρ (of duration
larger than 1) which corresponds to a cycle ofAvnull and such that each parametric clock
constraints is either always or never satisfied in all the states visited along ρ′.

A parameter valuation v evaluates negative for A if for each parametric atomic con-
straint x − y ≺ e of A, e[v] < 0. Note that vA evaluates negative for A. We give two
technical lemmas that will be used in the proof of the main theorem of this section. In
these two lemmas, v is a parameter valuation which evaluates negative forA.

Lemma 1. [Simulation Lemma for Lower Bound Automata] Let ρ= s0
δ0,τ0−−−� s1

δ1,τ1−−−�
. . . be a run of [[A]]v and s′0 = s0. Then, there is a run of [[A]]v of the form ρ′ = s′0

δ0,τ
′
0−−−�

s′1
δ1,τ

′
1−−−� . . . such that s′i = si for each i, andDUR(ρ′) ≈ DUR(ρ) if ρ is finite.

The following lemma allows us to append to a run in [[A]]v , which corresponds to a
cycle in the region graph of Avnull , another cycle such that its initial state s and its
final state s′ satisfy the strongest condition s & s′. Note that once we apply this lemma,
further cycles can be appended by repeatedly applying the Simulation Lemma. Also,
note that from classical properties of timed automata the Simulation Lemma continues
to hold if we replace& with the region equivalence≈v. However, this does not hold for
the following Lemma (the properties of & are crucial).

Lemma 2. Let ρ = s0
δ0,τ0−−−� s1 . . . sn−1

δn−1,τn−1
−−−−−−−� sn be a run of [[A]]v such that

s0 ≈vnull sn and for every parametric clock x ∈ X(P) \ {x0}, if a parametric atomic
constraint of the form y − x ≺ e appears along ρ then x is never reset along ρ. Then,

there is a run ρ′ = s′0
δ0,τ

′
0−−−� s′1 . . . s

′
n−1

δn−1,τ
′
n−1

−−−−−−−� s′n of [[A]]v such that DUR(ρ′) ≈
DUR(ρ), s′0 = sn, and s′0 & s′n.

In the next theorem we show that vA is the key valuation for reducing universality to
membership to Γ (A).

Decision Problems for Lower/Upper Bound Parametric Timed Automata 931

Theorem 3. Let v, v′ be parameter valuations such that v′ ≥ v ≥ vA. Then, v ∈ Γ (A)
implies v′ ∈ Γ (A).

Proof of Theorem 3: Let v, v′ be parameter valuations such that v′ ≥ v ≥ vA. We
can assume that each parameter appears precisely once in A. In fact, if a parameter
p appears twice, we can rename the second occurrence to p′ and let v(p′) = v(p)
and v′(p′) = v′(p). Note that this assumption does not affect the constant NA which
depends on the number of parameterized clocks and not on the number of parameters.

Fix a parameter p ofA. Let fp = z−y ≺ e be the unique atomic constraint ofA such
that p occurs in e. We define vp such that vp assigns the value v(p) + 1 to p and v(p′) to
all the other parameters p′. Since we can obtain v′ from v by a sequence of steps, where
a step corresponds to incrementing only one parameter by 1, it suffices to prove:

v ∈ Γ (A) implies vp ∈ Γ (A) (1)

Observe that since v ≥ vA and A is a lower bound automaton, we have that v eval-
uates negative for A, and in particular, e[v] < 0. Therefore, if y is the zero clock x0,
fp is unsatisfiable under valuation v and Assertion (1) trivially holds. Consider now the
case y �= x0 and also assume that z �= x0 (the other case being simpler).

Let ρ = s0
δ0,τ0−−−� s1

δ1,τ1−−−� s2 . . . be an infinite accepting run of [[A]]v where
si = (qi, wi) for i ≥ 0 and such that clock y is zero in s0 (note that if s0 is the
initial state of A, this last condition is satisfied). Then, we need to show that there
is an infinite accepting run ρ′ in [[A]]vp from s0. In the following, for i ≤ j, denote

ρ[i, j] = si
δi,τi−−−� . . .

δj−1,τj−1
−−−−−−� sj .

In the rest of the proof, we first determine a finite portion of the run ρ that is crucial
for the satisfaction of fp under valuation vp and suitable for repeated simulation, i.e.,
such that it meets the hypothesis of Lemma 2. Then, simulate this finite run an arbitrary
number of times by applying Lemma 2 for the first simulation and Lemma 1 for the re-
maining ones. We end with the simulation of the remaining suffix of the run ρ applying
again Lemma 1. The process is iterated until the resulting run is a run of [[A]]vp .

Assume that the clock constraint fp appears along ρ (in the other case, ρ is also a
run of [[A]]vp), and let M be the smallest index such that fp is in the clock constraint
of transition ρ[M,M + 1]. Thus, (v, wM) |= fp. Since fp = z − y ≺ e and e[v] ≤
e[vA] < cA−NA, by simple arguments, it is possible to show that there areMy,Mz ∈
[0,M] such that: My < Mz , wMy (y) = 0, wMz (z) = 0, clock y is never reset along
ρ[My,Mz], andDUR(ρ[My,Mz]) > NA − cA.

Observe that in a run, each time transition can be split into an arbitrary number of
time transitions. Thus, we can assume without loss of generality that for every τ ∈ N,
there is i ≥My such that DUR(ρ[My, i]) = τ . The following claim allows us to apply
Lemma 2. Its proof relies on a counting argument that uses the constant NA, and thus
also gives a more concrete explanation of our choice for its value.

Claim. There is an interval [i, j] ⊆ [My,Mz] such thatDUR(ρ[i, j]) ≥ 1, si ≈vnull sj ,
and for every clock x ∈ X(P) \ {x0}: if a parametric atomic constraint of the form
x′ − x ≺ e′ appears along ρ[i, j], then x is never reset along ρ[i, j].

932 L. Bozzelli and S. La Torre

Proof of the Claim: Let My ≤ K ≤ Mz be such that DUR(ρ[My,K]) = NA − cA
(recall that DUR(ρ[My,Mz]) > NA− cA). Let Y = {x1, . . . , xn} with n ≤ kA−1
be the set of clocks in X(P) \ {x0} which are reset along ρ[My,K] and for h =
1, . . . , n, let ih be the smallest index in [My,K] such that clock xh is reset on the
transition ρ[ih − 1, ih]. Assume without loss of generality that i1 ≤ i2 ≤ . . . ≤ in.
We set i0 = My and in+1 = K + 1. Thus, for every interval [ih, ih+1 − 1], 0 ≤
h ≤ n, the following holds: for all x ∈ X(P), either clock x is never reset along
ρ[ih, ih+1 − 1] or its value is always less than NA − cA. Since for each parametric
atomic constraint f = x′ − x ≺ e′ of A, e′[v] ≤ e′[vA] < cA − NA, we have that
(v, w) |= f implies w(x) > NA − cA. Hence, for every interval [ih, ih+1 − 1] and
x ∈ X(P) \ {x0}, either clock x is never reset along ρ[ih, ih+1 − 1], or none of
the parametric atomic constraints along ρ[ih, ih+1 − 1] is of the form x′ − x ≺ e′.
Since n + 1 ≤ kA, NA − cA = kA(NR(A) + 1), and DUR(ρ[ih − 1, ih]) = 0 for
h = 1, . . . , n (i.e., the only transition of ρ[ih − 1, ih] is instantaneous), there is a k
such that DUR(ρ[ik, ik+1 − 1]) ≥ NR(A) + 1. Recall that for each τ ∈ N there is
i ≥ My such that DUR(ρ[My, i]) = τ , and NR(A) is the number of equivalence
classes induced by ≈vnull . Hence, there are indexes i, j ∈ [ik, ik+1 − 1] such that
DUR(ρ[i, j]) ≥ 1 and si ≈vnull sj . Therefore, the claim holds. ��

Let [i, j] ⊆ [My,Mz] be an interval satisfying the above claim. We can apply Lemma 2
to ρ[i, j] obtaining a finite run ρ1 starting from sj and leading to s′j = sj . Thus we can
repeatedly apply Lemma 1, to append an arbitrary number d of simulations of ρ1 and
then simulate the remaining part of ρ. Let ρ′ = ρ[0, j] ρ1ρ2..ρd ρ

′
Mz

ρ′′ be the obtained
run, where for h = 2, . . . , d, runs ρh are the simulations of ρ1, ρ′Mz

is the simulation
of ρ[j,Mz], and ρ′′ is the simulation of the remaining suffix of ρ. Note that by Lem-
mas 1 and 2 ρ′ is an accepting infinite run of [[A]]v and the clock constraint fp never
appears along η = ρ[0, j] ρ1ρ2..ρd ρ

′
Mz

, hence η is also a finite run of [[A]]vp . Moreover,
DUR(ρh) ≈ DUR(ρ[i, j]) for h = 1, . . . , d, and y is not reset in ρ1ρ2..ρd ρ

′
Mz

.
Let s = (q, w) be the last state of ρ′Mz

. Since s = sMz and wMz (z) = 0, we have
w(z) = 0. Being DUR(ρ[i, j]) ≥ 1, by carefully choosing d, we get that (vp, w) |=
fp. Thus, if clock y is never reset along ρ′′, then ρ′′ is also a run in [[A]]vp , hence ρ′

is an infinite accepting run in [[A]]vp . Otherwise, there is a non empty prefix π of ρ′′

(containing some instantaneous transition) such that ρ[0, j] ρ1ρ2..ρd ρ
′
Mz
π is a run of

[[A]]vp and the remaining suffix of ρ′′ starts at a state in which clock y is zero. By
iterating the above reasoning (starting from ρ′′) we get an accepting run of [[A]]vp , and
the theorem is proved. ��

Since Γ (A) is downward-closed, by the above theorem checking universality re-
duces to check non-emptiness of the TA AvA . Since the largest constant in AvA is
bounded by |P | ·NA · cA and NA = O(|Q| · kA · (2cA + 2)2|X|2), by Theorem 1 we
obtain the following result.

Theorem 4. Given a lower bound automatonA, checking for the universality of Γ (A)
is PSPACE-complete and can be done in time exponential in |X |4 and in the size of the
encoding of cA, and polynomial in the number of parameters and locations of A.

Decision Problems for Lower/Upper Bound Parametric Timed Automata 933

4 Decision Problems for L/U Automata

In this section, we briefly discuss our results concerning the other decision problems
we have mentioned in the introduction. We start giving the results on emptiness and
universality for upper bound automata. Next, we combine the results we have given
for lower bound and upper bound automata to solve such problems for general L/U
automata. Then, we extend the considered problems placing linear constraints on the
parameters. Finally, we use L/U automata to decide satisfiability and model-checking
related problems for a dense-time linear temporal logic.

Upper bound automata. The arguments used to show the results for upper bound
automata are dual to those used for lower bound automata. We fix an upper bound au-
tomaton A = 〈Q, q0, Δ, F 〉. Recall that every linear expression of A is of the form
c0 + c1p1 + . . .+ cmpm with ci ∈ N for each 1 ≤ i ≤ m. By increasing the parameter
values, the clock constraints of A are weakened, thus the set Γ (A) is upward-closed.
An immediate consequence of this property is that testing universality of Γ (A) re-
quires checking non-emptiness of the TA Avnull (vnull assigns 0 to each parameter).
For checking emptiness of Γ (A), we establish a version of Theorem 3 for upper bound
automata. Here, we use a slightly larger constantNA = 8kAcA(NR(A) + 1) + cA. The
definition of such constant is again motivated by counting arguments as in the case of
lower bound automata. Define vA as the valuation assigning NA to each parameter.

Theorem 5. Let v, v′ be parameter valuations such that v ≥ v′ ≥ vA. Then, v ∈ Γ (A)
implies v′ ∈ Γ (A).

Since Γ (A) is upward-closed, Theorem 5 implies that Γ (A) is not empty iff vA ∈
Γ (A). Thus, checking emptiness of Γ (A) reduces to checking emptiness of the timed
automatonAvA .

General case. Given an L/U automaton A, if we instantiate the lower bound parame-
ters of A, we get an upper bound automaton and, similarly, if we instantiate the upper
bound parameters of A, we get a lower bound automaton. Furthermore, monotonicity
properties continue to hold: if v ∈ Γ (A) and v′ is such that v′(p) ≤ v(p) for each
lower bound parameter p and v′(p) ≥ v(p) for each upper bound parameter p, then
v′ ∈ Γ (A). By Theorems 3 and 5, it follows that

– To check for non-emptiness of Γ (A), it suffices to check for non-emptiness of the
timed automaton resulting from setting all the lower bound parameters to 0 and all
the upper bound parameters to 8kAcA(NR(A) + 1) + cA.

– To check for universality of Γ (A), it suffices to check for non-emptiness of the
timed automaton resulting from setting all the upper bound parameters to 0 and all
the lower bound parameters to kA(NR(A) + 1) + cA.

Thus by Theorem 1, we obtain the following result.

Theorem 6. For an L/U automaton A, checking for the emptiness (resp. universality)
of Γ (A) is PSPACE-complete and can be done in time exponential in |X |4 and the size
of the encoding of cA, and polynomial in the number of parameters and locations ofA.

934 L. Bozzelli and S. La Torre

Linearly constrained parameters. A linear constraint C is a boolean combination
of inequalities and equations of the form e ∼ 0, where e is a linear expression and
∼∈ {<,=}. A parameter valuation v is a solution of C if the boolean expression ob-
tained from C by replacing each inequality/equation e ∼ 0 with the truth value of
e[v] ∼ 0, evaluates to true. With Sol(C) we denote the set of C solutions. Given an
L/U automaton A and a linear constraint over the A parameters, we consider the fol-
lowing decision problems:

– Constrained emptiness: given a constraint C, is the set Γ (A) ∩ Sol(C) empty?
– Constrained universality: given a constraint C, does Γ (A) ⊇ Sol(C) hold?

We show that constrained emptiness and universality are decidable for both lower
and upper bound automata. However, they become undecidable for L/U automata (the
main reason being that a linear constraint can be used to force a lower bound param-
eter to be equal to an upper bound parameter, thus removing the restriction that has
been placed on L/U automata). Decidability can be regained if we keep separated lower
bound and upper bound parameters also in the linear constraint. In this case our ap-
proach relies on a bound for the set of minimal solutions of a linear constraint, given by
Pottier [15], and our results on unconstrained emptiness and universality.

Theorem 7. Constrained emptiness and constrained universality are undecidable for
L/U automata. However, if we restrict to constraints where each equation/inequality is
either over the set of lower bound parameters or over the set of upper bound parame-
ters, then the problems are PSPACE-complete.

Parametric dense-time linear temporal logic. We define the logic PMITL0,∞ as a
parametric extension of the logic MITL0,∞ [4]. We impose a restriction on the use of
parameters reflecting that imposed on the parameters of L/U automata (by [3], if we
remove this restriction, then basic decision problems become undecidable). To this aim
we fix two disjoint finite sets of parameters U and L, and denote with μ (resp., λ) a
linear expression over parameters U ∪ L such that each parameter from U (resp., L)
occurs positively and each parameter from L (resp., U) occurs negatively.

PMITL0,∞ formulas ϕ over a finite set AP of atomic propositions are defined as:

ϕ := a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ U≺μ ϕ | ϕ U(λ ϕ | ϕ R≺λ ϕ | ϕ R(μ ϕ,

where a ∈ AP , ≺∈ {≤, <},7∈ {≥, >} and U≺μ and U(λ (resp.,R≺λ andR(μ) are
the parameterized versions of the until modality (resp., release modality).

PMITL0,∞ is interpreted over timed sequences over 2AP , defined as infinite se-
quences ρ = (σ0, I0)(σ1, I1) . . ., where for all i, σi ∈ 2AP , and I0, I1, . . . represents a
partition of R≥0 in non-empty intervals such that for all i, the upper bound of Ii equals
the lower bound of Ii+1. For t ∈ R≥0, let ρ(t) be the unique σi such that t ∈ Ii.

For a formula ϕ, a timed sequence ρ = (σ0, I0)(σ1, I1) . . ., a parameter valuation
v, and t ∈ R≥0, the satisfaction relation (ρ, v, t) |= ϕ under valuation v is defined as
follows (we omit the clauses for boolean connectives, which are standard).

Decision Problems for Lower/Upper Bound Parametric Timed Automata 935

– (ρ, v, t) |= a ⇔ a ∈ ρ(t);
– (ρ, v, t) |= ϕ U≺μ ψ ⇔ for some t′ ≥ t such that t′ ≺ μ[v] + t, (ρ, v, t′) |= ψ

and (ρ, v, t′′) |= ϕ for all t ≤ t′′ < t′.
– (ρ, v, t) |= ϕ U(λ ψ ⇔ for some t′ 7 t+ λ[v], (ρ, v, t′) |= ψ and (ρ, v, t′′) |= ϕ

for all t ≤ t′′ < t′.
– (ρ, v, t) |= ϕ R≺λ ψ ⇔ for all t′ such that t ≤ t′ ≺ λ[v]+ t, either (ρ, v, t′) |= ψ,

or (ρ, v, t′′) |= ϕ for some t ≤ t′′ < t′;
– (ρ, v, t) |= ϕ R(μ ψ ⇔ for all t′ 7 μ[v] + t, either (ρ, v, t′) |= ψ, or (ρ, v, t′′) |=
ϕ for some t ≤ t′′ < t′.

For a formulaϕ, a timed sequence ρ, and a parameter valuation v, ρ satisfies ϕ under
valuation v if (ρ, v, 0) |= ϕ. Note that we have defined PMITL0,∞ formulas in positive
normal form. It is simple to verify that the until and the release operators are dual, and
therefore, the logic is closed under semantic negation.

For such a logic, we study the related satisfiability and model-checking problems.
For a given PMITL0,∞ formula ϕ and an L/U automaton A such that the lower (resp.,
upper) bound parameters of A are from L (resp., U), we consider the emptiness and
universality problems for the following sets of parameter valuations: the set S(ϕ) of
parameter valuations that make ϕ satisfiable, and the set V (A, ϕ) of parameter valu-
ations v for which every timed sequence accepted by [[A]]v satisfies ϕ. Note that the
semantics of L/U automata can be slightly modified such that an L/U automaton recog-
nizes timed sequences (see [4] for standard timed automata).

We solve the above decision problems by reducing them to corresponding problems
on L/U automata. The key of these reductions is the translation of a PMITL0,∞ formula
into an equivalent L/U automaton. Such translation relies on the construction given in
[4] for MITL0,∞ and TA.

Theorem 8. For a PMITL0,∞ formula ϕ and an L/U automatonA, checking for empti-
ness and universality of S(ϕ) and V (A, ϕ) is PSPACE-complete.

5 Conclusion

We have studied some decision problems on L/U automata. In particular, we have shown
that the emptiness and universality problems for the set of parameter valuations for
which there is an infinite accepting run are decidable and PSPACE-complete. This allows
us to prove decidability of a parametric extension of MITL0,∞. Furthermore, we have
studied a constrained version of emptiness and universality with parameters constrained
by linear systems of equations and inequalities. For the ease of presentation we do not
allow to specify clock invariants on locations of L/U automata. However, it is simple to
verify that the addition of invariants would not change the validity of our arguments.

There are other results that can be derived from those presented here. As an example,
we could combine the results on constrained decision problems along with those on
PMITL0,∞ to solve the constrained versions of the decision problems for PMITL0,∞.
Moreover, when all the parameters in the model are of the same type (i.e., either lower
bound or upper bound), it is possible to compute an explicit representation of the set
Γ (A) by linear constraints over parameters (this can be done similarly to what is done

936 L. Bozzelli and S. La Torre

in [3] for PLTL). Also, we can solve some optimization problems on the parameter
valuations, which can be very interesting for system designers, and decide the finiteness
of the set Γ (A).

As future research, we think of the extension of our results to real-valued parameters.
The results we have shown in this paper answer only partially to this problem. Another
interesting direction is to investigate the parametric extension of MITL [4], where con-
straints are expressed in form of intervals as opposed to bounds as in PMITL0,∞. The
technique we have used here for PMITL0,∞ does not seem to scale to such a logic, and
a different approach may be required.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Information and
Computation 104(1), 2–34 (1993)

2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

3. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for model measur-
ing. ACM Transactions on Computational Logic 2(3), 388–407 (2001)

4. Alur, R., Feder, T., Henzinger, Th.A.: The benefits of relaxing punctuality. Journal of the
ACM 43(1), 116–146 (1996)

5. Alur,R.,Henzinger,Th.A.,Vardi,M.Y.:Parametricreal-timereasoning.In:Proc.ofthe25thACM
Symposium on Theory of Computing (STOC’93), pp. 592–601. ACM Press, New York (1993)

6. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems. LNCS, vol. 3185,
pp. 1–24. Springer, Heidelberg (2004)

7. Bruyère, V., Dall’Olio, E., Raskin, J.F.: Durations, Parametric Model-Checking in Timed
Automata with Presburger Arithmetic. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS,
vol. 2607, pp. 687–698. Springer, Heidelberg (2003)

8. Bruyère, V., Raskin, J.F.: Real-time model-checking: Parameters everywhere. In: Pandya,
P.K., Radhakrishnan, J. (eds.) FST TCS 2003: Foundations of Software Technology and The-
oretical Computer Science. LNCS, vol. 2914, pp. 100–111. Springer, Heidelberg (2003)

9. Emerson, E.A., Trefler, R.: Parametric Quantitative Temporal Reasoning. In: Proc. 14th Ann.
Symp. Logic in Computer Science (LICS’99), pp. 336–343. IEEE Computer Society Press,
Los Alamitos (1999)

10. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid automata.
Journal of Computer and System Sciences 57, 94–124 (1998)

11. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of
timed automata. Journal of Logic and Algebraic Programming 52,53, 183–220 (2002)

12. IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std 1394-1995
(August 1996)

13. Lamport, L.: A Fast Mutual Exclusion Algorithm. ACM Transactions Computer Sys-
tems 5(1), 1–11 (1987)

14. Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th IEEE Symposium on Foun-
dations of Computer Science, pp. 46–77. IEEE Computer Society Press, Los Alamitos (1977)

15. Pottier, L.: Minimal solutions of linear diophantine systems: bounds and algorithms. In:
Book, R.V. (ed.) Rewriting Techniques and Applications. LNCS, vol. 488, pp. 162–173.
Springer, Heidelberg (1991)

16. Wang, F.: Parametric timing analysis for real-time systems. Information and Computa-
tion 130(2), 131–150 (1996)

On the Complexity of Ltl Model-Checking of

Recursive State Machines�

Salvatore La Torre1 and Gennaro Parlato1,2

1Università degli Studi di Salerno, Italy
2University of Illinois at Urbana-Champaign, USA

Abstract. Recursive state machines (rsms) are models for programs
with recursive procedural calls. While Ltl model-checking is Exptime-
complete on such models, on finite-state machines, it is Pspace-complete
in general and becomes Np-complete for interesting fragments. In this
paper, we systematically study the computational complexity of model-
checking rsms against several syntactic fragments of Ltl. Our main re-
sult shows that if in the specification we disallow next and until, and re-
tain only the box and diamond operators, model-checking is in Np. Thus,
differently from the full logic, for this fragment the abstract complexity
of model-checking does not change moving from finite-state machines to
rsms. Our results on the other studied fragments confirm this trend, in
the sense that, moving from finite-state machines to rsms, the complex-
ity of model-checking either rises from Pspace-complete to Exptime-
complete, or stays within Np.

1 Introduction

Linear temporal logic (Ltl) is a specification language commonly used for ex-
pressing correctness requirements of reactive systems [10,11]. An Ltl formula
is built from atomic propositions, boolean connectives, and temporal modalities
such as next, diamond, box, and until, and is interpreted over infinite sequences
of states which model computations of reactive programs. A typical temporal re-
quirement is “every request p is followed by a response q,” and can be expressed
in Ltl as � (p→ � q).

Given an abstract model M of a reactive system and an Ltl formula ϕ,
Ltl model-checking asks whether an infinite computation of M satisfying ϕ
exists. When M is finite-state, this decision problem is Pspace-complete [12].
Despite the high computational complexity, solutions to Ltl model-checking are
implemented in verification tools and successfully applied in practice (see [5,9]).

The control flow of programs with recursive procedure calls can be naturally
captured with recursive state machines (rsms). In an rsm, vertices can either
be ordinary states or can correspond to invocations of other state machines in
a potentially recursive manner. We recall that rsms correspond to pushdown

� This research was partially supported by the MIUR grant ex-60% 2005, Università
degli Studi di Salerno.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 937–948, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

938 S. La Torre and G. Parlato

systems, and the related model-checking problem has been extensively studied
in the literature [1,4,8,13]. Among the many interesting results, we recall that
Ltl model-checking of rsms is Exptime-complete [4].

On finite-state systems, the computational complexity of model-checking for
meaningful Ltl fragments improves (see [6]). In particular, for the logic of all for-
mulae obtained by allowing an arbitrary nesting of diamond and box operators,
which we denote with L(�), model-checking is Np-complete [12]. This fragment
is very rich and can express many interesting properties of reactive systems, such
as liveness (as the above response property) but also safety, fairness, and others.

In this paper, we systematically study the computational complexity of model-
checking rsms with respect to specifications from natural syntactic fragments of
Ltl. Our goal is the discovery of more efficient algorithms for interesting classes
of specifications and a better understanding of the computational complexity of
this decision problem. The main result of this paper concerns the computational
complexity of model-checking rsms with respect to L(�) specifications. We show
that this problem is in Np, that matches the known lower bound for finite-state
machines. Thus, differently from full Ltl, the computational complexity of L(�)
model-checking stays unchanged while moving from finite-state systems to rsms.
Considering the simple structure of L(�) models [12], this result may not seem
surprising. However, the effects of mixing this logic with the use of a stack were
not completely clear. In the Exptime-hardness proof for Ltl [4], the stack of
the model is used to linearize computations of an alternating Turing machine
working in polynomial space and this basically allows the authors to carry over
the Pspace-hardness proof of the Ltl model-checking of finite-state machines.
Moreover, the expressiveness of L(�) combined with the alternation provided by
a 2-player game graph suffices to prove a matching lower bound for deciding full
Ltl games [3].

To show Np membership for the model-checking of rsms with respect to
L(�) specifications, we define a certificate (a finite sequence of alternate nodes
and set of nodes of the rsm) and then show that the problem can be reduced to
answering two distinct queries: (1) checking that the certificate satisfies the given
formula, and (2) checking that there exists a run of the given rsm which matches
the certificate. To complete the Np membership argument we also show that we
only need to investigate certificates of length bounded by the size of the formula.
Observe that the smallest model of an L(�) formula among all the runs of an
rsm can be of size over-polynomial, thus looking for an abstract representation
of runs is needed and clearly the arguments used in showing Np membership of
this problem on finite Kripke structures [12] cannot be applied here.

The other results of this paper concern the model-checking of rsms with
respect to specifications expressed in other syntactic fragments of Ltl. For
fragments whose model-checking problem on finite-state machines is Pspace-
complete, we show Exptime-hardness, and therefore the model-checking prob-
lem is Exptime-complete. For fragments whose model-checking problem on
finite-state machines is Np-complete, we instead give an Np upper bound. Re-
markably, for some of these fragments we re-use results shown to prove Np

On the Complexity of Ltl Model-Checking of Recursive State Machines 939

membership for L(�). All the results are summarized in a table in the conclud-
ing section.

2 Logic and Models

2.1 Propositional Linear Temporal Logic

In this section, we briefly recall the logic Ltl and Ltl model-checking (see [7]).
Given a set of atomic propositions AP , a propositional linear temporal logic

(Ltl) formula is composed of atomic propositions from AP , the boolean connec-
tives negation (¬), conjunction (∧) and disjunction (∨), the temporal operators
next (�), diamond (�), box (�), and until (U). Formulae are built up in the
usual way from these operators and connectives, according to the following gram-
mar

ϕ := p | ¬ϕ |ϕ ∧ ϕ | �ϕ |ϕ U ϕ,

where p is an atomic proposition of AP . The other formulae can be introduced as
abbreviations in the usual way. In particular, the diamond operator is a restricted
form of until (i.e., �ϕ ≡ true U ϕ holds), and the box operator expresses the
logical negation of the diamond operator (i.e., �ϕ ≡ ¬(�¬ϕ) holds).

Ltl formulae are interpreted on linear-time structures. A linear-time structure
(or simply a structure) is a pair (π, labπ) where π is an ω-sequence π = s0s1s2 . . .
of states and labπ is a mapping labπ : {s0, s1, s2, . . .} → 2AP labeling each state
si with the set of propositions that hold at si.

Let π be a structure, i ∈ N0 be a position, and ϕ an Ltl formula. The
satisfaction relation |= is inductively defined as follows.

– (π, i) |= p
def⇔ p ∈ labπ(si);

– (π, i) |= ¬ϕ def⇔ (π, i) |= ϕ holds false (i.e., (π, i) �|= ϕ);
– (π, i) |= ϕ ∧ ψ def⇔ (π, i) |= ϕ and (π, i) |= ψ;
– (π, i) |= �ϕ

def⇔ (π, i+ 1) |= ϕ;
– (π, i) |= ϕ U ψ

def⇔ ∃j ≥ i such that (π, j) |= ψ, and ∀k ∈ [i, j−1], (π, k) |= ϕ;

When (π, 0) |= ϕ, we also write π |= ϕ and say that π is a model of ϕ.
An Ltl-formula ϕ is satisfiable if there exists a model of ϕ. Given an Ltl

formula ϕ, we denote with |ϕ| its length. We denote with L(�) the Ltl fragment
that allows only � and � as temporal operators (no next or until operators are
allowed).

Given a set of atomic propositions AP , a Kripke structure over AP is a tuple
M = (S,Δ, lab, I) where: S is a (possibly infinite) set of states ; Δ ⊆ S × S is a
transition relation; lab : S → 2AP is a labeling function that associates with each
state s a set of atomic propositions lab(s) (meaning that the atomic propositions
that hold true at s are exactly those in lab(s)); I ⊆ S is the set of the initial
states of M .

We say that M is a finite Kripke structure when S is finite. A run or path of
M is a (finite or infinite) sequence of states π = s0s1 . . . of M , such that s0 ∈ I

940 S. La Torre and G. Parlato

and (si, si+1) is a transition of M , with i ≥ 0. Notice that, each run in M is a
linear-time structure. We write M |= ϕ when there exists an infinite run π of M
such that π |= ϕ. The model-checking problem is: “given a Kripke structure M
and an Ltl formula ϕ, does M |= ϕ?” With |M | we denote the size of M , that
is |S|+ |Δ|.

In the following, we use the result.

Theorem 1 ([12]). The model-checking problem of a finite Kripke structure
against an L(�) formula is Np-complete.

2.2 Recursive State Machines

In this section, we recall the recursive state machines (rsms) introduced in [1].

Syntax. Let IM = {1, . . . , k}. A recursive state machine (rsm) M over a set of
atomic propositions AP is a tuple (M1, . . . ,Mk), where Mh = (Nh, Bh, Yh,Enh,
Exh, Eh, trueh), for h ∈ IM, is a module and consists of the following compo-
nents:

– A finite nonempty set of nodes Nh, and a finite set of boxes Bh.
– A labeling Yh : Bh → IM that assigns to every box a module index.
– A set of entry nodes Enh ⊆ Nh, and a set of exit nodes Exh ⊆ Nh.
– Let Callsh = {(b, e)|b ∈ Bh, e ∈ Enj , j = Yh(b)} denote the set of calls of
Mh, and Retnsh = {(b, x)|b ∈ Bh, x ∈ Ex j , j = Yh(b)} denote the set of
returns in Mh. Then, Eh ⊆ ((Nh ∪ Retnsh) × (Nh ∪ Callsh)) is the set of
edges of Mh.

– A labeling function trueh : Nh → 2AP that associates a set of atomic propo-
sitions to each node of Mh.

We assume that N1, . . . , Nk (respectively, B1, . . . , Bk) are pairwise disjoint.
We define with N =

⋃
i∈IM

Ni the set of all nodes of M, with B =
⋃
i∈IM

Bi
the set of all boxes of M, and with E =

⋃
i∈IM

Ei the set of all edges of M.
Also, Y : B → IM denotes the extension of all the functions Yh, h ∈ IM, and
true : N → 2AP denotes the extension of all the functions trueh (h ∈ IM).
Module Mk is the initial module of M.

Fig. 1 illustrates the definition. The rsm has two modules. The module M1

has 5 nodes, of which e1 and e2 are the entry nodes and x1 and x2 are the exit
nodes, and two boxes, of which b1 is mapped to module M2 and b2 is mapped
to M1. The entry and exit nodes are the control interface of a module by which
it can communicate with the other modules. Intuitively, think of modules as
procedures, and an edge entering a box invoking the procedure associated with
the box.

Semantics. With each module of an rsm, we associate a Kripke structure by
recursively substituting each box by the module referenced by the box. Formally,
we associate to the module Mh the Kripke structure MF

h = (Sh, Δh, labh, Ih),
called the expansion or the flat of Mh in M, as follows. The states Sh of MF

h

are elements of the form 〈αu〉 where αu ∈ B∗ ×N and either

On the Complexity of Ltl Model-Checking of Recursive State Machines 941

e2 x2

e3

M2

x3

b3 : M1

u

b1 : M2

b2 : M1

v

e1

M1

x1

x4

Fig. 1. A sample recursive state machine

– α = ε and u ∈ Nh, or,
– α = b1 . . . b� (with � ≥ 1), b1 ∈ Bh, bi+1 ∈ BY (bi) for every i ∈ [1, �− 1], and
u ∈ NY (b�).

The initial states of MF
h are Ih = {〈e〉|e ∈ Enh}. The labeling function is

labh(〈αu〉) = true(u). In the following, for the ease of presentation, we also
denote the states of M of the form 〈αbu〉, where (b, u) is a call or a return,
as 〈α(b, u)〉. Therefore, states corresponding to calls or returns will have two
representations and of the two we will always use the more convenient one,
as for the following definition. Given two states X,X ′ of MF

h , we define the
transition relation Δh as: (X,X ′) ∈ Δh iff X = 〈αu〉, X ′ = 〈αv〉, and (u, v) is
an edge of M. (Note that in order to make the above definition consistent, we
implicitly use the representation of the form 〈β(b, z)〉 for X , if (b, z) is a return,
and for X ′, if (b, z) is a call, and the standard representation in all the other
cases.) The expansion MF

k of the initial module of M is also denoted MF .
Given a state X = 〈αu〉 with u ∈ N , we denote with node(X) the node u,

and say that u is the node of X .
An rsm M satisfies an Ltl formula ϕ, written M |= ϕ, iff MF |= ϕ. The

model-checking problem of an rsmM against an Ltl formula ϕ is to determine
whether M satisfies ϕ. The following result holds.

Theorem 2 ([1]). The problem of model-checking an rsm against an Ltl for-
mula is Exptime-complete.

3 The Complexity of L(�) Model-Checking on rsms

In this section we show that model-checking of L(�) formulae against rsms is
Np-complete. We prove first some preliminary results and then use them to argue
the claimed result.

Fix an rsmM and an L(�) formula ϕ. Our first goal is to define a finite cer-
tificate for a run that will be used in the argument to show membership in Np.
An M-sequence of length � is a sequence γ = u0, U1, u2, U3, . . . , u2�, U2�+1 suc
h that u0, u2, . . . , u2� are M nodes, and U1, U3, . . . , U2�+1 are sets of M nodes.
For a run π of MF and an M-sequence γ as above, we say that π and γ match
if π can be factored as X0π1X2π3 . . . X2�π2�+1 where X2i are states, π2i+1 are

942 S. La Torre and G. Parlato

runs, node(X2i) = u2i, and all the nodes of states occurring in π2i+1 belong to
U2i+1, for every i ∈ [0, �], and for all u ∈ U2�+1, u is the node of infinitely many
states in π2�+1.

It is crucial for our argument to be able to decide in polynomial time whether
there exists an MF run that matches a given M-sequence γ. We can construct
a simple Büchi automaton A of size linear in the sizes ofM and γ which accepts
infinite sequences matching γ. Therefore, the above problem reduces to checking
for emptiness the intersection of M and A. Thus, by the results shown in [1,8]
we have:

Lemma 1. Given anM-sequence γ, deciding if there exists a run ofMF match-
ing γ can be done in deterministic polynomial time in the size of M and the
length of γ.

The second important step in our argument for showing Np membership consists
of defining a notion of satisfiability of formulae on M-sequences that can be
checked efficiently and that is sufficient to show satisfiability on a matching run
of MF .

Fix anM-sequence γ = u0, U1, u2, U3, . . . , u2�, U2�+1. We denote with BD(ϕ)
the set of all the box/diamond sub-formulae ψ of ϕ, and for a linear structure
π = s0s1s2 . . ., we denote with BDϕ

π(si) the set of all formulae ψ of BD(ϕ) such
that (π, i) |= ψ.

We say that γ satisfies ϕ if:

1. the sequence π = u0u2 . . . u2�π
′ is a model of ϕ, where π′ is any infinite

sequence over U2�+1 such that each u ∈ U2�+1 occurs as the node of infinitely
many states of π′;

2. for every i ∈ [1, �] and for every u in U2i−1, BDϕ
π̂(u) = BDϕ

π(u2i) where
π̂ = uu2i . . . u2�π

′.

The following proposition elaborates on some results shown in [12] for the
logic we are considering.

Proposition 1. Let π = s0s1s2 . . . be a structure and π′ be the suffix of π such
that for each state s in π′ there are infinitely many states s′ in π′ such that
labπ(s) = labπ(s′).1

1. For an L(�) formula ϕ, the set of ϕ sub-formulae that hold at a state si
depends only on the atomic propositions that hold at si and the box/diamond
sub-formulae that hold at si+1 along π.

2. For ϕ ∈ L(�), BDϕ
π(s′) = BDϕ

π(s′′) for every pair of states s′, s′′ within π′.

The following lemma states that satisfaction of a formula ϕ on a given M-
sequence can be efficiently verified.

Lemma 2. Given an L(�) formula ϕ and an M-sequence γ, checking that γ
satisfies ϕ can be done in polynomial time.
1 Note that such a suffix of π always exists since 2AP is finite.

On the Complexity of Ltl Model-Checking of Recursive State Machines 943

Proof. Checking part 1 of the definition of satisfiability onM-sequences is trivial
and can be done in linear time (see [12]). From Proposition 1, we can start
computing BDϕ

π(u) for a u in π′, and then we compute the subsets BDϕ
π(u2i) for

i = �, . . . , 0. Therefore, the lemma is proved. ��

A crucial step in our argument for showing membership in Np is to prove that we
can answer to our model-checking question simply searching for anM-sequence
γ which satisfies the given formula and checking for the existence of a run of
MF matching γ. The next two lemmas prepare such a result.

Lemma 3. If anM-sequence γ satisfies ϕ then each run ofMF which matches
γ also satisfies ϕ.

Proof. Let γ = u0, U1, u2, . . . , U2�−1, u2�, U2�+1 be an M sequence satisfying ϕ
and π be a run ofMF that matches γ. Thus, π can be factorized as X0π1X2π3 . . .
X2�π2�+1 where for all u ∈ U2�+1, u occurs infinitely often in π2�+1 and for
i ∈ [0, �]: X2i are states, π2i+1 are runs, node(X2i) = u2i, and all the nodes of
π2i+1 states belong to U2i+1. By part 2 of Proposition 1, we have that we can
compute the set BDϕ

π(X) for each state X of π2�+1 by simply computing it for
one of them. Since the sets of atomic propositions which occur infinitely often in
π2�+1 are exactly the sets of atomic propositions which label the nodes of U2�+1,
by part 1 of Proposition 1, BDϕ

π(u0) = BDϕ
π(X0) holds. Therefore, π satisfies ϕ

and the lemma is proved. ��

Lemma 4. If a run π of MF satisfies ϕ then there is an M-sequence of length
� ≤ |BD(ϕ)| + 1 which satisfies ϕ and matches π.

Proof. Let π = X0X1X2 . . . be a run of MF that satisfies ϕ. Denote with ρ
the sequence s0s1s2 . . . where si = node(Xi) for all i = 0, 1, 2 We construct
a matching M-sequence γ as follows. For each diamond sub-formula ψ of ϕ,
consider the maximum index i such that (ρ, i) |= ψ (if defined). Instead, for each
box sub-formula ψ of ϕ, consider the maximum index i such that (ρ, i) �|= ψ
(if defined). Take the nodes corresponding to such indices and denote them as
u2, . . . , u2�−2 (by increasing indices). Observe that � ≤ |BD(ϕ)| + 1. Since the
number of M nodes is finite, there is a suffix ρ′ of ρ starting after u2�−2 such
that all nodes of ρ′ occur infinitely often in ρ′. Take as node u2� an arbitrary
node in ρ′ and as u0 the first node of ρ. Therefore, ρ can be factorized as
u0ρ1u2 . . . ρ2�−1u2�ρ2�+1. (Note that ρ2�+1 is a suffix of ρ′.) Thus, we define γ as
u0, U1, u2, . . . , U2�−1, u2�, U2�+1, where U2i+1 is the set of all nodes of ρ2i+1 for
i = 0, . . . , �. By construction, γ satisfies ϕ, and the lemma is shown. ��

By Lemmas 3 and 4, we get the following theorem.

Theorem 3. M |= ϕ if and only if there are an M-sequence γ of length at
most |BD(ϕ)|+1 and an MF run π such that π and γ match, and γ satisfies ϕ.

Now we are ready to show membership in Np for the model-checking of L(�)
formulae on rsms.

944 S. La Torre and G. Parlato

Lemma 5. L(�) model-checking on rsms is in Np.

Proof. Let M be an rsm and ϕ be a formula. To check in nondeterministic
polynomial time if there is a run ofMF satisfying ϕ we can guess anM-sequence
γ of length at most |BD(ϕ)| + 1, then check if it satisfies ϕ and if there exists
a run ofMF which matches it. The correctness and the time complexity of this
algorithm are a consequence of Lemmas 1 and 2, and Theorem 3. ��

From Lemma 5 and from the fact that L(�) model-checking is Np-hard already
on finite Kripke structures (see [12]), we have the main result of this section.

Theorem 4. L(�) model-checking on rsms is Np-complete.

4 Syntactic Fragments of Ltl

In this section, we show the complexity bounds on other natural syntactic frag-
ments of Ltl. We start introducing a notation for systematically defining such
logics.

We denote with L(H1,H2, . . .) the fragment which allows only the temporal
operators H1,H2, For instance L(U) is “Ltl without �”. Consistently, we
have denoted with L(�) the fragment with only � and �. For a formula ϕ,
the temporal height of ϕ is the maximum number of nested temporal operators
in it. We write Lk(H1, . . .) to denote the fragment of L(H1, . . .) where k ≥ 0
corresponds to the maximum temporal height which is allowed. We omit the
index k when no bound is imposed, i.e. L(H1, . . .) = Lω(H1, . . .).

Formulae of Temporal Height 1

The logic L1(U , �) contains all Ltl formulae of temporal height 1, that is, all
such formulae where temporal operators are not nested.

Model-checking rsms against formulae of L1(U , �) is Np-complete. To show
this we observe that since temporal height is 1, formulae of this fragment are
boolean combinations of simple formulae with just one temporal operator. For-
mulae which use only the until operator without nesting it have simple properties
as those shown for L(�) formulae in Section 3. Therefore, we can handle boolean
combinations of such formulae as we have done for formulae of L(�). Being the
next operator non nested, we can only use it to specify properties on the second
state of a run, and therefore we get membership to Np for L1(U , �). Since L1(�)
is already Np-hard for Kripke structures [12], we have the following theorem.

Theorem 5. L1(U , �) model-checking of rsms is Np-complete.

As a corollary of the above result and since L1(�) is Np-hard, we get:

Corollary 1. Model-checking of rsms for the logics L1(�, �) and L(U) is Np-
complete.

On the Complexity of Ltl Model-Checking of Recursive State Machines 945

Fragments with Only “Until” Formulae

In this section, we show that model-checking of rsms is already Exptime-hard
for L2(U) formulae, and thus for the fragments L2+k(U), L2+k(U , �) and L(U).
We adapt the proof given in [4] to show hardness for full Ltl. We briefly sketch
the differences with the original proof and ask the reader to refer to [4] for further
details.

Theorem 6. L2(U) model-checking of rsms is Exptime-complete.

Proof. Recall that the proof given in [4] consists of a reduction from the mem-
bership problem for linearly bounded alternating Turing machines. Given an
alternating Turing machine M and an input word w, the reduction constructs
a pushdown system A and an L(�, �) formula ϕ such that M accepts w if and
only if there exists a sequence x accepted by A such that x |= ϕ. The idea is that
x encodes a computation of M starting with w on the input tape. The formula
ϕ is mainly responsible for checking consistency between consecutive configu-
rations. The automaton A takes care of the tree structure of M computations
and ensures that consecutive configurations of the computation tree are encoded
consecutively in the word x.

The word x encodes configurations position by position and consecutive con-
figurations are separated by symbol #. Formula ϕ has the form

�((p# ∧ �n+2p#)⇒ (ϕ1 ∧ ϕ2 ∧ ϕ3))

where ϕ1, ϕ2 and ϕ3 are boolean combinations involving sub-formulae of the
form �iψ or simple atomic propositions. Note that the condition (p#∧ �n+2p#)
holds true on the beginning of each configuration except the last one. We aim
to show that we can replace every sub-formula of the form �iψ with an until
formula, and therefore the reduction will hold for also for the fragment L2(U).

For such purpose, let 0, 1, 2 be fresh atomic propositions. We label all the
positions of a configuration with an atomic proposition from {0, 1, 2} and require
that the first configuration in x is marked with 0, the second with 1, the third
with 2, the fourth with 0, and so on. We also require that each position can be
distinguished by the other positions in the configuration (i.e., we use pairwise
disjoint sets of atomic propositions for encoding the content of each position).
We use superscripts on the atomic propositions to denote the position in the
configuration.

Consider a ϕ sub-formula �jpa, j ≤ n, we recall that according to the en-
coding from [4], the purpose of this formula is to check that the j-th position
of the current configuration contains symbol a. We substitute this formula with
∧2
i=0(i→ (i U pja)).
Consider now a ϕ sub-formula �n+j+2pa, j ≤ n, we recall that the purpose of

this formula is to check that the j-th position of the next configuration contains
symbol a. We substitute this formula with ∧2

i=0(i→ ((i∨(i+1)) U (pja∧(i+1))),
where (i+ 1) is modulo 3.

Note that there are no sub-formulae of ϕ that relate configurations that are not
consecutive, i.e., the index j of a sub-formula �jpa of ϕ is not larger than 2n+2.

946 S. La Torre and G. Parlato

Moreover, we do not use more than an until operator for each maximal sub-
formula of nested next operators. Therefore, the formula obtained by translating
ϕ in the above way has temporal height 2. Besides, the size of the new formula
is linear in the size of ϕ. Thus, we have the theorem. ��

Thus, from Theorems 2 and 6, we have the following corollary

Corollary 2. Model-checking of rsms for the logics L2+k(U), L2+k(U , �) and
L(U), for each k, is Exptime-complete.

The Complexity of Nesting “Next” Operator

We consider first the logic Lk(�, �), that is, the logic containing only formulae
over the boolean operators and the temporal operators diamond and next, whose
temporal height is bounded by k.

For a formula ϕ in such fragment we can push the next operators on the
atomic propositions with a quadratic blow up. Then, we can replace each maxi-
mal next sub-formula with a fresh proposition thus obtaining an Lk(�) formula
ϕ′ of quadratic size in |ϕ|. For a given rsm M = (M1, . . . ,Mh) we consider a
new rsmM′ such that for each machine Mi we add a machine Mv1...vk

i for each
sequence v1 . . . vk of M nodes. Each such machine simulates Mi and maintains
in the control the tuple of the next k nodes. Thus nodes, boxes and transitions
are added consistently with this meaning. We label each node with the atomic
propositions of the corresponding node of M and with the new atomic proposi-
tions corresponding to the next formulae that are satisfied on the sequence of the
next k nodes which is paired with it. Observe that since k is constant the size of
M′ is polynomial in the size of M. Therefore, model-checking ϕ on M reduces
in polynomial time to model-checking ϕ′ on M′. Observe that, on formulae of
Lk(�), for each fixed k, we can determinize the nondeterministic algorithm we
have given in the Np membership proof of L(�) such that the resulting algorithm
runs in polynomial time (recall k is constant). Therefore we have the following
theorem.

Theorem 7. Lk(�, �) model-checking of rsms is in Ptime.

If we allow nesting the next operator an unbounded number of times, then the
model-checking problem becomes Np-complete. Membership in Np is trivial:
we just guess a sequence of k nodes and simulate the rsm according to this
sequence. Np-hardness is inherited from the complexity of model-checking the
same fragment of Ltl on finite Kripke structures [6].

Theorem 8. L(�) model-checking of rsms is Np-complete.

5 Conclusion

In this paper we have analyzed the computational complexity of model-checking
fragments of Ltl by restricting the choice of the temporal operators and the

On the Complexity of Ltl Model-Checking of Recursive State Machines 947

Table 1. Model-checking of rsms against Ltl fragments by bounding the temporal
height

0 ≤ k < ω Recursive State Machines Finite Kripke Structures
L(�) Np-complete Np-complete [12]

L1+k(�) Np-complete Np-complete [12]

L(�, �) Exptime-complete [4] Pspace-complete [12]

L1+k(�, �) Np-complete Np-complete [6,12]

L(U) Exptime-complete Pspace-complete [12]

L2+k(U) Exptime-complete Pspace-complete [6]

L1(U) Np-complete Np-complete [6]

L(�) Np-complete Np-complete [6]

Lk(�) Ptime Ptime [6]

L(U , �) Exptime-complete [4] Pspace-complete [12]

L2+k(U , �) Exptime-complete Pspace-complete [6]

L1(U , �) Np-complete Np-complete [6]

temporal height of formulae. The complete picture of the complexity results
for the considered Ltl fragments is summarized in Table 1. Observe that the
model-checking of fragments that are Pspace-complete on finite Kripke struc-
tures becomes Exptime-complete on rsms, instead for all the remaining frag-
ments this problem stays in the same complexity class on either rsms or finite
Kripke structures.

Our main result is showing that L(�) is in Np. The argument we use relies on
two main properties: the ability of solving in polynomial time a variation of the
reachability problem on the rsms and the possibility of having a small represen-
tation for the instances of such problem which we need to check. The first result
is not surprising, though it requires some expertise, since the set of reachable
configurations in a pushdown system is regular and thus reachability-like queries
can be efficiently computed. For the reasons discussed in the introduction, what
was not clear was the kind of certificate to use in our arguments and also if a
“small” certificate existed for such problem.

In [1], it is shown that Ltl model-checking for rsms and for pushdown systems
are inter-reducible in linear time. Moreover, the acceptance problem of linearly
bounded alternating Turing machines can be reduced to Ltl model-checking
on pushdown systems (see [4]). Thus, the Exptime-completeness of Ltl model-
checking problem for rsms comes directly from pushdown systems. Actually, the
proof given in [4] also constitutes a proof of Exptime-hardness for L(�, �).

Investigating logics of formulae with bounded temporal height is interesting
and gives a better understanding of the actual complexity of real instances of
the model-checking problem. In fact, in the applications, the temporal height
often turns out to be at most 2 (or 3 when fairness is involved) even when the
specification is quite large and combines a large number of temporal constraints.
A bounded height is often invoked as a reason why Ltl model-checking is feasible
in practice [6]. We think that such investigation for pushdown systems is even

948 S. La Torre and G. Parlato

more interesting because of the extremely high complexity of the problem for
full Ltl.

The logic Ltl does not allow to express non regular properties on the runs
of an rsm, such as properties of the call-stack. The logic CaRet [2] extends
Ltl with operators that allow for example to check the call-stack content or
express properties on the effects of runs within modules (local properties). Model-
checking CaRet specifications is also Exptime-complete. An interesting line of
future research is to systematically study the impact of the CaRet operators
on the complexity of model-checking. It is simple to verify that, except for the
operators that refer to the call-stack content, there are no changes with what
we have shown in this paper. Remarkably, we can show that model-checking
formulae that allow to inspect the stack sequence using the diamond operator is
Pspace-hard, and we conjecture that is also in Pspace.

References

1. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4),
786–818 (2005)

2. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

3. Alur, R., Torre, S.L., Madhusudan, P.: Playing games with boxes and diamonds.
In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 127–141.
Springer, Heidelberg (2003)

4. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown auto-
mata: Application to model-checking. In: Mazurkiewicz, A. W, Winkowski, J. (eds.)
CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

5. Clarke, E., Kurshan, R.: Computer-aided verification. IEEE Spectrum 33(6), 61–67
(1996)

6. Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics
in simple cases. Inf. Comput. 174(1), 84–103 (2002)

7. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science. Formal Models and Sematics (B), vol. B, pp. 995–1072 (1990)

8. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

9. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

10. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems:
Specification. Springer, Heidelberg (1991)

11. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society Press, Los Alamitos (1977)

12. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

13. Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Com-
put. 164(2), 234–263 (2001)

Paper Retraction: On the Hardness of

Embeddings Between Two Finite Metrics

Matthew Cary, Atri Rudra, and Ashish Sabharwal

Computer Science and Enginnering,
University of Washington, Seattle, WA 98195-2350, U.S.A

We regret to report that we have found an error in our paper “On the Hardness of
Embeddings Between Two Finite Metrics,” which appeared in the Proceedings of
the 32nd International Colloquium on Automata, Languages and Programming
(ICALP), Lisboa, Portugal, July 2005.

In that paper, we sought to prove NP-hardness of approximating the minimum
distortion when one finite metric is embedded into another. While the fairly
involved reduction we presented was correct, the Directed Disjoint Cycle Cover
(DDCC) problem we were reducing from has a polynomial-time algorithm, as
noticed later by Jiri Sgall. Despite much effort, we have not been able to find
an alternate reduction, and it remains open whether our claimed hardness of
approximation results still hold.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, p. 949, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Author Index

Adida, Ben 484
Alon, Noga 352, 435, 789
Arenas, Marcelo 888
Atserias, Albert 279, 558
Attrapadung, Nuttapong 496

Bansal, Ajay 472
Bansal, Nikhil 28
Bar-Noy, Amotz 219
Barceló, Pablo 888
Beame, Paul 134
Bellare, Mihir 399, 411
Berger, André 90
Bienvenu, Laurent 643
Björklund, Henrik 850
Bläser, Markus 801
Blömer, Johannes 65
Bodirsky, Manuel 546
Boigelot, Bernard 813
Bojańczyk, Miko�laj 850
Bošnački, Dragan 158
Bozzelli, Laura 925
Brihaye, Thomas 825
Brusten, Julien 813
Bulatov, Andrei 279, 558
Bürgisser, Peter 207

Cai, Jin-Yi 631
Caragiannis, Ioannis 447
Cary, Matthew 949
Chan, Ho-Leung 28
Chandran, Nishanth 423
Chazelle, Bernard 1
Cheilaris, Panagiotis 219
Chen, Hubie 546
Christodoulou, George 40
Chu, Matthew 728
Coja-Oghlan, Amin 777, 789
Colcombet, Thomas 901
Cucker, Felipe 207

Dalmau, Victor 279
Damg̊ard, Ivan 2
David, Matei 134
Dawar, Anuj 558, 913

Dedic, Nenad 255
Dell, Holger 801
Demaine, Erik D. 146
Dershowitz, Nachum 291
Dorn, Frederic 15

Elkin, Michael 716
Elkind, Edith 158

Fellows, Michael R. 340
Fertin, Guillaume 340
Fiat, Amos 583
Fiore, Marcelo 607
Flammini, Michele 447
Fomin, Fedor V. 15, 352
Fraigniaud, Pierre 231
Franceschini, Gianni 533
Furukawa, Jun 496

Gavoille, Cyril 231
Genest, Blaise 158
Gimbert, Hugo 850
Goubault-Larrecq, Jean 764
Grigni, Michelangelo 90
Grohe, Martin 363, 913
Groth, Jens 423
Grüber, Magdalena 363
Guha, Sudipto 704
Guo, Jiong 375
Gupta, Ankur 521
Gupta, Gopal 472
Gutin, Gregory 352
Gutner, Shai 435

Hàn, Hiê.p 789
Hasuo, Ichiro 619
He, Meng 509
Henzinger, Thomas A. 825
Hermelin, Danny 340
Hon, Wing-Kai 521
Hur, Chung-Kil 607

Ilcinkas, David 231
Ishai, Yuval 243
Iwama, Kazuo 110

952 Author Index

Jacobs, Bart 619
Jurdziński, Marcin 838

Kang, Mihyun 789
Kannan, Sampath 728
Kaplan, Haim 583
Kapron, Bruce 328
Kára, Jan 546
Karianto, Wong 875
Katriel, Irit 171
Kenyon-Mathieu, Claire 171
Kiayias, Aggelos 316
Kobayashi, Naoki 740
Kontogiannis, Spyros C. 595
Korman, Amos 102
Koutsoupias, Elias 40
Kovács, Annamária 40
Kreutzer, Stephan 571, 913
Krivelevich, Michael 352

La Torre, Salvatore 925, 937
Laird, James 667
Larose, Benôıt 267
Lee, Jonathan K. 680
Levy, Meital 583
Libkin, Leonid 888
Löding, Christof 875
Lu, Chi-Jen 183
Lu, Pinyan 631
Lüttgen, Gerald 752

Malka, Lior 328
Malkin, Tal 243
Mallya, Ajay 472
McGregor, Andrew 704, 728
Merkle, Wolfgang 643
Miller, Gary L. 655
Mohassel, Payman 255
Montanaro, Ashley 122
Moran, Tal 303
Moscardelli, Luca 447
Motwani, Rajeev 53
Mozes, Shay 146
Munro, J. Ian 509
Muthukrishnan, S. 533

Naewe, Stefanie 65
Namprempre, Chanathip 411
Naor, Moni 303

Neven, Gregory 411
Niedermeier, Rolf 375
Nishimura, Harumichi 110

O’Donnell, Ryan 195
Oertzen, Timo von 546
Olonetsky, Svetlana 219, 583
Ostrovsky, Rafail 387
Otto, Martin 571

Palsberg, Jens 680
Panagiotou, Konstantinos 777
Pandey, Omkant 387
Panigrahy, Rina 53
Parlato, Gennaro 937
Pattinson, Dirk 459
Pelc, Andrzej 231
Peled, Doron 158
Pereira, Fernando Magno Quintão 680
Pettie, Seth 78
Phillips, Todd 655
Pitassi, Toniann 134
Prabhu, Vinayak S. 825
Pruhs, Kirk 28

Rao, S. Srinivasa 509
Raskin, Jean-François 825
Raymond, Rudy 110
Ristenpart, Thomas 399
Rödl, Vojtěch 789
Rossman, Benjamin 146
Rudra, Atri 949

Sabharwal, Ashish 949
Sahai, Amit 387, 423
Saurabh, Saket 352
Schacht, Mathias 789
Schmitz, Sylvain 692
Schneider, Fred B. 12
Schröder, Lutz 459
Schweikardt, Nicole 571, 913
Segev, Gil 303
Shah, Rahul 521
Sheehy, Donald 655
Simon, Luke 472
Smorodinsky, Shakhar 219
Spirakis, Paul G. 595
Srinivasan, Venkatesh 328
Steger, Angelika 777

Author Index 953

Strauss, Martin J. 243
Suto, Takashi 740

Tesson, Pascal 267
Thilikos, Dimitrios M. 15
Trivedi, Ashutosh 838
Tsai, Shi-Chun 183
Tzameret, Iddo 291

Upfal, Eli 171
Uustalu, Tarmo 619

Vialette, Stéphane 340
Vitter, Jeffrey Scott 521
Vogler, Walter 752

Weimann, Oren 146
Wikström, Douglas 484
Wimmer, Karl 195
Winter, Andreas 122
Woelfel, Philipp 134
Wright, Rebecca N. 243
Wu, Hsin-Lung 183

Xu, Ying 53

Yamashita, Shigeru 110

Zhou, Hong-Sheng 316
Zielonka Wies�law 850

	Title Page
	Preface
	Organization
	Table of Contents
	Ushering in a New Era of Algorithm Design
	A “proof-reading” of Some Issues in Cryptography
	Introduction
	What Does “Provable Security” Mean?
	Even Inefficient Security Reductions Are Useful
	Security Reductions Should Be a Design Goal

	An Example: The Adaptive Adversary
	Do Random Oracles Help?

	Conclusion
	References

	Credentials-Based Authorization: Evaluation and Implementation
	Subexponential Parameterized Algorithms
	Introduction
	Preliminaries
	Property (A) and Bidimensionality
	Further Optimizations
	Property (B) and Catalan Structures
	Conclusion
	References

	Competitive Algorithms for Due Date Scheduling
	Introduction
	Minimizing Weighted Quoted Lead Time
	The Algorithm BIT and Its Analysis
	Lower Bounds

	Profit Maximization
	The Algorithm for the Unreliable Model
	Lower Bounds in the Unreliable Model
	The Reliable Model

	Conclusions
	References

	Mechanism Design for Fractional Scheduling on Unrelated Machines
	Introduction
	Related Work
	Our Results

	Problem Definition
	Lower Bound for Truthful Mechanisms
	The Truthful Mechanism
	Lower Bound for Independent Algorithms
	References

	Estimating Sum by Weighted Sampling
	Introduction
	Applications
	Related Work

	Definitions and Summary of Results
	An $\tilde{O}(\sqrt n)$ Estimator Using Linear Weighted Sampling
	Combining Uniform and Linear Weighted Sampling
	An Estimator with $\tilde{O}(\sqrt[3]n)$ Samples
	An Estimator with $\tilde{O}(\sqrt n)$ Samples

	Lower Bounds
	References

	Sampling Methods for Shortest Vectors, Closest Vectors and Successive Minima
	Introduction
	Basic Definitions and Facts
	The Subspace Avoiding Problem SAP, Main Result,and Reductions for SVP, SMP, SIVP and CVP
	The Sieving Procedure and the Sampling Procedure
	The Sieving Procedure
	The Sampling Procedure
	Modification of the Sampling Procedure

	Using the Sampling Procedure for Optimal Solutions
	References

	Low Distortion Spanners
	Introduction
	Notation and Overview
	Modular Spanner Construction
	The Connection Schemes
	Conclusion
	References

	Minimum Weight 2-Edge-Connected Spanning Subgraphs in Planar Graphs
	Introduction
	An Exact Algorithm for Graphs of Bounded Treewidth
	A Linear-Time PTAS for Unweighted Planar Graphs
	A PTAS for Weighted Planar Graphs
	Future Work
	References

	Labeling Schemes for Vertex Connectivity
	Introduction
	Problem and Motivation
	Labeling Schemes
	Vertex Connectivity
	Related Work and Our Contribution

	Preliminaries
	Vertex-Connectivity Labeling Schemes for General Graphs
	The Decomposition
	The Labeling Scheme

	References

	Unbounded-Error One-Way Classical and Quantum Communication Complexity
	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Quantum Tight Bound
	Classical Tight Bound
	Applications to Random Access Coding
	Existence of QRAC and RAC
	Explicit Constructions of QRAC and RAC

	Concluding Remarks
	References

	A Lower Bound on Entanglement-Assisted Quantum Communication Complexity
	Introduction
	Turning Any Distributed Function into a Communication Protocol
	Exact Protocols
	Bounded Error Protocols
	Communication Complexity Lower Bounds from Communication Capacity

	R\'{e}nyi Entropic Bounds on Communication Capacity
	The Quantum Communication Complexity of a Random Function
	Discussion and Open Problems
	References

	Separating Deterministic from Nondeterministic NOF Multiparty Communication Complexity
	Introduction
	Definitions and Preliminaries
	Separating $\ensuremath{\mathsf{P}_{#1}^{cc}}$ from $\ensuremath{\mathsf{RP}_{#1}^{cc}}$
	Oblivious Players, Simple Functions, and a Normal Form
	Representing Simple Functions by Colorings and Cylinder Intersections
	The Lower Bound
	Separating Public from Private Coins

	Lower Bounds for Explicit Simple Functions
	On Complete Problems for $\ensuremath{\mathsf{N}_{#1}^{cc}}$
	References

	An Optimal Decomposition Algorithm for Tree Edit Distance
	Introduction
	Background and Framework
	Shasha and Zhang’s Algorithm
	Klein’s Algorithm
	The Decomposition Strategy Framework

	The Algorithm
	A Tight Lower Bound for Decomposition Algorithms
	Conclusions
	References

	On Commutativity Based Edge Lean Search
	Introduction
	Preliminaries
	An Edge Lean Algorithm for Complete State Coverage
	An Efficient Reduction for Cycle Free State Spaces
	TNF Dfs and Sleep Sets
	Applications
	Experiments
	References

	Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems
	Introduction
	Explicit Scenarios
	Implicit Scenarios
	Lower Bounds
	Upper Bound in a Special Case
	Generalization: The Black Box Model

	References

	On the Complexity of Hard-Core Set Constructions
	Introduction
	Preliminaries
	Hardness and Hard-Core Set Lemma
	Black-Box Constructions of Hard-Core Sets

	Query Complexity in Strongly Black-Box Constructions
	Advice Complexity in Weakly Black-Box Constructions
	No Weakly Black-Box Construction in AC^{0}[p]
	References

	Approximation by DNF: Examples and Counterexamples
	Introduction
	Definitions
	Approximation by DNF
	Approximating Majority by DNF
	Threshold Phenomena and the BKS Conjecture

	Approximating Majority
	A Lower Bound for Majority, Via Total Influence
	Falsifying the BKS Conjecture
	References

	Exotic Quantifiers, Complexity Classes, and Complete Problems
	Introduction
	Preliminaries
	Infinitesimal and Generic Quantifiers
	Standard Complete Problems

	Natural Problems Complete for H∃ and H∀
	Quantifying Genericity
	Discrete Setting
	References

	Online Conflict-Free Colorings for Hypergraphs
	Introduction
	Preliminaries
	An Online CF-Coloring Framework
	An Online Randomized CF-Coloring Algorithm
	Deterministic Online CF-Coloring with Recoloring
	An O(log n) Algorithm with Recoloring for Intervals
	An O(log n) Recoloring Algorithm for Circular Arcs
	An O(log n) Algorithm for Circular Arcs with Substitution
	An O(log n) Algorithm with Recoloring for Halfplanes

	Application to Geometry
	Discussion and Open Problems
	References

	Distributed Computing with Advice: Information Sensitivity of Graph Coloring
	Introduction
	Our Results
	Related Work

	Coloring Cycles with Advice
	Coloring Trees with Advice
	Conclusion
	References

	Private Multiparty Sampling and Approximation of Vector Combinations
	Introduction
	Background
	Privacy
	PIR and Oblivious Transfer

	Private Multiparty Sampling
	Oblivious Transfer with Distributed Receiver
	Private Multiparty Sampling from Distributed OT
	Implementing Distributed OT

	Private Approximation of Vector Combinations
	Vector Sums
	Vector Minima

	References

	Constant-Round Private Database Queries
	Introduction
	Contributions
	RelatedWork

	Preliminaries
	Oblivious and Succinct Computation

	Computing Element Rank and Related Functions
	Succinctly Computing Interval Labeling and Element Rank
	Extending to Higher Dimensions

	Range Retrieval in 2 Dimensions
	Private m^{th}-Ranked Element
	One-Round PIR Is Sufficient for Private Keyword Search
	References

	Universal Algebra and Hardness Results for Constraint Satisfaction Problems
	Preliminaries
	Algebras and Varieties
	Fragments of Datalog

	Nature of the Algebraic and Clone-Theoretic Reductions
	CSP’s That Are Not FO Are L-Hard
	Main Theorems
	Applications
	Boolean CSP’s
	Preprimal Algebras

	References

	On the Power of k-Consistency
	Introduction
	Preliminaries
	Thek-Consistency Test
	MainResult
	Further Comments and Remarks
	References

	Complexity of Propositional Proofs Under a Promise
	Introduction
	Background and Motivation
	Results

	Preliminaries
	Promise Proof Systems
	Promise Axioms
	Promise Resolution

	Big Promise – The Upper Bound
	Smaller Promise – The Lower Bound
	References

	Deterministic History-Independent Strategies for Storing Information on Write-Once Memories
	Introduction
	Our Contributions
	Related Work
	Formal Definitions

	Security Goals and Threat Model
	Overview of the Construction
	The Construction
	Concluding Remarks
	References

	Trading Static for Adaptive Security in Universally Composable Zero-Knowledge
	Introduction
	Preliminaries
	The Leaking Zero-Knowledge Functionality
	R-Commitment
	Functionality $\mathcal{F}_{\mathrm{LZK}}^{R,\mathcal{E}}$
	Relation Between $\mathcal{F}_{\mathrm{ZK}}^{R,}$
	Implementation of $\mathcal{F}_{\mathrm{LZK}}^{R,\mathcal{E}}$in the (FgenPRSE ,FR�ZKPM)-HybridWorld

	A Characterization of Non-interactive Instance-Dependent Commitment-Schemes (NIC)
	Introduction
	Non-interactive, Instance-Dependent Commitment-Schemes
	Characterizing V-Bit Zero-Knowledge Protocols
	Random Self-reducibility Implies NIC
	Closure of Problems Possessing NIC Under Monotone Boolean Formulae
	References

	Sharp Tractability Borderlines for Finding Connected Motifs in Vertex-Colored Graphs
	Introduction
	Tight NP-Hardness Results
	A General Fixed-Parameter Algorithm
	Bounded Treewidth Graphs
	On Trees and Motifs with Bounded Number of Colors
	References

	Parameterized Algorithms for Directed Maximum Leaf Problems
	Introduction
	Preliminaries
	Combinatorial Lower Bounds on $\ell(D)$ and $\ell_s(D)$
	Digraphs with Restricted In-Degree

	Parameterized Algorithms for k-DMLOB and k-DMLOT
	Concluding Remarks and Open Problems
	References

	Parameterized Approximability of the Disjoint Cycle Problem
	Introduction
	Preliminaries
	Disjoint Cycles and Feedback Vertex Sets
	Fixed Parameter Tractable Approximation Algorithms
	TheMainTheorem
	Technical Lemmas
	The Main Algorithm

	Concluding Remarks
	References

	Linear Problem Kernels for NP-Hard Problems on Planar Graphs
	Introduction
	Preliminaries
	General Framework
	Case Studies
	Outlook
	References

	Private Locally Decodable Codes
	Introduction
	Definitions
	Our Model
	Our Constructions
	Constructions for One-Time Codes
	Final Construction

	References

	Hash Functions in the Dedicated-Key Setting: Design Choices and MPP Transforms
	Introduction
	Notation and Definitions
	Hash Functions in the Dedicated Key Setting
	Dedicated Key Transforms
	Security Analysis of the Transforms
	Collision Resistance Preservation
	MAC (Unforgeability) Preservation
	Pseudorandom Function Preservation
	Pseudorandom Oracle Preservation
	Target Collision Resistance Preservation

	References

	Unrestricted Aggregate Signatures
	Introduction
	Notation and Basic Definitions
	Unrestricted General Aggregate Signatures
	References

	Ring Signatures of Sub-linear Size Without Random Oracles
	Introduction
	Our Contribution

	Ring Signatures – Definitions
	Preliminaries
	Sub-linear Size Ring Signature Scheme Construction
	Untrusted Common Reference String Model
	Ring Signature with Unconditional Anonymity

	References

	Balanced Families of Perfect Hash Functions and Their Applications
	Introduction
	Balanced Families of Perfect Hash Functions
	Probabilistic Constructions
	Explicit Constructions
	Approximate Counting of Paths and Cycles
	Concluding Remarks
	References

	An Exponential Improvement on the MST Heuristic for Minimum Energy Broadcasting in Ad Hoc Wireless Networks
	Introduction
	The Approximation Algorithm
	Correctness of the Algorithm
	A Matching Lower Bound
	Conclusions
	References

	Modular Algorithms for Heterogeneous Modal Logics
	Introduction
	Multisorted Modal Logics by Example
	Logics for Probabilistic Systems
	Fusion of Modal Logics
	Conditional Logic

	Compositional Syntax of Multisorted Modal Logic
	Multi-sorted vs. Single-Sorted Coalgebraic Semantics
	Applications to Model Construction and Complexity
	Conclusions
	References

	Co-Logic Programming: Extending Logic Programming with Coinduction
	Introduction
	Coinductive Logic Programming
	Motivation and Examples
	Syntax and Semantics
	Conclusions and Future Work
	References

	Offline/Online Mixing
	Introduction
	Previous Work
	Our Contributions
	Notation

	Additively Homomorphic Cryptosystems
	The Basic Idea
	Model and Definitions
	The Ideal Bulletin Board
	The Ideal Mix-Net
	The Ideal Mixer
	Ideal Zero-Knowledge Proof of Knowledge of Plaintexts
	Concatenation Friendly Cryptosystems

	Detailed Protocol and Security Analysis
	Online Complexity
	Security Analysis

	Conclusion
	References

	Fully Collusion Resistant Black-Box Traitor Revocable Broadcast Encryption with Short Private Keys
	Introduction
	The Model and Security Requirements
	The Model
	Security Requirements

	Preliminaries
	Basic Scheme and Full Scheme
	References

	Succinct Ordinal Trees Based on Tree Covering
	Introduction
	Related Work
	Our Results

	Preliminaries
	Bit Vectors
	Succinct Ordinal Tree Representation Based on Tree Covering

	New Operations Based on Tree Covering (TC)
	height
	LCA and distance
	\TrLeafRank, \TrLeftLeaf, \TrLeafSize and \TrLeafSel
	\TrRank_\DFUDS and \TrSelect_\DFUDS
	\TrLevelLeft, \TrLevelRight, \TrLevelSucc and \TrLevelPred

	Computing a Subsequence of BP and DFUDS
	OpenProblems
	References

	A Framework for Dynamizing Succinct Data Structures
	Introduction
	Preliminaries
	Data Structures
	Bitvector Dictionary with Indels: BitIndel
	Insert-X-Delete-Any: Inx
	onlyX-structure
	The Final Data Structure

	Dynamizing Ordinal Trees, Labeled Trees, and the XBWTransform
	References

	In-Place Suffix Sorting
	Introduction
	Preliminaries
	A Space Consuming Approach
	Obstacles
	Input Partitioning and Simulated Resources
	Auxiliary Information Needed in Ko and Aluru’s Approach

	Our Algorithm
	Sorting the α-Suffixes
	First Phase
	Second Phase
	Third Phase
	Fourth Phase

	Sorting the Suffixes
	First Phase
	Second Phase
	Third Phase
	Fourth Phase
	Fifth Phase
	Sixth Phase

	Concluding Remarks
	References

	Maximal Infinite-Valued Constraint Languages
	Introduction
	The Constraint Satisfaction Problem
	Preliminaries from Model Theory
	Preliminaries from Universal Algebra
	Hardness Criteria for CSPs
	Maximal Constraint Languages
	Tractability
	Applications
	Solving Equations over Infinite Vector Spaces
	CSPs for the Universal Triangle-Free Graph
	Spatial Reasoning
	Temporal Reasoning

	References

	Affine Systems of Equations and Counting Infinitary Logic
	Introduction
	Preliminaries
	Definability of Equations
	Logical Reductions
	Definition
	Expansions by Reduced Invariant Relations
	Powering, Subalgebras, and Homomorphic Images

	Omitting Types and Results
	References

	Boundedness of Monadic FO over Acyclic Structures
	Introduction
	Preliminaries
	Locality
	Syntactic Locality and a Positive Variant of Gaifman’s Theorem
	Locality of Queries

	Boundedness over Acyclic Structures
	Locality Testing for MSO-Queries
	Boundedness of Arbitrary Monadic FO-formulae

	Outlook
	References

	Strong Price of Anarchy for Machine Load Balancing
	Introduction
	Related Machines
	Upper Bound on Strong Price of Anarchy for Related Machines
	Sketch of the Proof
	Excess Weight and Excess Jobs
	Partition into Phases

	Unrelated Machines
	References

	Efficient Algorithms for Constant Well Supported Approximate Equilibria in Bimatrix Games
	Introduction
	Preliminaries
	Mathematical Notation
	Game Theoretic Definitions and Notation

	Related Work
	Our Contribution and Roadmap
	Construction of a 0.5−SuppNE for {0, 1}−Games
	SuppNE for [0, 1]−Bimatrix Games
	Conclusions
	References

	Equational Systems and Free Constructions
	Introduction
	Algebraic Equational Theories
	Equational Systems
	Free Constructions for Equational Systems
	Categories of Algebras for Equational Systems
	Two Applications
	Σ -Monoids
	Pi-calculus Algebras

	Concluding Remarks
	References

	Categorical Views on Computations on Trees
	Introduction
	Relabeling Bottom-Up Tree Transducers
	Rebranching Bottom-Up Tree Transducers
	Relayering Bottom-Up Tree Transducers
	Allowing Parameters to Vary
	Conclusions and Future Work
	References

	Holographic Algorithms: The Power of Dimensionality Resolved
	Introduction
	Background
	Valid Bases
	Collapse Theorem
	References

	Reconciling Data Compression and Kolmogorov Complexity
	Introduction
	Compressors and Decidable Machines
	Characterizing Randomness Notions by Decidable Machines
	Time-Bounded Kolmogorov Complexity
	The Miller-Yu Theorem
	Lowness and Order-Lowness
	References

	Size Competitive Meshing Without Large Angles
	Introduction
	Preliminaries
	Related Work

	The OSM Algorithm
	Phase 1: The Overlay Mesh
	Phase 2: Stitching in Edges

	Output Angle Guarantees
	Size of the Triangulation
	Competitive Results

	Conclusions
	Size Bounds in Terms of n
	Work Efficiency
	Extensions

	References

	A Fully Abstract Trace Semantics for General References
	Introduction
	A Functional Language with General References
	TraceSemantics
	Soundness and Completeness

	Trace Semantics: Reference Types
	References

	Aliased Register Allocation for Straight-Line Programs Is NP-Complete
	Introduction
	Aliased Register Allocation for Straight-Line Programs
	Interval Graphs and Aligned 1-2-Coloring
	Simple Graphs, Straight Cuts, and Colored Flows
	FromMaximal, Aligned Colored Flow to Aligned 1-2 Coloring
	From 3-SAT to Maximal, Aligned Colored Flow
	Main Result and Conclusion
	References

	Conservative Ambiguity Detection in Context-Free Grammars
	Introduction
	Outline
	Bracketed Grammars
	Super Languages

	Position Graphs and Their Quotients
	Position Graph
	Position Equivalences

	Ambiguity Detection
	Regular Ambiguity Detection
	Common Prefixes with Conflicts
	Accessibility Relations
	Complexity

	Formal Comparisons
	Regular Ambiguity
	Bounded Length Detection Schemes
	LR(k) and LR-Regular Testing
	Horizontal and Vertical Ambiguity

	Conclusion
	References

	Lower Bounds for Quantile Estimation in Random-Order and Multi-pass Streaming
	Introduction
	Summary of Results and Overview

	Preliminaries
	Random Order Lower-Bound
	Adversarial Order Lower-Bound
	References
	Selection Algorithm for Random-Order Streams
	Proof of Theorem 3

	Streaming and Fully Dynamic Centralized Algorithms for Constructing and Maintaining Sparse Spanners
	Introduction
	The Streaming Model
	The Algorithm
	The Size of the Spanner
	The Stretch Guarantee of the Spanner
	The Processing Time-per-Edge

	A Centralized Dynamic Algorithm
	References

	Checking and Spot-Checking the Correctness of Priority Queues
	Introduction
	Our Results

	Preliminaries
	An $O(\sqrt n \log n)$-Space Checker for Heaps
	Spot-Checker
	Lower Bounds
	Conclusions and an Open Question
	References

	Undecidability of 2-Label BPP Equivalences andBehavioral Type Systems for the \(\pi\)-Calculus
	Introduction
	Basic Parallel Processes (BPP)
	Undecidability of Trace Equivalence
	Trace Set, Trace Preorder, and Trace Equivalence
	Encoding
	Undecidability of Trace Equivalence

	Undecidability of Simulation Equivalence
	Application to Behavioral Type Systems
	Syntax of Usages, Types, and Processes
	Type System
	Undecidability of Type Checking Problem

	Related Work
	Conclusion
	References

	Ready Simulation for Concurrency: It’s Logical!
	Introduction
	Logic LTS, Conjunction and Parallel Composition
	Full Abstraction Via Ready Simulation
	Related Work
	Conclusions and Future Work
	References

	Continuous Capacities on Continuous State Spaces
	Introduction
	Preliminaries
	Continuous Games, and Belief Functions
	Choquet Integration
	Ludic Transition Systems, Logic, Simulation, Rewards
	References

	On the Chromatic Number of Random Graphs
	Introduction and Results
	Preliminaries and Notation
	Approaching the Values of the Chromatic Number
	Proof of the Main Result
	The Sparse Case The Sparse Case ($n^{-1} \ll p \ll n^{-1 + \frac1{20}}$)
	The Dense Case ($n^{-1 + \frac1{20}} \le p \le n^{-\frac34 - \delta}$)

	References

	Quasi-randomness and Algorithmic Regularity for Graphs with General Degree Distributions
	Introduction and Results
	Related Work
	Preliminaries
	Quasi-randomness: Proof of Theorem 1
	The Algorithmic Regularity Lemma
	The Algorithm Regularize
	The Procedure Witness

	References

	Complexity of the Cover Polynomial
	Introduction
	Previous Results
	Our Contribution

	Preliminaries
	Overview
	SpecialPoints
	Horizontal Reductions
	Vertical Reduction
	The Weighted Cover Polynomial
	Partner Elimination
	Counting the Good Cycle Covers

	The Geometric Cover Polynomial
	Conclusion and Further Work
	References

	A Generalization of Cobham’s Theorem to Automata over Real Numbers
	Introduction
	Representing Sets of Numbers with Automata
	Number Decision Diagrams
	Real Number Automata
	Weak Deterministic RNA

	Problem Reduction
	Interval Boundary Points
	Definitions
	Recognizing Interval Boundary Points
	Recognizing Interval Boundary Points in Multiple Bases

	Finite-Boundary Sets
	Properties of Weak Deterministic RNA
	Properties of RNA Recognizing Finite-Boundary Sets

	Conclusions and Future Work
	References
	Proof of Lemma 1

	Minimum-Time Reachability in Timed Games
	Introduction
	TimedGames
	Timed Game Structures
	Timed Automaton Games
	Clock Regions

	The Minimum-Time Reachability Problem
	Solving for Minimum-Time Reachability
	Allowing Players to Use All Strategies
	Reduction to Reachability with B\capitaldieresis uchi and co-B\capitaldieresis uchi Constraints
	Termination of the Fixpoint Iteration

	References

	Reachability-Time Games on Timed Automata
	Introduction
	Timed Automata and Reachability-Time Games
	Timed Region Graph
	Solving Optimality Equations by Strategy Improvement
	Solving 1-Player Reachability-Time Optimality
 Equations $\Opt_\mMAX(\widehat{\Gamma})$
	Solving 2-Player
 Reachability-Time Optimality Equations
 $\Opt_{\mMIN\mMAX}(\widehat{\Gamma})$

	Complexity
	References

	Perfect Information Stochastic Priority Games
	Introduction
	Arenas and Perfect Information Games
	PriorityGames
	Stopping Priority Games
	Discounted Priority Games
	Limits of Priority Discounted Games
	References

	Bounded Depth Data Trees
	Introduction
	Definitions
	Automata
	Class Memory Automata for Forests of Bounded Depth
	Some Properties of FCMA
	Decidable Emptiness for the Automata

	A Two-Variable Logic for Bounded Depth Data Forests
	XPath
	References

	Unranked Tree Automata with Sibling Equalities and Disequalities
	Introduction
	Preliminaries
	Automata with Equality and Disequality Constraints Between Siblings on Unranked Trees
	Nonemptiness Problem: The Deterministic Case
	Restrictions and Extensions of the Model
	Conclusions
	References

	Regular Languages of Nested Words: Fixed Points, Automata, and Synchronization
	Introduction
	Preliminaries
	Mu-Calculus over NestedWords
	Automata Models for Nested ω-Words
	Synchronization of NestedWords
	References

	A Combinatorial Theorem for Trees Applications to Monadic Logic and Infinite Structures
	Introduction
	MainResult
	Semigroups and Additive Labellings
	Words
	Main Theorem

	Application to Monadic Second-Order Logic
	Structures
	Logics
	Main Result
	Consequences for Infinite Structures

	Other Consequences, Perspectives
	References

	Model Theory Makes Formulas Large
	Introduction
	Preliminaries
	Encoding Numbers by Trees
	Lower Bounds for the Size of Formulas in Gaifman Normal Form
	Failure of Feferman-Vaught Theorems for Formula Size
	Existential Preservation on Forests
	Structures of Bounded Degree — Elementary Upper Bounds
	References

	Decision Problems for Lower/Upper Bound Parametric Timed Automata
	Introduction
	Parametric Timed Automata
	Emptiness and Universality for Lower Bound Automata
	Decision Problems for L/U Automata
	Conclusion
	References

	On the Complexity of Ltl Model-Checking of Recursive State Machines
	Introduction
	Logic and Models
	Propositional Linear Temporal Logic
	Recursive State Machines

	TheComplexity of $\L(\eventually)$ Model-Checking on RSMs
	Syntactic Fragments of Ltl
	Conclusion
	References

	Paper Retraction: On the Hardness of Embeddings Between Two Finite Metrics
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

